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Abstract

In Distributed Virtual Enironments (DVEs) the data
on which the hosts operate is not consistent at all times.
To restore data consistency, the DVE has to employ a
consistency algorithm. Unfortunately, all existing DVEs
have been built for specific application scenarios, which
makes it impossible to compare the consistency algo-
rithms and to choose a suitable candidate for a new
scenario.

To overcome this, we have created a modular
simulator-based DVE testbed named Adam with the
ability to plug in different application scenarios as well
as different consistency algorithms and network con-
straints. The testbed also contains a large set of mea-
surement tools.

Our testbed currently supports two application sce-
narios and several of the most common consistency al-
gorithms found in the literature. We can compare the
solutions on an objective scale and confirm that opti-
mistic consistency typically outperforms loose consis-
tency.

1. Introduction

DVEs simulate a virtual world in which users can
interact with each other or with that world. An example
would be a virtual soccer game where each user con-
trols a player and can interact with other players and
the ball. We consider the situation where each user op-
erates a single computer (a host) that renders the world
for this user. Through a network, the virtual world is
shared between all hosts and the users can observe and

react to other users’ actions. Immersion into a virtual
environment requires very quick local reactions of less
than the round-trip delay on many of the relevant net-
works such as the Internet. Thus, the hosts will typi-
cally have to react to local user commands before this
action is agreed upon by all hosts. This implies that the
users on the other hosts act on a different, i.e. inconsis-
tent world view. Even if no direct conflict occurs, the
inconsistency in world views between the hosts can be
detrimental.

A number of consistency algorithms are used to re-
duce the system inconsistency at the expense of addi-
tional network and CPU load. The effectiveness of the
consistency algorithms depends both on the properties
of the application scenario as well as on network con-
straints and available hardware.

Even though the usability and overall quality of a
DVE depend heavily on its inconsistency, there is cur-
rently no ranking of effectiveness of the consistency al-
gorithms used in DVEs. Therefore, it is very hard to
estimate the expected inconsistency, network and CPU
load of these algorithms for a new application scenario.

In this article we propose a testbed for objective
ranking of consistency algorithms for given application
scenarios. This code implements some of the most com-
mon consistency algorithms used in DVEs and a few
simple scenarios. The testbed is completely modular,
allowing any combination of scenario, consistency al-
gorithm, and network constraints.

The code also includes a large set of measurement
tools. In addition to network and CPU load, several
measures are provided to quantify the system consis-
tency, see section 4 for more on these.
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The code will be downloadable and extensible so
that other researchers can rank their own algorithms.

2. Related Work

The first major DVE was SimNet/NPSNET, which
became the DIS standard in 1993[13]. A large array of
research DVEs were built similar to DIS, with some ex-
tensions. These extensions usually focused on exploit-
ing locality, such as SPLINE [1] or DIVE [6]. DIS was
originally designed for military battlefield simulations
on dedicated networks and very few of the DIS-alikes
are in production use outside of this application.

On the other hand, computer games such as “X-
Wing vs. TIE Fighter” (1997) [12] gauged Internet con-
nected simulations early on. “Ultima Online” (1997)
connected thousands of players on a single server,
“World of Warcraft” (2004) had 9 million subscribers
in 2007. Surprisingly, the consistency algorithms used
have not changed much between the latter two programs
and are akin to DIS, except that centralized servers are
used.

The research game application PaRADE (1997)
was highly interactive and attempted to solve the
Internet-delay problem through optimistic consistency
and through prediction [16]. MiMaze (1999) was an-
other very interactive research game application, but it
used DIS-like mechanisms [4]. More recently in 2002,
Cronin et al. researched algorithms to improve the con-
sistency of an existing, highly interactive game, using
optimistic consistency to achieve this [3].

Since the current research focus is most often on
scalability, i.e. the ability of a DVE to support many
thousands of players at the same time, researchers have
started to abandon user tests as too expensive, run-
ning simulations instead. RING already simulated 1000
users in 1995[7]. While Mercury (2002) simulated only
100 hosts[2], Knutsson (2004) simulated 4000 hosts[9].
However, all of these simulations were used to find the
effect of a specific algorithmic change or of an algorith-
mic parameter in an otherwise monolithic application
and are completely nontransferable to other scenarios
or other algorithms.

3. The Testbed

Adam, our testbed, simulates an entire DVE on a
single computer. This includes the network connecting
the hosts, all the hosts, and even the users. On each sim-
ulated host, consistency algorithms are run as they are
on a host in an actual DVE, updating the world view of
that host. The user operating that host is simulated by
running an intelligent agent (IA) which bases its deci-

sions on the current world view of the host. Rendering,
user interface, system compatibility, patching, etc. are
not simulated on the hosts, as there are no actual users
or actual hosts.

3.1. Architecture

Adam is built on top of the discrete event simulator
OMNet++ [17] in conjunction with the MRIP engine
Akaroa [5].

During the simulation, our testbed creates a host-
module for each host to be simulated and connects
them via OMNet++ network connections, allowing
OMNet++ to simulate the entire connecting network.
Each host-module then creates a number of modules,
the most important of which are shown in figure 1:

Host: A representation of a single physical host the
DVE runs on. It instantiates and controls the other
modules and is also the OMNet++ interface.

Router: The network layer on a host. Implements reli-
able transfer algorithms as well as message aggre-
gation if needed.

Consistency: The consistency layer on a host. This
decides when to send update information to other
hosts and what to do with incoming information.
Often, this will hold additional, internal world
views.

World: The world view on this host. All objects in this
world and their states are collected here as a set of
named variables.

Scenario: The scenario-specific code. This contains
the rules dictating how objects in this world
move about or interact. It also contains a
scenario-specific intelligent agent that issues user-
commands.

All modules are called at regular intervals to up-
date themselves and clean up any outstanding opera-
tions. Amongst other things, this allows the scenario to
update the world view according to the scenario rules,
thus progressing the virtual environment. Also, the IA
decides on new actions during these calls.

When the scenario needs to change the values of
any variable in the world view, it can simply do the
change directly. If the scenario’s IA, however, performs
a user event, it will ask the consistency algorithm to
perform the event instead. The consistency algorithm
can then apply the event directly or delegate it for later
application. The consistency may create a message to
inform other hosts of this event. If so, the message is
passed to the router which then decides when and how

85



Scenario

ha
nd

le
_m

es
sa

ge
()

World

Router

Host

Consistency

se
nd

()

qu
ee

n.
x=

nx

userEvent(id,v)

simulate()

setVariables()
getInstance(id).

send()

handle_message()

Figure 1. Modules in a Single Simulated Host

to send this message to other hosts via the host’s OM-
Net++ interface.

When a message arrives at a host, it is passed to the
consistency layer. The consistency layer analyzes the
type of message. Depending on the algorithm in use,
it may then drop the message, or add it to its message
history, or implement the effect of the message directly
by applying it to the world view. Afterwards, it may
also call the scenario to update the world view.

The modules described above are implemented as
C++ classes. The actual implementations (e.g. a Swarm
scenario, or a loose consistency) are then inherited from
these base classes, overloading their major interface
functions. By using OMNet++ configuration files the
user then decides which combination of objects to com-
bine and sets their parameters. This allows easy access
to any mix of available technologies, algorithms and
scenarios.

One of the few things implicitly shared between the
hosts is an exact notion of time (i.e. all hosts use OM-
NET++’s simTime()). This is not possible in the real
world, and in fact it is somewhat difficult to keep a large
set of hosts close to the wall-clock time. It is, how-
ever, possible to do so, at least with respect to message
causality[11]. The NTP protocol accomplishes a syn-
chronization of within 10ms[15]. We therefore decided
to abstract from this problem.

3.2. Network

We use a flat network model where every host can
communicate with any other directly. We set the mes-
sage delays on these links to be random i.i.d. While this
precludes congestion modeling, we do measure network

traffic on each host, so it is possible to catch possible
congestion situations a posteriori. As long as the traffic
generated by the considered DVE would not be a sub-
stantial part of the overall traffic on the Internet, this
abstraction is sane.

The delay probability distribution of the network
links was modeled according to our measurements of
actual Internet pings[10]: Most of the messages arrive
after a fixed delay, the rest coming in within the next 2s.

In addition to the delay specified above, there is a
configurable probability a packet may be lost altogether.
On the modern Internet, this chance appears to be rather
small, no more than 1 ‰[10].

3.3. Consistency Algorithms

Our testbed currently implements three consistency
algorithms:

3.3.1. Ideal. For upper bound comparison purposes,
we provide an ideal consistency, in which all variables
are kept consistent on all hosts.

3.3.2. Loose. Loose consistency as implemented in
Adam is inspired by the algorithms used in DIS and re-
lated systems [13], including player/ghost analysis and
dead reckoning. For a complete algorithmic descrip-
tion, see [8].

3.3.3. Optimistic. Optimistic consistency as imple-
mented in Adam is inspired by some of the newer ap-
proaches to distributed game consistency as seen in
[14], including reliable communication protocols, local
lag and a rollback mechanism based on the so-called
trailing state synchronization as described by [3]. For
the exact algorithm, refer to [8].

3.4. Scenarios

As of now, the following basic scenarios are pro-
vided by Adam:

3.4.1. Pong. The first scenario we implemented was
Pong, akin to the famous video-game from 1972. While
this works as a model for ball games, it features only
two players.

3.4.2. Swarm. The Swarm models a non-cooperative
game for N players, each controlling a bee and trying
to stay as close to the queen-bee as possible. At regular
intervals, honey is awarded to each bee depending on
their distance to the queen, with higher distance getting
less of a reward. When a bee collides with another or
with the queen, the bee is penalized by being considered
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dead for a few seconds. While dead, a bee receives no
honey and cannot control its flight.

The game employs a physical model. Players can-
not simply set position or speed of their bees, only the
direction and amplitude of acceleration. Collisions be-
tween bees/queen/walls are resolved as they would for
ideal, fully elastic balls. In particular, a crash often
leads to more crashes as the bees bounce on uncontrol-
lably.

When passive replication is used (for loose con-
sistency), each bee’s score is owned by the next bee
for fairness reasons. The queen’s ownership is passed
round-robin every two seconds.

The IA’s algorithm a strong influence on the mea-
surements in this scenario, therefore we made an effort
to improve the IA enough so that it would behave sim-
ilar to a human. A simple version of potential-field
steering is installed which attempts to solve the trade-
off between trying to move near the queen while trying
to keep a safe distance from other bees and the queen, so
as not to collide with anything. A human player would
quickly adapt to the game and simulation quality and
adjust his safety margins accordingly. Therefore, the
IA was also outfitted with a simple learning mechanism
to tune its safety margins.

4. Inconsistency Measures

To compare different consistency algorithms with
each other, Adam provides several measures for the de-
gree of inconsistency in the virtual world:

4.1. Divergence

This measure estimates how similar the world
views are on the different hosts. It is based on the stan-
dard deviation of the values of each variable v across
the hosts. For each variable a, we define the divergence
measure at time t as

da(t) :=

√
1
H ∑

h

(
va,h(t)− va(t)

)2

where va,h(t) is the value of variable a on host h and

H is the number of hosts. va(t) := 1
H ∑h va,h(t) is the

average value of variable a across all hosts.
These per-variable snapshot divergences are then

weighted and averaged into a single overall system di-
vergence

D =
1
T ∑

t
∑
a

wa

∑a wa
da(t)

, where wa are configurable weighting factors that al-
low us to emphasize the more important variables (such

as spatial differences, readily visible) versus the less
important variables (such as acceleration differences,
which are almost invisible to the naked eye). T is the
amount of snapshots taken, this makes the measure in-
dependent of the overall time the system was measured.

The value given by D is an objective judgment of
how well the world views of the different hosts coin-
cided during the DVE’s lifetime. A smaller D indicates
better consistency.

4.2. Discontinuity

This measure estimates how much the DVE
changes discontinuously. The motivation is that when
a host receives a network message from another host,
the host has to change his own world view. If the cur-
rent world view is visible to the user, this change is also
visible. Most humans are very sensible to such effects
and find them very unpleasant.

Whenever a network message causes a change in
variable a on host h’s world view, the change is ex-
pressed by

ga,h(m) := |vnew
a,h (m)− vold

a,h(m)|
, where m indexes the discontinuous changes. The total
discontinuity is then weighted and averaged across the
hosts:

G :=
1
H

1
T ∑

h
∑
mh

∑
a

w′
a

∑a w′
a
· (ga,h(mh))

2

, where mh indexes all changes made for host h and T
is the total time of the experiment. w′

a are weighting
factors similar to the ones in chapter 4.1.

G describes the average discontinuity on the entire
system. Smaller values indicate a smoother play out.

5. Experiments

We are running Adam on standard desktop PCs (3
MHz Intel CPU, 1 GB memory). The computational
complexity of the Swarm scenario is O(N3), where N is
the number of hosts. For practical purposes, this limits
the number of hosts that can be simulated to sixteen.
The theoretical complexity of the simulation is O(N2),
but Adam has not been optimized to this respect yet.

We ran each Swarm experiment with eight simu-
lated hosts, averaging the results between seven runs of
each 5000s.

5.1. Loose vs. Optimistic

We measured parametric curves for our inconsis-
tency measures over network load. To create these
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Figure 2. Divergence Characteristic
for 100ms Network Delay

curves, we stepped through a single parameter in the
Swarm experiment, leaving the other parameters at their
defaults. For loose consistency, we stepped through
regular update rate, while for the optimistic case, we
stepped through the message aggregation timeout. The
resulting network load and inconsistency measurements
from each sub-experiment are then plotted in figures 2
and 3 for a network delay of 100ms and in figures 4 and
5 for the 400ms case.

The resulting characteristic curves not only allow
an estimate of the tradeoff between inconsistency and
network load, they also allow a direct comparison of the
two consistency-algorithms used, loose and optimistic.

From the graphs, it is immediately apparent that
optimistic consistency results in significantly lower in-
consistency for the entire range of bandwidth > 13
packets/s, in all sub-experiments. We will analyze this
effect further to find exact criteria where optimistic con-
sistency is superior to loose consistency.

Optimistic consistency cannot be configured to use
less than a certain critical bandwidth (13 packets/s in
this scenario), so if the desired network load lies below
that, loose consistency must be used.

Optimistic consistency also cannot be configured to
use more than a certain bandwidth. However, the con-
sistency at that point is already significantly better than
loose’s consistency at any network load.

Loose consistency, on the other hand, can run at
any desired bandwidth. At extremely low network load,
its inconsistency behaves roughly as 1/x. At high net-
work load however, it fails to profit from any additional
network load and its inconsistency becomes constant.

Note that this result, i.e. that loose consistency is
only better than optimistic consistency at extremely low
bandwidth, has been observed before[14], but this is the
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first time that a quantification of the effect is available.

6. Conclusions and Outlook

We have shown that our testbed can be used
to directly compare specific consistency algorithms
with each other. We implemented various consis-
tency schemes, scenarios, measures and standard exper-
iments.

We used these experiments to confirm that for a
DVE using a physical model, optimistic consistency
typically performs better than loose consistency. This
is the expected result and thus validates Adam’s mea-
surement capabilities. We are planning to perform user
evaluation tests to confirm that Adam’s measurements
do indeed correspond to perceived quality.

The computational complexity of Adam’s current
Swarm scenario algorithm limits simulation to sixteen
hosts. In the future, we plan to upgrade Adam to up to
a hundred hosts while maintaining the current consis-
tency algorithms.

A major challenge in research on virtual environ-
ments is currently the question of how to create scal-
able solutions supporting thousands of hosts. Classical
DVEs scale with the number of hosts both in computa-
tional complexity per host and network load per host.
Thus, a scalable DVEs must employ partial replication,
i.e. allow each host in the DVE to compute only a part
of the world and communicate with only a part of the
other hosts.

We are planning to install the most important exist-
ing replication algorithms, such as classic multicast and
current peer-to-peer systems. They will still be imple-
mented in a modular way as everything else in Adam in
order to mix each scalability support with each scenario
and consistency algorithm. Because of the lower com-
plexity per host in a scalable DVE, we expect the im-
proved Adam to be able to simulate thousands of hosts
for such a DVE.
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