
Measures for Inconsistency in Distributed Virtual Environments

Sven Grottke∗
Institute of IT Services
University of Stuttgart

sfs@cs.tu-berlin.de

Jan Sablatnig∗, Jiehua Chen∗, Ruedi Seiler
Institute of Mathematics

Technical University of Berlin
{jon,chen,seiler}@math.tu-berlin.de

Andreas Köpke∗, Adam Wolisz
Institute of Telecommunication Networks

Technical University of Berlin
koepke@tkn.tu-berlin.de, awo@ieee.org

Abstract

In distributed virtual environments, hosts typically have
to react to events within a time span which is less than
the network latency. As a consequence, hosts do rou-
tinely take actions although the system is in an incon-
sistent state. This has a noticeable influence on the per-
ceived quality of these actions and their effect on the
application. We argue that the level of this influence de-
pends on the degree of inconsistency. In this paper, we
tackle two fundamental questions: How does the degree
of inconsistency influence the perceived quality of the
users’ actions? How can the degree of inconsistency be
quantified? We propose a benchmark test for comparing
different consistency algorithms with each other which
consists of two measures of inconsistency and a sam-
ple scenario. For two different consistency algorithms,
we compare the results of our benchmark test with the
results of a user evaluation test and a simple yield mea-
sure.

1. Introduction

The number of distributed virtual environments
(DVEs) in online gaming, education and other areas of
application keeps increasing. They typically consist of
between several dozens and up to tens of thousands of
users with computers connected via the Internet. Each
of them can manipulate objects within the DVE and in-
teract with other users.

∗Jiehua Chen, Sven Grottke, Andreas Köpke and Jan Sablatnig
were supported by a grant from the Deutsche Forschungsgemein-
schaft (DFG).

A core component of DVEs is the consistency algo-
rithm, which ensures that all participants see the same
world, and that changes induced at one host are propa-
gated to all other hosts.

While some attempts at standardization exist, such
as HLA or DIS, most commercial and research DVEs
use a custom-made consistency algorithm. This leaves
the potential developer of a new DVE with an interest-
ing question: which consistency algorithm to choose for
a specific application?

Clearly, answering this question requires the means
to compare different algorithms with each other regard-
ing the application at hand. Here, we focus on how the
consistency algorithm influences the quality of the ap-
plication as perceived by the users. To illustrate the
problem for a typical application scenario, let us con-
sider the case of a virtual soccer game to be played over
the Internet by 22 participants, each controlling a single
avatar representing a “player”:

On the one hand, a player would be seriously an-
noyed if the ball would suddenly disappear from his foot
or change trajectory in midair without any discernible
reason. On the other hand, it would be equally annoy-
ing if a player kicks the ball and the ball wouldn’t start
moving immediately, but take off after a second or so.

As the network delay makes it impossible to keep
the system responsive and perfectly consistent at the
same time, users will routinely take actions while the
system is in an inconsistent state. In this paper, we
deal with the following questions: How does the de-
gree of inconsistency influence the perceived quality of
the users’ actions? Which quantitative measures can be
used to evaluate this degree of inconsistency?

2008 14th IEEE International Conference on Parallel and Distributed Systems

1521-9097/08 $25.00 © 2008 IEEE

DOI 10.1109/ICPADS.2008.87

859

2. Problem Description and Basic Concepts

To define the requirements on an inconsistency
measure, we have to take a closer look at the typi-
cal characteristics of a distributed virtual environment.
Such systems consist of a number of hosts which are
connected via a network, e.g. the Internet or a set of
radio modems. Communication is delayed and may be
faulty.

The hosts communicate to work together on a com-
mon task, e.g. a virtual soccer game. To this end, they
share a set of variables, such as the position of a player
or ball in the virtual soccer game. Each host has its own
idea of the value of each variable at any given time.

More formally, for a system with A shared vari-
ables, the vector �vh(t) = (v1,h(t) . . .vA,h(t)) describes
the state of the world as seen by host h at (wall-clock)
time t. We call �vh(t) the world view of h at time t. We
call the matrix V (t) the state of the system at time t,
with each column vector representing the world view of
one host at time t. We call a system consistent at time t
iff all hosts have the same world view at this time.

If an event takes place at a host, such as a player
kicking the ball, this event has to be propagated to the
other hosts to make the system consistent again. An
ideal system, where communication is unhindered by
delays or errors, would be consistent at any time. How-
ever, this is impossible in any real world distributed sys-
tem, because the speed of light puts a lower limit on the
time required to propagate events to other hosts. Fur-
thermore, there is an upper limit of ∼ 150 ms [1] on how
long a host may wait before reacting to a local event,
which is typically less than or equal to the network de-
lay.

There are several different approaches for keeping
a DVE consistent. For an in-depth discussion, which is
out of the scope of this paper, we refer to the overviews
given in [3] and [4]. The most popular approach is loose
consistency as described in the DIS standard [7], fol-
lowed by optimistic consistency as described by Mauve
et al. [8]. In systems employing either approach, hosts
react to local events before they have been propagated
to all other hosts in the system. Both approaches dif-
fer in how they resolve conflicts between events. With
the loose approach, messages do not describe events,
but the sender’s world view at send time. The receiver
simply overwrites its current world view with data from
the message. It does not attempt to reconstruct some
chronological ordering of all messages. With the opti-
mistic approach, messages describe local events at the
sender. Each host keeps a history of events, and adds
events from received messages to this history. When a
late event arrives at a host, i.e. a newer event has already
been received, the host integrates it into the history by

backtracking the application to the time when the event
occurred, and recomputing the history from this time.

As we’ve argued before, hosts in such systems
will typically have to react to events and take decisions
while the system is in an inconsistent state. This phe-
nomenon is referred to as short-term inconsistency [8].
The impact of short-term inconsistency on the system is
twofold:

1. Inconsistencies cause users to make improper
decisions. Even small differences in the value of a sin-
gle variable may have effects which are highly sensitive
in the amount of the actual error. Imagine a penalty kick
in the final of the virtual soccer world cup: if, when the
goalkeeper reacts, his view of the position and direction
of the ball differs even slightly from the kicker’s view,
he will decide to jump in the wrong direction, missing
the ball and losing the cup.

2. Usually, users don’t immediately notice that
the system is inconsistent. Eventually, however, incon-
sistencies have to be resolved, typically when a host re-
ceives a message about an event from another host and
updates its own world view accordingly. This causes
non-continuous changes in the host’s world view which
users typically notice as unexpected, annoying effects.
As an example, let us assume that the ball is flying in
a ballistic curve towards a player. When a message is
received that another player actually changed the direc-
tion of the ball 500 ms ago, this causes the player to see
the ball suddenly changing direction and “jumping” to
a new position in mid-air, destroying the illusion of a
real-life soccer game.

If, for an application employing a specific approach
to the consistency problem, we can quantify the incon-
sistency, then this would allow us to draw conclusions
on the quality of this approach with regard to the ap-
plication at hand. Furthermore, we also want an incon-
sistency measure to be applicable to a wide range of
consistency algorithms and application scenarios, and
to give results which can be used to compare different
consistency algorithms with each other.

3. Related Work

A number of consistency models have been de-
veloped mainly originating from distributed databases,
shared memory models and multiprocessor computing.
Typically, they give guarantees about the ordering of
read and/or write operations, such as in the linear, se-
quential or causal consistency models [5, 3]. They are
not very well-suited to evaluating DVEs due to the con-
tinuous changes of variables inherent in a virtual en-
vironment. There have been attempts at maintaining
causal relations between events in a DVE by Roberts
and Sharkey [10], and by Mauve et al. [8]. However, all

860

these efforts have in common that they fail to measure
the effects of short-term inconsistency.

Cronin et al. used the cost of rollback operations
to compare the performance of different optimistic con-
sistency algorithms [2]. Their methods only work for
optimistic algorithms, and are not generally applicable
to other approaches. Furthermore, they do not take the
achieved degree of inconsistency into account.

Liang and Boustead counted the number of kills per
second scored by robots playing Quake III over a net-
work [6]. They found that the number of kills correlates
well with the average network latency. This is similar
to our proposed yield measure (ref. 4.3).

Palazzi et al. used game-time difference (GTD) to
measure performance in a DVE [9]. GTD is defined by
the difference between the time when an event arrives
at a remote host and the time when it was generated,
i.e. it measures the duration of short-term inconsistency
for a single event. However, it ignores the degree of
inconsistency and its influence on game play.

Zhou et al. defined a metric which they call time-
space inconsistency [12]. It is defined as the difference
between the local and remote positions of the most im-
portant object in a DVE. They also propose a method
to estimate time-space consistency of a new DVE at de-
sign time. Their metric relies on the existence of a sin-
gle most important object, which is not always the case
for large-scale DVEs. Furthermore, their estimation
method only works for loose consistency algorithms.

4. Proposed Inconsistency Measures

As we have shown, existing measures cannot be ap-
plied to the systems under investigation, or fail to cap-
ture the full range of effects of inconsistency on the ap-
plication. Thus, we propose a number of new measures
which are better suited to meet our requirements.

As we pointed out in section 2, an inconsistency
measure has to take into account the different effects of
inconsistency on the perceived quality of an application.
Thus, a good measure has to take into account the ef-
fect of inconsistency between hosts each time a decision
is being made by a user, and the degree of disturbance
caused by non-continuous changes due to messages be-
ing received. As it is quite difficult to design a measure
which captures both aspects, we propose several mea-
sures, each quantifying one relevant aspect of inconsis-
tency. The divergence measure highlights the difference
in the world views, the discontinuity measure empha-
sizes the graphical effects of the inconsistency and the
yield measure stresses how well the users can play the
game despite the inconsistency.

4.1. Divergence Measure

The divergence measure measures the average dif-
ference between the world views of all hosts.

Consider a system where A denotes the total num-
ber of variables, and N the total number of hosts. We
define a A×N matrix V , where each column represents
the world view of one particular host. We define a sec-
ond A×N matrix R, ra,h ∈ [0,1]. ra,h describes the inter-
est host h takes in variable a. As both V and R change
over time, we write V (t) and R(t) to describe the system
state and interest matrix at time t. We define

da(t) =

√√√√ N

∑
h=1

ra,h(t)

∑N
ĥ=1

ra,ĥ(t)

(
va,h(t)− va(t)

)2
(1)

as the divergence of the system at time t with regard to
variable a, where

va(t) =
N

∑
h=1

ra,h(t)

∑N
ĥ=1

ra,ĥ(t)
va,h(t) (2)

is the weighted average value of variable a over all
hosts1 at time t. In typical implementations, ra,h(t) will
be either 1, or 0 if a host is not interested in a particu-
lar variable. Please note that expression 1 is a weighted
standard deviation of the world views of all hosts. We
define

d(t) =
A

∑
a=1

wa(t)

∑A
â=1 wâ(t)

da(t) (3)

as the divergence of the system at time t. W (t), with
wa(t) ∈ R, denotes the relevance vector, i.e. the rele-
vance of each variable with regard to the overall incon-
sistency. The relevance of a variable is chosen manually
at design time. It is typically based on the perceived in-
fluence of this variable on the user decisions. For exam-
ple, the exact position of the ball would be very relevant
to the decisions of all soccer players on the field, while
the color of the shirt of a particular spectator would be
almost irrelevant.

For a system with a session length of T , we define
the divergence of the system history as

D(T) =
1
T

∫ T

0
d(t)dt (4)

D(T) is the value we use as the inconsistency measure.
The divergence measure is applicable if it is pos-

sible to determine the world views of all hosts at any
given time. Its validity depends on the particular choice
of w. The computational complexity scales with O(N ·
A ·T).

1We assume that ∀t∀a∃h : ra,h(t) > 0, i.e. at any time t and for
each variable a, there’s at least one host which is interested in a at this
time.

861

4.2. Discontinuity Measure

The discontinuity measure quantifies the distur-
bance caused by sudden changes in a host’s world view
which are due to variables being changed by messages
from other hosts as described in section 2.

The discontinuity measure is measured separately
for each host. Suppose a message m changes the value
of variable a at host h and time tm. Let V and V ′ denote
the system state matrix with and without receiving the
message. The change m causes in h’s world view is
expressed by

ga,h(m) = (v′a,h(tm)− va,h(tm)) (5)

Let Mh be the the set of all messages received by h dur-
ing one session. The average discontinuity at h is writ-
ten as

Gh =
1
T ∑

m∈Mh

A

∑
a=1

w′
a

∑A
â=1 w′

â

ga,h(m)2 (6)

where w′
a is a weighting factor denoting the relative im-

portance of non-continuous changes in variable a. w′ is
defined at design time.

The discontinuity measure’s validity depends on
the particular choice of w′. It is well suited to appli-
cations such as virtual environments, where users are
very sensitive to non-continuous changes in variables.
Gh can be computed separately at each host, with the
computational complexity being of O(A · |Mh|).

4.3. Yield Measures

Yield measures attempt to measure the influence
of inconsistency on the decision-making process of the
users of a distributed system. As we’ve argued before,
these influences are highly application-dependent. They
are usually difficult to formulate in terms of a math-
ematical formula. Instead, yield measures are chosen
heuristically for each application in an attempt to ex-
press the “goal” of an application in a single value.

For example, in the virtual soccer game, one could
use the number of bad passes per second as the yield
measure. This would be based on the hypothesis that a
less effective consistency algorithm would cause play-
ers to make more mistakes, e.g. because they’ve got
incorrect information about the potential receiver of a
pass. There is usually more than one possible choice
of measure, which can yield different rankings for the
same set of algorithms.

Yield measures can be applied to any system in
which at least a subset of the hosts is accessible for data
gathering. Their validity depends on the choice of a par-
ticular measure, and there is no general rule for how to

come up with a good one. Yield measures are typically
chosen so that they are simple to implement. Their com-
putational complexity depends on the specific measure,
but typically scales with O(N ·T).

5. Experiment setup

After defining several measures, two questions
arise. Firstly, can the measures be used to rank algo-
rithms that try to reduce the inconsistency? And sec-
ondly, is this ranking consistent with the user impres-
sion? In this section, we briefly describe the experiment
setup we used to answer these questions. For a full de-
scription we refer to our technical reports2 [4, 11].

Our benchmark application for the evaluation is
“Swarm”, a non-cooperative game for N players (here:
8). Each player controls a bee and tries to stay as close
to the queen-bee as possible. At regular intervals, honey
is awarded to each bee depending on its distance to the
queen, bees closer to the queen receive more honey.
When a bee collides with another bee or with the queen,
it is stunned for a few seconds: the bee receives no
honey and cannot control its flight. The collisions are
modeled as for ideal, fully elastic balls, comparable to a
billiard game. One should point out that even small dif-
ferences in the positions and the velocities of the bees
result in a totally different behavior of the Swarm. Each
bee is controlled by an artificial intelligence (AI) which
keeps it as close to the queen as possible while evading
other bees, by changing the acceleration and the direc-
tion of the bee. The AI tries to maintain a minimum
safety distance S to the queen and other bees to reduce
the risk of collisions. S is adapted to the progress of the
game in an attempt to optimize the overall honey gath-
ered by this bee, i.e. it is increased if there are many
collisions and decreased when there are few collisions.

The yield measure for Swarm is honey per second.
If a bee experiences too many collisions due to inconsis-
tency, it is stunned more often, and receives less honey.
The bee will react by increasing its safety distance S,
which further reduces the amount of honey it collects.

We use the divergence and discontinuity measures
from sections 4.1 and 4.2, with all the ra,h set to 1. We
have normalized the variable values to their natural do-
main ranges before using them in this measure. We
chose the set of variable weighting factors wa (cf. eqn.
3) and w′

a analogous to how a user would rate the dif-
ferences, i.e. more visible or interesting variables are
weighted higher.

We’ve implemented two different consistency al-
gorithms based on the loose and optimistic approach.
Loose consistency as implemented in Adam is inspired

2available from http://www.math.tu-berlin.de/
condel/publications

862

by the algorithms used in DIS and related systems [7].
For a complete algorithmic description, see [4]. Opti-
mistic consistency as implemented in Adam is inspired
by some of the newer approaches to distributed game
consistency as seen in [10] or [8]. For the exact algo-
rithm, refer to [4] and [11].

The Internet is modeled abstractly by connecting
each host directly with each other host. On these links,
packets are lost with a probability of 1 ‰. The packet
delay is nearly fixed, but 1% of the packets experience a
high delay, for details see [11]. Congestion is not mod-
eled, but we measure network load, i.e. the number of
packets sent by each host within a second.

We performed a simple user evaluation test for our
sample scenario. Test users would look at the visual-
izations of the experiments running the Swarm with the
two different consistency algorithms, and would decide
which one performs better. These results are prelimi-
nary, and will be expanded in the near future.

We ran two experiments, each repeated seven
times, in our simulator Adam [11] – the Swarm sce-
nario with eight bees for loose and optimistic consis-
tency – for 5000 s with identical settings for loss rate at
a fixed network load of 20 packets sent/s by each host.
A packet is typically less than 100 bytes in size. We
vary the expected network delay between 0 and 500 ms
to find out how the different consistency algorithms re-
act to changes in connection quality.

6. Results

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.1 0.2 0.3 0.4 0.5

ut
ili

ty
 [h

on
ey

/s
]

network delay [s]

loose opt ideal

Figure 1: Yield measure comparison – higher is better

User evaluation tests consistently rate optimistic
consistency as better than loose for a network delay of
50 ms. Videos showing the first 300 seconds of both
visualizations are available from our web server 3, and

3http://www.math.tu-berlin.de/condel/
visuals/comparison.html

support this observation.
Figures 1, 2a and 2b show the results of the three

inconsistency measures we’ve proposed. As one can
see, both the divergence measure and the discontinu-
ity measure give very similar results which confirm
the user evaluation results by consistently rating opti-
mistic consistency better than loose consistency over
the whole range of network delay. Optimistic consis-
tency achieves a lower inconsistency, because it incor-
porates late messages instead of discarding them. The
difference grows for higher network delays, which im-
plies that optimistic consistency can cope better with
high latency connections. The plot for the yield measure
shows that the difference is less obvious than for the
other two measures, and becomes manifest only for net-
work delays larger than 350 ms. This is somewhat sur-
prising, as one would intuitively think that inconsisten-
cies in the system should have a strong negative impact
on the ability of the bees to collect honey. We suspect
that this is due to the large amount of honey awarded for
being close to the queen, despite the penalty for more
frequent collisions.

Overall, the results confirm our expectations that
optimistic consistency always outperforms loose con-
sistency in terms of inconsistency. Furthermore, two of
our three proposed inconsistency measures agree with
user evaluation results, showing lower inconsistency for
the optimistic algorithm as well. Only the yield measure
is largely indifferent, showing that inconsistency in the
system has a much stronger impact on user perception
than can be expressed by the yield measure alone.

The increased consistency provided by the opti-
mistic algorithm comes, however, at the price of in-
creased CPU load which we have found to be 4 times
higher for our implementation of optimistic consistency
compared to loose consistency.

7. Conclusions and Outlook

In this paper, we have discussed the effects of in-
consistency on distributed virtual environments and its
perception by the user. To quantify these effects, we’ve
proposed three different measures: the divergence mea-
sure, the discontinuity measure and the yield measure.

We’ve defined a minimalist multiplayer game
which, while simple, retains the essential properties of
a multi-user DVE.

We’ve applied our measures to two implementa-
tions of the game using different consistency algo-
rithms. We’ve also performed a user evaluation test to
compare our experimental results against. We’ve found
that both the divergence measure and the discontinuity
measure correlate well with the user evaluation results,
while the yield measure fails to do so. We believe that

863

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 0.1 0.2 0.3 0.4 0.5

di
ve

rg
en

ce
 D

network delay [s]

loose opt

(a) Divergence Comparison

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5

di
sc

on
tin

ui
ty

 __ G

network delay [s]

loose opt

(b) Discontinuity Comparison

Figure 2: Comparison of measures – lower is better

this shows that yield alone, while intuitively acceptable,
is not always sufficient to express the strong effects of
inconsistency on user perception.

As a result from our work in this paper, we ad-
vocate the use of the Swarm as a benchmark applica-
tion and the divergence and discontinuity measures as
inconsistency measures when comparing different con-
sistency algorithms with each other.

For the future, we plan to apply our measures to a
larger set of sample scenarios so that we can evaluate
them for a broader range of applications.

We also plan to perform larger and more sophisti-
cated user evaluation tests.

Finally, we will research the possibility of combin-
ing the inconsistency measures we’ve proposed. We be-
lieve that this will help to measure effects which cannot
be captured by a single measure alone.

References

[1] G. Armitage. An Experimental Estimation of Latency
Sensitivity in Multiplayer Quake 3. In Proceedings
of the 11th IEEE International Conference on Net-
works (ICON 2003)), pages 137–141, Sydney, Australia,
September 2003. IEEE Press.

[2] E. Cronin, B. Filstrup, A. R. Kurc, and S. Jamin. An
efficient synchronization mechanism for mirrored game
architectures (extended version). Kluwer Multimedia
Tools and Applications, 23(1), May 2004.

[3] R. Galli. Data Consistency Methods for Collaborative
3D Editing. PhD thesis, Universitat de les Illes Balears,
Nov. 2000.

[4] S. Grottke, J. Sablatnig, A. Köpke, J. Chen, R. Seiler,
and A. Wolisz. Consistency in Distributed Systems.
TKN Technical Report Series TKN-08-005, Telecom-
munication Networks Group, Technische Universität
Berlin, Feb. 2008.

[5] M. P. Herlihy and J. M. Wing. Axioms for Concur-
rent Objects. In POPL ’87: Proceedings of the 14th
ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 13–26, 1987.

[6] D. Liang and P. Boustead. Using local lag and timewarp
to improve performance for real life multi-player online
fames. In Proceedings of Netgames’06. ACM, 2006.

[7] M. R. Macedonia, M. J. Zyda, D. R. Pratt, D. P. Brutz-
man, and P. T. Barham. Exploiting Reality with Mul-
ticast Groups: A Network Architecture for Large-scale
Virtual Environments. In Proceedings of the 1995 IEEE
Virtual Reality Annual Symposium, pages 2–10, 1995.

[8] M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg. Local-
lag and Timewarp: Providing Consistency for Repli-
cated Continuous Applications. IEEE Transactions on
Multimedia, 6(1):47–57, Feb. 2004.

[9] C. E. Palazzi, S. Ferretti, S. Cacciaguerra, and M. Roc-
cetti. On Maintaining Interactivity in Event Delivery
Synchronization for Mirrored Game Architectures. In
Proceedings of the Global Telecommunications Confer-
ence Workshops (IEEE GlobeCom), pages 1183–1187,
November 2004.

[10] D. J. Roberts and P. M. Sharkey. Maximising concur-
rency and scalability in a consistent, causal, distributed
virtual reality system, whilst minimising the effect of
network delays. In Proceedings of the IEEE Workshops
on Enabling Technology: Infrastructure for Collabora-
tive Enterprise ’97, pages 161–166, 1997.

[11] J. Sablatnig, S. Grottke, A. Köpke, J. Chen, R. Seiler,
and A. Wolisz. Adam – A DVE Simulator. TKN Tech-
nical Report Series TKN-08-004, Telecommunication
Networks Group, Technische Universität Berlin, Feb.
2008.

[12] S. Zhou, W. Cai, S. J. Turner, and H. Zhao. A Consis-
tency Model for Evaluating Distributed Virtual Environ-
ments. In CW ’03: Proceedings of the 2003 Interna-
tional Conference on Cyberworlds, page 85, Washing-
ton, DC, USA, 2003. IEEE Computer Society.

864

