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Zusammenfassung

In den Modellen der klassischen Finanzmathematik wird angenommen, dass man beliebige
Mengen von Gütern zum aktuellen Marktpreis handeln kann, ohne dadurch diesen Preis zu
beeinflussen. Dies entspricht für große Transaktionen nicht der Realität: Zum einen muss
für den Kauf oder Verkauf großer Positionen eine Preisprämie gezahlt werden, zum ande-
ren haben große Transaktionen einen nachhaltigen Effekt auf zukünftige Preise. Ziel dieser
Dissertation ist es, optimale Handelsstrategien in einem solchen

”
illiquiden Markt“ zu finden.

In einem ersten Teil analysieren wir die Situation eines einzelnen Händlers, der ein Port-
folio verkaufen möchte. Dieser steht vor einem Dilemma: Auf der einen Seite übt er durch
schnelles Handeln einen starken negativen Einfluss auf den Marktpreis aus und reduziert
dadurch seinen Handelserlös. Auf der anderen Seite geht er bei langsamem Handeln ein ho-
hes Risiko ein, da der Marktpreis im Laufe der Handelsabwicklung aufgrund von exogenen
Ereignissen einbrechen kann. Im ersten Teil dieser Dissertation bestimmen wir den optima-
len Mittelweg in diesem Dilemma. Dabei benutzen wir verschiedene Modellierungsansätze
mit einem besonderen Fokus auf die Maximierung des erwarteten Nutzens. Die Hamilton-
Jacobi-Bellman-Gleichung für dieses Problem ist eine vollständig nicht-lineare, degenerierte
partielle Differentialgleichung. Um diese zu lösen, verfolgen wir den ungewöhnlichen Ansatz,
zuerst die optimale Kontrolle als Lösung einer partiellen Differentialgleichung herzuleiten
und danach mit Hilfe der optimalen Kontrolle eine Lösung der Hamilton-Jacobi-Bellman-
Gleichung zu konstruieren. Für den Verkauf eines Portfolios aus mehreren verschiedenen
Aktien können wir mittels dieses Ansatzes die hochdimensionale Hamilton-Jacobi-Bellman-
Gleichung auf ein zweidimensionales Problem zurückführen, falls der Markt

”
homogen“ in

einem bestimmten Sinne ist.
Im zweiten Teil dieser Arbeit betrachten wir mehrere Marktteilnehmer, welche dasselbe

Gut in einem illiquiden Markt handeln. Jeder Teilnehmer handelt zum Marktpreis, welcher
von den Transaktionen aller Teilnehmer gleichermaßen beeinflusst wird. Dadurch ergibt sich
eine Interaktion zwischen den Marktteilnehmern. Wir untersuchen insbesondere die Situati-
on eines Händlers, der innerhalb eines kurzen Zeithorizonts eine Aktienposition liquidieren
muss, während andere Marktteilnehmer von seinen Handelsplänen wissen. In einem ersten
Marktmodell können wir die optimalen Handelsstrategien aller Agenten in einer komplexen
geschlossenen Form herleiten. Wir beleuchten die Interaktionen zwischen den Marktteilneh-
mern anhand von Beispielfällen und Grenzwerten und finden Erklärungen für die Koexistenz
von kooperativen und kompetitiven Verhaltensweisen. Für ein zweites Marktmodell zeigen
wir induktiv, dass die Wertfunktion für alle Marktteilnehmer eine spezielle polynomiale
Form hat. Dadurch erhalten wir die optimalen Handelsstrategien als lineare Funktionen mit
Koeffizienten, welche durch eine explizite Rückwärtsrekursion berechnet werden können. In
diesem zweiten Marktmodell ist eine schnelle Abfolge von Käufen und Verkäufen optimal;
durch das Betrachten verschiedener Grenzwerte bringen wir dieses Verhalten mit den Kosten
von Round-Trip-Transaktionen in Verbindung.





Summary

In the classical models of financial mathematics, it is assumed that arbitrarily large positions
of assets can be traded at the current market price without affecting this price. This does not
reflect reality for large transactions: First, a price premium must be paid for large positions.
Second, large transactions do have a long-lasting effect on future prices. The purpose of this
dissertation is to find optimal execution strategies in such an ”illiquid market”.

In a first part, we analyze the situation of a single trader, who wants to liquidate a
portfolio. The trader is facing a dilemma: on the one hand, a quick liquidation results in
a strong adverse influence on the market price and thus reduces the liquidation proceeds.
On the other hand, a slow execution results in a large risk, since the market price can move
significantly during the liquidation time period due to exogenous events. In the first part
of the dissertation, we determine the optimal trade-off in this dilemma. We use different
modeling approaches with a special focus on utility maximization. The Hamilton-Jacobi-
Bellman equation for this problem is a completely non-linear, degenerate partial differential
equation. To solve it, we pursue the unusual approach of first obtaining the optimal control
as a solution of a partial differential equation and subsequently constructing a solution to
the Hamilton-Jacobi-Bellman equation by using the optimal control. For the liquidation of
a portfolio consisting of several assets our approach allows us to reduce the high-dimensional
Hamilton-Jacobi-Bellman equation to a two-dimensional problem if the market is ”homoge-
neous” in a certain sense.

In the second part of this dissertation, we consider several market participants, who
trade the same asset in an illiquid market. Every participant trades at the market price,
which is influenced by the transactions of all participants in the same fashion. This leads
to an interaction of the market participants. We investigate in particular the situation
of a trader who needs to liquidate an asset position in a short time while other market
participants are aware of her trading intentions. In a first market model, we can derive the
optimal strategies for all agents in a complex closed form. We analyze the interaction of the
market participants by reviewing examples and limit cases and find an explanation for the
coexistence of cooperative and competitive behavior. For a second market model we show
inductively that the value function for all market participants is of a special polynomial
form. We thus obtain the optimal trading strategies as linear functions with coefficients
which can be calculated by an explicit backward recursion. In this second market model,
a quick sequence of buy and sell orders is optimal; by considering different limit cases, we
discover that this phenomenon is related to the costs of round trip transactions.
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Chapter 1

Introduction

1.1 Traders’ questions on illiquidity

Institutional investors aim to maximize returns by investing in the most promising assets.
The total return of an investment however is heavily influenced by the way it is obtained
and liquidated (see Perold (1998)). In particular for large funds, the decision to change even
a small fraction of their assets under management can result in very large transactions that
comprise a major part of the average daily traded volume of the assets. Unlike for small
trades, the execution of a large trade is a very complex task: An immediate execution is
often not possible or only at a very high cost due to insufficient liquidity. Much value can
therefore be added by working the order in a way that minimizes execution costs, which is
why institutional investors often rely on the expertise of investment banks for the execution
of such large trades.

Triggered by the introduction of electronic trading systems by many exchanges, auto-
matic order execution has become an alternative to manually worked orders. It provides
a number of advantages, including both smaller fixed costs of using expensive experienced
traders as well as higher execution efficiency due to quicker reactions to incoming orders.
Automatic order execution heavily relies on mathematical methods to model illiquid mar-
kets and to determine the optimal trading strategies. In particular, the modeling framework
introduced by Almgren and Chriss (1999) serves as the basis of many optimal execution algo-
rithms run by practitioners (see e.g., Kissell and Glantz (2003), Schack (2004), Abramowitz
(2006), Simmonds (2007) and Leinweber (2007)).

Within the optimal liquidation literature, most research was directed to finding the
optimal deterministic or static1 liquidation strategy. These strategies do not react to changes
in asset price. Instead, it is assumed that at the beginning of the order execution a trading
schedule is determined. This schedule is then carried out irrespective of the size and direction
of price movements. Such deterministic strategies do not seem to meet real-world needs
completely; some investors prefer adaptive or dynamic2 strategies, which are provided by
many sell side firms (see e.g., Kissell and Malamut (2005) and Kissell and Malamut (2006)).
These dynamic trading strategies usually follow one of two opposing philosophies:

• When prices rise, some clients want to sell faster in order to realize these profits; when
prices drop, they want to sell slower in order to avoid making losses. These clients
follow strategies that are “aggressive in-the-money” (AIM).

• Other clients follow the opposite reasoning: When prices rise, they sell slower since
they do not fear making losses in this scenario and thus become more tolerant to risk.

1We use the terms “deterministic” and “static” interchangeably.
2We use the terms “adaptive” and “dynamic” interchangeably.
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2 Introduction

However, when prices drop, they speed up their selling in order to avoid large losses.
These clients follow “passive in-the-money” (PIM) strategies.

Intuitively, these adaptive strategies are connected to risk aversion. A consistent mathe-
matical treatment however was not available so far, and practitioners had to rely on more
or less ad-hoc approaches. In the first part of this thesis, we analyze adaptive liquidation
strategies in a sound, fundamental economic framework and identify the precise connection
between risk aversion and the dynamics of optimal trading strategies.

In illiquid markets, knowing someone else’s trading intention can be very profitable since
it allows for exploitation of the expected price impacts. The best known examples are prob-
ably the alleged insider trading against LTCM and the forced liquidation of the Amaranth
fund. On a smaller scale, trading intentions become known to competitors frequently by
several means. For example, when the execution of a trade is commissioned to an invest-
ment bank, advance price quotes are usually obtained from several other banks. Banks
that are not successful in bidding for the trade will nevertheless be informed about its ex-
istence. Another example is provided by market makers and insiders who must report or
even preannounce large transactions.

If a market participant receives information, e.g., that someone else is currently selling
an asset, then the optimal trading reaction is not clear a priori, as there are in principle
two opposing strategies that appear profitable. First, she can also sell the asset when prices
are still high and cover her short position later at a lower price; such behavior is called
“predatory trading”. Second, she can buy the asset at a depressed asset price and sell it
later when the asset price recovered, i.e., she can act as a temporary liquidity provider. No
mathematical model was available that explained potential drivers of the profits of these
two strategies, nor was any criterion available to decide whether of the two strategies should
be executed.

The reaction of other market participants on one’s own trading intentions has a feedback
effect on optimal trade execution. If informed market participants are likely to trade in
parallel, then being undetected is important and a “stealth execution” algorithm should
be selected. Efforts to conceal the trading intention can be observed when investors who
obtain price quotes from several banks only distribute a limited amount of information to
the sell side on so called “bid sheets”. If informed market participants however can be
expected to provide liquidity, then it is profitable to reveal the trading intention, i.e., to
perform “sunshine trading”. “Indications of interest”, which are used in equities trading in
the United States are a special tool for this purpose. Again, the choice of stealth or sunshine
execution lacked a thorough scientific understanding.

In the second part of this thesis, we propose a mathematical model of the interaction
of informed agents in illiquid markets. This model allows us to study the reaction of other
agents on one’s own trades and thus to quantify the profits of different trading strategies in
such an “interactive” market. We determine an objective criterion for the selection of one
of the strategies described above and find that all of them can be optimal under certain
circumstances.

Before we discuss the mathematical results of this thesis and their connection to the
questions raised above in detail, let us first outline the relevant economic literature.
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1.2 Economic background

To our knowledge, the first academic study of the price impact of large transactions was
carried out by Kraus and Stoll (1972). The market environment has changed significantly
in the meantime, most notably by the introduction of electronic trading systems. Several
investigations of price impact have been carried out, for example by Holthausen, Leftwich,
and Mayers (1987), Holthausen, Leftwich, and Mayers (1990), Barclay and Warner (1993),
Chan and Lakonishok (1995), Biais, Hillion, and Spatt (1995), Kempf and Korn (1999),
Chordia, Roll, and Subrahmanyam (2001), Chakravarty (2001), Lillo, Farmer, and Mantegna
(2003), Mönch (2004), Almgren, Thum, Hauptmann, and Li (2005), Coval and Stafford
(2007), Obizhaeva (2007) and Large (2007). Although differing in quantitative estimates,
all of these studies find the same qualitative features of the price impact of large orders. First,
the size of an order influences the transaction price itself. Second, the price of transactions
subsequent to a large order is affected as well, but not to the same extent. These two price
effects were therefore called “temporary” and “permanent” price impact.

Market microstructure research has produced a number of theoretical models to explain
these price effects. Most of these models pick up the insight of Bagehot (1971) that in-
formation plays a crucial role in trading. Kyle (1985) considers a market with one market
maker and a number of informed and uninformed traders. In this model, each order has a
permanent impact on market prices, since it might be information-induced. More precisely,
the permanent impact is a linear function of the order size. Easley and O’Hara (1987)
propose a generalized model in which the market maker does not know whether any of the
traders are informed or whether all of them are uninformed. This results in a temporary
price impact, since large orders in one direction could be a signal of the arrival of new in-
formation. If the order flow decreases, then the market maker’s subjective believes about
the presence of information revert to a normal level and thus prices recover. A number of
other models have been proposed, among them Glosten and Milgrom (1985), Back (1992),
Allen and Gorton (1992), Foster and Viswanathan (1996) and Bondarenko (2001). Several
other causes of temporary and permanent price impact have been suggested, for example
the difficulty to find transaction counterparties in a short time (see Demsetz (1968), Harris
and Gurel (1986), Grossman and Miller (1988)). For a list of additional models, see O’Hara
(1998) and Biais, Glosten, and Spatt (2005).

While these models endogenously explain the price effects of trading, most of them are
either too stylized to sufficiently capture the quantitative real-world price dynamics, or they
are too involved to allow for a complete analysis of optimal trading strategies. Therefore
a second line of models emerged that exogenously specify the price impact of large orders.
These models are designed to be sufficiently complex to realistically capture the price effect of
orders, but also to be sufficiently simple to allow for an analysis of optimal trading strategies.
Several alternative models have been proposed, including Bertsimas and Lo (1998), Almgren
and Chriss (2001), Almgren (2003), Butenko, Golodnikov, and Uryasev (2005), Obizhaeva
and Wang (2006), Engle and Ferstenberg (2007) and Alfonsi, Schied, and Schulz (2007b)3.

3Other models have been suggested for the analysis of derivatives in illiquid markets, for example Frey
(1997), Frey and Patie (2002), Bank and Baum (2004), Çetin, Jarrow, and Protter (2004) and Jarrow
and Protter (2007). Most of these models however are not suitable for the analysis of optimal portfolio
liquidation because they assume that sufficiently smooth trading strategies are not affected by illiquidity.
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Since this thesis investigates optimal trading in illiquid markets, we follow this second
approach and assume exogenous models for the price impact of large orders. While the
advantages and disadvantages of the different models are still a topic of ongoing research,
we apply the market model introduced by Bertsimas and Lo (1998) and Almgren and Chriss
(2001) (respectively Almgren (2003) and several other extensions of it) in most of this thesis
for the following reasons. First, it provides a high degree of analytical tractability while
still being sufficiently flexible to capture the relevant aspects of both the permanent and
temporary price impacts of large trades. It is to our knowledge the only liquidity model
that has become the basis of theoretical studies not only on the topic it was designed for
(optimal portfolio liquidation), but also on several other topics such as hedging (Rogers and
Singh (2007)), investment decision and implementation (Engle and Ferstenberg (2007)) and
on the interaction of market participants in illiquid markets (Carlin, Lobo, and Viswanathan
(2007)). Second, it demonstrated reasonable properties in real world applications as already
pointed out in Section 1.1. See Section 3.2 for a more detailed discussion of this model. To
illustrate the robustness of our results, we accompany most of the analyses in this thesis
with corresponding investigations of alternative market models.

Within the optimal liquidation literature, initial research was directed to finding strate-
gies that minimize the expected cost incurred by the order execution (see for example Bert-
simas and Lo (1998)). More recently, the trade-off between minimizing the cost of fast
execution and the risk associated with slow execution moved to the center of interest; see
for example Almgren and Chriss (2001), Konishi and Makimoto (2001), Dubil (2002), Alm-
gren (2003), Mönch (2004), Huberman and Stanzl (2005) and Kissell and Malamut (2005).
In these investigations, risk aversion is incorporated by assuming that the person liquidating
a portfolio is concerned about the mean and variance of execution costs. If the market model
is sufficiently simple, then the optimal deterministic portfolio liquidation strategy can be
derived explicitly. The proper economic motivation for mean-variance optimization stems
from a second-order approximation of an expected utility functional as explained, e.g., in
Föllmer and Schied (2004). The shortcomings of the mean-variance approach to optimal
liquidation were acknowledged early on; e.g., see Bertsimas and Lo (1998):

Investors are ultimately interested in maximizing the expected utility of their
wealth. Therefore, the most natural approach to execution costs is to maximize
the investor’s expected utility of wealth . . .

There is no doubt that such an approach is the ‘right’ one.

Furthermore, much of the research on optimal liquidation considers only the limited class of
deterministic strategies4. This might forego optimization potential and a priori excludes ag-
gressive in-the-money and passive in-the-money strategies. Only recently, academic research
has started to investigate the optimization potential of dynamic strategies. For example,
Almgren and Lorenz (2007) increased the class of admissible strategies by allowing for in-
tertemporal updating and found that aggressive in-the-money strategies can strictly improve
mean-variance performance. To overcome the limitations of mean-variance optimization and
deterministic strategies, we focus directly on the original problem of adaptive expected-utility
maximization in the optimal portfolio liquidation part of this thesis. We consider a wide class

4Notable exceptions describing optimal adaptive strategies include Submaranian and Jarrow (2001), He
and Mamaysky (2005), Almgren and Lorenz (2007) and Çetin and Rogers (2007).
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of utility functions, and devote special attention to exponential (CARA) utility functions.
This allows us to fully acknowledge the impact of risk aversion on liquidation dynamics in
a sound economic framework.

The alleged insider trading against the distressed hedge fund LTCM was covered exten-
sively in public and academic media. The interaction of large, strategic traders in illiquid
markets in general however has received much less attention. Most of the classical market
microstructure models assume that either there is only one strategic trader (see, e.g., Kyle
(1985)), or that each trader can trade only once and therefore does not undertake any strate-
gic considerations (see, e.g., Glosten and Milgrom (1985), Easley and O’Hara (1987)). In
both cases, large traders do not need to consider the actions of other large traders. Admati
and Pfleiderer (1991) proposed a special model to explain the benefits of sunshine trading
and liquidity provision, while Brunnermeier and Pedersen (2005) and Carlin, Lobo, and
Viswanathan (2007) suggest models motivating stealth execution and predatory trading.
While these models are interesting in their own right, they result in optimal strategies that
either always pursue stealth execution or always pursue sunshine trading. To our knowl-
edge, no model existed that explains the coexistence of these strategies; this gap is filled
by our analysis in the second part of this thesis. We give a more detailed overview of the
existing literature on the interaction of multiple strategic traders in illiquid markets in the
introduction to Chapter 8.

1.3 Outline of mathematical and economic results

This thesis consists of two parts. In the first part, we deal with a single large trader facing
the task of executing a large trade in an illiquid market. In Part II, we introduce additional
informed strategic traders and study their interaction.

1.3.1 Part I: Dynamic portfolio liquidation

In Part I, we investigate the impact of risk aversion on optimal portfolio liquidation. We
therefore consider von-Neumann-Morgenstern investors that want to maximize the utility
of the liquidation proceeds. Furthermore, we allow for adaptive strategies.

Mathematically, equipping financial models with liquidity features seems similar to the
introduction of (fixed or proportional) transaction costs: Both illiquidity and transaction
costs make trading expensive and will thus lead to restrictions on trading. The precise
effect of these two features of real-world markets however is diametrically opposite: Because
of illiquidity, orders are broken up into smaller transactions to reduce the price impact.
Transaction costs however lead to a concentration of orders in an effort to reduce fees.
This also has an impact on the mathematical tools required to study these effects: While
analyses of the effects of transaction costs often employ methods from singular control, we
will primarily rely on continuous control techniques.

In Chapter 2, we assume a general additive market model for transaction prices, in
which the transaction price is the sum of a “fundamental”market price and the price impact
of the trades of the large investor. While the fundamental market price is assumed to
be independent of the investor’s trades, the price impact can depend on previous trades
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and the current trade in an (almost) arbitrary way. An important assumption is that the
fundamental market price process has independent increments, i.e., that the fundamental
market price exhibits no autocorrelation.

Since we consider trading in discrete time only, we can fully leverage the methods of
discrete-time stochastic dynamic programming. If a large transaction needs to be broken up
into three smaller orders, then we can describe the dynamics of this liquidation in a simple
way in spite of the generality of the market model. We find that if the utility function
exhibits increasing absolute risk aversion, then an asset position is liquidated faster when
the price moved in a favorable direction than when it moved in an unfavorable direction. The
optimal strategy is therefore aggressive in-the-money. For a utility function with decreasing
absolute risk aversion, we find the opposite optimal behavior, i.e., a passive in-the-money
strategy. For exponential utility functions, i.e., constant absolute risk aversion (CARA), we
obtain that the optimal strategy is independent of any price moves. Hence for investors with
a CARA utility function, the optimal strategy is deterministic. By induction, this result
extends to the distribution of a large transaction over an arbitrarily large finite number of
orders. In this chapter, the tight connection between the absolute risk aversion profile and
the dynamics of optimal portfolio liquidation just described appears for a general market
model, but only limited trading time points. It will reemerge in Chapters 3, 4 and 5 for a
more restricted class of market models, but for continuous-time trading.

In Chapter 3, we consider the continuous-time optimal portfolio liquidation problem with
a finite time horizon for a von Neumann-Morgenstern investor with constant absolute risk
aversion (CARA). We turn to the liquidation of baskets, i.e., the simultaneous liquidation of
asset positions in several different, but potentially correlated assets. Furthermore, trading in
one of the assets can influence the market prices of all other assets (cross-asset price impact).
As underlying market impact model, we use a multi-asset extension of the continuous-time
liquidity model of Almgren (2003). In this model, the price impact is limited to a purely
permanent and a purely temporary component. In this regard, it is a continuous-time special
case of the general market model considered in Chapter 2. However, it still includes a wide
range of potentially non-linear impact functions and cross-asset impact relationships. We
assume that the fundamental asset price is driven by a Brownian motion. In this model, we
show that the expected utility of sales revenues, taken over a large class of adapted strategies,
is maximized by a deterministic strategy, which is also mean-variance optimal. The classical
methods of optimal stochastic control cannot be applied directly to this problem, since
the corresponding Hamilton-Jacobi-Bellman (HJB) equation is degenerate and its initial
condition is singular. We can overcome these obstacles by first restricting our analysis
to deterministic strategies and exploiting the weaker conditions of deterministic optimal
control. The value function for optimal deterministic liquidation then solves the degenerate
Hamilton-Jacobi-Bellman equation, and by an a priori upper bound on the gains of using
adaptive strategies, we can show by a verification argument that these gains are zero, i.e.,
that the optimal adaptive strategy is deterministic.

After identifying the optimal liquidation strategy for CARA investors with a finite time
horizon in Chapter 3, we consider in Chapter 4 the infinite-horizon optimal portfolio liqui-
dation problem for a von Neumann-Morgenstern investor with arbitrary utility function in
a single-asset liquidity model with linear temporary impact. Using a stochastic control ap-
proach, we characterize the value function and the optimal strategy as classical solutions of
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nonlinear parabolic partial differential equations. The optimal strategy is not static (unless
the utility function is CARA); intertemporal updating does increase the expected utility in
general. We furthermore analyze the sensitivities of the value function and the optimal strat-
egy with respect to the various model parameters. In particular, we find that the optimal
strategy is aggressive or passive in-the-money, respectively, if and only if the utility function
displays increasing or decreasing risk aversion. Surprisingly, only few further monotonicity
relations exist with respect to the other parameters. We point out in particular that the
speed by which the remaining asset position is sold can be decreasing in the size of the
position but increasing in the liquidity price impact.

By considering the infinite-horizon liquidation problem, we circumvented the singular
initial condition of the Hamilton-Jacobi-Bellman equation. The HJB equation however is
still fully non-linear, as can be observed by its reduced form:

v2
X = −2λσ2X2vRvRR.

Here, v is the value function, X is the asset position and R is the state variable. Contrary
to our approach in Chapter 3, we cannot resort to deterministic optimal control to find a
solution of this partial differential equation. However, we can transform the HJB equation
into a well-behaved partial differential equation for the optimal control, for which we can
prove the existence and uniqueness of a solution. Using this candidate optimal control, we
can construct a solution to the HJB equation and then conclude by a verification argument
similar to Chapter 3.

In Chapter 5, we extend the analysis of Chapter 4 to the liquidation of baskets in the
multi-asset market model of Chapter 3, including non-linear temporary impact and cross-
asset price impact. The Hamilton-Jacobi-Bellman equation for this problem is a degenerate
partial differential equation with one “space dimension” (the state variable) and several
“time dimensions” (one for each asset). If the market fulfills a scaling property that en-
sures a certain homogeneity of illiquidity, then we can again exploit the tight connection
between deterministic mean-variance optimization and stochastic utility maximization al-
ready revealed in Chapter 3, and we can reduce the high-dimensional HJB equation to a
two-dimensional partial differential equation. This two-dimensional problem can then be
solved by similar methods as in Chapter 4. We find that the set of portfolios that are
attained during the liquidation depends on the market volatility and liquidity structure,
but is independent of the utility function. The investor’s risk aversion only determines how
quickly the investor trades, but not which portfolios he holds during the execution.

Instead of focusing on fundamental economic concepts such as adaptive utility maxi-
mization, we take a more applied view in Chapter 6 and introduce two new functionals that
practitioners are interested in: mean-variance functionals and cost-risk functionals. We
find that these two classes of functionals give the same optimal strategies. Furthermore,
the optimal strategies with respect to these functionals exhibit desirable properties such
as an endogenous liquidation time horizon, slower liquidation of large asset positions and
time-consistency.
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1.3.2 Part II: Multiple players in illiquid markets

In Part II of this dissertation, we turn to the interaction of strategic traders in illiquid
markets. In Chapter 7 we discuss general modeling questions of the multiple player setting:
How do the trades of one player affect the transaction price of other players trading at
the same point in time? Can traders observe the actions of the other traders and react
accordingly, or do they not know what the other traders are doing?

In a number of practical cases, investors need to liquidate large asset positions in a short
time. In Chapter 8, we describe the interactions that arise when other market participants
are aware of the investor’s needs. In particular, we derive the optimal trading strategies.
A crucial assumption is that the informed market participants are not limited by the same
time constraint the seller is facing.

We solve a competitive trading game in a multi-player extension of the illiquid market
model of Chapter 4, incorporating a temporary and a permanent price impact. Each player
faces a dynamic programming problem. We decompose the trading time in two stages: a
first stage, which encompasses the time during which the seller needs to liquidate, and a
second stage, during which the informed competitors continue trading. By the dynamic
programming principle, the optimal trading strategy can be found by two consecutive steps.
First, the optimal asset position for the informed competitors for the end of the first stage
needs to be determined. Then, the optimal trading strategies for the seller and the competi-
tors within the first and second stage can be derived. While the second step was already
solved by Carlin, Lobo, and Viswanathan (2007), we provide a solution to the first step.
The proofs are significantly complicated by the unwieldy computations.

According to our model, the optimal strategies for these competitors depend on the
liquidity characteristics of the market. If the permanent impact affects market prices more
heavily than the temporary impact, the competitors will “race” the seller to market, selling
in parallel with her and buying back after the seller sold her asset position. If price impact
is predominantly temporary, competitors provide liquidity to the seller by buying some of
her shares and selling them after the seller has finished her sale. In the first case, the seller
should conceal her trading intentions in order not to attract competitors, while in the latter
case, pre-announcing a trade can attract liquidity suppliers and thus be beneficial.

As a special case, we investigate behavior in a market with a very large number of
competitors. We find that in spite of illiquidity, such a market efficiently determines a new
price. Information about the seller’s intentions is immediately incorporated into the market
price and does not affect it thereafter. The competitors might race the seller to market, but
even in markets with high permanent impact, they quickly start buying back shares and sell
these after the seller has finished her sale.

In Chapter 9, we determine the optimal trading strategies for two players trading in
discrete time in a market with finite price recovery and no spread similar to the model
market suggested by Obizhaeva and Wang (2006). By backwards induction, we show that
the optimal trading strategies and the expected proceeds are of a certain parametric form,
where the parameters can be recursively calculated by backwards induction. By this method
we obtain the exact optimal strategies; a straightforward numeric discrete time dynamic
programming approach would only return approximately optimal strategies.

We find that if the “transient price impact” in this model is small, if price recovery is
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slow or if the discretization time step is small, then the optimal trading strategies oscillate:
both players perform large round trip trades. From a mathematical point of view, the main
issue is that this effect occurs if the discretization time step is small.

For a reasonable multiple player model, one can expect the optimal trading strategies to
converge when the discretization time step is reduced further and further. For the model
considered in this chapter, we find numerically that such a convergence does not hold, and
we support this observation by heuristic explanations and an analytical treatment of limiting
cases. The source of the oscillations is that the cost of round trip trading (selling at time tn
and buying back at time tn+1) goes to zero as the discretization time step goes to zero. This
leads to an ever decreasing cost of market manipulation and hedging and thus a shift in focus
from interacting with the market (liquidating the initial asset position) to interacting with
the other strategic player (profiting from her trading intentions respectively hedging against
market manipulations by the other player). We argue that this issue can be remedied by
introducing a purely temporary impact or by a trading-dependent spread.

Appendices A and B conclude this thesis with supplementary material for Chapters 8
and 9. In particular, long, but explicit formulas are stated, the Mathematica source code
used for figure generation is provided and additional numerical examples are presented.
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Chapter 2

Dynamic optimal liquidation in discrete time

2.1 Introduction

We start our investigation of optimal liquidation by considering a discrete-time framework.
Due to the simplifying circumstances of discrete-time optimization, we can deal with a very
general liquidity model that allows for arbitrary price increments and for price impacts that
can depend on time and on the entire previous trade history. Examples of such models
include the liquidity model of Almgren and Chriss (1999), which we will extend and use in
continuous time in Chapters 3 to 8, and the model of Obizhaeva and Wang (2006), which
we will apply in Chapter 9.

In the general liquidity framework of this chapter, we show that if a large trade is split
into three transactions, then the optimal strategy is not static, that is, a different number
of shares is sold in the second transaction if prices rise during the liquidation than if prices
fall. For investors with increasing absolute risk aversion, trading should be accelerated when
prices rise, i.e., an aggressive in-the-money strategy should be pursued. On the other hand,
investors with decreasing absolute risk aversion should slow down selling when prices rise,
i.e., follow a passive in-the-money strategy. A static selling strategy is optimal only for
investors with constant absolute risk aversion.

This section serves three main purposes. First, it introduces the main economic idea
of the first part of this thesis: the link between absolute risk aversion and the dynamics
of optimal liquidation. Second, it illustrates that the results in continuous time presented
in the next chapters are of a general nature. They are not limited to the liquidity model
of Almgren (2003), although a theoretical analysis becomes much more involved for more
general liquidity models in continuous time. Third, it demonstrates that our results also
hold in discrete time, which is important for practical applications.

2.2 Market model in discrete time

At the heart of the portfolio liquidation task lies the limited liquidity provided by the
marketplace. If there is sufficient liquidity, the entire order can be executed immediately
without significant costs. In the case of limited liquidity however, the effect of a (partial)
order execution on the market price needs to be taken into account.

The market we consider consists of a risk-free asset and a risky asset1. For simplicity
of the exposition, we assume that the risk-free asset does not generate interest. Large
transactions are usually executed within a few hours or at most a few days; the effect of

1An extension of the model and some of the results of this chapter to a multiple asset setting is straight-
forward. As this chapter serves primarily as a motivating introduction, we limit the discussion to the single
asset case.

13
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discounting is therefore marginal, and we will not consider it in this thesis. In the discrete-
time setting of this chapter, we assume that trades can be executed at the (not necessarily
equidistant2) time points t0, t1, ..., tN . At each of these time points, we assume that the
seller as well as a number of noise traders execute orders. We denote the orders of the seller
at time ti by xi, where xi > 0 denotes sell orders and xi < 0 denotes buy orders.

We assume that the transaction price Pi at time ti can be decomposed into the price
impact of the large trader and the “fundamental” asset price P̃i that would have occurred
in the absence of large trades. We model the fundamental asset price P̃i as an arbitrary
stochastic process with independent increments εi:

P̃i+1 = P̃i + εi+1 (2.1)

To avoid technical difficulties, we assume that the underlying probability space Ω is finite3.
Then we only need to require that the εi are non-degenerate random variables4 and inde-
pendent. We do not make assumptions on the distribution of the εi. In particular, they can
have different distributions. The random price changes εi reflect the noise traders’ actions
as well as all external events, e.g., news. The assumption of independence of the εi implies
in particular that the random price changes do not exhibit autocorrelation. The results we
derive are sensitive to this assumption; autocorrelation will in principle have an effect on the
proceeds of any dynamic trading strategy. Including autocorrelation in the market model
however shifts the focus from optimal liquidation to optimal investment: even without any
initial asset position, the mathematical model will recommend high-frequency trading to
exploit the autocorrelation. But this effect is not related to the original question of optimal
execution. Furthermore, many investors do not have an explicit view on autocorrelation and
thus choose an execution algorithm that is optimal under the assumption of independence
of price increments. Finally, for realistic parameters the effect of autocorrelation on the op-
timal execution strategy and the resulting execution cost is marginal as was demonstrated
by Almgren and Chriss (2001). For these reasons, we will not include autocorrelation in the
market models in this thesis.

We allow a general form of the impact of the trades x0, x1, . . . , xi on the transaction
price Pi:

Pi = P̃i − fi(x0, . . . , xi).
↑ ↑

“Fundamental” Price impact
asset price of seller

(2.2)

We assume that the functions fi : Ri+1 → R are C2 and that the “price impact cost
of trading” is strictly convex, i.e., that for any two trading trajectories (xi) 6= (yi) with

2For example, the distance can be taken in volume time to adjust for the U-shaped intraday pattern of
market volatility and liquidity.

3The results of this chapter also hold for infinite Ω if the price increments εi satisfy suitable conditions
and the set of admissible strategies is chosen appropriately.

4More precisely, no εi may be a.s. constant.
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∑
i xi =

∑
i yi and 0 < t < 1 the following inequality holds:

∑
i

(txi + (1− t)yi)fi(tx0 + (1− t)y0, . . . , txi + (1− t)yi)

< t

(∑
i

xifi(x0, . . . )

)
+ (1− t)

(∑
i

yifi(y0, . . . )

)
(2.3)

Furthermore, we require that the price impact cost of trading grows superlinearly, i.e., that

lim
|(x0,...,xN )|→∞

∑
i xifi(x0, . . . , xi)

|(x0, . . . , xN)| = ∞.

This framework generalizes most of the existing market impact models of liquidity. For
example, the model suggested by Almgren and Chriss (1999) and Almgren and Chriss (2001)
is equivalent to assuming that the εi are identically normally distributed and describing the
market impact as

fi(x0, . . . , xi) =
i−1∑
j=0

PermImp(xj) + TempImp(xi)

Here, PermImp, TempImp : R → R are functions describing the permanent and temporary
market impact of a trade. If these functions are linear, we have

fi(x0, . . . , xi) = γ

i−1∑
j=0

xj + λxi

for constants γ, λ ∈ R+. Our framework also includes the limit order book model introduced
by Obizhaeva and Wang (2006) if we again assume that the εi are identically normally
distributed and that the price impact is given by

fi(x0, . . . , xi) = γ

(
i−1∑
j=0

xj + xi/2

)
+ λ

(
i−1∑
j=0

e−ρ(ti−tj)xj + xi/2

)

for constants γ, λ ∈ R+. Alfonsi, Schied, and Schulz (2007b) suggested an extension of this
model. The special case of independent increments of the fundamental price process can
also be described in our framework with the following price impact function:

fi(x0, . . . , xi) =





(∫ xi

0
g

(∑i−1
j=0 e−ρ(ti−tj)xj + y

)
dy

)
/xi if xi 6= 0

g
(∑i−1

j=0 e−ρ(ti−tj)xj

)
if xi = 0

where g : R→ R is a function determined by the shape of the limit order book.

In our model market, we consider an investor who needs to liquidate an asset position.
At time t0, she owns X0 ∈ R shares of the risky asset and R0 ∈ R units of cash. For X0 > 0,
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this implies selling the asset, whereas X0 < 0 implies buying the asset. In both cases, we
will speak of the “liquidation” or “sale” of the respective long or short position. At the end
of trading tN , her cash account is

R = R0 +
N∑

i=0

xiPi = R0 +
N∑

i=0

xi

(
P̃i − fi(x0, . . . , xi)

)
.

We assume that the investor wants to maximize expected utility of liquidation proceeds by
optimally selling off the asset position, i.e., her objective is to achieve

max
x0+...+xN=X0

E [u (R)] . (2.4)

Here, u : R→ R denotes the utility function of the seller. We make the standard assumptions
that it is C2, increasing (u′ > 0) and concave (u′′ < 0). We require that the trades xi at
times ti are adapted, i.e., they can only depend on ε1, ..., εi. This includes deterministic
(also called static) strategies, i.e., strategies that do not depend on any ε1, ..., εN . Note
that in Equation 2.4, we require that the investor sells her entire asset position X0, i.e.,∑N

i=0 xi = X0 irrespective of the random price changes εi. In the following, we call a
strategy (x0, x1, ..., xN) optimal if it realizes the maximum in Equation (2.4).

We follow Pratt (1964) and refer to the ratio

−u′′(R)

u′(R)
=: A(R)

as the coefficient of absolute risk aversion. We will distinguish three cases: increasing
absolute risk aversion (IARA) for increasing A(R), constant absolute risk aversion (CARA)
for constant A(R), and decreasing absolute risk aversion (DARA) for decreasing A(R).

2.3 Dynamic trading at three points in time

We start our discussion with a simple example. Assume that trading is only allowed at three
points in time t0, t1 and t2. The seller now wants to find the optimal adapted liquidation
strategy (x̃0, x̃1, x̃2).

At time t0, the seller is aware of the fundamental price P̃0 and the distributions of the εi.
Given this information, we know by the dynamic programming principle that the optimal
trading strategy has the following form:

• The initial trade x̃0 is deterministic, i.e., it is a constant.

• The trade x̃1 depends only on the price P̃1 = P̃0 + ε1. In the following, we write x̃1(P̃1)
to stress this dependence.

• The last trade x̃2 is completely determined by the two previous trades: x̃2(P̃1) =
X0 − x̃0 − x̃1(P̃1).

Let us first assume that X0 > 0, X1 := X0− x̃0 > 0 and a.s. X2 := X1− x̃1(P̃1) > 0. Then
we can describe the dynamic nature of the trading strategy by analyzing x̃1 : R→ R:
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• If x̃1(P̃1) is decreasing in P̃1, the strategy is called passive in-the-money (PIM). If the
stock price falls, trading is accelerated; if the stock price rises, trading is slowed down.

• If x̃1(P̃1) is a constant, we obtain a deterministic trading strategy: The orders executed
at time t0, t1 and t2 are predetermined at time t0. The strategy is therefore neutral
in-the-money (NIM); the constant order of x̃1 is executed at time t1 irrespective of the
price P̃1.

• If x̃1(P̃1) is increasing in P̃1, we call the strategy aggressive in-the-money (AIM). It
exhibits the opposite characteristics of a PIM strategy.

For the general case of arbitrary signs of X0, X1 and X2, the meaning of aggressive
(passive) in-the-money refers to strategies in which the absolute asset position |X2| is smaller
(larger) for “favorable” P̃1 than for “unfavorable” P̃1. More precisely:

• If X1 > 0 and |X2| is increasing in P̃1 or if X1 < 0 and |X2| is decreasing in P̃1, then
the strategy is passive in-the-money (PIM).

• If X2 is independent of P̃1, then the strategy is neutral in-the-money (NIM).

• If X1>0 and |X2| is decreasing in P̃1 or if X1 < 0 and |X2| is increasing in P̃1, then
the strategy is called aggressive in-the-money (AIM).

Theorem 2.1. An optimal trading strategy exists and is a.s. unique. If trading is allowed at
three points in time, then the dynamic nature of the optimal liquidation strategy is uniquely
determined by the risk aversion characteristics of the utility function. If X1 = X0 − x̃0 = 0
or a.s. X2 = X1 − x̃1(P̃1) = 0, then the optimal trade x̃1(P̃1) is deterministic. If X1 6= 0
and P[X2 6= 0] > 0, then the following equivalence holds:

Utility function Optimal trading strategy
Decreasing absolute risk aversion (DARA) ⇔ Passive in-the-money (PIM)

Constant absolute risk aversion (CARA) ⇔ Neutral in-the-money (NIM)
Increasing absolute risk aversion (IARA) ⇔ Aggressive in-the-money (AIM)

The previous theorem holds for the general price impact framework introduced in the
previous section. In the next three chapters, we will extend it to a continuous-time setting
for suitable extensions of the price impact model introduced by Almgren (2003). Exactly
the same equivalence as in Theorem 2.1 is established in Theorem 4.5.

Before proceeding with the proof of Theorem 2.1, we need to introduce some notation.
The cash position after execution of the optimal first trade x̃0, a second transaction x1 and
a final trade X0 − x̃0 − x1 can be expressed as

R(x1, P̃1) := R0 + x̃0P0 + x1P1 + (X0 − x̃0 − x1)P2 (2.5)

= R0 + x̃0 · (P̃0 − f0(x̃0)) + x1 · (P̃1 − f1(x̃0, x1))

+ (X0 − x̃0 − x1) · (P̃1 + ε2 − f2(x̃0, x1, X0 − x̃0 − x1)). (2.6)

The term R(x1, P̃1) is in fact a function of ε2, but for notational simplicity, we do not make
this dependence explicit. We now define the function

Φ(P̃1) := E
[
u′′

(
R(x̃1(P̃1), P̃1)

) ∂

∂x1

R(x̃1(P̃1), P̃1)
∣∣∣ P̃1

]
. (2.7)
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The proof of Theorem 2.1 uses the following lemma.

Lemma 2.2. An optimal trading strategy exists and is a.s. unique. Furthermore, it can
be chosen such that x̃1 : P̃1 ∈ R → x̃1(P̃1) ∈ R is differentiable everywhere and that the
following equivalence holds for all P̃1 ∈ R:

Φ Dynamics of optimal strategy

Φ(P̃1) < 0 and X0 − x̃0 6= 0 ⇔ d
dP̃1

x̃1

X0−x̃0
< 0

Φ(P̃1) = 0 or X0 − x̃0 = 0 ⇔ d
dP̃1

x̃1 = 0

Φ(P̃1) > 0 and X0 − x̃0 6= 0 ⇔ d
dP̃1

x̃1

X0−x̃0
> 0

Proof of Lemma 2.2. The existence of an optimal strategy follows from the superlinear
growth of the price impact costs of trading, the a.s. uniqueness by the strict convexity
of this cost as assumed by Equation (2.3). Let (x̃0, x̃1(P̃1)) be such an optimal strategy.
Then it a.s. maximizes the expected utility of the total liquidation return conditional on P̃1:

x̃1(P̃1) = arg max
x1

E
[
u

(
R(x1, P̃1)

)
|P̃1

]
(2.8)

This implies that almost surely

0 =
d

dx1

∣∣∣∣
x1=x̃1(P̃1)

E
[
u

(
R(x1, P̃1)

)
|P̃1

]
(2.9)

= E
[
u′

(
R(x̃1(P̃1), P̃1)

) (
∂

∂x1

R(x̃1(P̃1), P̃1)

) ∣∣∣P̃1

]

and

0 ≥ d2

dx2
1

∣∣∣∣
x1=x̃1(P̃1)

E
[
u

(
R(x1, P̃1)

)
|P̃1

]
(2.10)

= E
[
u′′

(
R(x̃1(P̃1), P̃1)

) (
∂

∂x1

R(x̃1(P̃1), P̃1)

)2 ∣∣∣P̃1

]

+ E
[
u′

(
R(x̃1(P̃1), P̃1)

) (
∂2

∂x2
1

R(x̃1(P̃1), P̃1)

) ∣∣∣P̃1

]
. (2.11)

Inequality (2.10) is in fact strict, since the first summand of Expression (2.11) is strictly
negative5 due to u′′ < 0 and the second one is non-positive due to u′ > 0 and ∂2R/∂x2

1 ≤ 0
due to the convexity of the illiquid market (Equation (2.3)). By changing x̃1(P̃1) almost
nowhere, we can obtain an optimal strategy x̃1 that fulfills Equation (2.9) everywhere (not
only almost surely). By the implicit function theorem, x̃1(P̃1) is differentiable everywhere
since it is a solution of Equation (2.9) with non-vanishing differential (2.11). We can now

5Here we used that P̃2 is not a.s. constant.
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continue and derive

0 =
d

dP̃1

[
d

dx1

∣∣∣∣
x1=x̃1(P̃1)

E
[
u

(
R(x1, P̃1)

)
|P̃1

]]

= E
[
u′′

(
R(x̃1(P̃1), P̃1)

) (
∂

∂x1

R(x̃1(P̃1), P̃1)

)

((
∂

∂x1

R(x̃1(P̃1), P̃1)

)
d

dP̃1

x̃1(P̃1) +

(
∂

∂P̃1

R(x̃1(P̃1), P̃1)

))

+ u′
(
R(x̃1(P̃1), P̃1)

) ((
∂2

∂x2
1

R(x̃1(P̃1), P̃1)

)
d

dP̃1

x̃1(P̃1)

+

(
∂2

∂x1∂P̃1

R(x̃1(P̃1), P̃1)

))∣∣∣∣P̃1

]
. (2.12)

Note that by Equation (2.6)

∂

∂P̃1

R(x1, P̃1) = X0 − x̃0 (2.13)

∂2

∂x1∂P̃1

R(x1, P̃1) = 0.

By solving Equation (2.12) for d
dP̃1

x̃1(P̃1) and using the two previous identities, we obtain

d

dP̃1

x̃1(P̃1) = −E
[
u′′

(
R(x̃1(P̃1), P̃1)

) (
∂

∂x1

R(x̃1(P̃1), P̃1)

) (
X0 − x̃0

)∣∣∣∣P̃1

]

(
E

[
u′′

(
R(x̃1(P̃1), P̃1)

) (
∂

∂x1

R(x̃1(P̃1), P̃1)

)2

+ u′
(
R(x̃1(P̃1), P̃1)

) (
∂2

∂x2
1

R(x̃1(P̃1), P̃1)

) ∣∣∣∣P̃1

])−1

= Φ(P̃1)
X0 − x̃0

− d2

dx2
1

∣∣∣
x1=x̃1(P̃1)

E
[
u

(
R(x1, P̃1)

)
|P̃1

] .

The statement of the lemma follows because the denominator of the fraction is positive due
to Equation (2.10) and the remark thereafter.

Proof of Theorem 2.1. Due to Lemma 2.2, we only need to consider the case

X1 = X0 − x̃0 6= 0.

Furthermore, it is clear that the strategy is deterministic if a.s. X2 = 0. We can therefore
restrict our discussion to the case where X2 is not a.s. zero. When we replace the second
derivative u′′ by the first derivative u′ in Φ (Equation (2.7)), then we obtain

E
[
u′

(
R(x̃1(P̃1), P̃1)

) (
∂

∂x1

R(x̃1(P̃1), P̃1)

) ∣∣∣P̃1

]
=

d

dx1

∣∣∣∣
x1=x̃1(P̃1)

E
[
u

(
R(x1, P̃1)

) ∣∣P̃1

]
= 0.
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We therefore look into the relationship between the first and second derivative of u which
is described by the absolute risk aversion A. We discuss three cases:

1. Constant absolute risk aversion (CARA): This corresponds to the case where

−u′′(R)

u′(R)
= A(R) ≡ A

is a constant. We can therefore write u′′(R) = −Au′(R) and obtain

Φ(P̃1) = −A
d

dx1

∣∣∣∣
x1=x̃1(P̃1)

E
[
u

(
R(x1, P̃1)

) ∣∣P̃1

]
= 0.

By Lemma 2.2, this implies that d
dP̃1

x̃1(P̃1) = 0, i.e., the optimal dynamic strategy is
a static NIM strategy.

2. Decreasing absolute risk aversion (DARA): In this case, A(R) is a decreasing function
of R. Let us first consider the case that X2 = X0−x̃0−x̃1(P̃1) = 0. Then R(x̃1(P̃1), P̃1)
is independent of ε2, and we have

Φ(P̃1) = E
[
u′′

(
R(x̃1(P̃1), P̃1)

) (
∂

∂x1

R(x̃1(P̃1), P̃1)

) ∣∣∣P̃1

]

=
u′′

(
R(x̃1(P̃1), P̃1)

)

u′
(
R(x̃1(P̃1), P̃1)

)E
[
u′

(
R(x̃1(P̃1), P̃1)

) (
∂

∂x1

R(x̃1(P̃1), P̃1)

) ∣∣∣P̃1

]

= 0.

By Lemma 2.2, we therefore have d
dP̃1

x̃1(P̃1) = 0. Let us now turn to X2 ≷ 0. Then

R(x̃1(P̃1), P̃1) is increasing (decreasing) in ε2. We decompose Φ:

Φ(P̃1) = E
[
u′′

(
R(x̃1(P̃1), P̃1)

) (
∂

∂x1

R(x̃1(P̃1), P̃1)

) ∣∣∣P̃1

]

= E
[
u′′

(
R(x̃1(P̃1), P̃1)

) (
∂

∂x1

R(x̃1(P̃1), P̃1)

)
1ε2<c

∣∣∣P̃1

]

+ E
[
u′′

(
R(x̃1(P̃1), P̃1)

) (
∂

∂x1

R(x̃1(P̃1), P̃1)

)
1ε2≥c

∣∣∣P̃1

]
.

Observe that ∂
∂x1

R(x̃1(P̃1), P̃1) is linearly decreasing in ε2 and thus has a unique root.
We choose the decomposition point c as this root and find that for ε2 < c

u′′
(
R(x̃1(P̃1), P̃1)

) (
∂

∂x1

R(x̃1(P̃1), P̃1)

)

= u′
(
R(x̃1(P̃1), P̃1)

)

︸ ︷︷ ︸
>0

(
∂

∂x1

R(x̃1(P̃1), P̃1)

)

︸ ︷︷ ︸
>0 since ε2<c

(
−A

(
R(x̃1(P̃1), P̃1)

))

︸ ︷︷ ︸
<0

≶ u′
(
R(x̃1(P̃1), P̃1)

) (
∂

∂x1

R(x̃1(P̃1), P̃1)

)
(−A(Rc)) (2.14)
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with

Rc := R(x̃1(P̃1), P̃1)|ε2=c.

Here, the two cases in Inequality (2.14) refer to the two cases X2 ≷ 0, and the inequal-
ity holds because A is decreasing and thus A(R(x̃1(P̃1), P̃1)) is decreasing (increasing)
in ε2. Similarly, we obtain for ε2 ≥ c:

u′′
(
R(x̃1(P̃1), P̃1)

) (
∂

∂x1

R(x̃1(P̃1), P̃1)

)

S u′
(
R(x̃1(P̃1), P̃1)

)(
∂

∂x1

R(x̃1(P̃1), P̃1)

)
(−A (Rc)).

Combining the two inequalities above, we find

Φ(P̃1) ≶ −A (Rc)E
[
u′

(
R(x̃1(P̃1), P̃1)

) (
∂

∂x1

R(x̃1(P̃1), P̃1)

) ∣∣∣P̃1

]

= −A(Rc)
d

dx1

∣∣∣∣
x1=x̃1(P̃1)

E
[
u

(
R(x1, P̃1)

) ∣∣∣P̃1

]
= 0.

We now differentiate the four cases X1 ≷ 0 combined with X2 ≷ 0. If X1 > 0 and
X2 > 0, then Lemma 2.2 yields d

dP̃1
x̃1(P̃1) < 0 and thus d

dP̃1
|X2| > 0, i.e., the strategy

is passive in-the-money. Similarly, we obtain that also in the other three cases the
strategy is passive in-the-money. Since X2 is not a.s. zero, the strategy as a whole is
passive in-the-money.

3. Increasing absolute risk aversion (IARA): The last case we consider is the situation
where A(R) is increasing in R. By an argument identical to the one above, we find
that Φ(P̃1) ≷ 0 and therefore the strategy is AIM by Lemma 2.2.

2.4 Trading at multiple points in time with exponential utility

The fact that static strategies are optimal for investors with constant absolute risk aversion
can be extended to an arbitrarily large number of trading points t0, . . . , tn by induction.

Theorem 2.3. Consider an investor with constant absolute risk aversion in our illiquid
model market with n + 1 points in time at which trading is possible. Then the optimal
trading strategy for this investor is deterministic (i.e., neutral in-the-money).

Proof. By induction over the number of time steps n + 1, we will prove that for CARA
investors, the optimal strategy does not depend on P̃0, ..., P̃n, but only on the total number
X0 of shares to be sold, on the price impact functions fi and on the distributions of the εi.
The base case n = 0 is obvious. Let us now assume that the statement holds for n time



22 Dynamic optimal liquidation in discrete time

steps and consider the case of n + 1 time steps t0, . . . , tn. Then

E[u(R)] = E

[
u

(
R0 + x̃0P0 +

n∑
i=1

x̃iPi

)]

= e−A(R0+X0P̃0)eAx̃0f0(x̃0)E

[
u

(
n∑

i=1

x̃i

(
i∑

j=1

εj − fi(x̃0, . . . , x̃i)

))]
.

By the inductive hypothesis the optimal x̃i only depend on x̃0, but not on P̃0, ..., P̃n.
Furthermore, we see that the optimal x̃0 is independent of P̃0, which finishes the inductive
step.

Unfortunately, it is not clear how the more general result of Theorem 2.1 can be extended
to more than three trading time points by induction. The crucial observation is that Equa-
tion (2.13) does not necessarily hold for general utility functions if more than three trading
time points are allowed. However, in Chapter 4 we will see that the connection between risk
aversion and dynamics of the optimal trading strategy established in Theorem 2.1 holds also
in a continuous-time setting. For the continuous-time setting, the inductive methods used
in this chapter are not applicable. Furthermore, an analysis of the convergence of optimal
strategies when sending the discretization time step to zero is involved (see Gruber (2004)).
In the following investigation of continuous time trading we will therefore follow a different
route and apply methods of continuous-time optimal stochastic control.



Chapter 3

Optimal basket liquidation with finite time horizon

for CARA investors

3.1 Introduction

Investors frequently wish to trade several assets simultaneously. For example, rebalancing
an index tracking fund may require trading in several hundred different shares. Optimal
execution of such a basket trade depends not only on the (co-)variances of the assets, but
also on the (cross-asset) price impact of trading. In this chapter, we introduce a multiple
asset market model that accounts for these aspects. It is a multi-asset extension of the
continuous-time liquidity model of Almgren (2003)1.

In this market model, we consider the continuous-time, finite-time horizon optimal bas-
ket portfolio liquidation problem for a von Neumann-Morgenstern investor with constant
absolute risk aversion (CARA). The main result of this chapter states there is no added
utility from allowing for intertemporal updating of basket liquidation strategies for CARA
investors in continuous time. Thus the expected utility is maximized by a deterministic,
mean-variance optimal strategy. This extends the discrete-time Theorem 2.3 to continu-
ous time. Recently, Almgren and Lorenz (2007) suggested a dynamic strategy to maximize
mean-variance performance in a special case of the market model that we are applying. Our
theorem implies that this strategy will actually decrease the expected value of the exact
utility.

The proof of our main result, as given in Section 3.4, relies on the observation that the
value function of the deterministic problem solves the degenerate Hamilton-Jacobi-Bellman
equation for the adaptive optimization problem and satisfies the singular initial condition.
We can thus apply verification arguments along with proper localization to deal with the
singularity of the value function.

3.2 Market model in continuous time

We assume that there are n ≥ 1 risky assets and a risk-free asset traded. In this market, we
consider a large investor who needs to liquidate a basket portfolio X0 = (X1

0 , . . . , X
n
0 ) ∈ Rn

of shares in the n risky assets by time T > 0. The investor chooses a liquidation strategy that
we describe by the portfolio Xt ∈ Rn held at time t and that satisfies the boundary condition
XT = 0. We assume that t 7→ Xt is absolutely continuous with derivative Ẋt =: −ξt, i.e.,

Xt = X0 −
∫ t

0

ξs ds.

1Due to the increased technical difficulties of stochastic control in continuous time, we cannot maintain
the full generality of the liquidity model introduced in Chapter 2.

23
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For questions such as hedging derivatives, the restriction to absolutely continuous strategies
is severe, since it excludes for example the Black-Scholes hedging strategy. For an analysis
of optimal liquidation strategies, the restriction appears less grave, since reasonable optimal
strategies can be expected to have bounded variation. Nevertheless, it would be desirable
to allow block trades, i.e., jumps in Xt. Analyses of models that allow for such block trades
(e.g., Obizhaeva and Wang (2006) and Alfonsi, Schied, and Schulz (2007b)) reveal that for
realistic parameters the optimal trading strategy is absolutely continuous except for very
small block trades at the beginning and end of trading. Numerically, the optimal strategy
is almost unchanged by the provision of block trades. Unfortunately, allowing for block
trades significantly complicates the mathematical analysis. We therefore believe that it is
acceptable to limit the discussion to absolutely continuous strategies and will do so in this
chapter as well as in Chapters 4 to 8.

Due to insufficient liquidity, the investor’s trading rate ξt is moving the market prices.
We consider an n-dimensional extension of the model introduced by Almgren (2003) (see
also Bertsimas and Lo (1998), Almgren and Chriss (1999) and Almgren and Chriss (2001)
for discrete-time precursors of this model). This model is one of the standard models for
price impact and widely used both for academic studies as well as for optimal execution
algorithms used in practice; see Chapter 1 for a discussion. Similar to the single-asset
model in Section 2.2, the transaction price vector Pt ∈ Rn in this model is the difference of
the fundamental price P̃t ∈ Rn and the price impact ft((ξs)0≤s≤t) ∈ Rn:

Pt = P̃t − ft((ξs)0≤s≤t).

The multi-asset price impact ft is assumed to be of the following special form:

ft((ξs)0≤s≤t) :=

∫ t

0

PermImp(ξs)ds + TempImp(ξt) ∈ Rn.

The incremental order ξt therefore induces both a permanent and a temporary impact on
market prices. The permanent impact PermImp : Rn → Rn accumulates over time and is
assumed to be linear:

PermImp(ξ) := Γξ

where Γ = (Γij) ∈ Rn×n is a symmetric n × n matrix. Linearity and symmetry of the
permanent impact are necessary to rule out quasi-arbitrage opportunities as was observed
by Huberman and Stanzl (2004). The temporary impact TempImp : Rn → Rn vanishes
instantaneously and thus only effects the incremental order ξt itself. It is a possibly nonlinear
function. The idealization of instantaneous recovery of the temporary impact is derived
from the well-known resilience of stock prices after order placement. It approximates reality
reasonably well as long as the time intervals between the physical placement of orders are
longer than a few minutes. See, e.g., Bouchaud, Gefen, Potters, and Wyart (2004), Potters
and Bouchaud (2003), and Weber and Rosenow (2005) for empirical studies on resilience
in order books and Obizhaeva and Wang (2006), Alfonsi, Schied, and Schulz (2007a) and
Alfonsi, Schied, and Schulz (2007b) for corresponding market impact models.

When the large investor is not active, it is assumed that the fundamental price process
P̃ follows an n-dimensional Bachelier model with linear drift. The resulting vector-valued
transaction price dynamics are hence given by

Pt = P̃0 + σBt + bt + Γ(Xt − X0)− TempImp(ξt).
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Equivalently, the transaction price for the ith asset is given by

P i
t = P̃ i

0 +
n∑

j=1

σijBj
t + bit +

n∑
j=1

Γij(Xj
t −Xj

0)− TempImpi(ξt);

for an initial fundamental price vector P̃0 ∈ Rn, a standard n-dimensional Brownian motion
B starting at B0 = 0, and a (possibly degenerate) n× n volatility matrix σ = (σij) ∈ Rn×n.
At first sight, it might seem to be a shortcoming of this model that it allows for negative
asset prices. But on the scale we are considering, the price process is a random walk on
an equidistant lattice and thus perhaps better approximated by an arithmetic rather than,
e.g., a geometric Brownian motion.

In the following, we will not be concerned with P itself, but with the proceeds P>ξ of
trading. Several different functions TempImp : Rn → Rn have the same effect on P>ξ. For
example, in the two asset case the temporary impact functions TempImp(ξ) and

˜TempImp(ξ) :=TempImp(ξ) + ξ>
(

0 1
−1 0

)

give the same proceeds P>ξ. We will therefore not specify TempImp, but instead will work
directly with the “temporary impact cost of trading”

f : ξ ∈ Rn → f(ξ) := TempImp(ξ)>ξ ∈ R+
0 .

Throughout this chapter, we assume that f is nonnegative, strictly convex, continuously
differentiable (C1) and exhibits superlinear growth, i.e.,

lim
|ξ|→∞

f(ξ)

|ξ| = ∞.

We also assume that b and Σ := σσ> are such that

b ⊥ ker Σ. (3.1)

Several market models fit into our framework. The non-linear temporary impact models
for a single asset discussed by Almgren (2003) and statistically estimated by Almgren, Thum,
Hauptmann, and Li (2005) correspond to f(ξ) = λξβ. For multiple assets, the linear model
introduced by Almgren and Chriss (2001) and analyzed by Konishi and Makimoto (2001)
can be realized in our framework by setting f(ξ) = ξ>Λξ with a matrix Λ ∈ Rn×n. A
non-linear version of this model is given by f(ξ) = (ξ>Λξ)β.

We assume that ξ is progressively measurable with respect to a filtration in which B is
a Brownian motion. Strategies also need to be admissible in the sense that the resulting
position in shares, Xt(ω), is bounded uniformly in t and ω with a bound that may depend
on the choice ξ. By X (T, X0) we denote the class of all admissible strategies ξ that liquidate

by T for the initial condition X0, i.e., that satisfy X0 −
∫ T

0
ξt dt = 0.
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3.3 Utility maximizing trading strategies

If the investor holds a portfolio X0 ∈ Rn and r ∈ R units of cash at time 0, then her cash
position after the execution of the admissible sales strategy ξ ∈ X (T, X0) is given by

RT (ξ) = r +

∫ T

0

ξ>t Pt dt

= R0 +

∫ T

0

X>
t σ dBt +

∫ T

0

b>Xt dt−
∫ T

0

f(ξt) dt, (3.2)

where

R0 = r + X>
0 P̃0 − 1

2
X>

0 ΓX0. (3.3)

The terms in the expressions above have an economic interpretation. X>
0 P̃0 is the face value

of the portfolio. The term 1
2
X>

0 ΓX0 corresponds to the liquidation costs resulting from the
permanent price impact. Due to the linearity of the permanent impact function, it is inde-
pendent of the choice of the liquidation strategy. The stochastic integral in (3.2) corresponds
to the volatility risk that is accumulated by selling throughout the interval [0, T ] rather than

liquidating the portfolio instantaneously. The integral
∫ T

0
b>Xt dt corresponds to the change

of portfolio value incurred by the drift. Finally, the integral
∫ T

0
f(ξ) dt corresponds to the

(nonlinear) transaction costs arising from temporary market impact.
We consider the problem of maximizing the expected utility E[ u(RT (ξ)) ] of the revenues

when ξ ranges over X (X0, T ) where u : R → R is a utility function. When setting up this
problem as a stochastic control problem with controlled diffusion process R(ξ) and control
ξ, we face the difficulty that the class X (T, X0) of admissible controls depends on both X0

and T . To explore some of the effects of this dependence, let us denote the value function
of the problem by

v(T, X0, R0) := sup
ξ∈X (T,X0)

E[ u(RT (ξ)) ]. (3.4)

It depends on the liquidation time, T ≥ 0, the initial portfolio, X0 ∈ Rn, and the initial
cash position, R0, in (3.3). Heuristic arguments suggest that v should satisfy the degenerate
Hamilton-Jacobi-Bellman (HJB) equation

vT = − inf
c∈Rn

[
−1

2
X>ΣXvRR − b>XvR + f(c)vR + c>(∇Xv)

]
(3.5)

with singular initial condition

lim
T↓0

v(T, X, R) =

{
u(R) if X = 0,

−∞ otherwise.
(3.6)

The singularity in the initial condition (3.6) reflects the global fuel constraint
∫ T

0
ξt dt = X0

that is required from strategies in X (T, X0), because it penalizes liquidation tasks that
have not been completed in time. Solving this singular Cauchy problem for general utility
functions u seems to be a very difficult problem at this time. But in this chapter we will
show how it—and the corresponding control problem—can be solved in the case of a CARA
utility function.



3.3 Utility maximizing trading strategies 27

Theorem 3.1. For a CARA utility function, u(R) = −e−AR with absolute risk aversion
A > 0, there exists an a.s. unique optimal strategy X̄ respectively ξ̄ ∈ X (T, X0), which
is a deterministic function of time. Moreover, the value function v(T, X, R) is a classical
solution of the singular Cauchy problem (3.5), (3.6).

The proof is presented in Section 3.4. To characterize the optimal strategy X̄, let us
now focus on the case in which X ranges only over the subclass X̄ (T, X0) ⊂ X (T, X0)
of deterministic admissible strategies, i.e., strategies that do not allow for intertemporal
updating. In this case, RT (ξ) is normally distributed, and we obtain

E[ u(RT (ξ)) ] = −E[ e−ART (ξ) ] = − exp
(
−AE[RT (ξ) ] +

A2

2
var (RT (ξ))

)
. (3.7)

Finding the optimal liquidation strategy is thus reduced to the problem of finding the
deterministic strategy ξ̄ ∈ X̄ (T, X0) that maximizes the mean-variance functional

E[RT (ξ) ]− A

2
var (RT (ξ)). (3.8)

This problem of mean-variance optimization has been introduced by Almgren and Chriss
(1999) and Almgren and Chriss (2001) for a single asset (n = 1) and studied extensively
since; see, e.g., Almgren (2003), Almgren and Lorenz (2007), and the references therein.
Note that the variance is weighted here by the factor A/2, i.e., with half of the risk aversion
parameter, in contrast to the convention in Almgren and Chriss (2001) of using the full risk
aversion.

For simple special cases of the market model, the mean-variance optimal strategies can
be derived in closed form. The following corollary is a simple consequence of Theorem 3.1
and the results of Almgren and Chriss (2001).

Corollary 3.2. Assume that only one risky asset is traded (n = 1) and that the temporary
impact is linear, i.e.,

f(ξ) := λξ2

with λ ∈ R+. Then the trading strategy ξ̄ ∈ X (T, X0) maximizing expected utility for the
utility function u(R) = −e−AR with A ∈ R+ is given in closed form as

ξ̄t = X0

√
Aσ2

2λ
·
cosh

(
(T − t)

√
Aσ2

2λ

)

sinh
(
T

√
Aσ2

2λ

) .

For the setting of the corollary (n = 1, linear temporary impact), Figures 3.1 and 3.2
illustrate the optimal trading strategy X̄ respectively ξ̄ for different levels of risk aversion.
The lower the absolute risk aversion, the more uniform the trading is, resulting in a more
linear liquidation of the asset position. Figure 3.3 shows −v(T, X, R).

In the case n = 1, Almgren and Lorenz (2007) find that allowing for dynamic updating,
i.e., replacing X̄ (T, X0) by the entire class X (T, X0) of admissible strategies, can improve
the mean-variance performance compared to deterministic strategies. That is, the max-
imizer ξ of the functional (3.8) then no longer is a deterministic function of time. For
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Figure 3.1: Asset position Xt over time for optimal trading strategies with X0 = 1, T = 10, σ = 0.03,
λ = 0.01. The solid line corresponds to A = 0.0001, the finely dashed line to A = 1, and the coarsely dashed
line to A = 5.

non-deterministic strategies, however, the identity (3.7) fails, and mean-variance optimiza-
tion is no longer equivalent to the original problem of maximizing the expected utility of
an investor with constant absolute risk aversion. It can only be regarded as a second-order
approximation, and Theorem 3.1 shows that in the original problem there is no added
utility from allowing for intertemporal updating of strategies. In contrast to the special
case of CARA utility considered in Theorem 3.1, dynamic strategies can improve liquida-
tion performance in general, but only in the case of a utility function with non-constant
absolute risk aversion. Such varying risk aversion is clearly insufficiently captured by the
mean-variance approximation. We show in Chapters 4 and 5 that for an infinite liquidation
horizon, T = ∞, deterministic strategies maximize expected utility if and only if the under-
lying utility function is of CARA type. We strongly believe that this result carries over to
the case of a finite liquidation horizon T < ∞.

3.4 Proof

For ξ ∈ X (X0, T ), we define the stochastic processes

Xξ
t := X0 −

∫ t

0

ξs ds

and

Rξ
t := R0 +

∫ t

0

Xξ
s · σ dBs +

∫ t

0

b>Xξ
s ds−

∫ t

0

f(ξs) ds, 0 ≤ t ≤ T.

If we take R0 = r + P̃>0 X0− 1
2
X>

0 ΓX0, then Rξ
T coincides with the revenues RT (ξ) of ξ. But

R0 can also incorporate an initial cash position or revenues that carry over from the ‘past’
after an application of the Markov property.

Our goal is to identify the value function

v(T, X0, R0) = sup
ξ∈X (X0,T )

E[ u(Rξ
T ) ] = sup

ξ∈X (X0,T )

E[−e−ARξ
T ].
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Figure 3.2: Selling speed ξt over time for optimal trading strategies with X0 = 1, T = 10, σ = 0.03,
λ = 0.01. The solid line corresponds to A = 0.0001, the finely dashed line to A = 1, and the coarsely dashed
line to A = 5.
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Figure 3.3: Value function v(T, X, R) depending on the remaining time T and asset position X for A = 1,
λ = 10, R = 1. For better visibility, this figure shows −v instead of v.

with the value function for deterministic utility maximization

w(T, X0, R0) := sup
ξ∈X̄ (T,X0)

E[ u(Rξ
T ) ].

To this end, we use stochastic control methods. In Subsection 3.4.1, we show that w satisfies
the HJB equation (3.5) and the singular initial condition (3.6). Thereafter, we establish the
equality of v and w by a verification argument in Subsection 3.4.2.
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3.4.1 Deterministic utility maximization

Let us define the mean-variance cost function

v̄(T, X0) := inf
ξ∈X̄ (T,X0)

[
A

2
var (Rξ

T )− E[ Rξ
T −R0 ]

]
= inf

ξ∈X̄ (T,X0)

∫ T

0

L(Xξ
t , ξt) dt.

where the Lagrangian L is defined as

L : (q, p) ∈ Rn+n → L(q, p) =
A

2
q>Σq− b>q + f(p) ∈ R.

Minimizing this Lagrangian over ξ ∈ X̄ (T, X0) is a classical problem in the calculus of
variations. As discussed in Section 3.3, we have

w(T, X0, R0) = sup
ξ∈X̄ (T,X0)

E[ u(Rξ
T ) ] = − exp

[
−AR0 + Av̄(T, X0)

]
. (3.9)

Lemma 3.3. The function w(T, X, R) is continuously differentiable in T > 0 and X ∈ Rn

and satisfies the HJB equation

wT = − inf
c∈Rn

[
−1

2
X>ΣXwRR − b>XwR + f(c)wR + c>(∇Xw)

]
(3.10)

with singular initial condition

lim
T↓0

w(T, X, R) =

{
−e−AR if X = 0,

−∞ if X 6= 0.
(3.11)

For every X0 ∈ Rn there exists a trading strategy ξ̄ respectively X̄ realizing

w(T, X0, R0) = E[ u(Rξ̄
T ) ],

i.e., minimizing the action functional
∫ T

0
L(Xξ

t , ξt) dt over ξ ∈ X̄ (T, X0). Moreover, X̄t is
Lipschitz continuous in t.

Proof. Our aim is to show that v̄ solves the Hamilton-Jacobi equation

v̄T (T, X) + H(X,∇Xv̄(T, X)) = 0, T > 0, X ∈ Rn, (3.12)

where

H(q, p) = −1

2
Aq>Σq + b>q + f ∗(p), q, p ∈ Rn,

is the Hamiltonian corresponding to the Lagrangian L(q, p). Here f ∗(z) = supx(x
>z−f(x))

denotes the Fenchel-Legendre transform of f .
To see that v̄(T, X) is continuously differentiable and satisfies (3.12), we now apply

Theorem 7.1 in Chapter II of Benton (1977). First, note that by taking

B := {(0, 0)} ⊂ R× Rn
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and g : B → R as g(0, 0) := 0, v̄ can be written as

v̄(T, X0) = inf
{

g(s, y) +

∫ T

s

L(Yt, Ẏt) dt
∣∣ (s, y) ∈ B

}
,

where the infimum is taken over all absolutely continuous curves Y such that Ys = y
and YT = X0. Let us assume for a moment that the conditions (H1)–(H6) and (D1)–
(D4) in Theorem 7.1 in Chapter II of Benton (1977) are satisfied. Then by Theorem 7.1.,
Lemma 7.1 and the remark thereafter in Chapter II of Benton (1977), v̄ satisfies (3.12), and
a Lipschitzian minimizer X̄ exists.

A straightforward computation now shows that

w(T, X, R) = − exp(−AR + Av̄(T, X)) (3.13)

solves

wT =
1

2
X>ΣXwRR + b>XwR + wRf ∗

(
− ∇Xw

wR

)
,

and this equation is equivalent to (3.10).
As for the initial condition (3.11), it is clear that v̄ satisfies v̄(T, 0) = 0 for all T .

Moreover, if Y is any curve such that Y0 = 0 and YT = X 6= 0, then

∫ T

0

L(Yt, Ẏt) dt =

∫ T

0

(1

2
AY>

t ΣYt + b · Yt

)
dt +

∫ T

0

f(Ẏt) dt ≥ −TM + Tf
(X

T

)
,

by Jensen’s inequality and (3.14). Hence, v̄(T, X) ≥ −MT + Tf(X/T ), and this expression
blows up as T ↓ 0 by our superlinear growth condition on f .

Let us now check that the conditions (H1)–(H6) and (D1)–(D4) in Theorem 7.1 in
Chapter II of Benton (1977) are satisfied. By Theorem 26.6 in Rockafellar (1970), f ∗ is
strictly convex, continuously differentiable, and satisfies the superlinear growth condition.
Hence, the same properties are satisfied by p 7→ H(q, p) for any q, and this establishes
conditions (H1), (H2), and (H3). Next,

p∇pH(q, p)−H(q, p) = p∇f ∗(p)− f ∗(p) +
1

2
Aq>Σq− b>x

= f
(∇f ∗(p)

)
+

1

2
Aq>Σq− b>q,

due to Theorem 26.5 and 26.6 in Rockafellar (1970). Note that (3.1) implies that there
exists a constant M such that

|b>q| ≤ 1

4
Aq>Σq + M. (3.14)

Since f ≥ 0, there is hence a constant C such that for all q ∈ Rn

|∇qH(q, p)| ≤ C
(
p∇pH(q, p)−H(q, p) + 1

)
,

and this is condition (H4). Moreover,

p∇pH(q, p)−H(q, p) ≥ 1

2
Aq>Σq− b>q ≥ −M,
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which is condition (H5). Next, it is clear that both H(q, p) and |∇pH(q, p)| can be bounded
from above by an increasing function of |p|, i.e., (H6) holds. Conditions (D1) to (D4) are
void in our situation.

From now on we will refer to the strategy X̄ obtained in the preceding Lemma, and also

to its derivative ξ̄t = − ˙̄Xt, as the optimal strategy in X̄ (T, X0). We then have

w(T, X0, R0) = max
ξ∈X̄ (T,X)

E[−e−ARξ
T ] = E[−e−ARξ̄

T ]. (3.15)

3.4.2 Adaptive utility maximization

Let us introduce the sets

X (K)(T, X0) :=
{
ξ ∈ X (T, X0)

∣∣ |Xξ
t | ≤ K for all t

}

and the value functions

v(K)(T, X, R) := sup
ξ∈X (K)(T,X)

E[−e−ARξ
T ].

Note that X (K)(T, X) is empty for small K < |X|. Moreover, ξ̄ ∈ X (K)(T, X) for some K.
We continue with the following a priori estimate.

Lemma 3.4. For |X| ≤ K,

v(K)(T, X, R) ≤ w(T, X, R) · e−2A|b|KT−A2X>ΣXT/6.

Proof. Suppose that |X0| ≤ K and ξ ∈ X (K)(T, X0) is such that E[−e−ARξ
T ] is finite. We

then have
−∞ < E[−e−ARξ

T ] ≤ −e−AE[ Rξ
T ]. (3.16)

Since Xξ is bounded, we have

E[ Rξ
T ] = R0 +

∫ T

0

E[ b>Xξ
t − f(ξt) ] dt ≤ R0 + TK|b| −

∫ T

0

E[ f(ξt) ] dt .

By (3.16), it follows that
∫ T

0
E[ f(ξt) ] dt is finite, and so ξ̃t := E[ ξt ] is well defined and

integrable, due to our assumptions on f . Hence, ξ̃ belongs to X̄ (T, X0). Applying Jensen’s
inequality twice yields

∫ T

0

E[ f(ξt) ] dt ≥
∫ T

0

f(ξ̃t) dt ≥ Tf
(X0

T

)
.

Therefore,

E[−e−ARξ
T ] ≤ −e−AE[ Rξ

T ] ≤ −e−AR0−ATK|b|+ATf(X0/T ) =: v(T, X0, R0),

and in turn v(K)(T, X0, R0) ≤ v(T, X0, R0).
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On the other hand, the constant strategy ξ̌t = X0/T belongs to X̄ (T, X0)∩X (K)(T, X0),
and so (3.15) yields that

w(T, X0, R0) ≥ E[−e−ARξ̌
T ] = v(T, X0, R0) · eAT (K|b|− 1

2
b>X0) · E

[
e−A

∫ T
0

(T−t)
T

X>0 σ dBt

]

= v(T, X0, R0) · eAT (K|b|− 1
2
b>X0) · eA2X>0 ΣX0T/6

≥ v(K)(T, X0, R0) · e2ATK|b|+A2X>0 ΣX0T/6.

This proves the lemma.

In the next step, we will use a verification argument to identify w with the modified
value function

v0(T, X, R) := inf
ξ∈X0(T,X)

E[−e−ARξ
T ] (3.17)

that is based on

X0(T, X) :=
{

ξ ∈ X (X, T )
∣∣

∫ T

0

f(ξt) dt is uniformly bounded in ω
}

.

Lemma 3.5. We have v0(T, X, R) = w(T, X, R) and a minimizing strategy in (3.17) is given
by the ξ̄.

Proof. The inequality w ≤ v0 is obvious from (3.15) and (3.17). To prove the converse
inequality, take K > |X0| and let ξ ∈ X0(T, X0) ∩ X (K)(T, X0) be a control process. For
0 < t < T , Itô’s formula yields that

w(T − t, Xξ
t , R

ξ
t )− w(T, X0, R0) =

∫ t

0

wR(T − s, Xξ
s , R

ξ
s )(X

ξ
s)
>σ dBs

−
∫ t

0

[
f(ξs)wR + ξ>s ∇Xw + wT − b>Xξ

swR − 1

2
(Xξ

s)
>ΣXξ

swRR

]
(T − s, Xξ

s , R
ξ
s ) ds. (3.18)

By (3.10), the latter integral is nonnegative, and by noting that wR = −Aw we obtain

w(T, X0, R0) ≥ w(T − t, Xξ
t , R

ξ
t ) + A

∫ t

0

w(T − s, Xξ
s , R

ξ
s )(X

ξ
s)
>σ dBs. (3.19)

We will show next that the stochastic integral in (3.19) is a true martingale. To this

end, observe first that, for some constant C1 depending on the bound for
∫ T

0
f(ξt) dt and on

the upper bound K for |Xξ|,

Rξ
t := R0 +

∫ t

0

(Xξ
s)
>σ dBs +

∫ t

0

b>Xξ
s ds−

∫ t

0

f(ξs) ds ≥ −C1

(
1 + sup

s≤TK2|Σ|
|Ws|

)
,

where W denotes the DDS-Brownian motion of the continuous martingale
∫ t

0
(Xξ

s)
>σ dBs

and |Σ| is the operator norm of Σ. Hence, by (3.9), for a constant C2 depending on K and

the upper bound of
∫ T

0
f(ξt) dt,

w(T − t, Xξ
t , R

ξ
t ) ≥ − exp

(
AC1

(
1 + sup

s≤TK2|Σ|
|Ws|

)
+ A

∫ T

t

L(Xξ
s , ξs) ds

)

≥ − exp
(
AC1

(
1 + sup

s≤TK2|Σ|
|Ws|

)
+ C2

)
. (3.20)
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Since sups≤TK2|Σ| |Ws| has exponential moments of all orders, the martingale property of the
stochastic integral in (3.19) follows.

Taking expectations in (3.19) thus yields

w(T, X0, R0) ≥ E[ w(T − t, Xξ
t , R

ξ
t ) ]. (3.21)

Using the fact that

v(K)(T − t, Xξ
t , R

ξ
t ) ≥ E[−e−ARξ

T | Ft],

Lemma 3.4 then gives that for C3 := 2A|b|K + A2K2|Σ|/6,

w(T, X, R) ≥ eC3(T−t)E[ v(K)(T − t, Xξ
t , R

ξ
t ) ] ≥ eC3(T−t)E[−e−ARξ

T ].

Sending t ↑ T and taking the infimum over ξ ∈ X (K)
0 (T, X0) and then over K ≥ |X0| yields

w ≥ v0.
The inequality w ≥ v0 and (3.15) show that ξ̄ is an optimal strategy in X0(T, X0).

Proof of Theorem 3.1: We first show that w ≥ v. To this end, let ξ ∈ X (T, X0) be given
such that

E[−e−ARξ
T ] > −∞. (3.22)

We define for k = 1, 2, . . .

τk := inf
{

t ≥ 0
∣∣

∫ t

0

f(ξs) ds ≥ k or (T − t)f

(
Xξ

t

T − t

)
≥ k

}
∧ T.

Let K be an upper bound for |Xξ| and define C := 2A|b|K + A2K2|Σ|/6. Conditioning on
Fτk

and applying Lemma 3.4 yields that

E
[ − e−ARξ

T ; τk < T
] ≤ E

[
v(K)(T − τk, X

ξ
τk

, Rξ
τk

) ; τk < T
]

≤ E
[
w(T − τk, X

ξ
τk

, Rξ
τk

) · e−C(T−τk) ; τk < T
]

≤ e−CT · E[
w(T − τk, X

ξ
τk

, Rξ
τk

) ; τk < T
]

≤ 0.

Since E[−e−ARξ
T ; τk < T ] tends to zero as k ↑ ∞ due to (3.22), we conclude that also

E
[
w(T − τk, X

ξ
τk

, Rξ
τk

) ; τk < T
] −→ 0. (3.23)

Moreover,

E
[ − e−ARξ

T ; τk = T
]

= E
[
w(0, 0, Rξ

T ) ; τk = T
]

= E
[
w(T − τk, X

ξ
τk

, Rξ
τk

) ; τk = T
]
.

We may thus conclude that

E[−e−ARξ
T ]

= E
[ − e−ARξ

T ; τk < T
]
+ E

[ − e−ARξ
T ; τk = T

]

≤ E
[
w(T − τk, X

ξ
τk

, Rξ
τk

) ] + (e−CT − 1) · E[
w(T − τk, X

ξ
τk

, Rξ
τk

) ; τk < T
]
.
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Now define ξ(k) as ξ up to time τk, and for τk < t ≤ T we let ξ(k) be the Fτk
-measurable

strategy from Lemma 3.3 that optimally liquidates the amount Xξ
τk

in the remaining time,

T − τk. Then ξ(k) belongs to X0(T, X0), and Lemma 3.5 yields

E
[
w(T − τk, X

ξ
τk

, Rξ
τk

) ] = E[−e−ARξ(k)

T ] ≤ w(T, X0, R0).

Therefore

E[−e−ARξ
T ] ≤ w(T, X, R) + (e−CT − 1) · E[

w(T − τk, X
ξ
τk

, Rξ
τk

) ; τk < T
]
.

Using (3.23) now yields w ≥ v and, in view of (3.15), v = w and the optimality of ξ̄ in
X (T, X0).

Let us conclude by arguing that ξ̄ is the a.s. unique optimal strategy in X (T, X0) since

the functional E[−e−ARξ
t ] is convex in ξ.





Chapter 4

Optimal liquidation for general utility functions

4.1 Introduction

Our goal in this chapter is to lift the restriction to exponential utility functions of the pre-
vious chapter and to determine the adaptive trading strategy that maximizes the expected
utility of the proceeds of an asset sale1 for general utility functions. We address this ques-
tion in a special case of the continuous-time liquidity model introduced in Section 3.2 with
an infinite time horizon. In this chapter, we only discuss the liquidation of a position in
a single asset in a market with linear temporary impact, i.e., quadratic temporary impact
trading costs; the more general basket liquidation case with a general impact form is an-
alyzed in Chapter 5. We pursue a stochastic control approach and show that the value
function and optimal control satisfy certain nonlinear parabolic partial differential equa-
tions. These PDEs can be solved numerically, thus providing a computational solution of
the problem. But perhaps even more importantly, the PDE characterization facilitates a
qualitative sensitivity analysis of the optimal strategy and the value function.

It turns out that the absolute risk aversion of the utility function is the key parameter
that determines the optimal strategy by defining the initial condition for the PDE of the
optimal strategy. The optimal strategy thus inherits monotonicity properties of the absolute
risk aversion. The relation is identical to the one derived in Theorem 2.1 for a discrete-time
framework. In particular, we show that investors with increasing absolute risk aversion
(IARA) should sell faster when the asset price rises than when it falls. The optimal strategy
is hence “aggressive in-the-money” (AIM). On the other hand, investors with decreasing
absolute risk aversion (DARA) should sell slower when asset prices rise, i.e., should pursue
a strategy that is “passive in-the-money” (PIM). In general, adaptive liquidation strategies
can realize higher expected utility than static liquidation strategies which do not react to
asset price changes: static strategies are optimal only for investors with constant absolute
risk aversion.

The preceding characterization of AIM and PIM strategies is a consequence of the more
general fact that the optimal trading strategy is increasing in the absolute risk aversion of
the investor. Surprisingly, however, very few monotonicity relations exist with respect to
the other model parameters. For example, a larger asset position can lead to a reduced
liquidation speed. Moreover, reducing liquidity by increasing the temporary price impact
can result in an increased liquidation speed. The occurrence of the preceding anomaly,
however, depends on the risk profile of the utility function, and we show that it cannot exist
in the IARA case.

Our approach to the PDE characterizations of the value function and the optimal strat-

1The focus on sell orders is for convenience of exposition only; our approach and symmetric statements
hold for the case of buy orders.

37
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egy deviates from the standard paradigm in control theory. Although our strategies are
parameterized by the time rate of liquidation, it is the remaining asset position that plays
the role of a “time” variable in the parabolic PDEs. As a consequence, the HJB equation for
the value function is nonlinear in the “time” derivative. We therefore do not follow the stan-
dard approach of first solving the HJB equation and then identifying the optimal control as
the corresponding maximizer or minimizer. Instead we reverse these steps. We first find that
a certain transformation c̃ of the optimal strategy can be obtained as the unique bounded
classical solution of a fully nonlinear but classical parabolic PDE. Then we show that the
solution of a first-order transport equation with coefficient c̃ yields a smooth solution of the
HJB equation. A verification theorem finally identifies this function as the value function.
Our qualitative results are proved by combining probabilistic and analytic arguments. Some
of the results of this chapter are proven in the more general setting of basket liquidation
in Chapter 5. The definition and study of aggressive and passive in-the-money strategies
however is conceptually clearer in the single asset setting, which is why we first concentrate
on this case.

The remainder of this chapter is structured as follows. In Section 4.2, we introduce
the problem setup and assumptions. We consider two questions in framework: optimal
liquidation (Section 4.3.1) and maximization of asymptotic portfolio value (Section 4.3.2).
The solution to these two problems is presented in Section 4.4. All proofs are given in
Section 4.5.

4.2 Assumptions

We apply the market model and notation introduced in Section 3.2 in the special case
of a single risky asset and linear temporary impact. We will thus assume the following
transaction price process:

Pt = P̃0 + σBt + γ(Xt −X0) + λẊt

with a standard Brownian motion B starting at B0 = 0 and positive constants σ (volatility),
γ (permanent impact parameter), λ (temporary impact parameter), and P̃0 (fundamental
price at time 0). Note that we assumed that the stock has no drift (b = 0 in the notation
of Section 3.2). Almgren and Chriss (2001) found that in the linear market model that we
consider in this chapter, the effect of a non-zero drift can be separated from the problem
of optimal liquidation. More precisely, the optimal strategy in a market with drift is the
sum of two strategies. The first of these strategies is the optimal liquidation strategy in the
same market but with zero drift. The second strategy is the optimal strategy in the market
with drift, but with a zero initial asset position. This second strategy in fact exploits the
knowledge about the future drift to make a profit. It is however completely independent of
the original liquidation problem; we therefore neglect it in this analysis of optimal liquidation
and focus on the first strategy, which can be computed under the assumption of zero drift.
Mathematically, the assumption of zero drift is necessary since we will consider liquidations
over infinite time horizons, and only in the absence of drift can we expect an investor to
actually liquidate a portfolio with a finite time constraint.
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By X we denote the class of all admissible strategies ξ; for notational simplicity, we will
not make the dependence on X0 explicit.

In the following we assume that the investor is a von-Neumann-Morgenstern investor
with a utility function u : R → R with absolute risk aversion A(R) that is bounded away
from zero and infinity:

A(R) := −uRR(R)

uR(R)

0 < inf
R∈R

A(R) =: Amin ≤ sup
R∈R

A(R) =: Amax < ∞

Furthermore, we assume that the utility function u is sufficiently smooth (C6). Most of the
theorems that we provide are also valid under weaker smoothness conditions, but to keep
things simple we only discuss the C6-case explicitly.

4.3 Liquidation and optimal investment

We now define the problems of optimal liquidation and optimal investment in the illiquid
market model.

4.3.1 Optimal liquidation

We consider a large investor who needs to sell a position of X0 > 0 shares of a risky asset
and already holds r units of cash. When following an admissible trading strategy ξ, the
investor’s total cash position is given by

Rt(ξ) = r +

∫ t

0

ξsPs ds

= r + P̃0X0 − γ

2
X2

0 + σ

∫ t

0

Xξ
s dBs

︸ ︷︷ ︸
Φt

−λ

∫ t

0

ξ2
s ds

−P̃0X
ξ
t −

γ

2

(
(Xξ

t )
2 − 2X0X

ξ
t

)
− σXξ

t Bt

︸ ︷︷ ︸
Ψt

.

Similar to our approach in the finite liquidation time horizon studies of Chapters 2 and 3,
we neglect the accumulation of interest. It is not clear a priori that this is acceptable, since
over long time horizons a positive interest rate could potentially have a significant impact on
wealth dynamics. We will see in Corollary 4.3, that even without interest, the asset position
decreases exponentially under the optimal trading strategy. Incorporating a positive interest
rate will lead to an even faster decrease of the asset position; however, due to the already
fast exponential liquidation, only small changes to the optimal trading strategy are expected
for reasonable parameters.

Since the large investor intends to sell the asset position, we expect the liquidation
proceeds to converge P-a.s. to a (possibly infinite) limit as t → ∞. Convergence of Φt

follows if

E
[ ∫ ∞

0

(Xξ
s )

2 ds
]

< ∞ (4.1)
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and a.s. convergence of Ψt is guaranteed if a.s.

lim
t→∞

(Xξ
t )

2t ln ln t = 0.

Note that these conditions do not exclude buy orders (negative ξt) or short sales (nega-
tive Xξ

t ). We will regard strategies admissible for optimal liquidation if they satisfy the
preceding two conditions in addition to the assumptions in Section 4.2; we denote the set
of such strategies by X1 ⊂ X . For ξ ∈ X1, we then have

Rξ
∞ := lim

t→∞
Rt(ξ) (4.2)

= r + P̃0X0 − γ

2
X2

0︸ ︷︷ ︸
=:R0

+σ

∫ ∞

0

Xξ
s dBs − λ

∫ ∞

0

ξ2
s ds. (4.3)

All of the five terms adding up to Rξ
∞ can be interpreted economically. The number r is

simply the initial cash endowment of the investor. P̃0X0 is the face value of the initial
position. The term γ

2
X2

0 corresponds to the liquidation costs resulting from the permanent
price impact of ξ. Due to the linearity of the permanent impact function, it is independent
of the choice of the liquidation strategy. The stochastic integral corresponds to the volatility
risk that is accumulated by selling throughout the interval [0,∞[ rather than liquidating
the portfolio instantaneously. The integral λ

∫∞
0

ξ2
t dt corresponds to the transaction costs

arising from temporary market impact.
We assume that the investor wants to maximize the expected utility of her cash position

after liquidation:
v1(X0, R0) := sup

ξ∈X1

E[u(Rξ
∞)] (4.4)

4.3.2 Maximization of asymptotic portfolio value

Now consider an investor holding x units of the risky asset and r units of cash at time t. In
a liquid market, the value of this portfolio is simply xPt + r. If the market is illiquid, there
is no canonical portfolio value. The effect of the temporary price impact depends on the
liquidation strategy and can be very small for traders with small risk aversion who liquidate
the position at a very slow rate. The permanent impact however cannot be avoided, and its
impact on a liquidation return is independent of the trading strategy. We therefore suggest
to value the portfolio as

r + x
(
Pt − γ

2
x
)

(4.5)

where Pt is the market price at time t including permanent but not temporary impact. In
practice, Pt can be observed whenever the large investor does not trade. We can think of the
portfolio value as the expected liquidation value when the asset position x is sold infinitely
slowly. One advantage of this approach is that the portfolio value cannot be permanently
manipulated by moving the market; any such market movement is directly accounted for.

When the trading strategy ξ is pursued, the portfolio value2 in the above sense evolves

2Note that Rt denotes the portfolio value (including risky assets) at time t, while Rt denotes only the
cash position at time t.
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over time as

Rξ
t = r + P̃0X0 − γ

2
X2

0 + σ

∫ t

0

Xξ
s dBs − λ

∫ t

0

ξ2
s ds. (4.6)

We assume that the investor trades the risky asset in order to maximize the asymptotic
expected utility of portfolio value:

v2(X0, R0) := sup
ξ∈X

lim
t→∞

E[u(Rξ
t )]. (4.7)

The existence of the limit will be established in Lemma 4.15. Note that our assumptions
on strategies admissible for the maximization of asymptotic portfolio value are weaker than
those for optimal liquidation. In particular, we do not require that Rξ

t or Xξ
t converge.

4.4 Statement of results

Theorem 4.1. The value functions v = v1 for optimal liquidation and v2 for maximization
of asymptotic portfolio value are equal and are classical solutions of the Hamilton-Jacobi-
Bellman equation

inf
c

[
−1

2
σ2X2vRR + λvRc2 + vXc

]
= 0 (4.8)

with boundary condition

v(0, R) = u(R) for all R ∈ R. (4.9)

The a.s. unique optimal control ξ̂t is Markovian and given in feedback form by

ξ̂t = c(X ξ̂
t , R

ξ̂
t ) = − vX

2λvR

(X ξ̂
t , R

ξ̂
t ). (4.10)

For the value functions, we have convergence:

v(X0, R0) = lim
t→∞

E[u(Rξ̂
t )] = E[u(Rξ̂

∞)] (4.11)

Note that the HJB equation in the preceding theorem is fully nonlinear in all partial
derivatives of v, even in the “time” derivative, vX . This can best be observed in the corres-
ponding reduced-form equation:

v2
X = −2λσ2X2vRvRR. (4.12)

In the following we will use the term “optimal control” to refer to the optimal admissible
strategy ξ̂ or the optimal feedback function c, depending on the circumstances. At the heart
of the above theorem lies the transformed optimal control

c̃(Y,R) := c(
√

Y , R)/
√

Y .

The existence of a solution to the HJB equation in Theorem 4.1 will be derived from the
existence of a smooth solution to the fully nonlinear parabolic PDE given in the following
theorem.
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Figure 4.1: Optimal control c(X, R) (left hand figure) and transformed optimal control c̃(Y, R) (right hand
figure) for the utility function with absolute risk aversion A(R) = 2(1.5 + tanh(R − 100))2 and parameter
λ = σ = 1.

Theorem 4.2. The transformed optimal control c̃ is a classical solution of the fully nonlinear
parabolic PDE

c̃Y = −3

2
λc̃c̃R +

σ2

4c̃
c̃RR (4.13)

with initial condition

c̃(0, R) =

√
σ2A(R)

2λ
. (4.14)

The bounds of the absolute risk aversion give bounds for the transformed optimal control:

inf
(Y,R)∈R+

0 ×R
c̃(Y,R) = inf

R∈R
c̃(0, R) =: c̃min =

√
σ2Amin

2λ

sup
(Y,R)∈R+

0 ×R
c̃(Y, R) = sup

R∈R
c̃(0, R) =: c̃max =

√
σ2Amax

2λ

Figure 4.1 shows a numerical example of c and c̃.

Corollary 4.3. The asset position X ξ̂
t at time t under the optimal control ξ̂ is given by

X ξ̂
t = X0 exp

(
−

∫ t

0

c̃((X ξ̂
s )

2, Rξ̂
s) ds

)
(4.15)

and is bounded by

X0 exp(−tc̃max) ≤ X ξ̂
t ≤ X0 exp(−tc̃min).

Although we did not a priori exclude intermediate buy orders or short sales, the preceding
theorem and corollary reveal that these are never optimal. For investors with constant
absolute risk aversion A = Amin = Amax, Corollary 4.3 yields the following explicit formula
for the optimal strategy. It is identical to the optimal strategy for mean-variance investors
(see Almgren (2003)) and is the limit of optimal execution strategies for finite time horizons
(see Chapter 3).
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Corollary 4.4. Assume that the investor has a utility function u(R) = −e−AR with constant
risk aversion A(R) ≡ A. Then her optimal adaptive liquidation strategy is static and is given
by

X ξ̂
t = X0 exp

(
−t

√
σ2A

2λ

)
. (4.16)

Given the optimal control c(X,R) (or the transformed optimal control c̃(X,R)), we can
identify the optimal strategy as aggressive in-the-money (AIM), neutral in-the-money (NIM)
and passive in-the-money (PIM) (see also Section 2.3). If prices rise, then R rises. A strategy
with an optimal control c that is increasing in R (everything else held constant) sells fast in
such a scenario, i.e., is aggressive in-the-money; if c is decreasing in R, it is passive in-the-
money, and if c is independent of R, then the strategy is neutral in-the-money. The initial
value specification for c̃ given in Theorem 4.2 shows that there is a tight relation between
the absolute risk aversion and the optimal adaptive trading strategy: If A is an increasing
function, i.e., the utility function u exhibits increasing absolute risk aversion (IARA), then
the optimal strategy is aggressive in-the-money at least for small values of X. The next
theorem states that such a monotonicity of c̃ propagates to all values of X, not only to small
values of X.

Theorem 4.5. c(X, R) is increasing (decreasing) in R for all values of X if and only if the
absolute risk aversion A(R) is increasing (decreasing) in R. In particular, A(R) determines
the characteristics of the optimal strategy:

Utility function Optimal trading strategy
Decreasing absolute risk aversion (DARA) ⇔ Passive in-the-money (PIM)

Constant absolute risk aversion (CARA) ⇔ Neutral in-the-money (NIM)
Increasing absolute risk aversion (IARA) ⇔ Aggressive in-the-money (AIM)

Note that in the numerical example in Figure 4.1, A is increasing. The figure confirms

that c and c̃ are also increasing in R. Figure 4.2 shows two sample paths of X ξ̂
t . As expected,

the asset position is decreased quicker when the asset price is rising than when it is falling.
We now turn to the dependence of the optimal control c on the problem parameters u,

X, λ and σ. The following theorem describes the dependence on u. Theorem 4.5 is in fact
a corollary to the following general result.

Theorem 4.6. Suppose u0 and u1 are two utility functions such that u1 has a higher absolute
risk aversion than u0, i.e., A1(R) ≥ A0(R) for all R. Then an investor with utility function
u1 liquidates the same portfolio X0 faster than an investor with utility function u0. More
precisely, the corresponding optimal strategies satisfy

c1 ≥ c0 and ξ̂1
t ≥ ξ̂0

t P-a.s..

An increase of the asset position X has two effects on the optimal liquidation strategy.
First, it increases overall risk, leading to a desire to increase the selling speed. Second, it
changes the distribution of total proceeds R∞: it increases its dispersion due to increased
risk, and it moves it downwards due to increased temporary impact liquidation cost. This
change in return distribution can lead to a reduction in relevant risk aversion and thus a
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Figure 4.2: Two sample optimal execution paths X ξ̂
t corresponding to the sample paths of the Brownian

motion Bt in the inset. The dashed lines represent the upper and lower bounds on X ξ̂
t . Parameters

are λ = γ = σ = 1, X0 = 1, R0 = 0, P̃0 = 100 and the utility function with absolute risk aversion
A(R) = 2(1.5 + tanh(R− 100))2. 1000 simulation steps were used covering the time span [0, 5].
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Figure 4.3: Transformed optimal control c̃(Y,R, λ, σ) depending on the temporary impact parameter λ.
Parameters are Y = 0.5, R = 2, σ = 1 and the utility function u with absolute risk aversion A(R) =
2(1.2− tanh(15R))2.

desire to reduce the selling speed. In Figure 4.1 one can make the surprising observation
that the second effect can outweigh the first, i.e., that the optimal strategy c(X, R) need
not be increasing in X. That is, an increase of the asset position may lead to a decrease of
the liquidation rate.

We now turn to the dependence of c on the impact parameters. Perhaps surprisingly,
neither the value function v nor the optimal control ξ̂ respectively c depend directly on the
permanent impact parameter γ. However, γ influences the portfolio value state variable
R = r + X

(
P − γ

2
X

)
and therefore indirectly also the optimal control. For the temporary

impact parameter λ, we intuitively expect that the optimal control c decreases when λ
increases, since fast trading becomes more expensive. Figure 4.3 shows that this is not
necessarily the case: in this example, an increased temporary impact cost leads to faster
selling. This counterintuitive behavior cannot occur for IARA utility functions:

Theorem 4.7. If the utility function u exhibits increasing absolute risk aversion (IARA),
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then the optimal control c is decreasing in the temporary impact parameter λ.

We conclude our sensitivity analysis with the following theorem that links the dependence
on σ to the dependence on λ and X.

Theorem 4.8 (Relation between σ, λ and X). Let c(X, R, λ, σ) be the optimal control in a
market with temporary impact parameter λ and volatility σ. Then

c(X,R, λ, σ1) =
σ2

σ1

c

(
σ1

σ2

X,R,
σ2

2

σ2
1

λ, σ2

)
. (4.17)

By the boundary condition, we know that v(0, R) = u(R) is a utility function. The next
theorem states that for each value of X, v(X,R) can be regarded as a utility function in R.

Theorem 4.9. The value function v(X,R) is strictly concave, jointly in X and R, increasing
in R and decreasing in X. In particular, for every X > 0, the value function v(X,R) is
again a utility function in R. Moreover, for all X and R, c̃(X2, R) is proportional to the
square root of the absolute risk aversion A(X,R) := −vRR(X,R)/vR(X, R) of v(X,R):

c̃(X2, R) =

√
σ2A(X,R)

2λ
. (4.18)

The value function v(X,R) is only decreasing in X when the portfolio value R is kept
constant. In this case, increasing X shifts value from the cash account toward the risky
asset, which always decreases utility for a risk-averse investor.

In view of non-concave utility functions suggested, e.g., by the prospect theory of Kah-
neman and Tversky (1979), one might ask to what extend the concavity of u is an essential
ingredient of our analysis. Which of our results may carry over to ‘utility functions’ u
that are strictly increasing but not concave? Let us suppose that v is defined as in Equa-
tions (4.4) or (4.7). Then it follows immediately that R 7→ v(X, R) is strictly increasing. If
v also satisfies the HJB equation, Equation (4.8), then Equation (4.12) yields

vRR = − v2
X

2σ2λvR

≤ 0.

Hence, R 7→ v(X,R) is concave for every X > 0. Therefore v cannot be a solution of the
initial value problem in Equations (4.8) and (4.9) unless v(0, R) = u(R) is also concave. This
shows that the concavity of u is essential to our approach. Note that the preceding argument
can also be used to give an alternative proof of the assertion of concavity in Theorem 4.9.

4.5 Proof of results

This section consists of three parts. First we show that a smooth solution of the HJB
equation exists and provide some of its properties. This is achieved by first obtaining a
solution of the PDE for the transformed optimal strategy, c̃, and then solving a transport
equation with coefficient c̃. In the second part, we apply a verification argument and show
that this solution of the HJB equation must be equal to the value function. Theorems 4.1
and 4.2 are direct consequences of the propositions in these two subsections. In the last
subsection we prove the qualitative properties of the optimal adaptive strategy and the
value function given in Theorems 4.5, 4.6, 4.7, 4.8 and 4.9.
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4.5.1 Existence and characterization of a smooth solution of the HJB equation

As a first step, we observe that limR→∞ u(R) < ∞ due to the boundedness of the risk
aversion, and we can thus assume without loss of generality that

lim
R→∞

u(R) = 0.

Proposition 4.10. There exists a smooth (C2,4) solution c̃ : (Y,R) ∈ R+
0 ×R→ c̃(Y, R) ∈ R

of

c̃Y = −3

2
λc̃c̃R +

σ2

4c̃
c̃RR (4.19)

with initial value

c̃(0, R) =

√
σ2A(R)

2λ
. (4.20)

The solution satisfies

c̃min := inf
R∈R

√
σ2A(R)

2λ
≤ c̃(Y, R) ≤ sup

R∈R

√
σ2A(R)

2λ
=: c̃max. (4.21)

The function c̃ is C2,4 in the sense that it has a continuous derivative ∂i+j

∂Y i∂Rj c̃(Y,R) if
2i + j ≤ 4. In particular, c̃Y RR and c̃RRR exist and are continuous.

The statement follows from the following auxiliary theorem from the theory of parabolic
partial differential equations. We do not establish the uniqueness of c̃ directly in the pre-
ceding proposition. However, it follows from Proposition 4.18.

Theorem 4.11 (Auxiliary theorem: Solution of Cauchy problem). There is a smooth solu-
tion (C2,4)

f : (t, x) ∈ R+
0 × R→ f(t, x) ∈ R

for the parabolic partial differential equation3

ft − d

dx
a(x, t, f, fx) + b(x, t, f, fx) = 0 (4.22)

with initial value condition
f(0, x) = ψ0(x)

if all of the following conditions are satisfied:

• ψ0(x) is smooth (C4) and bounded

• a and b are smooth (C3 respectively C2)

• There are constants b1 and b2 ≥ 0 such that for all x and u:

(
b(x, t, u, 0)− ∂a

∂x
(x, t, u, 0)

)
u ≥ −b1u

2 − b2.

3Here, ft refers to d
dtf and not f(t).
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• For all M > 0, there are constants µM ≥ νM > 0 such that for all x, t, u and p that
are bounded in modulus by M :

νM ≤ ∂a

∂p
(x, t, u, p) ≤ µM

and (
|a|+

∣∣∣∣
∂a

∂u

∣∣∣∣
)

(1 + |p|) +

∣∣∣∣
∂a

∂x

∣∣∣∣ + |b| ≤ µM(1 + |p|)2.

Proof. The theorem is a direct consequence of Theorem 8.1 in Chapter V of Ladyzhenskaya,
Solonnikov, and Ural’ceva (1968). In the following, we outline the last step of its proof
because we will use it for the proof of subsequent propositions.

The conditions of the theorem guarantee the existence of solutions fN of Equation (4.22)
on the strip R+

0 × [−N, N ] with boundary conditions

fN(0, x) = ψ0(x) for all x ∈ [−N, N ]

and
fN(t,±N) = ψ0(±N) for all t ∈ R+

0 .

These solutions converge smoothly as N tends to infinity: limN→∞ fN = f .

Proof of Proposition 4.10. We want to apply Theorem 4.11 and set

a(x, t, u, p) := h1(u)p

b(x, t, u, p) :=
3

2
λh2(u)p + h′1(u)p2

ψ0(x) :=

√
σ2A(R)

2λ

with smooth functions h1, h2 : R → R. With h1(u) = σ2

4u
and h2(u) = u, Equation (4.22)

becomes Equation (4.19) by relabeling the coordinates from t to Y and from x to R. All
conditions of Auxiliary Theorem 4.11 are fulfilled, except for the last boundedness condition.
In order to fulfill these, we take h1 and h2 to be smooth nonnegative bounded functions
fulfilling h1(u) = σ2

4u
and h2(u) = u for c̃min ≤ u ≤ c̃max. Now all conditions of Theorem 4.11

are fulfilled and there exists a smooth solution to

ft = −3

2
λh2(f)fx + h1(f)fxx.

We now show that this solution f also fulfills

ft = −3

2
λffx +

σ2

4f
fxx

by using the maximum principle to show that c̃min ≤ f ≤ c̃max. First assume that there
is a (t0, x0) such that f(t0, x0) > c̃max. Then there is an N > 0 and γ > 0 such that also
f̃N(t0, x0) := fN(t0, x0)e

−γt0 > c̃max with fN as constructed in the proof of Theorem 4.11.
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Then maxt∈[0,t0],x∈[−N,N ] f̃N(t, x) is attained at an interior point (t1, x1), i.e., 0 < t1 ≤ t0 and
−N < x1 < N . We thus have

f̃N,t(t1, x1) ≥ 0

f̃N,x(t1, x1) = 0

f̃N,xx(t1, x1) ≤ 0.

We furthermore have that

f̃N,t = e−γtfN,t − γe−γtfN

= −3

2
e−γtλh2(fN)fN,x + e−γth1(fN)fN,xx − γe−γtfN

= −3

2
λh2(fN)f̃N,x + h1(fN)f̃N,xx − γf̃N

and therefore that

f̃N(t1, x1) ≤ 0.

This however contradicts f̃N(t1, x1) ≥ f̃N(t0, x0) ≥ c̃max > 0.
By a similar argument, we can show that if there is a point (t0, x0) with f(t0, x0) < c̃min,

then the interior minimum (t1, x1) of a suitably chosen f̃N := fN − c̃max < 0 satisfies
f̃N(t1, x1) > 0 and thus causes a contradiction.

Proposition 4.12. There exists a C2,4-solution w̃ : R+
0 × R→ R of the transport equation

w̃Y = −λc̃w̃R (4.23)

with initial value

w̃(0, R) = u(R).

The solution satisfies

0 ≥ w̃(Y, R) ≥ u(R− λc̃maxY )

and is increasing in R and decreasing in Y .

Proof. The proof uses the method of characteristics. Consider the function

P : (Y, S) ∈ R+
0 × R→ P (Y, S) ∈ R

satisfying the ODE

PY (Y, S) = λc̃(Y, P (Y, S))

with initial value condition P (0, S) = S. Since c̃ is smooth and bounded, a solution of the
above ODE exists for each fixed S. For every Y , P (Y, ·) is a diffeomorphism mapping R
onto R and has the same regularity as c̃, i.e., belongs to C2,4. We define

w̃(Y, R) = u(S) iff P (Y, S) = R.
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Then w̃ is a C2,4-function satisfying the initial value condition. By definition, we have

0 =
d

dY
w̃(Y, P (Y, S))

= w̃R(Y, P (Y, S))PY (Y, S) + w̃Y (Y, P (Y, S))

= w̃R(Y, P (Y, S))λc̃(Y, P (Y, S)) + w̃Y (Y, P (Y, S)).

Therefore w̃ fulfills the desired partial differential equation. Since c̃ ≤ c̃max, we know that
PY ≤ λc̃max and hence P (Y, S) ≤ S + Y λc̃max and thus w̃(Y, R) ≥ u(R− λc̃maxY ).

The monotonicity statements in the proposition follow because the family of solutions
of the ODE above do not cross and since c̃ is positive.

Proposition 4.13. The function w(X, R) := w̃(X2, R) solves the HJB equation

min
c

[
−1

2
σ2X2wRR + λwRc2 + wXc

]
= 0. (4.24)

The unique minimum is attained at

c(X,R) := c̃(X2, R)X. (4.25)

Proof. Assume for the moment that

c̃2 = −σ2w̃RR

2λw̃R

. (4.26)

Then with Y = X2:

0 = −λX2w̃R

(
σ2w̃RR

2λw̃R

+ c̃2

)

= −λX2w̃R

(
σ2w̃RR

2λw̃R

+
w̃2

Y

λ2w̃2
R

)

= −1

2
σ2X2wRR − w2

X

4λwR

= inf
c

[
−1

2
σ2X2wRR + λwRc2 + wXc

]

and Equation (4.25) follows from Equations (4.23) and (4.24).

We now show that Equation (4.26) is fulfilled for all R and Y = X2. First, observe that
it holds for Y = 0. For general Y , consider the following two equations:

d

dY
c̃2 = −3λc̃2c̃R +

σ2

2
c̃RR

− d

dY

σ2w̃RR

2λw̃R

= σ2c̃
d

dR

w̃RR

2w̃R

+ σ2c̃R
w̃RR

2w̃R

+
σ2

2
c̃RR.
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The first of these two equations holds because of Equation (4.19) and the second one because
of Equation (4.23). Now we have

d

dY

(
c̃2 +

σ2w̃RR

2λw̃R

)
= −3λc̃2c̃R +

σ2

2
c̃RR − σ2c̃

d

dR

w̃RR

2w̃R

− σ2c̃R
w̃RR

2w̃R

− σ2

2
c̃RR

= −λc̃
d

dR

(
c̃2 +

σ2w̃RR

2λw̃R

)
− λc̃R

(
c̃2 +

σ2w̃RR

2λw̃R

)
.

Hence, the function f(Y,R) := c̃2 + σ2w̃RR

2λw̃R
satisfies the linear PDE

fY = −λc̃fR − λc̃Rf

with initial value condition f(0, R) = 0. One obvious solution to this PDE is f(Y,R) ≡ 0.
By the method of characteristics this is the unique solution to the PDE, since c̃ and c̃R are
smooth and hence locally Lipschitz.

The next auxiliary lemma will prove useful in the following.

Lemma 4.14 (Auxiliary Lemma). There are positive constants α, a1, a2, a3 and a4 such
that

u(R) ≥ w(X, R) ≥ u(R) exp(αX2) (4.27)

0 ≤ wR(X, R) ≤ a1 + a2 exp(−a3R + a4X
2)

for all (X,R) ∈ R+
0 × R.

Proof of Lemma 4.14. The left hand side of the first inequality follows by the boundary con-
dition for w and the monotonicity of w with respect to X as established in Proposition 4.12.
Since the risk aversion of u is bounded from above by 2λc̃2

max, we have

u(R−∆) ≥ u(R)e2λc̃2max∆ for ∆ ≥ 0 (4.28)

and thus by Proposition 4.12

w(X, R) ≥ u(R− λc̃maxX
2) ≥ u(R)e2λ2c̃3maxX2

which establishes the right hand side of the first inequality with α = 2λ2c̃3
max.

For the second inequality, we will show the equivalent inequality

0 ≤ w̃R(Y, R) ≤ a1 + a2 exp(−a3R + a4Y ).

The left hand side follows since w̃ is increasing in R by Proposition 4.12. For the right
hand side, note that w̃ has “bounded absolute risk aversion” due to Equation (4.26) and the
bound on c̃ established by Proposition 4.10:

−w̃RR

w̃R

<
2λc̃2

max

σ2
=: Ã.

Then

w̃(Y, R0) ≥ w̃(Y,R) +
w̃R(Y, R)

Ã

(
1− e−Ã(R0−R)

)
.
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Since
lim

R0→∞
w̃(Y, R0) = lim

R0→∞
u(R0) = 0

we have

0 ≥ w̃(Y,R) +
w̃R(Y, R)

Ã

and thus
w̃R(Y,R) ≤ −w̃(Y,R)Ã ≤ −u(R− λc̃maxY )Ã.

Since u is bounded by an exponential function, we obtain the desired bound on w̃R.

4.5.2 Verification argument

We now connect the PDE results from Subsection 4.5.1 with the optimal stochastic control
problem introduced in Section 4.3. For any admissible strategy ξ ∈ X and k ∈ N we define

τ ξ
k := inf

{
t ≥ 0

∣∣
∫ t

0

ξ2
s ds ≥ k

}
.

We proceed by first showing that u(Rξ
t ) and w(Xξ

t , R
ξ
t ) fulfill local supermartingale inequal-

ities. Thereafter we show that w(X0, R0) ≥ limt→∞ E[u(Rξ
t )] with equality for ξ = ξ̂. The

next lemma in particular justifies our definition of v2(X0, R0) in Equation (4.7).

Lemma 4.15. For any admissible strategy ξ ∈ X the expected utility E[ u(Rξ
t ) ] is decreasing

in t. Moreover, we have E[ u(Rξ

t∧τξ
k

) ] ≥ E[ u(Rξ
t ) ].

Proof. Since Rξ
t −R0 is the difference of the true martingale

∫ t

0
σXξ

s dBs and the increasing

process λ
∫ t

0
ξ2
s ds, it satisfies the supermartingale inequality E[ Rξ

t | Fs ] ≤ Rξ
s for s ≤ t (even

though it may fail to be a supermartingale due to the possible lack of integrability). Hence
E[ u(Rξ

t ) ] is decreasing according to Jensen’s inequality.
For the second assertion, we first take n = k and write for τm := τ ξ

m

E[ u(Rξ
t∧τk

) ] = E
[
u
(
R0 + σ

∫ t∧τn

0

Xξ
s dBs − λ

∫ t∧τk

0

ξ2
s ds

) ]
.

When sending n to infinity, the right-hand side decreases to

E
[
u
(
R0 + σ

∫ t

0

Xξ
s dBs − λ

∫ t∧τk

0

ξ2
s ds

) ]
, (4.29)

by dominated convergence because u is bounded from below by an exponential function,
the integral of ξ2 is bounded by k, and the stochastic integrals are uniformly bounded from
below by infs≤K2t Ws, where W is the DDS-Brownian motion of

∫
Xξ

s dBs and K is an
upper bound for |Xξ|. Finally, the term in Equation (4.29) is clearly larger than or equal to
E[ u(Rξ

t ) ].

Lemma 4.16. For any admissible strategy ξ ∈ X , w(Xξ
t , R

ξ
t ) is a local supermartingale with

localizing sequence (τ ξ
k ).



52 Optimal liquidation for general utility functions

Proof. We use a verification argument similar to the one in Chapter 3. For T > t ≥ 0, Itô’s
formula yields that

w(Xξ
T , Rξ

T )− w(Xξ
t , R

ξ
t ) =

∫ T

t

wR(Xξ
s , R

ξ
s)σXξ

s dBs

−
∫ T

t

[
λwRξ2

s + wXξs − 1

2
(σXξ

s )
2wRR

]
(Xξ

s , R
ξ
s) ds. (4.30)

By Proposition 4.13 the latter integral is nonnegative and we obtain

w(Xξ
t , R

ξ
t ) ≥ w(Xξ

T , Rξ
T )−

∫ T

t

wR(Xξ
s , R

ξ
s)σXξ

s dBs. (4.31)

We will show next that the stochastic integral in Equation (4.31) is a local martingale
with localizing sequence (τk) := (τ ξ

k ). For some constant C1 depending on t, k, λ, σ, and on
the upper bound K of |Xξ| we have for s ≤ t ∧ τk

Rξ
s = R0 + σBsX

ξ
s +

∫ s

0

(σξqBq − λξ2
q ) dq ≥ −C1

(
1 + sup

q≤t
|Bq|

)
.

Using Lemma 4.14, we see that for s ≤ t ∧ τk

0 ≤ wR(Xξ
s , R

ξ
s) ≤ a1 + a2 exp

(
a3C1

(
1 + sup

q≤t
|Bq|

)
+ a4K

2

)
. (4.32)

Since supq≤t |Bq| has exponential moments of all orders, the martingale property of the
stochastic integral in Equation (4.31) follows. Taking conditional expectations in Equa-
tion (4.31) thus yields the desired supermartingale property

w(Xξ
t∧τk

, Rξ
t∧τk

) ≥ E[ w(Xξ
T∧τk

, Rξ
T∧τk

)|Ft ]. (4.33)

The integrability of w(Xξ
t∧τk

, Rξ
t∧τk

) follows from Lemma 4.14 and Equation (4.28) in a
similar way as in Equation (4.32).

Lemma 4.17. There is an adapted strategy ξ̂ fulfilling

ξ̂t := c(X ξ̂
t , R

ξ̂
t ). (4.34)

This ξ̂ is admissible for optimal liquidation and maximization of asymptotic portfolio value

(ξ̂ ∈ X1 ⊂ X ) and satisfies
∫∞
0

ξ̂2
t dt < K for some constant K. Furthermore, w(X ξ̂

t , R
ξ̂
t ) is

a martingale and

w(X0, R0) = lim
t→∞

E[ u(Rξ̂
t ) ] ≤ v2(X0, R0). (4.35)

Proof. Consider the stochastic differential equation

d

(
X̂t

Rt

)
=

( −c(X̂t, Rt)dt

−λc(X̂t, Rt)dt + σX̂tdBt

)
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with initial condition X̂0 = X0. Since c is differentiable, it satisfies local boundedness and
Lipschitz conditions, hence a solution to this SDE exists (see for example Durrett (1996)).
Note that the solution cannot explode due to the special form of c in Equation (4.25) and
the bounds on c̃ established in Proposition 4.10. Furthermore, the resulting stochastic

process X̂ is absolutely continuous, and by setting ξ̂t := − ˙̂
Xt we obtain a solution of

Equation (4.34). By Equations (4.21) and (4.25), X ξ̂
t = X̂t > 0 is bounded from above by

an exponentially decreasing function of t. Therefore ξ̂ is also bounded by such a function
and

∫∞
0

ξ̂2
t dt < K for some constant K, showing that ξ̂ is admissible both for optimal

liquidation and maximization of asymptotic portfolio value. Next, with the choice ξ = ξ̂
the rightmost integral in Equation (4.30) vanishes, and we get equality in Equation (4.33).

Since τ ξ̂
K = ∞, this proves the martingale property of w(X ξ̂

t , R
ξ̂
t ). Furthermore, we obtain

from Equation (4.27) that

u(Rξ̂
t ) ≥ w(X ξ̂

t , R
ξ̂
t ) ≥ u(Rξ̂

t ) exp(α(X ξ̂
t )

2).

Since X ξ̂
t is bounded by an exponentially decreasing function, we obtain Equation (4.35).

Proposition 4.18. Consider the case of the asymptotic maximization of the portfolio value.
We have v2 = w and the a.s. unique optimal strategy is given by ξ̂ respectively c.

Proof. By Lemma 4.17, we already have w ≤ v2. Hence we only need to show that v2 ≤ w.
Let ξ ∈ X be any admissible strategy such that

lim
t→∞

E[u(Rξ
t )] > −∞.

By Lemmas 4.16 and 4.14 we have for all k, t and (τk) := (τ ξ
k )

w(X0, R0) ≥ E[w(Xξ
t∧τk

, Rξ
t∧τk

)] ≥ E
[
u(Rξ

t∧τk
) exp(α(Xξ

t∧τk
)2)

]
.

As in the proof of Lemma 4.15 one shows that

lim inf
k→∞

E
[
u(Rξ

t∧τk
) exp(α(Xξ

t∧τk
)2)

]
≥ lim inf

k→∞
E

[
u(Rξ

t ) exp(α(Xξ
t∧τk

)2)
]

= E
[
u(Rξ

t ) exp(α(Xξ
t )

2)
]
.

Hence,

w(X0, R0) ≥ E[u(Rξ
t )] + E

[
u(Rξ

t )(exp(α(Xξ
t )

2)− 1)
]
.

Let us assume for a moment that the second expectation on the right attains values arbi-
trarily close to zero. Then

w(X0, R0) ≥ lim
t→∞

E[u(Rξ
t )].

Taking the supremum over all admissible strategies ξ ∈ X gives v2 ≤ w. The optimality
of ξ̂ follows from Lemma 4.17, its uniqueness from the fact that the functional E[u(Rξ

t )] is
strictly concave since u is concave and increasing and Rξ

t is concave.
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We now show that E
[
u(Rξ

t )(exp(α(Xξ
t )

2)− 1)
]

attains values arbitrarily close to zero.

By Lemma 4.15 and the same line of reasoning as in the proof of Lemma 4.16, we have for
all k, t and (τk) := (τ ξ

k )

−∞ < lim
s→∞

E[u(Rξ
s)] ≤ E[u(Rξ

t )] ≤ E[u(Rξ
t∧τk

)]

= u(R0) + E
[∫ t∧τk

0

uR(Rξ
s)σXξ

s dBs

]
− E

[∫ t∧τk

0

[
λuRξ2

s −
1

2
(σXξ

s )
2uRR

]
(Rξ

s) ds

]

= u(R0)− E
[∫ t∧τk

0

[
λuRξ2

s −
1

2
(σXξ

s )
2uRR

]
(Rξ

s) ds

]
. (4.36)

Sending k and t to infinity yields

∫ ∞

0

E
[
(Xξ

s )
2uRR(Rξ

s)
]

ds > −∞. (4.37)

Next we observe that

0 ≥ u(R) ≥ a5uRR(R)

for a constant a5 > 0, due to the boundedness of the risk aversion of u, and that

exp(α(Xξ
t )

2)− 1 ≤ a6α(Xξ
t )

2,

due to the bound on Xξ
t . We now have

0 ≥ E
[
u(Rξ

t )(exp(α(Xξ
t )

2)− 1)
]
≥ E[αa5a6uRR(Rξ

t )(X
ξ
t )

2].

Therefore the right hand side of the above equation attains values arbitrarily close to zero.

Proposition 4.19. Consider the case of optimal liquidation. Then v1 = w and the a.s. unique
optimal strategy is given by ξ̂ respectively c.

Proof. For any strategy ξ ∈ X1 that is admissible for optimal liquidation, the martingale
σ

∫ t

0
XsdBs is uniformly integrable due to the requirement in Equation (4.1). Therefore

E[u(Rξ
t )] ≥ E

[
u(Rξ

∞)
]

follows as in the proof of Lemma 4.15. Hence, Proposition 4.18 yields

E[u(Rξ
∞)] = lim

t→∞
E[u(Rξ

t )] ≤ v2(X0, R0) ≤ w(X0, R0).

Taking the supremum over all admissible strategies ξ ∈ X1 gives v1 ≤ w. The converse
inequality follows from Lemma 4.16, since ξ̂ is admissible for optimal liquidation.
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4.5.3 Characterization of the optimal adaptive strategy

Proof of Theorem 4.6. We prove the equivalent inequality c̃1 ≥ c̃0. Fix N > 0 and let f i

denote the function f̃N constructed in the proof of Proposition 4.10 when the parabolic
boundary condition is given by f̃N(Y,R) =

√
σ2Ai(R)/(2λ) for Y = 0 or |R| = N . The

result follows if we can show that g := f 1 − f 0 ≥ 0. A straightforward computation shows
that g solves the linear PDE

gY = −3

2
λ
(
f 1gR + f 0

Rg
)

+
σ2

4
f 1

RR

( 1

f 1
− 1

f 0

)
+

σ2

4f 0
gRR

=
1

2
agRR + bgR + V g,

where the coefficients a and b and the potential V are given by

a =
σ2

2f 0
, b = −3

2
λf 1, and V = −σ2f 1

RR

4f 0f 1
− 3

2
λf 0

R.

The parabolic boundary condition of g is

g(Y, R) =

√
σ2A1(R)

2λ
−

√
σ2A0(R)

2λ
=: h(R) for Y = 0 or |R| = N .

The functions a, b, V , and h are smooth and (at least locally) bounded on R+ × [−N,N ],
and a is bounded away from zero. Next, take T > 0, R ∈]−N,N [, and let Z be the solution
of the stochastic differential equation

dZt =
√

a(T − t, Zt) dBt + b(T − t, Zt)dt, Z0 = R,

which is defined up to time

τ := inf
{
t ≥ 0

∣∣ |Zt| = N or t = T
}
.

By a standard Feynman-Kac argument, g can then be represented as

g(T, R) = E
[
h(Zτ ) exp

( ∫ τ

0

V (T − t, Zt) dt
) ]

.

Hence g ≥ 0 as h ≥ 0 by assumption.

Proof of Theorem 4.5. In Theorem 4.6 take u0(x) := u(x) and u1(x) := u(x + r). If u
exhibits IARA, then A1 ≥ A0 if r > 0 and hence c1 ≥ c0 = c. But we clearly have
c1(X, R) = c(X,R + r). The result for decreasing A follows by taking r < 0.

The following proof follows the same setup as the proof of Theorem 4.6. The line of
argument however is analytic and not probabilistic.

Proof of Theorem 4.7. Let λ1 > λ0 be two positive constants. Fix N > 0 and let f i denote
the function f̃N constructed in the proof of Proposition 4.10 with λ = λi. The result follows
if we can show that g := f 0 − f 1 ≥ 0. Let us assume by way of contradiction that (Y0, R0)
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is a root of g with minimal Y0. The point (Y0, R0) does not lie on the boundary of the strip
R+

0 × [−N, N ] since g > 0 on the boundary due to Equation (4.20). We therefore have that
(Y0, R0) is a local minimum in ]0, Y0]×]−N,N [ and a root. Hence

g(Y0, R0) = 0 ⇒ f 0 = f 1

gY (Y0, R0) ≤ 0

gR(Y0, R0) = 0 ⇒ f 0
R = f 1

R

gRR(Y0, R0) ≥ 0.

By Equation (4.19), we now have

0 ≥ gY (Y0, R0)

= f 0
Y − f 1

Y

=

(
−3

2
λ0f 0f 0

R +
σ2

4f 0
f 0

RR

)
−

(
−3

2
λ1f 1f 1

R +
σ2

4f 1
f 1

RR

)

= −3

2
(λ0 − λ1)f 0f 0

R +
σ2

4f 0
gRR

> 0.

The last inequality uses that f 0
R > 0, which holds for IARA utility function u by Theorem 4.5.

The established contradiction leads us to conclude that g does not have any roots and thus
that f 0 > f 1.

Proof of Theorem 4.8. Equation (4.17) holds since d̃(Y,R) = c̃
(

σ2
1

σ2
2
Y, R,

σ2
2

σ2
1
λ, σ2

)
is a solu-

tion of Equation (4.13) with σ = σ1.

Proof of Theorem 4.9. First, it follows immediately from the definition of v in Equation (4.4)
that R 7→ v(X,R) is strictly increasing. Next, take distinct pairs (R1, X1), (R2, X2) and let

0 < α < 1 be given. Select the optimal strategies ξ̂1, ξ̂2 ∈ X such that v(Xi, Ri) = E[u(Rξ̂i

∞)]
for i = 1, 2. Define ξ := αξ̂1 + (1− α)ξ̂2. Then

v(αX1 + (1− α)X2, αR1 + (1− α)R2) ≥ E[u(Rξ
∞)]

> E[u(αRξ̂1

∞ + (1− α)Rξ̂2

∞)]

> αE[u(Rξ̂1

∞)] + (1− α)E[u(Rξ̂2

∞)]

= αv(X1, R1) + (1− α)v(X2, R2).

Hence v is strictly concave. By Proposition 4.12, we know that v is decreasing in X.
Equation (4.18) follows immediately from Equation (4.26).



Chapter 5

Adaptive basket liquidation

5.1 Introduction

In this chapter, we determine the utility maximizing trading strategy for basket liquidations
with respect to a wide range of utility functions and describe it as the solution to a partial
differential equation. Surprisingly, the set of portfolios that are held during the liquidation is
independent of the investor’s utility function but only depends on the market volatility and
liquidity structure. The utility function only influences how quickly the investor executes
the trades.

For practical applications, we can determine the utility maximizing trading strategy by
executing two steps. First, we derive the deterministic mean-variance optimal basket trading
strategy. While we show that such a strategy always exists, finding it numerically can be
challenging due to the high number of dimensions. Second, we solve a partial differential
equation and obtain an optimal “relative trading speed”. This PDE depends only on the risk
aversion of the utility function, but not on the market parameters such as the covariance
structure. Under the utility maximizing trading strategy, the portfolio evolves exactly as
in the mean-variance optimal trading strategy, but with a time transformation given by
the relative trading speed. This establishes a “separation theorem” for optimal liquidation:
Investors with different risk attitudes will choose the same basket liquidation strategy, but
execute it at a different speed. Because of this separation, utility maximization becomes
a numerically tractable option for implementing adaptive basket liquidation strategies in
practice.

We consider the market model described in Section 3.2, i.e., a continuous-time, infi-
nite time-horizon multiple asset extension of the model introduced by Almgren and Chriss
(2001) and Almgren (2003). In particular, we allow for non-linear cross-asset price impacts.
However, we need to assume that price impact scales like a power law, i.e., that trading
a times faster results in a price impact multiplied by aα where α > 0 is a constant. In
this market model, we first show that a unique mean-variance optimal trading strategy ex-
ists and that it satisfies both Bellman’s principle of optimality and the Beltrami identity.
Furthermore, the mean-variance costs of liquidation fulfill the dynamic programming PDE.
Thereafter, we construct a solution to the HJB equation for utility maximization. The
key observation is that the expected utility under optimal adaptive liquidation is identical
for different portfolios with the same mean-variance cost of deterministic execution. We
can therefore construct the utility maximization value function by solving two-dimensional
PDEs instead of high-dimensional PDEs. Finally we apply a verification argument to show
that the solution to the HJB equation is indeed the value function.

Note that our approach in this chapter differs from the approach in Chapter 4, where we
directly derived the optimal adaptive trading strategy without referring to mean-variance
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optimization. With the results of this Chapter 5 in mind, we however realize that the
expression of the optimal control relative to the portfolio size and the exponential bounds of
the optimal portfolio evolution derived in Chapter 4 are no coincidence, but rather express
the connection between the utility maximizing strategy and the mean-variance optimal
exponential strategy. Furthermore, if the price impact is linear in the basket liquidation
case, we find that the two-dimensional PDEs of this chapter are special cases of the PDEs
in Chapter 4 and that therefore the sensitivity analysis of the single asset case carries over
to the basket case. In particular, we find that for linear price impacts the optimal strategy is
aggressive in-the-money if the utility function exhibits increasing absolute risk aversion and
it is passive in-the-money if the utility function exhibits decreasing absolute risk aversion.

The rest of this chapter is structured as follows. In Section 5.2, we review the multiple
asset market model and the investor’s trading target. Thereafter, we first show in Section
5.3 that an optimal deterministic strategy exists for mean-variance optimization and sub-
sequently use this strategy to construct the optimal strategy for utility maximization in
Section 5.4. All proofs are given in Section 5.5.

5.2 Market model and investor’s trading target

We apply the market model and assumptions of Section 3.2. We briefly recall the central
definitions. We assume that the transaction prices are given as

Pt = P̃0 + σBt − Γ(X0 − Xt)− TempImp(ξt).

Here, the vector-valued stochastic process B is a standard n-dimensional Brownian motion
and σ is the n × n volatility matrix of the price changes of the n assets. We assume that
σ is non-degenerate with covariance matrix Σ := σσ> ∈ Rn×n. For the same reasons as
in Section 4.2, we assume that the drift of the assets and the interest rate are zero. The
permanent impact is assumed to be linear with a symmetric matrix Γ ∈ Rn×n to avoid quasi-
arbitrage (see Huberman and Stanzl (2004)). In this chapter, we need to make stronger
assumptions on the “temporary impact cost of trading”

f : ξ ∈ Rn → f(ξ) := TempImp(ξ)>ξ ∈ R+
0

than in Chapter 3. We assume that f is C1 on Rn, and that it is C2 and larger than zero
on Rn\{0}. Furthermore, we require that f has a positive-definite Hessian matrix D2f on
Rn\{0}, or equivalently that is has a nonsingular Hessian matrix and is convex. Finally, we
assume that f scales like a power law in the trading speed ξ. More precisely, we assume
that there is a constant α ∈ R+ such that for all a ∈ R+

0 :

f(aξ) = aα+1f(ξ). (5.1)

Note that this implies f(0) = 0. For a discussion of the relevance of the scaling property,
see the remark after Theorem 5.3.

By X we denote the class of all admissible strategies ξ. With respect to the investor’s
utility function, we apply the assumptions and notation introduced in Section 4.2.

Both optimization frameworks of Section 4.3 can be extended to the multiple asset
market model of this chapter. If the investor holds a portfolio X0 ∈ Rn and r ∈ R units
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of cash at time 0 and follows the admissible trading strategy ξ, then her cash position at
time t is given by

Rt(ξ) = r +

∫ t

0

Psξs ds

= r + P̃0X0 − 1

2
(X0)

>ΓX0 +

∫ t

0

(Xξ
s)
>σ dBs

︸ ︷︷ ︸
Φt

−
∫ t

0

f(ξs) ds

−P̃0X
ξ
t −

1

2

(
(Xξ

t )
>ΓXξ

t − 2(X0)
>ΓXξ

t

)− (Xξ
t )
>σBt

︸ ︷︷ ︸
Ψt

.

Convergence of Φt follows if

E
[ ∫ ∞

0

(Xξ
s)
>ΣXξ

s ds
]

< ∞ (5.2)

and a.s. convergence of Ψt is guaranteed if a.s.

lim
t→∞

(Xξ
t )
>ΣXξ

t t ln ln t = 0. (5.3)

For the optimal liquidation setting, we require admissible strategies to fulfill these two
conditions and denote the set of such strategies by X1 ⊂ X . We then assume that the
investor wants to maximize the expected utility of her cash position after liquidation:

v1(X0, R0) := sup
ξ∈X1

E[u(Rξ
∞)] = sup

ξ∈X1

E[u(Rξ
∞)] (5.4)

with

Rξ
t = r + P̃0X0 − 1

2
(X0)

>ΓX0︸ ︷︷ ︸
R0

+

∫ t

0

(Xξ
s)
>σ dBs −

∫ t

0

f(ξs) ds. (5.5)

The economic interpretation of Rt as the portfolio value at time t given in Section 4.3.2
carries over to the general setting of this chapter. In our second approach, we therefore
assume that the investor trades the risky asset in order to maximize the asymptotic expected
utility of portfolio value:

v2(X0, R0) := sup
ξ∈X

lim
t→∞

E[u(Rξ
t )]. (5.6)

The existence of the limit will be established in Lemma 5.17. Note that our assumptions
on strategies admissible for the maximization of asymptotic portfolio value are weaker than
those for optimal liquidation. In particular, we do not require that Rξ

t or Xξ
t converge.

5.3 Deterministic strategies and mean-variance optimization

Before considering the dynamic maximization of expected utility, we start our analysis with
deterministic mean-variance optimization. Let X̄ ⊂ X be the set of deterministic admissible
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strategies. We consider the mean-variance value function1:

v̄(X0) := inf
ξ̄∈X̄

[∫ ∞

0

f(ξ̄s)ds +
1

2

∫ ∞

0

(Xξ̄
s)
>ΣXξ̄

sds

]
. (5.7)

The following theorem establishes the existence of an optimal trading strategy ξ̄ and provides
some of its features.

Theorem 5.1. For each X0 ∈ Rn, there is a unique minimizer ξ̄
(X0)

of Equation (5.7).
This minimizer satisfies Bellman’s principle of optimality, i.e., there is a continuous vector
field

c̄ : X ∈ Rn → c̄(X) ∈ Rn

such that for all X0 ∈ Rn and each t ∈ R0, we have

ξ̄
(X0)
t = c̄

(
Xξ̄

(X0)

t

)
.

Furthermore, the vector field c̄ fulfills the following two equations:

∇f(c̄(X)) = v̄X for all X ∈ Rn (5.8)

f(c̄(X))

X>ΣX
=

1

2α
for all X ∈ Rn\{0}. (5.9)

Equation (5.8) is the dynamic programming PDE (see Cesari (1983)) and Equation (5.9)
is the Beltrami identity (see Beltrami (1868)).

For special cases, the vector field c̄ and the mean-variance value function v̄ are available
in closed form. For the single asset case with non-linear temporary impact f(ξ) = λξα+1,
Almgren (2003) derived

c̄(X) =

(
σ2X2

2αλ

) 1
α+1

v̄(X) =
(α + 1)2

3α + 1

(
λσ2αX3α+1

(2α)α

) 1
α+1

. (5.10)

For the multiple asset case, it is harder to find a closed form expression for c̄. However, if
the temporary impact is linear, i.e., f(ξ) = ξ>Λξ, Λ is a diagonal matrix and Λ−1Σ has
n different positive eigenvalues, then it is easy to derive from the formulas in Konishi and
Makimoto (2001) that

c̄(X) =
1√
2

√
Λ−1ΣX

v̄(X) =
1√
2
X>Σ

√
Σ−1ΛX.

Figures 5.1 and 5.2 illustrate the trajectories of the optimal deterministic trading strate-
gies in the case of two positively correlated assets with covariance matrix

Σ =

(
1 0.5

0.5 1

)
.

1More precisely, the function v̄ is a simple transformation of the mean-variance value function.
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In Figure 5.1, the trajectories for different portfolios X0 are compared for fixed

Λ =

(
1 0
0 1

)
.

The correlation of the two assets connects the trading in both assets by the investor’s desire
to reduce portfolio risk by hedging. If the initial asset position in one of the assets is zero,
it will not remain zero during the portfolio liquidation; instead, a long or short position is
acquired that serves as a hedge for the initial non-zero position in the other asset. For the
same reason, a portfolio with long positions in both assets might have a short position in one
of the two assets during the optimal liquidation. This short position again serves as a hedge
for the long position in the other asset; under certain conditions, it is cheaper to reduce risk
by building up the short position as a hedge instead of by selling the long position quicker.
For two example portfolios

X0 =

( ±1
1.5

)
,

the trajectories for different temporary impact matrices

Λ =

(
1 0
0 d2

)

with d2 ∈ [e−3, e3] are shown in Figure 5.2. The larger the differences in liquidity of the two
assets, the larger the incentive to hedge the market risk by trading the more liquid asset
quicker than the less liquid asset. For the portfolio

X0 =

(
1

1.5

)
,

this effect is strong, since the initial portfolio market risk is high; for the portfolio

X0 =

( −1
1.5

)
,

the market risk is low already at the beginning of trading and thus the optimal trading
trajectories are similar for different temporary impact matrices Λ.

5.4 Dynamic maximization of expected utility

We now turn to the dynamic maximization of expected utility.

Theorem 5.2. The value functions v = v1 for optimal liquidation and v2 for maximization
of asymptotic portfolio value are equal and are classical solutions of the Hamilton-Jacobi-
Bellman equation

inf
c

[
−1

2
vRRX>ΣX + vRf(c) + vXc

]
= 0 (5.11)

with boundary condition
v(0, R) = u(R) for all R ∈ R. (5.12)
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Figure 5.1: Parametric plot of the portfolio trajectories Xξ̄(X0)

t under the mean-variance optimal deter-
ministic strategy for different initial portfolios X0. Λ = ((1, 0), (0, 1)), Σ = ((1, 0.5), (0.5, 1)).
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Figure 5.2: Parametric plot of the portfolio trajectories Xξ̄(X0)

t under the mean-variance optimal determinis-
tic strategy for two different initial portfolios X0 and different temporary impact matrices Λ = ((1, 0), (0, d2)).
Darker lines correspond to d2 closer to 1. Σ = ((1, 0.5), (0.5, 1)). The dots show the portfolio Xti at time
points ti = i/2 for i ∈ N.

The a.s. unique optimal control ξ̂t is Markovian. We write it in feedback form as

ξ̂t = c(Xξ̂
t , R

ξ̂
t ). (5.13)
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For the value functions, we have convergence:

v(X0, R0) = lim
t→∞

E[u(Rξ̂
t )] = E[u(Rξ̂

∞)].

Note that in Equation (5.11) and in the rest of this chapter, we use the shorthand
notation vX = ∇Xv. In addition to the difficulties with the HJB equation in Theorem 4.1,
we now face the complex task of inferring the value function v on Rn×R from initial values
only on the line {0} × R. The existence of a solution to the HJB Equation 5.11 is far from
obvious; even for the simple integration of vector fields in Rn × {0}, integration conditions
need to be fulfilled. Fortunately, the construction of the optimal control c and the value
function v can be reduced to a two-dimensional problem involving only the portfolio value
R and the mean-variance liquidation cost Y = v̄(X).

Theorem 5.3. The optimal control c is given by

c(X, R) = c̃(v̄(X), R)c̄(X)

with a “relative liquidation speed” function c̃ : (Y,R) ∈ R+
0 × R → c̃(Y,R) ∈ R+ that is the

unique classical solution of the fully nonlinear parabolic PDE

c̃Y = −2α + 1

α + 1
c̃αc̃R +

α(α− 1)

α + 1

(
c̃R

c̃

)2

+
α

α + 1

c̃RR

c̃
(5.14)

with initial condition
c̃(0, R) = A(R)

1
α+1 . (5.15)

The bounds of the absolute risk aversion determine bounds of the relative liquidation speed c̃:

inf
(Y,R)∈R+

0 ×R
c̃(Y, R) = inf

R∈R
c̃(0, R) =: c̃min = (Amin)

1
α+1

sup
(Y,R)∈R+

0 ×R
c̃(Y, R) = sup

R∈R
c̃(0, R) =: c̃max = (Amax)

1
α+1 .

Note that here the relative liquidation speed c̃ describes the length of the utility-maxi-
mizing control c with respect to the length of the mean-variance optimal control c̄, while
the transformed optimal control c̃ in Chapter 4 described the magnitude of c with respect
to the portfolio size X. For α = 1 as in the linear model of Chapter 4, portfolio size X
and mean-variance optimal trading speed c̄ are proportional; this is not necessarily the case
for α 6= 1. For α = 1, Equations (5.14) and (5.15) describing the relative liquidation speed c̃
are a special case of Equations (4.13) and (4.14) for the transformed optimal control in
Chapter 4 with λ = 1 and σ2 = 2.

The scaling property (Equation (5.1)) is essential for the “Separation Theorem” 5.3.
Higher risk aversion leads to faster trading; the relative attractiveness of trading in two
directions ξ(1) and ξ(2) with different speeds a is only independent of the trading speed a if
f(aξ(1))

f(aξ(2))
is independent of a, which is equivalent to the scaling property (5.1). If the scaling

property does not hold, then we cannot hope for a separation theorem like Theorem 5.3.
Because of Theorem 5.3, utility maximization becomes numerically achievable for practi-

cal applications. Bertsimas, Hummel, and Lo (1999) find that even the minimization of ex-
pected liquidation costs is numerically challenging for large portfolios. While mean-variance
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optimal liquidation is by now a standard service of many banks, a utility maximizing dy-
namic liquidation by brute-force methods of dynamic programming appears out of reach.
By Theorem 5.3, such a brute-force approach is fortunately not necessary.

Theorem 5.4. The value function is given by

v(X, R) = ṽ(v̄(X), R)

with a function ṽ : (Y, R) ∈ R+
0 × R → ṽ(Y, R) ∈ R that is the unique classical solution of

the nonlinear first order PDE
ṽY = −ṽRc̃α (5.16)

with initial condition
ṽ(0, R) = u(R). (5.17)

Theorems 5.3 and 5.4 reveal a tight connection between mean-variance optimization and
maximization of expected utility. Both approaches lead to the same liquidation strategy,
they only differ by the speed with which this strategy is executed. The expected utility
of optimal liquidation then depends only on the current portfolio value R and the mean-
variance costs of deterministic liquidation v̄(X).

Corollary 5.5. The asset position Xξ̂
t at time t under the optimal control ξ̂ is given by

Xξ̂
t = Xξ̄∫ t

0 c̃(v̄(Xξ̂
s ),Rξ̂

s ) ds
. (5.18)

For investors with a utility function u(R) = −e−AR with constant risk aversion A(R) ≡ A,
the optimal adaptive liquidation strategy is deterministic and is given by

Xξ̂
t = Xξ̄

At. (5.19)

Since for α = 1 Equations (5.14) and (5.15) are a special case of Equations (4.13)
and (4.14), all the results of Chapter 4 that follow from the properties of Equation (4.13)
carry over to the multiple asset setting when α = 1. This includes in particular Theorems 4.5,
4.6, 4.7 and 4.8.

The “Separation Theorem” 5.3 does not hold for basket liquidations with a finite time
horizon T . Let us consider a simple example of two uncorrelated assets with the same
volatility but different liquidity:

Σ =

(
1 0
0 1

)

Λ =

(
1 0
0 10

)
.

By our results of Chapter 3, the optimal strategy for CARA investors is the optimal deter-
ministic strategy for mean-variance investors. For mean-variance investors however there is
no interaction between the liquidation of the positions in the two assets due to their inde-
pendence. Hence the optimal strategy liquidates both asset positions independently with
the strategy given in Theorem 3.1. Figure 5.3 shows that the trajectory of the optimal
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Figure 5.3: Parametric plot of the optimal trading trajectories for a finite liquidation time horizon T for
CARA investors with different levels of absolute risk aversion A ∈ [1, e5] (darker lines correspond to lower
risk aversion). The dashed black line is the trajectory of the optimal liquidation strategy with an infinite
time horizon. X0 = (1, 1)>, Λ = ((1, 0), (0, 10)), Σ = ((1, 0), (0, 1)).

liquidation strategy depends on the level of absolute risk aversion A of the utility function.
For small values of the risk aversion A, the optimal strategy corresponds roughly to a linear
reduction in asset position, since the primary driver of liquidation is the time constraint.
For large values of risk aversion, the basket is liquidated quickly irrespective of the time
horizon, and the liquidation strategy is primarily driven by market liquidity and volatility;
therefore the trajectory of the optimal liquidation strategy is similar to the trajectory of
liquidation with an infinite time horizon.

5.5 Proof of results

This section consists of three parts. First we discuss mean-variance optimal strategies and
prove Theorem 5.1. By extending methods of calculus of variations to the infinite time
setting, we show that optimal strategies exist, that they are unique and that they satisfy
Bellman’s principle of optimality. In the second subsection, we show that a smooth solution
of the HJB equation exists and provide some of its properties. This is achieved by first
obtaining a solution of the PDE for c̃ and then defining ṽ by a transport equation with
coefficient c̃. In the third subsection, we apply a verification argument and show that this
solution of the HJB equation must be equal to the value function. Theorems 5.2, 5.3 and 5.4
and Corollary 5.5 are direct consequences of the propositions in the last two subsections.
The proofs in the last two subsections have a similar structure to the proofs in Sections 4.5.1
and 4.5.2. However, they differ in a few subtle points and we therefore provide them in full
detail.
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5.5.1 Optimal mean-variance strategies

To obtain optimal trading strategies for the infinite horizon setting, we will first show that
optimal strategies exist for the setting with finite horizon T (i.e., Xt = 0 for t ≥ T ) and
then consider the limit T →∞.

Lemma 5.6. If a mean-variance optimal trading strategy exists for X0 ∈ Rn and time
horizon T ∈]0,∞], then this strategy is unique.

Proof. This follows directly from the strict convexity of the functional f(ξ) + 1
2
X>ΣX.

Proposition 5.7. For finite liquidation time horizons T ∈ R+, a mean-variance optimal
liquidation strategy ξ(X0,T ) exists for all initial portfolios X0 ∈ Rn. The portfolio evolution

Xξ(X0,T )

t is C1 in t (i.e., the optimal trading vector ξ
(X0,T )
t is continuous). We denote the

time at which the portfolio Xξ
t attains zero by

T0 := inf{t > 0 : Xξ
t = 0} ∈]0, T ].

For t ∈ [0, T0[, the portfolio evolution Xξ
t is even C2 and fulfills the Euler-Lagrange equation

ΣXt = D2f(−Ẋt)Ẍt.

The optimal trading vector ξ(X0,T ) satisfies Bellman’s principle of optimality, i.e.,

ξ
(X0,T )
t = ξ

(Xt,T−t)
0 .

Furthermore, the initial trading speed ξ0 is locally uniformly bounded. More precisely, for
each portfolio X̄0 ∈ R and each time horizon T̄ , there is a δ > 0 and C > 0 such that
|ξ(X0,T )

0 | < C for all |X0 − X̄0| < δ and T ≥ T̄ .

Theorem 3.1 establishes the existence of a mean-variance optimal strategy for finite
liquidation time horizons, but not the uniform bound on ξ0, which we need for our proof of
Proposition 5.8. We therefore present a self-contained proof of Proposition 5.7 establishing
this bound.

Proof. First, we observe that for mean-variance optimal ξ there is an a priori upper bound
K > 0 independent of T such that

sup{|Xξ
t | : t ∈ [0, T ]} < K.

To see this, select an arbitrary K̃ > X>
0 ΣX0 and assume that 1

2
X>

t ΣXt attains K̃ at

T2 := min{t > 0 : 1
2
X>

t ΣXt ≥ K̃}. Then

K̃

2
≤ 1

2
X>

t ΣXt ≤ K̃
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for all t ∈ [T1, T2] with T1 := max{t < T2 : 1
2
X>

t ΣXt ≤ K̃
2
}. Due to the scaling property

(Equation (5.1)), we have

∫ T2

T1

(
f(ξt) +

1

2
X>

t ΣXt

)
dt≥


 min

X̃∈X̄ s.t.
1
2
X̃>T1

ΣX̃T1
= K̃

2
, 1
2
X̃>T2

ΣX̃T2
=K̃

∫ T2

T1

f(ξ̃t)dt


 + (T2 − T1)

K̃

2

≥
(

1

T2 − T1

)α
(

K̃

2

)α+1

C̃ + (T2 − T1)
K̃

2
(5.20)

with the constant

C̃ := min
X̃∈X̄ s.t. 1

2
X̃>0 ΣX̃0=1, 1

2
X̃>1 ΣX̃1=2

∫ 1

0

f(ξ̃t)dt > 0.

Since C̃ is independent of T1 and T2, the right-hand side of Equation (5.20) is bounded
from below by a function of K̃ that is increasing and unbounded. This establishes that an
optimal ξ cannot attain arbitrarily large values of X>

t ΣXt respectively supt |Xt|.
We can therefore reduce the optimization problem with unbounded Xt ∈ Rn to an

optimization problem with bounded Xt ∈ [−K,K]n. By Tonelli’s existence theorem (see,
e.g., Cesari (1983), Theorem 2.20), a mean-variance optimal trading strategy exist for the
bounded optimization problem; by our previous considerations, this strategy is also optimal
for the unbounded optimization problem Xt ∈ Rn, and we denote this strategy by ξ(X0,T ).

In order to apply theorems ensuring continuity of even smoothness of ξ, we need to show
that the optimal ξ = ξ(X0,T ) is essentially bounded. The idea of the following proof is that
if ξ trades extremely quickly at some points in time, then the mean-variance costs of ξ can
be reduced by “smoothing” the trading speed, i.e., slowing down trading when it is fast and
accelerating it when it is slow. To formalize this argument, we first observe that there are
bounds (Xξ

t )
>ΣXξ

t < K0 and
∫ T

0
f(ξt)dt = K1 < ∞, and we define

µ : t ∈ R→ µt :=

∫ t

0

1f(ξs)≥K2ds ∈ R,

where K2 > 0 is a large, arbitrary constant. ξ is essentially bounded if there is a K2 > 0
with µ ≡ 0. We assume that µ 6= 0 for all K2 ∈ R+ and establish a contradiction. We define
the time transformation

t̃(t, s) := sµt +
T − sµT

T − µT

(t− µt).

For 0 < s < T
µT

, this transformation is a bijection t̃(·, s) : [0, T ] → [0, T ] satisfying t̃(0, s) = 0

and t̃(T, s) = T . When using the variables t̃ and t in the following, we will always assume
that they are connected by this bijection, i.e., that t̃ = t̃(t, s). We can now define a new
portfolio evolution Y depending on s:

Y(s) : t̃ ∈ R+
0 → Y

(s)

t̃
:= Xt.
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The portfolio evolution Y(s) is absolutely continuous and fulfills

ξ
(s)

t̃
:= − d

dt̃
Y

(s)

t̃
=

{
1
s
ξt for f(ξt) ≥ K2

T−µT

T−sµT
ξt for f(ξt) < K2.

Note that ξ(1) = ξ. The mean-variance costs of executing Y(s) are given by

∫ T

0

(f(ξ
(s)

t̃
) + (Y

(s)

t̃
)>ΣY

(s)

t̃
)dt̃

=

∫

f(ξt)≥K2

(f(ξ
(s)

t̃
) + (Y

(s)

t̃
)>ΣY

(s)

t̃
)dt̃

+

∫

f(ξt)<K2

(f(ξ
(s)

t̃
) + (Y

(s)

t̃
)>ΣY

(s)

t̃
)dt̃

= s

∫

f(ξt)≥K2

(
f

(
1

s
ξt

)
+ (Xξ

t )
>ΣXξ

t

)
dt

+
T − sµT

T − µT

∫

f(ξt)<K2

(
f

(
T − µT

T − sµT

ξt

)
+ (Xξ

t )
>ΣXξ

t

)
dt

=

(
1

s

)α ∫

f(ξt)≥K2

f(ξt)dt + s

∫

f(ξt)≥K2

(Xξ
t )
>ΣXξ

t dt

+

(
T − µT

T − sµT

)α ∫

f(ξt)<K2

f(ξt)dt +
T − sµT

T − µT

∫

f(ξt)<K2

(Xξ
t )
>ΣXξ

t dt.

By differentiating with respect to s at s = 1, we have

d

ds

∣∣∣∣
s=1

∫ T

0

(f(ξ
(s)

t̃
) + (Y

(s)

t̃
)>ΣY

(s)

t̃
)dt̃

= −α

∫

f(ξt)≥K2

f(ξt)dt

︸ ︷︷ ︸
≥K2µT

+

∫

f(ξt)≥K2

(Xξ
t )
>ΣXξ

t dt

︸ ︷︷ ︸
≤K0µT

+α
µT

T − µT

∫

f(ξt)<K2

f(ξt)dt

︸ ︷︷ ︸
≤K1−K2µT

− µT

T − µT

∫

f(ξt)<K2

(Xξ
t )
>ΣXξ

t dt

︸ ︷︷ ︸
≥0

.

If K2 is large enough, the right hand side of the above equation is smaller than zero for all
possible values µT ∈]0, K1

K2
], which contradicts the optimality of ξ = ξ(1). This completes

the proof that ξ is essentially bounded. Note that a suitably large bound K2 holds for all
time horizons longer than T and for all initial portfolios that are close to X0, establishing
the uniform boundedness of ξ0.

Since ξ is essentially bounded, we can apply the Theorems of Tonelli and Weierstrass
(see Cesari (1983), Theorem 2.6) and find that Xξ

t is C1 everywhere and C2 until it attains
zero. Furthermore, it fulfills the Euler-Lagrange equation. Bellman’s principle of optimality
for the optimal trading vector ξ follows by the additivity of mean costs and variance of
proceeds, as already noted by Almgren and Chriss (2001).
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Proposition 5.8. For an infinite liquidation time horizon, a mean-variance optimal liqui-

dation strategy ξ̄
(X0)

exists for all initial portfolios X0 ∈ Rn. The portfolio evolution Xξ̄
(X0)

t

is C1 in t (i.e., the optimal trading vector ξ̄
(X0)
t is continuous). We denote the time at which

the portfolio Xt attains zero by

T0 := inf{t > 0 : Xξ̄
t = 0} ∈]0,∞].

For t ∈ [0, T0[, the portfolio evolution Xξ
t is C2 and fulfills the Euler-Lagrange equation

ΣXt = D2f(−Ẋt)Ẍt. (5.21)

The optimal trading vector ξ̄
(X0)

satisfies Bellman’s principle of optimality, i.e.,

ξ̄
(X0)
t = ξ̄

(Xt)
0 =: c̄(Xt).

with a continuous vector field c̄ : X ∈ Rn → c̄(X) ∈ Rn.

Proof. First, we introduce some shorthand notation. For a sequence (X
(i)
0 , T (i)) ∈ Rn × R,

we define

ξ(i) := ξ(X
(i)
0 ,T (i))

X
(i)
t := Xξ(i)

t

T
(i)
0 := inf{t > 0 : X

(i)
t = 0} ∈]0, T (i)].

In Proposition 5.7, we established the uniform boundedness of ξ0. For each X0 ∈ Rn, we
can therefore select a sequence (X

(i)
0 , T (i)) with limi→∞ X

(i)
0 = X0 and limi→∞ T (i) = ∞ such

that ξ
(i)
0 converges to limi→∞ ξ

(i)
0 =: ξ

(∞)
0 . Then we define X

(∞)
t as the solution to the Euler-

Lagrange equation with initial values X
(∞)
0 = X0 and Ẋ

(∞)
0 = −ξ

(∞)
0 until X

(∞)
t attains

zero at time T
(∞)
0 ∈]0,∞]. On [T

(∞)
0 ,∞[, we define X

(∞)
t ≡ 0. By the smooth dependence

of ODE solutions on the initial parameters, we see that (X(i), Ẋ(i)) converges uniformly to

(X(∞), Ẋ(∞)) on any compact subset [0, T ] ⊂ [0, T
(∞)
0 [. Therefore

∫ ∞

0

(f(ξ(∞)
s ) + (X(∞)

s )>ΣX(∞)
s )ds = lim

T→T
(∞)
0

∫ T

0

(f(ξ(∞)
s ) + (X(∞)

s )>ΣX(∞)
s )ds

= lim
T→T

(∞)
0

lim
i→∞

∫ T

0

(f(ξ(i)
s ) + (X(i)

s )>ΣX(i)
s )ds

≤ lim
i→∞

∫ ∞

0

(f(ξ(i)
s ) + (X(i)

s )>ΣX(i)
s )ds.

This establishes that X(∞) is “at least as good” as the limit of the finite time strategies X(i).
We now show that no strategy can be any better than this limit. Let X[∞] ∈ X̄ be a
deterministic admissible strategy with X

[∞]
0 = X0 and finite mean-variance cost

∫ ∞

0

(f(ξ[∞]
s ) + (X[∞]

s )>ΣX[∞]
s )ds < ∞.
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Then X
[∞]
t converges to zero as t tends to infinity. We define a sequence of trading strate-

gies X[i] that liquidate the portfolio X
(i)
0 by time T (i) > 2 in the following way:

X
[i]
t :=





X
[∞]
t + (1− t)(X

(i)
0 − X0) for 0 ≤ t ≤ 1

X
[∞]
t for 1 < t < T (i) − 1

(T (i) − t)X
[∞]

T (i)−1
for T (i) − 1 ≤ t ≤ T (i)

0 for t > T (i).

We then have

lim
i→∞

∫ ∞

0

(f(ξ(i)
s ) + (X(i)

s )>ΣX(i)
s )ds ≤ lim

i→∞

∫ ∞

0

(f(ξ[i]
s ) + (X[i]

s )>ΣX[i]
s )ds

= lim
T→∞

lim
i→∞

∫ T

0

(f(ξ[i]
s ) + (X[i]

s )>ΣX[i]
s )ds

=

∫ ∞

0

(f(ξ[∞]
s ) + (X[∞]

s )>ΣX[∞]
s )ds.

Hence X(∞) is mean-variance optimal. Because it is unique by Lemma 5.6, we see that ξ
(i)
0

converges to the same vector ξ∞0 for any sequence (X
(i)
0 , T (i)). Therefore ξ

(∞)
0 depends con-

tinuously on X0. The validity of the Euler-Lagrange equation carries over by construction;
Bellman’s principle of optimality follows again by the additivity of mean costs and variance
of proceeds.

The next proposition establishes a special form of the identity established by Beltrami
(1868) and rediscovered by Hilbert in 1900; see also Bolza (1909)[pp. 107].

Proposition 5.9. The vector field c̄ fulfills

f(c̄(X))

X>ΣX
=

1

2α
for all X ∈ Rn\{0}.

Proof. Let Xt be a mean-variance optimal strategy. Then

d

dt

(
f(−Ẋt) +

1

2
X>

t ΣXt

)
= −∇f(−Ẋt)Ẍt + X>

t ΣẊt

= −∇f(−Ẋt)Ẍt + (Ẍt)
>D2f(−Ẋt)Ẋt (5.22)

=
d

dt
(−∇f(−Ẋt)Ẋt)

=
d

dt
((α + 1)f(−Ẋt)) (5.23)

where Equation (5.22) follows by the Euler-Lagrange equation (5.21) and Equation (5.23)
by the scaling property (5.1) which implies

∇f(c)c = lim
s→∞

f((1 + s)c)− f(c)

s
= (α + 1)f(c). (5.24)

Hence

−αf(c̄(X0)) +
1

2
X>

0 ΣX0 = lim
t→∞

(
−αf(c̄(Xt)) +

1

2
X>

t ΣXt

)
= 0.

The desired equality follows immediately.
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Finally, we show that the mean-variance value function fulfills the dynamic programming
PDE.

Proposition 5.10. The mean-variance value function

v̄(X0) := inf
ξ̄∈X̄

[∫ ∞

0

(
f(ξ̄s) +

1

2
(Xξ̄

s)
>ΣXξ̄

s

)
ds

]

is C1 and fulfills
∇f(c̄(X)) = v̄X. (5.25)

Proof. The mean-variance value function is convex because of the convexity of
f(ξ) + 1

2
X>ΣX. The function v̄ is therefore necessarily differentiable at X0 ∈ Rn, if it

is bounded from above by a smooth function ṽ that touches v̄ at X0, i.e., ṽ(X0) = v̄(X0).
Such a function ṽ however can be constructed as

ṽ(X) =

∫ ∞

0

(
f(ξX

t ) + (XξX

t )>ΣXξX

t

)
dt

with
ξX

t := ξ̄
(X0)
t + Mt(X− X0)

where
Mt := (ξ̄

(X0+e1)
t −ξ̄

(X0)
t , ξ̄

(X0+e2)
t − ξ̄

(X0)
t , . . . , ξ̄

(X0+en)
t − ξ̄

(X0)
t ) ∈ Rn×n.

Therefore v̄ is differentiable. By the dynamic programming principle, we have that for any
absolutely continuous path X : R+

0 → Rn:

v̄(X0) ≤ v̄(Xt) +

∫ t

0

(
f(−Ẋs) +

1

2
X>

s ΣXs

)
ds

with equality for the optimal strategy Xξ̄. Since v̄ is differentiable, this implies

0 ≤ v̄X(X0)Ẋ0 + f(−Ẋ0) +
1

2
X>

0 ΣX0.

The right hand side therefore attains its minimum at the optimal Ẋ0 = −c̄(X0) and therefore

∇f(c̄(X0)) = v̄X(X0).

This establishes Equation (5.25) and that the mean-variance cost v̄ is C1.

Proposition 5.11. For any X0 ∈ Rn, the deterministic mean-variance optimal trading

strategy ξ̄ = ξ̄
(X0)

satisfies
lim
t→∞

(Xξ̄
t )
>ΣXξ̄

t t ln ln t = 0. (5.26)

It is admissible both for optimal liquidation and for asymptotic maximization of portfolio
value, i.e., ξ̄ ∈ X̄ ∩ X1.

For the proof, we need the following lemma.
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Lemma 5.12. Let Y0 = aX0 and let X and Y be the corresponding mean-variance optimal
strategies. Then we have that

Yt = aXbt with b := a
1−α
1+α .

Proof of Lemma 5.12. Let us define

X̂t :=
1

a
Y t

b

Ŷt := aXbt.

Then X̂ and Ŷ are deterministic strategies with X̂0 = X0 and Ŷ0 = Y0, and we obtain

v̄(X0) ≤
∫ ∞

0

(
f(− ˙̂

Xs) +
1

2
X̂>

s ΣX̂s

)
ds

=

(
1

ab

)α+1

b

∫ ∞

0

f(−Ẏs)ds +

(
1

a

)2

b

∫ ∞

0

1

2
Y>

s ΣYsds

= a−
3α+1
α+1 v̄(Y0)

≤ a−
3α+1
α+1

∫ ∞

0

(
f(− ˙̂

Ys) +
1

2
Ŷ>

s ΣŶs

)
ds

= a−
3α+1
α+1

(
(ab)α+1 1

b

∫ ∞

0

f(−Ẋs)ds + a2 1

b

∫ ∞

0

1

2
X>

s ΣXsds

)

= v̄(X0).

All the inequalities above are thus equalities, and hence X̂ and Ŷ are optimal. The lemma
follows since the optimal strategies are unique.

Proof of Proposition 5.11. It is clear that ξ̄
(X0)

is admissible for asymptotic maximization of

portfolio value, i.e., that ξ̄
(X0) ∈ X . To see that it is also admissible for optimal liquidation,

i.e., that ξ̄
(X0) ∈ X1, the only thing left to prove is Equation (5.26). First, we observe that

by Lemma 5.12, it is sufficient to prove this equation for X0 with X>
0 ΣX0 = 1. Let us first

define

τ0 := sup
X0 with X>0 ΣX0=1

max

{
t > 0 : (Xξ̄

(X0)

t )>ΣXξ̄
(X0)

t ≥ 1

2

}
.

This τ0 is the time it takes at most until X>
0 ΣX0 is reduced from 1 to 1

2
. By Lemma 5.12,

we obtain that

τ1 := sup
X0 with X>0 ΣX0= 1

2

max

{
t > 0 : (Xξ̄

(X0)

t )>ΣXξ̄
(X0)

t ≥ 1

4

}
= 2

1−α
1+α τ0

or more generally

τk := sup
X0 with X>0 ΣX0=( 1

2)
k

max

{
t > 0 : (Xξ̄

(X0)

t )>ΣXξ̄
(X0)

t ≥
(

1

2

)k+1
}

= 2k 1−α
1+α τ0.
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Let X0 ∈ Rn with X>
0 ΣX0 = 1. Then for all t ≥ ∑k

0 τk, we have that

(Xξ̄
(X0)

t )>ΣXξ̄
(X0)

t ≤
(

1

2

)k+1

.

For α ≥ 1, we have that τk ≤ τ0; (Xξ̄
t )
>ΣXξ̄

t is therefore bounded from above by an exponen-

tial function. For 0 < α < 1, we see that (Xξ̄
t )
>ΣXξ̄

t is bounded from above by K(t + 1)
α+1
α−1

for a K > 0. In both cases we see that Equation (5.26) holds.

5.5.2 Existence and characterization of a smooth solution of the HJB equation

As a first step, we observe that limR→∞ u(R) < ∞ due to the boundedness of the risk
aversion, and we can thus assume without loss of generality that

lim
R→∞

u(R) = 0.

Proposition 5.13. There exists a smooth (C2,4) solution of

c̃Y = −2α + 1

α + 1
c̃αc̃R +

α(α− 1)

α + 1

(
c̃R

c̃

)2

+
α

α + 1

c̃RR

c̃
(5.27)

with initial value
c̃(0, R) = A(R)

1
α+1 . (5.28)

The solution satisfies

c̃min := inf
R∈R

A(R)
1

α+1 ≤ c̃(Y, R) ≤ sup
R∈R

A(R)
1

α+1 =: c̃max. (5.29)

The function c̃ is C2,4 in the sense that it has a continuous derivative ∂i+j

∂Y i∂Rj c̃(Y, R)
if 2i + j ≤ 4. In particular, c̃Y RR and c̃RRR exist and are continuous. We do not estab-
lish the uniqueness of c̃ directly in the preceding proposition. However, it follows from
Proposition 5.20.

Proof of Proposition 5.13. We want to apply Theorem 4.11 and set

a(x, t, u, p) := h1(u)p

b(x, t, u, p) := h2(u)p− h3(u)p2 + h′1(u)p2

ψ0(x) := A(R)
1

α+1

with smooth functions h1, h2, h3 : R→ R. With

h1(u) =
α

(α + 1)u
h2(u) =

2α + 1

(α + 1)
uα h3(u) =

α(α− 1)

(α + 1)u2
, (5.30)

Equation (4.22) becomes Equation (5.27) by relabeling the coordinates from t to Y and
from x to R. All conditions of Theorem 4.11 are fulfilled, if we take h1, h2 and h3 to
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be smooth nonnegative functions bounded away from zero and infinity and fulfilling Equa-
tion (5.30) for c̃min ≤ u ≤ c̃max. With these functions, there exists a smooth solution
to

ft = −h2(f)fx + h3(f)f 2
x + h1(f)fxx.

We now show that this solution f also fulfills

ft = −2α + 1

α + 1
fαfx +

α(α− 1)

α + 1

(
fx

f

)2

+
α

α + 1

fxx

f

by using the maximum principle to show that c̃min ≤ f ≤ c̃max. First assume that there
is a (t0, x0) such that f(t0, x0) > c̃max. Then there is an N > 0 and γ > 0 such that also
f̃N(t0, x0) := fN(t0, x0)e

−γt0 > c̃max with fN as constructed in the proof of Theorem 4.11.
Then maxt∈[0,t0],x∈[−N,N ] f̃N(t, x) is attained at an interior point (t1, x1), i.e., 0 < t1 ≤ t0 and
−N < x1 < N . We thus have

f̃N,t(t1, x1) ≥ 0

f̃N,x(t1, x1) = 0

f̃N,xx(t1, x1) ≤ 0.

We furthermore have that

f̃N,t = e−γtfN,t − γe−γtfN

= −e−γth2(fN)fN,x + e−γth3(fN)f 2
N,x + e−γth1(fN)fN,xx − γe−γtfN

= −h2(fN)f̃N,x + h3(fN)f̃N,xfN,x + h1(fN)f̃N,xx − γf̃N

and therefore that

f̃N(t1, x1) ≤ 0.

This however contradicts f̃N(t1, x1) ≥ f̃N(t0, x0) ≥ c̃max > 0.

By a similar argument, we can show that if there is a point (t0, x0) with f(t0, x0) < c̃min,
then the interior minimum (t1, x1) of a suitably chosen f̃N := e−γt(fN − c̃max) < 0 satisfies
f̃N(t1, x1) ≥ 0 and thus causes a contradiction.

Proposition 5.14. There exists a C2,4-solution w̃ : R+
0 × R→ R of the transport equation

w̃Y = −c̃αw̃R (5.31)

with initial value

w̃(0, R) = u(R).

The solution satisfies

0 ≥ w̃(Y, R) ≥ u(R− c̃α
maxY )

and is increasing in R and decreasing in Y .
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Proof. The proof uses the method of characteristics. Consider the function

P : (Y, S) ∈ R+
0 × R→ P (Y, S) ∈ R

satisfying the ODE
PY (Y, S) = c̃(Y, P (Y, S))α (5.32)

with initial value condition P (0, S) = S. Since c̃α is smooth and bounded, a solution of the
above ODE exists for each fixed S. For every Y , P (Y, ·) is a diffeomorphism mapping R
onto R that has the same regularity as c̃, i.e., belongs to C2,4. We define

w̃(Y, R) = u(S) iff P (Y, S) = R.

Then w̃ is a C2,4-function satisfying the initial value condition. By definition, we have

0 =
d

dY
w̃(Y, P (Y, S))

= w̃R(Y, P (Y, S))PY (Y, S) + w̃Y (Y, P (Y, S))

= w̃R(Y, P (Y, S))c̃(Y, P (Y, S))α + w̃Y (Y, P (Y, S)).

Therefore w̃ fulfills the desired partial differential equation. Since c̃ ≤ c̃max, we know that
PY ≤ c̃α

max and hence P (Y, S) ≤ S + Y c̃α
max and thus w̃(Y,R) ≥ u(R− c̃α

maxY ).
The monotonicity statements in the proposition follow because the family of solutions

of the ODE (5.32) do not cross and since c̃ is positive.

Proposition 5.15. The function w(X, R) := w̃(v̄(X), R) has continuous derivatives up to
wXRR and wRRRR, and it solves the HJB equation

min
c

[
−1

2
wRRX>ΣX + wRf(c) + wXc

]
= 0. (5.33)

The unique minimum is attained at

c(X, R) := c̃(v̄(X), R)c̄(X). (5.34)

Note that w is not necessarily everywhere twice differentiable in X; the single asset case
with α < 1 is a counterexample (see Equation (5.10)).

Proof. Assume for the moment that

c̃α+1 = −w̃RR

w̃R

. (5.35)

Then with Y = v̄(X):

0 = −1

2
X>ΣXw̃R

(
w̃RR

w̃R

+ c̃α+1

)

= −1

2
X>ΣXw̃R

(
w̃RR

w̃R

+
2αf(c̄)

X>ΣX
c̃α+1

)
(5.36)

= −1

2
w̃RRX>ΣX − αw̃Rf(c) (5.37)

= inf
c

[
−1

2
wRRX>ΣX + wRf(c) + wXc

]
. (5.38)
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Equation (5.36) holds because of Theorem 5.1, Equation (5.37) because of the scaling prop-
erty of f (Equation (5.1)), and Equation (5.38) again because of the scaling property of f
as in Equation (5.24). Note that the minimizer c as in Equation (5.34) is unique since ∇f
is injective due to the convexity of f .

We now show that Equation (5.35) is fulfilled for all R and Y = v̄(X). First, observe
that it holds for Y = 0. For general Y , consider the following two equations:

d

dY
c̃α+1 = −(2α + 1)c̃2αc̃R + α(α− 1)c̃α−2c̃2

R + αc̃α−1c̃RR

− d

dY

w̃RR

w̃R

= c̃α d

dR

w̃RR

w̃R

+ αc̃α−1c̃R
w̃RR

w̃R

+ α(α− 1)c̃α−2c̃2
R + αc̃α−1c̃RR.

The first of these two equations holds because of Equation (5.27) and the second one because
of Equation (5.31). Now we have

d

dY

(
c̃α+1 +

w̃RR

w̃R

)
= −c̃α d

dR

(
c̃α+1 +

w̃RR

w̃R

)
− αc̃α−1c̃R

(
c̃α+1 +

w̃RR

w̃R

)
.

Hence, the function f(Y,R) := c̃α+1 + w̃RR

w̃R
satisfies the linear PDE

fY = −c̃αfR − αc̃α−1c̃Rf

with initial value condition f(0, R) = 0. One obvious solution to this PDE is f(Y,R) ≡ 0.
By the method of characteristics this is the unique solution to the PDE, since c̃ and c̃R are
smooth and hence locally Lipschitz.

The next auxiliary lemma will prove useful in the following.

Lemma 5.16 (Auxiliary Lemma). There are positive constants a1, a2, a3, a4 and b such
that

u(R) ≥ w(X, R) ≥ u(R) exp(bv̄(X)) (5.39)

0 ≤ wR(X, R) ≤ a1 + a2 exp(−a3R + a4v̄(X))

for all (X, R) ∈ Rn × R.

Proof of Lemma 5.16. The left hand side of the first inequality follows by the boundary con-
dition for w and the monotonicity of w with respect to X as established in Proposition 5.14.
Since the risk aversion of u is bounded from above by c̃α+1

max, we have

u(R−∆) ≥ u(R)ec̃α+1
max∆ for ∆ ≥ 0 (5.40)

and thus by Proposition 5.14

w(X, R) ≥ u(R− c̃α
maxv̄(X)) ≥ u(R)ec̃2α+1

max v̄(X)

which establishes the right hand side of the first inequality with b = c̃2α+1
max .

For the second inequality, we will show the equivalent inequality

0 ≤ w̃R(Y, R) ≤ a1 + a2 exp(−a3R + a4Y ).
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The left hand side follows since w̃ is increasing in R by Proposition 5.14. For the right hand
side, note that also the “risk aversion” of w̃ is bounded by c̃α+1

max due to Equation (5.35).
Hence

w̃(Y,R0) ≥ w̃(Y, R) +
w̃R(Y, R)

c̃α+1
max

(
1− e−c̃α+1

max(R0−R)
)

.

Since
lim

R0→∞
w̃(Y,R0)≤ lim

R0→∞
u(R0) = 0

we have

0 ≥ w̃(Y,R) +
w̃R(Y, R)

c̃α+1
max

and thus
w̃R(Y,R) ≤ −w̃(Y,R)c̃α+1

max ≤ −u(R− c̃α
maxY )c̃α+1

max.

Since u is bounded by an exponential function, we obtain the desired bound on w̃R.

5.5.3 Verification argument

We now connect the PDE results from Subsection 5.5.2 with the optimal stochastic control
problem introduced in Section 5.2. For any admissible strategy ξ ∈ X and k ∈ N we define

τξ
k := inf

{
t ≥ 0

∣∣
∫ t

0

f(ξs) ds ≥ k
}

.

We proceed by first showing that u(Rξ
t ) and w(Xξ

t , R
ξ
t ) fulfill local supermartingale inequal-

ities. Thereafter we show that w(X0, R0) ≥ limt→∞ E[u(Rξ
t )] with equality for ξ = ξ̂. The

next lemma in particular justifies our definition of v2(X0, R0) in Equation (5.6).

Lemma 5.17. For any admissible strategy ξ the expected utility E[ u(Rξ
t ) ] is decreasing in t.

Moreover, we have E[ u(Rξ

t∧τξ
k

) ] ≥ E[ u(Rξ
t ) ].

Proof. Since Rξ
t −R0 is the difference of the true martingale

∫ t

0
(Xξ

s)
>σ dBs and the increasing

process
∫ t

0
f(ξs) ds, it satisfies the supermartingale inequality E[ Rξ

t | Fs ] ≤ Rξ
s for s ≤ t

(even though it may fail to be a supermartingale due to the possible lack of integrability).
Hence E[ u(Rξ

t ) ] is decreasing according to Jensen’s inequality.
For the second assertion, we first take n = k and write for τm := τξ

m

E[ u(Rξ
t∧τk

) ] = E
[
u
(
R0 +

∫ t∧τn

0

(Xξ
s)
>σ dBs −

∫ t∧τk

0

f(ξs) ds
) ]

.

When sending n to infinity, the right-hand side decreases to

E
[
u
(
R0 +

∫ t

0

(Xξ
s)
>σ dBs −

∫ t∧τk

0

f(ξs) ds
) ]

, (5.41)

by dominated convergence because u is bounded from below by an exponential function, the
integral of f(ξ) is bounded by k, and the stochastic integrals are uniformly bounded from
below by infs≤Kt Ws, where W is the DDS-Brownian motion of

∫
(Xξ

s)
>σ dBs and K is an

upper bound for (Xξ)>ΣXξ. Finally, the term in Equation (5.41) is clearly larger than or
equal to E[ u(Rξ

t ) ].
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Lemma 5.18. For any admissible strategy ξ, w(Xξ
t , R

ξ
t ) is a local supermartingale with

localizing sequence (τξ
k ).

Proof. We use a verification argument similar to the ones in Chapters 3 and 4. For T > t ≥ 0,
Itô’s formula yields that

w(Xξ
T , Rξ

T )− w(Xξ
t , R

ξ
t ) =

∫ T

t

wR(Xξ
s , R

ξ
s )(X

ξ
s)
>σ dBs

−
∫ T

t

[
wRf(ξs) + wXξs − 1

2
(Xξ

s)
>ΣXξ

swRR

]
(Xξ

s , R
ξ
s ) ds. (5.42)

By Proposition 5.15 the latter integral is nonnegative and we obtain

w(Xξ
t , R

ξ
t ) ≥ w(Xξ

T , Rξ
T )−

∫ T

t

wR(Xξ
s , R

ξ
s )(X

ξ
s)
>σ dBs. (5.43)

We will show next that the stochastic integral in Equation (5.43) is a local martingale
with localizing sequence (τk) := (τξ

k ). For some constant C1 depending on t, k, |σ|, R0, and
on the upper bound of |Xξ| we have for s ≤ t ∧ τk

Rξ
s = R0 + (Xξ

s)
>σBs +

∫ s

0

(ξ>q σBq − f(ξq)) dq ≥ −C1

(
1 + sup

q≤t
|Bq|

)
.

Using Lemma 5.16, we see that for s ≤ t ∧ τk

0 ≤ wR(Xξ
s , R

ξ
s ) ≤ a1 + a2 exp

(
a3C1

(
1 + sup

q≤t
|Bq|

)
+ a4K

2

)
(5.44)

where K is the upper bound of v̄(Xξ). Since supq≤t |Bq| has exponential moments of all
orders, the martingale property of the stochastic integral in Equation (5.43) follows. Taking
conditional expectations in Equation (5.43) thus yields the desired supermartingale property

w(Xξ
t∧τk

, Rξ
t∧τk

) ≥ E[ w(Xξ
T∧τk

, Rξ
T∧τk

)|Ft ]. (5.45)

The integrability of w(Xξ
t∧τk

, Rξ
t∧τk

) follows from Lemma 5.16 and Equation (5.40) in a similar
way as in Equation (5.44).

Lemma 5.19. There is an adapted strategy ξ̂ fulfilling

ξ̂t := c(Xξ̂
t , R

ξ̂
t ). (5.46)

This ξ̂ is admissible for optimal liquidation and maximization of asymptotic portfolio value

and satisfies
∫∞

0
f(ξ̂t) dt < K for some constant K. Furthermore, w(Xξ̂

t , R
ξ̂
t ) is a martingale

and

w(X0, R0) = lim
t→∞

E[ u(Rξ̂
t ) ] ≤ v2(X0, R0). (5.47)
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Proof. Consider the stochastic differential equation

d

(
st

Rt

)
=

(
c̃(v̄(Xξ̄

st
), Rt)dt

−c̃(v̄(Xξ̄
st
), Rt)

α+1f(c̄(Xξ̄
st
))dt + (Xξ̄

st
)>σdBt

)
(5.48)

with initial condition s0 = 0. The functions c̃ and v̄ are differentiable, Xξ̄
s is differentiable

in s, and by the Beltrami identity (5.9) we have

f(c̄(Xξ̄
s)) =

(Xξ̄
s)
>ΣXξ̄

s

2α

which establishes that f(c̄(Xξ̄
s)) is differentiable in s. Hence, Equation (5.48) satisfies local

boundedness and Lipschitz conditions and hence has a solution; see for example Durrett
(1996). We can now set X̂t := Xξ̄

st
; the resulting stochastic process X̂ is absolutely continu-

ous, and by setting ξ̂t := − ˙̂
Xt we obtain a solution of Equation (5.46). We observe that ξ̂

is admissible both for optimal liquidation and maximization of asymptotic portfolio value
if

∫∞
0

f(ξ̂t) dt < K for some constant K; conditions (5.2) and (5.3) are clear by Proposi-

tion 5.11 and the lower bound on c̃ (Proposition 5.13).. The upper bound for
∫∞
0

f(ξ̂t) dt
can be derived as follows:

∫ ∞

0

f(ξ̂t)dt =

∫ ∞

0

f(c̃(Xξ̂
t , R

ξ̂
t )c̄(X

ξ̂
t ))dt =

∫ ∞

0

c̃α+1(Xξ̂
t , R

ξ̂
t )f(c̄(Xξ̂

t ))dt

≤ c̃α+1
max

∫ ∞

0

f(c̄(Xξ̂
t ))dt ≤ c̃α+1

max

c̃min

v̄(X0).

Next, with the choice ξ = ξ̂ the rightmost integral in Equation (5.42) vanishes, and

we get equality in Equation (5.45). Since τ ξ̂
K = ∞, this proves the martingale property of

w(Xξ̂
t , R

ξ̂
t ). Furthermore, we obtain from Equation (5.39) that

u(Rξ̂
t ) ≥ w(Xξ̂

t , R
ξ̂
t ) ≥ u(Rξ̂

t ) exp(bv̄(Xξ̂
t )).

Since v̄(Xξ̂
t ) uniformly converges to zero as t tends to infinity, we obtain Equation (5.47).

Proposition 5.20. Consider the case of the asymptotic maximization of the portfolio value.
We have v2 = w and the a.s. unique optimal strategy is given by ξ̂ respectively c.

Proof. By Lemma 5.19, we already have w ≤ v2. We now show that v2 ≤ w. Let ξ be any
admissible strategy such that

lim
t→∞

E[u(Rξ
t )] > −∞. (5.49)

By Lemmas 5.18 and 5.16 we have for all k, t and (τk) := (τξ
k )

w(X0, R0) ≥ E[w(Xξ
t∧τk

, Rξ
t∧τk

)] ≥ E [
u(Rξ

t∧τk
) exp(bv̄(Xξ

t∧τk
))

]
.

As in the proof of Lemma 5.17 one shows that

lim inf
k→∞

E
[
u(Rξ

t∧τk
) exp(bv̄(Xξ

t∧τk
))

] ≥ lim inf
k→∞

E
[
u(Rξ

t ) exp(bv̄(Xξ
t∧τk

))
]

= E
[
u(Rξ

t ) exp(bv̄(Xξ
t ))

]
.
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Hence,
w(X0, R0) ≥ E[u(Rξ

t )] + E
[
u(Rξ

t )(exp(bv̄(Xξ
t ))− 1)

]
.

Let us assume for a moment that the second expectation on the right attains values arbi-
trarily close to zero. Then

w(X0, R0) ≥ lim
t→∞

E[u(Rξ
t )].

Taking the supremum over all admissible strategies ξ gives w ≥ v2. The optimality of ξ̂

follows from Lemma 5.19, its uniqueness from the fact that the functional E[u(Rξ
t )] is strictly

concave since u is concave and increasing and Rξ
t is concave.

We now show that E
[
u(Rξ

t )(exp(bv̄(Xξ
t ))− 1)

]
attains values arbitrarily close to zero.

First we observe that
0 ≥ u(R) ≥ a5uRR(R)

for a constant a5 > 0, due to the boundedness of the risk aversion of u, and that

exp(bv̄(Xξ
t ))− 1 ≤ a6bv̄(Xξ

t ),

due to the bound on Xξ
t . Since Xξ

t is uniformly bounded, we see that for every ε1 > 0 there
is a ε2 > 0 such that the following bound holds uniformly:

v̄(Xξ
t ) < ε1 + ε2(X

ξ
t )
>ΣXξ

t .

Combining the last three inequalities, we obtain

0 ≥ E [
u(Rξ

t )(exp(bv̄(Xξ
t ))− 1)

]

≥ ba6ε1E[u(Rξ
t )] + ba5a6ε2E[(Xξ

t )
>ΣXξ

t uRR(Rξ
t )]. (5.50)

Let us now assume that the second expectation of Equation (5.50) attains values arbitrarily
close to zero. Then for each ε1 > 0 there is a t̃ ∈ R+ such that

0 ≥ E [
u(Rξ

t̃
)(exp(bv̄(Xξ

t̃
))− 1)

] ≥ ba6ε1 lim
t→∞

E[u(Rξ
t )].

Sending ε1 to zero yields that E
[
u(Rξ

t )(exp(bv̄(Xξ
t ))− 1)

]
attains values arbitrarily close to

zero, since limt→∞ E[u(Rξ
t )] is bounded by assumption (see Equation (5.49)).

We finish the proof by showing that the second expectation of Equation (5.50) attains
values arbitrarily close to zero. By Lemma 5.17 and the same line of reasoning as in the
proof of Lemma 5.18, we have for all k, t and (τk) := (τξ

k )

−∞ < lim
s→∞

E[u(Rξ
s )] ≤ E[u(Rξ

t )] ≤ E[u(Rξ
t∧τk

)]

= u(R0) + E
[∫ t∧τk

0

uR(Rξ
s )(X

ξ
s)
>σ dBs

]

− E
[∫ t∧τk

0

[
uRf(ξs)− 1

2
(Xξ

s)
>ΣXξ

suRR

]
(Rξ

s ) ds

]

= u(R0)− E
[∫ t∧τk

0

[
uRf(ξs)− 1

2
(Xξ

s)
>ΣXξ

suRR

]
(Rξ

s ) ds

]
. (5.51)
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Sending k and t to infinity yields

∫ ∞

0

E
[
(Xξ

s)
>ΣXξ

suRR(Rξ
s )

]
ds > −∞ (5.52)

which concludes the proof.

Proposition 5.21. Consider the case of optimal liquidation. Then v1 = w and the a.s. unique
optimal strategy is given by ξ̂ respectively c.

Proof. For any strategy ξ that is admissible for optimal liquidation, the martingale

∫ t

0

(Xs)
>σdBs

is uniformly integrable due to the requirement in Equation (5.2). Therefore

E[u(Rξ
t )] ≥ E

[
u(Rξ

∞)
]

follows as in the proof of Lemma 5.17. Hence, Proposition 5.20 yields

E[u(Rξ
∞)] = lim

t→∞
E[u(Rξ

t )] ≤ v2(X0, R0) ≤ w(X0, R0).

Taking the supremum over all admissible strategies ξ gives v1 ≤ w. The converse inequality
follows from Lemma 5.18, since ξ̂ is admissible for optimal liquidation.





Chapter 6

Equivalence of local mean-variance and global

risk measure optimization

6.1 Introduction

In the previous chapters, we determined optimal trading strategies for von-Neumann-Morgen-
stern investors. Professional traders however often do not think in terms of utility functions
but rather in terms of expected proceeds and variance of proceeds. Risk managers on the
other hand often think about principal trades in terms of their value-at-risk and calculate the
corresponding risk cost as the cost of economic capital. We introduce two general approaches
to measuring the subjective benefit of liquidations that either rely on the trader’s terms of
mean and variance of proceeds or on the risk manager’s terms of risk (costs) of holding
an asset position over time. Depending on the exact specifications, the resulting strategies
posses many desirable properties. For example, endogenous liquidation time horizons are
obtained, large trades are executed slower than small trades, and optimal liquidation strate-
gies are time-consistent. Our main result is that the trader’s and risk manager’s approach
introduced in this chapter are in fact identical, i.e., with suitable parameters, they result in
the same optimal liquidation strategies.

The first approach that we consider is the trader’s optimization of mean-variance func-
tionals

Benefit1 = E[Liquidation proceeds]− f(var [Liquidation proceeds])

where f : R+
0 → R+

0 is a continuous, increasing function. This includes mean-variance opti-
mization for linear f and mean-standard-deviation optimization for f(x) = a

√
x. A trader

maximizing this type of benefit will first determine her trading strategy at the current point
in time and then start executing it. While in theory this strategy could be executed un-
til the asset position is liquidated completely, in practice the liquidation specifications are
changed continuously, e.g., by the client who reduces the asset position to be sold, or by
the trader who manually deviates from the liquidation time plan to exploit an unexpected
internal crossing opportunity. Any such unanticipated change in the liquidation specifica-
tions requires a reoptimization of the liquidation strategy for the remaining portfolio. This
however can lead to a significant change in the liquidation strategy, since the optimal strate-
gies for nonlinear f are not time-consistent. In practice, such reoptimization is necessary
frequently; in this chapter, we consider the limit of continuous reoptimization. This limit is
interesting from a practical point of view since it ensures that a small change of liquidation
specifications by the client during the execution does not result in a significant change in
strategy due to unexpected reoptimization. Without reoptimization, the function f only in-
fluences which mean-variance efficient strategy is chosen. With continuous reoptimization,
f determines the liquidation strategy to a greater extent.
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Our second approach is to consider the risk or risk cost g(X) of holding an asset position
X and to maximize the difference of expected proceeds and total risk (cost):

Benefit2 = E[Liquidation proceeds]−
∫ ∞

0

g(Asset position at time t)dt

where g : R+
0 → R+

0 is a continuous, increasing function. This approach again includes
mean-variance optimization if g is a quadratic function. The interpretation of g as risk cost
however can also imply different shapes of g. For example, risk cost is often measured as
the cost of economic capital, which can be calculated as

cost of capital × standard deviation σ of asset price × multiplier × asset position X.

This implies a function g that is linear in the asset position X. Depending on the risk
measurement framework and the other asset positions of the bank, several other functions g
can be appropriate.

Our main result is the equivalence of the two approaches above. More precisely, there
is a bijection between functions1 f and g such that the strategy maximizing the mean-
variance functional given by f with continuous reoptimization also maximizes the benefit
under the risk framework with a risk function g. For example, if f is linear (mean-variance
optimization), g is a quadratic function. If f is a power law, then g is also a power law; in
particular, if f is proportional to the square root function, then g is proportional to x2/3,
and if f is proportional to x3/5, then g is linear.

The equivalence of the two approaches is important for practical applications. The
“local mean-variance optimization” of the first approach is intuitive for traders, however
it is economically not clear why the “shortsighted” approach of continuous reoptimization
is sensible. Such an economic justification however is provided by the corresponding risk
function, which results in the same strategy but does not require reoptimization since it is
a priori time-consistent.

Much of the existing literature focuses on mean-variance optimization (see, e.g., Almgren
and Chriss (2001), Almgren (2003), Huberman and Stanzl (2005), Almgren and Lorenz
(2007)). In spite of the theoretical and numerical benefits of this approach, it has several
practical shortcomings. Most notably, the liquidation of large portfolios in practice requires
a longer time and smaller relative selling speed than the liquidation of small portfolios.
Mean-variance optimal liquidation however results in the same2 relative selling speed and
time horizon for small and large positions. As a remedy, Konishi and Makimoto (2001)
suggest mean-standard-deviation optimization (f proportional to the square root function),
although the resulting strategies are not time-consistent. This approach was picked up
both by academics and practitioners (see, e.g., Dubil (2002), Mönch (2004) and Kissell
and Malamut (2005)); however, no mathematical approach to achieve time-consistency was
suggested so far.

The impact of liquidity on risk measures has been acknowledged early on (see, e.g., Ban-
gia, Diebold, Schuermann, and Stroughair (1998), Berkowitz (2000) and Hisata and Yamai

1The functions f and g need to fulfill certain conditions; see Theorem 6.13 for details.
2Here, we assumed linear temporary impact.
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(2000)). The inverse influence of risk management on optimal trading strategies has re-
ceived much less attention3. Roux (2007) analyzes a certain interpretation of mean-variance
optimization with relative risk aversion and finds that the resulting optimal strategies are
also optimal for the linear risk measure suggested by Konishi and Makimoto (2001).

In the next section, we discuss some assumptions and notation. In Section 6.3, we in-
troduce the trader’s approach of maximizing mean-variance functionals. Subsequently, we
analyze the effect of continuous reoptimization in Section 6.4. Several properties of the
resulting optimal strategies are derived, including an explicit solution for power law func-
tions f . In Section 6.5, we introduce the risk manager’s approach of minimizing execution
costs including risk (costs), and show in Section 6.6 that it is equivalent to the optimiza-
tion of mean-variance functionals. This equivalence holds in particular within the class of
power law functions, and we obtain closed form expressions of the power law risk function g
corresponding to a power law f . All proofs are given in Section 6.7.

6.2 Assumptions and notation

We apply the single-asset market model introduced in Section 4.2. Some of the results
in this Chapter hold in the more general case of nonlinear price impacts; for notational
simplicity, we limit the discussion to the linear impact case. We parameterize strategies
with ξ(t) := −Ẋ(t) such that Xt = X0 −

∫ t

0
ξs ds. In this chapter, we limit the discussion

to deterministic functions ξ : R+
0 → R. We only require the trading strategies Xt to be

absolutely continuous such that ξt exists; in particular, we do not require that Xt is C1.
Instead of specifying our model in terms of the expected cash proceeds of the liquidation,

we will equivalently use the cost of liquidation which is the difference between the book
value X0P̃0 and the actual proceeds. The expected cost of liquidation up to time t with
strategy X is then given by

CX(t) := E
[∫ t

0

(P̃0 − Ps)ξsds

]
=

1

2
γ(X0 −Xt)

2 + λ

∫ t

0

ξ2
sds

and the variance is given by

VX(t) := var

[∫ t

0

(P̃0 − Ps)ξsds

]
= σ2

∫ t

0

X2
s ds.

Analogously to Chapters 4 and 5, we do not impose any exogenous time horizon for the
liquidation. Instead, we only require that limt→∞ Xt = 0. The infinite time horizon mean
and variance of the liquidation cost are then given by

CX := lim
t→∞

CX(t) =
1

2
γX2

0 + λ

∫ ∞

0

ξ2
sds ∈ R+

0 ∪ {∞}

VX := lim
t→∞

VX(t) = σ2

∫ ∞

0

X2
s ds ∈ R+

0 ∪ {∞}.

3A notable exception is Duffie and Ziegler (2003). Konishi and Makimoto (2001) also briefly discuss the
use of linear g, however do not give the interpretation as a measure of risk (cost).
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Since the first term of the expected liquidation cost does not depend on the liquidation
strategy, we can set γ = 0 without loss of generality and have:

CX = λ

∫ ∞

0

ξ2
sds.

6.3 Optimization of mean-variance functionals

Let us first consider the minimization of mean-variance functionals of the form

CX + f(VX) = λ

∫ ∞

0

ξ2
sds + f

(
σ2

∫ ∞

0

X2
s ds

)
(6.1)

for an arbitrary continuous, increasing and unbounded function f : R+
0 → R+

0 that is
smooth (C3) on R+ and satisfies f(0) = 0 and f(V ) > 0 for all V > 0. Furthermore, we
require that f is bounded from above by a power law, i.e., that there are a, b, c > 0 such
that f(V ) < aV b + c for all V ∈ R+. The purpose of this restriction is that for large asset
positions, the aversion to variance does not impose an upper bound on the accepted variance
(see Lemma 6.3). Our approach includes mean-variance optimization (f(V ) = aV ) as well
as mean-standard-deviation optimization (f(V ) = a

√
V ).

We call a trading strategy optimal if it minimizes the mean-variance functional (6.1).
Since only the mean and variance of the liquidation costs are considered in our objective
functional, the optimal strategy must be mean-variance efficient, i.e., there is no other
strategy that realizes the same expected cost but a lower variance or the same variance but
a lower expected cost. The efficient frontier consisting of the optimal points in the expected-
cost-variance-plane was introduced by Almgren and Chriss (1999) and was computed in
continuous time for the infinite time horizon case in Almgren (2003).

Proposition 6.1 (Almgren (2003)). The set of mean-variance efficient strategies consists
of the strategies

X
(δ)
t = X0 exp

(
−

√
δ

λ
σt

)

ξ
(δ)
t =

√
δ

λ
σXt

with parameter δ > 0. They trace out the efficient frontier in the following way:

Cδ := CX(δ) =
1

2

√
δλσX2

0 (6.2)

Vδ := VX(δ) =
1

2

√
λ

δ
σX2

0 . (6.3)

Given a mean-variance functional CX + f(VX), we can now determine the optimal value
of δ.
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Proposition 6.2. There exists a parameter δ ∈ R+ such that the corresponding mean-
variance efficient strategy X(δ) maximizes the mean-variance functional CX + f(VX). This
parameter δ fulfills

δ = f ′
(

1

2

√
λ

δ
σX2

0

)
. (6.4)

If f is a power law, i.e., f(V ) = aV b, then

δ =


ab

(√
λσX2

0

2

)b−1



2
b+1

(6.5)

ξ0 =

(
ab

λ

σ2b

2b−1

) 1
b+1

X
3b−1
b+1

0 . (6.6)

So far, the only difference between mean-variance optimization and optimization with
respect to mean-variance functionals CX + f(VX) is that the latter implies a non-constant
Lagrangian multiplier. This changes when the strategy is continuously reoptimized, as we
will see in Section 6.4.

For each X0 ∈ R+, we select an optimal δX0 and denote the corresponding mean and
variance of costs by CX0 = C

X
(δX0

) respectively VX0 = V
X

(δX0
) . The following Lemmas 6.3,

6.4 and 6.5 provide simple properties of the optimal strategies for mean-variance functionals
and provide conditions under which these optimal strategies are “well-behaved”.

Lemma 6.3. Let Y0 > X0 > 0. Then we have

VY0 ≥ VX0 .

The variance VX0 attains arbitrarily large and small values. More precisely,

lim
X0→0

VX0 = 0 lim
X0→∞

VX0 = ∞.

Furthermore, there are a, c > 0 and 0 < b < 4 such that δX0 < aXb
0 + c for all X0 ≥ 1.

The next lemma clarifies under which conditions δX0 depends smoothly on X0.

Lemma 6.4. The optimal δX0 given by Equation (6.4) is unique and a twice continuously
differentiable (C2) function of X0 on R+ if and only if f ′′(V )V > −2f ′(V ) for all V > 0.
In this case, we furthermore have that d

dX0
VX0 > 0 for all X0 > 0.

Note that the condition f ′′(V )V > −2f ′(V ) of the proposition is fulfilled for example by
all power laws f(V ) = aV b for a, b > 0.

In the following, we will always assume that δ is unique and a C2 function4 of X0. Then
also VX0 and CX0 are C2 by Equations (6.2) and (6.3).

For “sensible” f , larger asset positions X0 should lead to more intensive trading, i.e., to
larger ξ0. The next lemma describes for which f this is the case.

4The proof of Lemma 6.4 establishes that it suffices to assume that δ is unique and differentiable, since
then it is necessarily C2.
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Lemma 6.5. The initial selling speed

ξ
(X0)
0 := − d

dt

∣∣∣∣
t=0

X
(δX0

)
t =

√
δX0

λ
σX0

is increasing in X0 if and only if f ′′(V )V ≥ −2
3
f ′(V ) for all V > 0.

The condition f ′′(V )V ≥ −2
3
f ′(V ) is satisfied, e.g., by all power laws f(V ) = aV b with

exponent5 b > 1
3
.

In practice, large asset positions are liquidated at a larger absolute rate, but a smaller
relative rate than small asset positions, i.e., Xt/X0 is large for large X0 and small for
small X0. The following proposition shows that this property only holds when f is strictly
concave; in particular, it does not hold for mean-variance optimization (linear f). This
indicates that traders’ attitudes towards variance are better captured by concave functions f ,
such as the square root function f(V ) = a

√
V in the mean-standard-deviation optimization.

Proposition 6.6. Under optimal liquidation with respect to the mean-variance functional
C + f(V ), the fraction Xt/X0 (strictly) increases in X0 (i.e., large asset positions are liqui-
dated at a smaller relative rate) if and only if f is (strictly) concave.

Power laws f(V ) = aV b with 1
3

< b < 1 thus result in the desired scaling behavior:
large positions are liquidated at a higher absolute but at a lower relative rate than small
positions.

Let us assume that at time 0, we computed the optimal liquidation strategy for the mean-
variance functional. At time t, we might have to recompute the optimal strategy for selling
the remaining asset position Xt, for example due to a change in liquidation specifications.
As explained in Section 6.1, such recomputations are frequently necessary in practice, and it
is important that this newly computed strategy is similar to the originally planned strategy.
In particular, when the liquidation specifications are not changed at all, the reoptimization
should not result in a change of strategy, i.e., the strategy should be time-consistent. The
following proposition states that the only mean-variance functional having this property is
mean-variance itself.

Proposition 6.7. If the optimal strategies for the mean-variance functional CX + f(VX)
are time-consistent, then f is a linear function, i.e., the mean-variance functional reduces
to mean-variance optimization.

6.4 Mean-variance functionals with continuous reoptimization

One way of imposing time-consistency on the trading trajectory is to compute the optimal
liquidation strategy at time t given the asset position Xt, execute it for a small period of time
∆t and then to recompute the optimal strategy given the asset position Xt+∆t. Sending the
time interval ∆t to zero results in continuous reoptimization of mean-variance functionals

5The case b = 1
3 satisfies the condition, but corresponds to the degenerate case of a constant ξ

(X0)
0 .
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and an execution strategy given by

ξt =

√
δt

λ
σXt (6.7)

δt = f ′
(

1

2

√
λ

δt

σX2
t

)
. (6.8)

These equations constitute a first-order ODE for the strategy X. Note that δt depends only
on Xt; we can therefore consider δ as a function δt of time t or as a function δX of the
remaining asset position X. By our assumption that δX0 depends smoothly on X0, we see
that this ODE has a unique solution for each start portfolio X0. The resulting strategy is by
definition time-consistent, while maintaining the scaling properties established in Lemma 6.5
and Proposition 6.6. In particular, ξt

Xt
is decreasing in Xt if and only if f is concave. For

power laws f(V ) = aV b, we can explicitly solve the above Equations (6.7) and (6.8).

Proposition 6.8. If f is a power law, i.e., f(V ) = aV b, then the strategy given by contin-
uous reoptimization of the mean-variance functional CX + f(VX) fulfills the equation

ξt =

(
ab

λ

σ2b

2b−1

) 1
b+1

X
3b−1
b+1

t for all t with Xt > 0 (6.9)

which is solved by

For b < 1 : X(t) = A(B − t)C for 0 ≤ t ≤ B, X(t) = 0 for t > B (6.10)

For b = 1 : X(t) = e−
√

a
λ

σtX0 for t ≥ 0

For b > 1 : X(t) = A(B + t)C for t ≥ 0

with parameters

A :=

(∣∣∣∣
2b− 2

b + 1

∣∣∣∣
(

ab

λ

σ2b

2b−1

) 1
b+1

)− b+1
2b−2

> 0

B :=

(
X0

A

) 1
C

> 0

C := − b + 1

2b− 2
. (6.11)

Figures 6.1 and 6.2 illustrate the continuously reoptimized strategy for power laws
f(V ) = aV b with different values of the exponent b. The faster relative selling of smaller
asset positions for b < 1 is illustrated in Figure 6.3.

The strategies for power laws f with exponent 1
3

< b < 1 have many desirable properties,
e.g., a realistic scaling behavior, time-consistency, an endogenous liquidation time horizon
and an intuitive explanation in terms of mean and variance. All of these properties are
important for practical applications. On the other hand, it is hard to find an economically
sound justification for the approach of continuous reoptimization. If reoptimization is fore-
seen now already, it should be taken into account in the current optimization. A priori,
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Figure 6.1: Asset position under continuously reoptimized selling strategy. The continuous line corresponds
to b = 1, the dashed lines to b = 1

2 , b = 1
3 and b = 0.15 in descending order of darkness. X0 = λ = σ = a = 1.
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Figure 6.2: Asset position under continuously reoptimized selling strategy. The continuous line corresponds
to b = 1, the dashed lines to b = 2, b = 4 and b = 8 in descending order of darkness. X0 = λ = σ = a = 1.
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Figure 6.3: Asset position under continuously reoptimized selling strategy. The black line corresponds to
X0 = 1, the dark grey line to X0 = 2

3 and the light grey line to X0 = 1
3 . b = 1

2 , λ = σ = a = 1.
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it is not clear whether the strategies obtained by continuous reoptimization only exhibit
desirable properties, but are otherwise “shooting at a moving target and constantly missing
it”. We will resolve this issue in Theorem 6.13, where we show that the strategies obtained
by continuous reoptimization minimize an economically fundamental cost-risk functional.

In Figures 6.1 and 6.2 we observe that a zero asset position is either never attained
(b ≥ 1) or it is attained with a zero selling speed (1

3
< b < 1), with finite selling speed larger

than zero (b = 1
3
) or with an infinite selling speed (0 < b < 1

3
). The next proposition shows

that the critical role of the power exponent 1
3

extends to general functions f .

Proposition 6.9. If there are a′, ε > 0 and b′ > −2
3

such that f ′(V ) < a′V b′ for all
0 < V < ε, then either X never attains 0 or it attains 0 at time

T0 := inf{t > 0 : Xt = 0}
with selling speed ξT0 = 0. If there are a′, ε > 0 and b′ < −2

3
such that f ′(V ) > a′V b′

for all 0 < V < ε, then X attains 0 after a finite time T0, but with infinite selling speed
limt→T0 ξt = ∞.

The proposition is a direct consequence of the following auxiliary lemma and Equa-
tion (6.7).

Lemma 6.10. Assume that there are a′, b′, ε > 0 such that f ′(V ) ≷ a′V b′ for all 0 < V < ε.
Then there is a ε̃ > 0 such that

δX0 ≷
(

a′
(

1

2

√
λσX2

0

)b′
) 2

b′+2

for all 0 < X0 < ε̃.

6.5 Optimization of risk measures

An alternative approach to using mean-variance functionals is using general measures of
risk. In this chapter, we consider a risk function to be a continuous and increasing function6

g : R+
0 → R+

0 that is smooth (C2) on R+ and fulfills g(0) = 0. We think of g(x) as
the subjective risk or risk cost associated with holding the asset position x. We consider
strategies minimizing the expected liquidation costs and the total risk (costs) of liquidating
an asset position:

CX +

∫ ∞

0

g(Xs)ds

︸ ︷︷ ︸
:=RX

.

This includes mean-variance optimization (g(X) = aX2) as well as the risk measure
suggested by Konishi and Makimoto (2001) (g(X) = aX). As discussed in Section 6.1,
several different shapes of g can be appropriate in practice. We first establish the existence
of an optimal strategy.

6In principle, we could consider risk functions g : R → R. It is clear that the optimal strategy never
includes shortselling; we therefore restrict our modeling framework to nonnegative asset positions. For the
dual buying problem, functions g : R−0 → R+

0 can be considered.
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Lemma 6.11. For each risk function g, there exists at least one optimal strategy Xt, i.e., a
minimizer of CX + RX . All such optimal strategies are classical C2-solutions of the Euler-
Lagrange equation

Ẍt =
g′(Xt)

2λ
(6.12)

until they attain 07.

We now turn to the uniqueness of the minimizer of CX + RX .

Proposition 6.12. Let g be locally bounded from above by a power law at 0, i.e., there are
c, d, ε > 0 such that g(x) ≤ cxd for all 0 ≤ x ≤ ε. Then there exists a unique minimizer
X of CX + RX . This minimizer is the only strategy fulfilling either of the following two
conditions:

1. X is a classical C2-solution of the Euler-Lagrange Equation (6.12) on all of R+
0 , and

X approaches 0, but never attains the value 0, i.e., limt→∞ Xt = 0 and for all t ≥ 0
we have Xt > 0.

2. X attains zero at the finite time T0 := inf{t ≥ 0 : Xt = 0} ∈ R+
0 , is a classical

C2-solution of the Euler-Lagrange Equation (6.12) on t ∈ [0, T0[, is zero on [T0,∞[
and is differentiable at T0 with ẊT0 = −ξT0 = 0.

In the second case of the proposition, X is not necessarily twice differentiable at time
T0.

6.6 Equivalence of mean-variance functionals and risk measures

Let the set F consist of all functions f : R+
0 → R+

0 that satisfy all of the following conditions:

• f is continuous and increasing without bound on R+
0 and is C3 on R+

• f(0) = 0 and f(V ) > 0 for all V > 0

• f ′′(V )V ≥ −2
3
f ′(V ) for all V > 0

• Global bound: there are a, b, c > 0 such that f(V ) < aV b + c for all V > 0

• Local bound: there are a′, ε > 0 and b′ > −2
3

such that f ′(V ) < a′V b′ for all 0 < V < ε

Similarly, let the set G consist of all functions g : R+
0 → R+

0 that satisfy all of the following
conditions:

• g is continuous and increasing on R+
0 and is C2 on R+

• g(0) = 0

• g′(X)X < 6g(X) for all X > 0

7They may well never attain the value 0, but only converge to it.
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• Global bound: there are a, c > 0 and 0 < b < 6 such that g(X) < aXb + c for all
X > 0

• Local bound: there are a′, ε > 0 and 0 < b′ < 6 such that g(X) < a′Xb′ for all
0 < X < ε

The sets F and G contain a wide range of functions. Among many others, the set F
contains all power laws with exponent larger than 1

3
, while G contains all power laws with

exponent between 0 and 6.
The following theorem is the main result of this chapter and establishes a bijection

between mean-variance functionals and risk measures.

Theorem 6.13. There is a unique bijection between functions f ∈ F and functions g ∈ G
such that the mean-variance functional CX + f(VX) for f with continuous reoptimization
and the cost-risk functional CX + RX for the corresponding g give the same optimal selling
strategy.

We have thus established the critical link between the two approaches introduced in
this chapter. This link reveals a sound economic meaning of continuous reoptimization of
mean-variance functionals, and it provides an intuitive interpretation of the minimization
of cost-risk functionals in terms of mean and variance.

In Theorem 6.13, the condition f ∈ F respectively g ∈ G is important. The following
proposition shows that if f strictly violates the local boundedness condition, then there is
no cost-functional CX + RX with the same optimal trading strategies as the mean-variance
functional CX + f(VX) with continuous reoptimization. Similar propositions hold for the
other conditions in the definition of F and G.

Proposition 6.14. Consider the strategy X that minimizes the mean-variance functional
CX + f(VX) with continuous reoptimization. If there are a′, ε > 0 and b′ < −2

3
such that

f ′(V ) > a′V b′ for all 0 < V < ε, then the strategy X is not optimal with respect to any risk
function g.

For the special case of power laws f , the next theorem establishes that the corresponding
risk function g is again a power law.

Theorem 6.15. The bijection of Theorem 6.13 maps power laws to power laws. More
precisely, let f(V ) = aV b be a power law. The strategy minimizing the mean-variance
functional CX + f(VX) with continuous reoptimization also minimizes CX + RX for a risk
function g if and only if b > 1

3
. The risk function g is then given by

g(X) =

(
a2b2σ4bλb−1

22b−2

) 1
b+1

X
6b−2
b+1 . (6.13)

In particular, we obtain the following equivalences:

Optimization of mean-variance functional Optimization of CX + RX with
CX + f(VX) with continuous reoptimization respect to risk function g
f(V ) ∼ V (mean-variance) g(X) ∼ X2

f(V ) ∼ V 1/2 (mean-standard-deviation) g(X) ∼ X2/3

f(V ) ∼ V 3/5 g(X) ∼ X (Konishi and Makimoto (2001))
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Note that the power laws that are in F are exactly those with an exponent larger than 1
3
.

Furthermore, all power laws in G can be written in the form of Equation (6.13).

6.7 Proofs

Proof of Proposition 6.2: Since Cδ + f(Vδ) depends smoothly on δ and

lim
δ→0

(Cδ + f(Vδ)) = ∞
lim
δ→∞

(Cδ + f(Vδ)) = ∞,

there must be a global minimizer δ with 0 < δ < ∞. It therefore must satisfy

0 =
d

dδ
(Cδ + f(Vδ))

=
1

4

√
λ

δ
σX2

0 −
1

4

√
λ

δ3
σX2

0f
′
(

1

2

√
λ

δ
σX2

0

)
,

and Equation (6.4) follows. If f is a power law, then δ as given in Equation (6.5) is the only
solution to Equation (6.4) and thus optimal.

Proof of Lemma 6.3: We first show that VY0 ≥ VX0 . By Equations (6.2) and (6.3), we
have that for any δ > 0

CXδ =
KX0

VXδ

with KX0 :=
1

4
λσ2X4

0 .

By the optimality of δX0 and δY0 , we have

KX0

VX0

+ f(VX0) ≤
KX0

VY0

+ f(VY0) (6.14)

KY0

VX0

+ f(VX0) ≥
KY0

VY0

+ f(VY0) (6.15)

and hence

KX0

(
1

VX0

− 1

VY0

)
≤ f(VY0)− f(VX0) ≤ KY0

(
1

VX0

− 1

VY0

)
.

This establishes that for Y0 > X0 > 0 we must have VY0 ≥ VX0 , since KY0 > KX0 .
It is clear that when X0 tends to zero, then the mean-variance functional CX0 + f(VX0)

tends to zero; hence VX0 also tends to zero.
Since f is bounded from above by a power law by assumption, we can find ã, b̃, c̃ > 0

such that f(V ) ≤ f̃(V ) := ãV b̃ + c̃ for all V ∈ R+
0 . Then

CX0 + f(VX0) ≤ inf
X̃ s.t. X̃0=X0

(
CX̃ + f̃(VX̃)

)
≤ a′Xb′

0 + c′

with a′, c′ > 0, and 0 < b′ < 4 because of Equations (6.4), (6.2) and (6.3). By Equation (6.2),√
δX0 therefore is bounded from above for X0 ≥ 1 by a function âX b̂

0 + ĉ with â, ĉ > 0 and

0 < b̂ < 2. This establishes the desired upper bound on δX0 and thus also the divergence of
limX0→∞ VX0 by Equation (6.3).
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Proof of Lemma 6.4: Let us first assume that f ′′(V )V > −2f ′(V ). Consider Cδ + f(Vδ)
as a function of

√
δ. The solution to Equation (6.4) is also the solution to the equation

0 =
d

d
√

δ
(Cδ + f(Vδ))

=
1

2

√
λσX2

0 −
1

2δ

√
λσX2

0f ′(Vδ).

The solution δ to this equation is unique and differentiable in X0 if

0 <
d2

d
√

δ
2 (Cδ + f(Vδ))

=

√
λ√
δ3

σX2
0f

′(Vδ) +
1

4δ2
λσ2X4

0f
′′(Vδ).

This is equivalent to our assumption. Furthermore, the smoothness of f ′ ∈ C2(R+) carries
over to δX0 .

Now assume that δ is unique and differentiable in X0. Then VX0 is differentiable with

d

dX0

VX0 = −
(

d

dX0

δX0

)
1

4

√
λ

δ3
X0

σX2
0 +

√
λ

δX0

σX0

= −
(

f ′′(VX0)
d

dX0

VX0

)
1

4

√
λ

δ3
X0

σX2
0 +

√
λ

δX0

σX0

and thus

d

dX0

VX0

(
1 + f ′′(VX0)

1

4

√
λ

δ3
X0

σX2
0

)
=

√
λ

δX0

σX0 > 0. (6.16)

By Lemma 6.3 we know d
dX0

VX0 ≥ 0 and therefore

1 + f ′′(VX0)
1

4

√
λ

δ3
X0

σX2
0 > 0.

This however is equivalent to the first inequality given in the statement of the proposition
for the value V = VX0 . Since VX0 attains all values in R+ by Lemma 6.3 and the assumed
continuity of δX0 , we obtain f ′′(V )V + 2f ′(V ) > 0 for all V > 0.

The inequality d
dX0

VX0 > 0 follows since Lemma 6.3 implies d
dX0

VX0 ≥ 0 and Equa-

tion (6.16) contradicts d
dX0

VX0 = 0.

In the following we will use the shorthand notation

δ′X0
:=

d

dX0

δX0 V ′
X0

:=
d

dX0

VX0 C ′
X0

:=
d

dX0

CX0 .
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Proof of Lemma 6.5: By Equation (6.4) we have

δ′X0
= f ′′(VX0)V

′
X0

= f ′′(VX0)

(
VX0

2

X0

− 1

2δX0

δ′X0
VX0

)

and thus

δ′X0
=

f ′′(VX0)VX0

2
X0

1 + f ′′(VX0)
VX0

2δX0

=
2

X0

2f ′(VX0)f
′′(VX0)VX0

2f ′(VX0) + f ′′(VX0)VX0

.

For ξ
(X0)
0 , we obtain

d

dX0

ξ
(X0)
0 =

√
δX0

λ
σ +

1

2

√
1

λδX0

σX0δ
′
X0

.

Therefore d
dX0

ξ
(X0)
0 ≥ 0 if and only if

0 ≤ δX0 +
1

2
δ′X0

X0 = f ′(VX0) +
2f ′(VX0)f

′′(VX0)VX0

2f ′(VX0) + f ′′(VX0)VX0

.

This inequality however is equivalent to the inequality stated in the proposition, since
2f ′(V ) + f ′′(V )V > 0 by Lemma 6.4 and our assumption that δ is unique and C2.

Proof of Proposition 6.6: We have by Proposition 6.1 that

d

dX0

X
(δX0

)
t

X0

= −
(

d

dX0

δX0

)
1

2

√
1

δX0λ
σte

(
−

√
δX0

λ
σt

)

.

Hence we need to show that d
dX0

δX0 ≤ 0 if and only if f is concave. By Equation (6.4), we
have

δ′X0
= V ′

X0
f ′′(VX0).

By Lemma 6.4, we know that V ′
X0

> 0, which completes our proof.

Proof of Proposition 6.7: The optimal strategy computed at time 0 implies selling

ξ
(δ0)
t =

√
δ0

λ
σXt

shares at time t with

δ0 = f ′
(

1

2

√
λ

δ0

σX2
0

)
.

The optimal strategy computed at time t however implies selling

ξ
(δt)
t =

√
δt

λ
σXt

shares at time t with

δt = f ′
(

1

2

√
λ

δt

σX2
t

)
.

For time-consistency, we need ξ
(δ0)
t = ξ

(δt)
t and thus δ0 = δt, which implies f ′ ≡ const. Hence

f is a linear function.
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Proof of Proposition 6.8: Equation (6.9) follows directly from Equation (6.6). Since
ξt = − d

dt
Xt, Equation (6.9) is in fact an ordinary differential equation with a unique solution

determined by the initial condition X0. It is easy to check that the strategies given in closed
form in Equations (6.10) - (6.11) fulfill the ODE and the initial condition.

Proof of Lemma 6.10: First note that under optimal liquidation,

lim
X0→0

(CX0 + f(VX0)) = 0

and thus limX0→0 VX0 = 0. Hence for small enough X0 we can combine Equation (6.8) with
the bound on f ′ assumed in the proposition and we obtain

δX0 ≷ a′
(

1

2

√
λ

δX0

σX2
0

)b′

.

The desired equation follows directly.

Proof of Lemma 6.11: By standard methods of calculus of variations, all optimal solu-
tions are C2 and solve the Euler-Lagrange equation until they attain the boundary value
zero; see for example Cesari (1983). The existence of an optimal strategy is not clear how-
ever, since we consider an infinite time horizon; we will therefore construct it as the limit
of finite time horizon strategies. For each finite liquidation time horizon T , there is at least
one solution to the liquidation problem (i.e., minimizing CX + RX with XT = 0), and this
solution is C2 and also fulfills the Euler-Lagrange equation from time 0 until X attains zero
(see again Cesari (1983)). Let us denote the initial selling speed of this optimal solution

X(T ) for the time horizon T by ξ
(T )
0 . Then we can select an increasing sequence of time

horizons T (1), T (2), . . . with limn→∞ T (n) = ∞ such that ξ
(T (n))
0 converges, and we define

ξ
(∞)
0 := limn→∞ ξ

(T (n))
0 . The ODE (6.12) with boundary conditions X0 and Ẋ0 = −ξ

(∞)
0

gives a trajectory X
(∞)
t until Xt attains zero at time T0 ∈]0,∞]; we define X

(∞)
t ≡ 0 for all

t > T0. We then have

CX(∞) + RX(∞) ≤ lim
n→∞

(
C

X(T (n)) + R
X(T (n))

)
.

On the other hand, let X [∞] be any liquidation strategy for the infinite time horizon that
realizes a finite cost-risk measure, i.e.,

CX[∞] + RX[∞] < ∞.

We define the finite time liquidation strategies X [T (n)] as executing X [∞] until time T (n)− 1
and linearly liquidating X

[∞]

T (n)−1
from T (n) − 1 until T (n). Since limt→∞ X

[∞]
t = 0, we have

CX[∞] + RX[∞] = lim
n→∞

(
C

X[T (n)] + R
X[T (n)]

)
.

Because C
X[T (n)] + R

X[T (n)] ≥ C
X(T (n)) + R

X(T (n)) , we have CX[∞] + RX[∞] ≥ CX(∞) + RX(∞) ,

which establishes the optimality of X(∞).
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Proof of Proposition 6.12: Let X be a minimizer of CX + RX . We first show that if
X attains zero at a finite time T0, then ẊT0 = 0. First, we see by the optimality of X
that ξt = −Ẋt is decreasing in t. Now let us assume that T0 < ∞ and that the left limit
of the selling speed ξ := limt↗T0 ξt > 0. Again by optimality of X, we have ξt ≥ ξ for all
0 ≤ t < T0. For each ε > 0, we define the time Tε as the time at which XTε = ε. Then the
contribution of the sale of ε to C + R is at least:

∫ ∞

Tε

(λξ2
s + g(Xs))ds ≥

∫ ∞

Tε

λξ2
sds ≥

∫ Tε+ε/ξ

Tε

λξ2ds = λεξ. (6.17)

Because g(x) ≤ cxd for 0 ≤ x ≤ ε by our assumption in the proposition, selling the asset
position ε with constant speed ξ̃ > 0 from time Tε until Tε + ε/ξ̃ results in a contribution to
C + R of

∫ Tε+ε/ξ̃

Tε

(λξ̃2 + g(ε− ξ̃(s− Tε)))ds ≤ λεξ̃ +

∫ ε/ξ̃

0

c(ξ̃s)dds ≤ λεξ̃ + c
ε1+d

(1 + d)ξ̃
. (6.18)

With ξ̃ = ξ/2 and sufficiently small ε, the right hand side of Equation (6.18) is smaller than
the right hand side of Equation (6.17), which establishes a contradiction to the optimality
of X. Since it is obvious that any optimal X satisfies limt→∞ Xt = 0, we have established
the characterization of optimal strategies given in the proposition.

For the uniqueness of the optimal strategy, let X and Y be two different minimizers of
C + R with times T

(X)
0 , T

(Y )
0 ∈]0,∞] at which they attain zero. We will now construct a

contradiction. By Lemma 6.11, both X and Y solve the Euler-Lagrange equation. Since
a solution to the Euler-Lagrange equation is uniquely determined by its initial values, we
have ξ

(X)
0 6= ξ

(Y )
0 . Without loss of generality, let ξ

(X)
0 > ξ

(Y )
0 . Let us compare the selling

speeds of X and Y when an asset position z remains to be liquidated. We easily see that
ξ

(X)

X−1(z) − ξ
(Y )

Y −1(z) > ξ
(X)
0 − ξ

(Y )
0 for all 0 ≤ z < X0. This implies

ξ
(X)

X−1(z) > ξ
(Y )

Y −1(z) + ξ
(X)
0 − ξ

(Y )
0 > ξ

(X)
0 − ξ

(Y )
0 > 0. (6.19)

The strategy X hence reaches 0 in a finite time T
(X)
0 and with a positive selling speed

ξ
(X)
T0

> 0, which contradicts the optimality of X by the first part of this proof.
By a similar argument, it follows that there is at most one solution to the Euler-Lagrange

equation that fulfills either of the two conditions stated in the proposition.

Proof of Theorem 6.13: Let us assume that the trading strategy X is optimal for the
mean-variance functional given by f ∈ F with continuous reoptimization. By differentiating
Equation (6.7) by t, we obtain

Ẍt = −
√

δt

λ
σẊt − δ̇t

1

2

√
1

λδt

σXt

=
δXt

λ
σ2Xt +

1

2λ
δ′Xt

σ2X2
t .

We used the interpretation of δ as a function of time t and as a function of the asset
position Xt (see the remark after Equation (6.8)) and the conventions δ′X = d

dX
δX and
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δ̇t = d
dt

δt = δ′Xt
Ẋt. If X also minimizes CX + RX for a risk function g, then by Lemma 6.11

this risk function must satisfy

g′(X) = 2δXσ2X + δ′Xσ2X2

with initial condition g(0) = 0. This ODE has a solution if and only if

−∞ < lim
ε→0

∫ 1

ε

(2δXσ2X + δ′Xσ2X2)dX

= lim
ε→0

[σ2δXX2]1ε

= σ2δ1 − lim
ε→0

σ2δεε
2. (6.20)

Since f ′ is bounded from above by a′V b′ with b′ > −2
3

for small V , we see by Lemma 6.10
that the limit in Equation (6.20) converges to zero, and we obtain

g(X) = σ2δXX2. (6.21)

Hence X satisfies the Euler-Lagrange equation for a risk function g. X is indeed optimal for
the risk function g by Proposition 6.12. To see this, observe that g is locally bounded from
above by a power law with exponent between 0 and 6 by Lemma 6.10. Furthermore, we
know by Proposition 6.9 that X either never attains 0 or attains it with zero selling speed.

We now show that g ∈ G. The risk function g is C2 by Lemma 6.4, it is increasing by
Lemma 6.5, and it is globally bounded by a power law with exponent between 0 and 6 by
Lemma 6.3. The only property left to show is that 6g(X) > g′(X)X. A simple calculation
and Equation (6.21) show that

VX0 =

√
λ

2
√

g(X0)
σ2X3

0 . (6.22)

By Lemma 6.4, we have

0 < V ′
X0

=
3
√

λ

2
√

g(X0)
σ2X2

0 − g′(X0)

√
λ

4
√

g3(X0)
σ2X3

0 (6.23)

which is equivalent to 6g(X) > g′(X)X for all X > 0.
Let us now consider a risk function g ∈ G with optimal strategy X. We define

δ̃X0 :=
g(X0)

σ2X2
0

. (6.24)

By Equation (6.21), all that we have to do is find a f ∈ F such that δX0 = δ̃X0 for all
X0 > 0, where δX0 is the optimal δ for the liquidation of X0 with respect to the mean-
variance functional CX + f(VX). To construct this f , we first set

ṼX0 :=
1

2

√
λ

δ̃X0

σX2
0
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and define f as the solution of the ODE

f ′(ṼX0) = δ̃X0 . (6.25)

Since 6g(X) > g′(X)X, we know by the transformation (6.22)–(6.23) that

Ṽ ′
X0

> 0. (6.26)

Furthermore ṼX0 is not bounded from above because of the global bound on g. Therefore
the ODE (6.25) is well-defined. Since g(X) < a′Xb′ with a′ > 0 and 0 < b′ < 6 for small X,

we obtain δ̃X0 < a′
σ2 X

b′−2
0 and thus ṼX0 > 1

2

√
λ
a′σ

2X
3− b′

2
0 .We therefore have

f ′(ṼX0) = δ̃X0 <
a′

σ2
Xb′−2

0 <
a′

σ2

(
ṼX0

2

σ2

√
a′

λ

) b′−2

3− b′
2

= ãṼ b̃
X0

with ã > 0 and b̃ > −2
3
. Therefore there exists a solution f of the ODE (6.25) that satisfies

f(0) = 0. As we have just shown, its derivative f ′ is locally bounded at zero by a power
law with exponent larger than −2

3
. By the same line of argument, f ′ is globally bounded

by a power law, thus giving a global power law bound for f . Furthermore, f is positive and
C3 on R+, and it is increasing and continuous on R+

0 . To see that f is unbounded, we first
observe that

δ̃X0 =
g(X0)

σ2X2
0

=
g(X0)

σ2ṼX0

√
δ̃X0

λ

and thus for X0 > 1

δ̃X0 =

(
g(X0)

√
λ

σ2ṼX0

) 2
3

>

(
g(1)

√
λ

σ2ṼX0

) 2
3

= āṼ
− 2

3
X0

with ā > 0. This establishes that f is unbounded by Equation (6.25). All that is left to
show is that f satisfies f ′′(V )V ≥ −2

3
f ′(V ) for all V > 0. To see this, first observe that

by (6.25)

Ṽ ′
X0

=
2

X0

ṼX0 −
δ̃′X0

2δ̃X0

ṼX0 =
2

X0

ṼX0 −
f ′′(ṼX0)Ṽ

′
X0

2f ′(ṼX0)
ṼX0

and thus

Ṽ ′
X0

(
1 +

f ′′(ṼX0)ṼX0

2f ′(ṼX0)

)
=

2

X0

ṼX0 .

The second factor on the right hand side is positive since the left hand side 2
X0

ṼX0 and the

first factor on the right hand side Ṽ ′
X0

are positive by Equation (6.26). We can therefore
divide by it and obtain

Ṽ ′
X0

=
2

X0
ṼX0

1 +
f ′′(ṼX0

)ṼX0

2f ′(ṼX0
)

.



6.7 Proofs 101

Now we have by Equation (6.24) and (6.25)

0 ≤ g′(X0) =
d

dX0

(
f ′(ṼX0)σ

2X2
0

)

=f ′′(ṼX0)σ
2X2

0 Ṽ
′
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+ 2f ′(ṼX0)σ
2X0
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
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2
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)ṼX0

2f ′(ṼX0
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
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2X0

=σ2X0
3f ′′(ṼX0)ṼX0 + 2f ′(ṼX0)
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f ′′(ṼX0

)ṼX0

2f ′(ṼX0
)

.

Since the denominator is positive, the numerator is positive. This is equivalent to

f ′′(V )V ≥ −2

3
f ′(V ).

Proof of Proposition 6.14: By Equation (6.20) in the proof of Theorem 6.13, we know
that the limit limε→0 σ2δεε

2 needs to exist in order to allow for the existence of a corres-
ponding risk function g. Lemma 6.10 however establishes the divergence of this limit for
the conditions assumed in the proposition (f ′ bounded from below by a′V b′ with b′ < −2

3

for small V ).

Proof of Theorem 6.15: Let f(V ) = aV b with a, b > 0. We will only consider the cases
0 < b < 1 and 1 < b < ∞; the case b = 1 follows analogously. By Proposition 6.8, we know
that for b 6= 1, the strategy minimizing the mean-variance functional with f(V ) = aV b

fulfills

Ẍt = AC(C − 1)(B ± t)C−2 = A
2
C C(C − 1)X

5b−3
b+1

t

with A and C as defined in Proposition 6.8. If this strategy minimizes C +R for a risk func-
tion g, then the right hand side of the above equation must be equal to g′(X)

2λ
by Lemma 6.11.

This determines a first order ODE for g with initial value g(0) = 0. This ODE has the fol-
lowing solution for 6b−2

b+1
> 0

g(X) = 2λA
2
C C(C − 1)

b + 1

6b− 2
X

6b−2
b+1

and no solution for 6b−2
b+1

≤ 0. By Theorem 6.13, X is also optimal for this g since f ∈ F if

b > 1
3
.





Part II

Multiple players in illiquid markets

103





Chapter 7

Single vs. multiple players: economic and

mathematical differences

7.1 Introduction

In Part I of this thesis, we investigated optimal behavior of a single large trader in an illiquid
market. All other market participants were modeled exogenously in the market model, but
we did not solve for their endogenous optimal behavior. This approach seems acceptable as
long as no strategic agent is aware of the large trader’s intentions. In such a situation, all
market participants only react to order flow, and this reaction can be captured by market
models such as those considered in the first part of this thesis.

In this second part, we will include additional informed strategic agents in our model,
i.e., large traders that are aware of each other’s intentions. This leads to an interaction:
each agent predicts the actions of the other agents and selects the most profitable trading
strategy for herself, which in turn influences the actions of the other agents. Each agent
faces a dual challenge: on the one hand, she needs to optimize her trading such that her
own adverse impact on trading proceeds remains small. On the other hand, she needs to
trade such that the price impact of the other agents does not affect her liquidation proceeds
too negatively. We will see that the relative importance of these considerations depends on
the liquidity of the market.

A situation we are particularly interested in is a single large seller who is facing a number
of competitors who are aware of her selling intentions. This situation has occurred frequently
in the financial markets, with the forced liquidations of the LTCM and Amaranth hedge
funds being the most prominent examples. It appears on a much smaller scale in everyday
trade execution when investors ask several banks for principal bid quotes and then select
only the bank offering the most attractive quote. All other banks are then aware of the
impending trade. Two trading strategies for these banks come to mind: First, they can
quickly trade in the same direction as the bank that won the principal bid. After the
investor’s portfolio liquidation has moved the price, they can close their position at a profit.
Alternatively, informed banks can initially trade in the opposite direction, i.e., provide
liquidity, and thus exploit the temporary move in asset prices induced by the liquidation
of the investor’s portfolio. After the liquidation, the banks can close their asset position at
the re-established “fundamental” price. It is not clear a priori which of these two strategies
offers a higher profit, and we will see that the answer again depends on the liquidity of the
market.

Before proceeding to the actual analysis of the interaction of multiple players, we discuss
conceptually how transactions prices are set and which dynamic trading opportunities the
agents can pursue.
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7.2 Price impact and transaction prices

In transparent markets, trades by different agents might result in different price impacts.
For example, a passive index-tracking fund is likely to incur a smaller price impact than an
active fund that is known to be well informed. For our analysis, we assume that the price
impact of a trade does not depend on the strategic agent that initiated it, either because
the strategic agents are sufficiently similar or because the trading venue is anonymous and
therefore the agent’s identity is not revealed.

For each transaction, we need to determine a transaction price. In reality, discrete trades
arrive at the trading venue one after another, and no two trades arrive at the same time.
Therefore the transaction price can be determined for each transaction individually. Since
we want to allow for continuous trading in continuous time, we need to specify the price
for transactions that simultaneously arrive at the trading venue. We make the fundamental
assumption that at each point in time, all transactions are executed at the same price.
By this assumption, we can accommodate a set of equal agents and do not have to worry
about multiple market prices. When several agents submit orders simultaneously, then the
net order of the agents needs to be matched by supply and demand of the general market.
Since we assume that the market does not (or cannot) differentiate between agents, the
transaction price of the net order depends only on its size. Hence, all transactions at this
point in time are executed at the price at which the net order is matched by the supply
and demand of the general market. We can think of trade execution as a two step process:
first, the net order of the agents is executed at the trading venue and a transaction price is
established1. At this price, the remaining orders of the agents (which add up to zero) are
then crossed. This procedure is similar to the trading regime at the upstairs market or at
electronic crossing networks, where incoming orders are crossed at (or close to) the price
established by the primary exchange (see Butler (2007)).

7.3 Risk aversion and dynamic reactions to changes in fundamental
market price

In the first part of this thesis, we focused on the effects of risk aversion and on trading
strategies that dynamically react to changes in market prices. In this second part, we want
to shift the focus of attention from the single trader to the interaction of several traders.
In principle, each trader in a multi-agent market needs to strike a balance between three
effects: the adverse impact of her own trading, the expected price impact of the other
agents’ trades, and the risk of movements in the fundamental market price. In order to keep
the mathematical analysis tractable, we need to disregard the third effect and limit our
discussion to risk-neutral agents that only pursue strategies that are independent of changes
of the fundamental market price. The mathematical analysis even with these simplifying
assumptions is already quite involved, as we will see in Chapters 8 and 9. We believe that
in spite of these restrictions, our analysis is still meaningful, as the core effects of agent
interaction appear irrespective of the agents’ attitudes toward risk.

1If the net order is zero, the previous transaction price is used.
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7.4 Market transparency and dynamic reactions to trades of other
agents

One important attribute of a financial market is its transparency. While many financial
markets used to be rather transparent, they have become more and more opaque by the
introduction of electronic trading systems in recent years. By now, many exchanges feature
both pre- and post-trade anonymity, and electronic crossing networks provide an arena for
completely anonymous“dark liquidity”. Market transparency is important for the interaction
of multiple agents since it allows agents to dynamically react to other agents’ trades. There
is no such feedback opportunity in anonymous markets; even if all agents can observe the
size and price of all transactions2, a single agent does not know which (if any) informed
agents participated in them.

Many assets are being traded at several exchanges. Even if trading is anonymous at
only one of them, then feedback strategies are no longer possible since each agent can direct
part of her trading to the transparent and another part to the anonymous trading venue.
It is therefore impossible to estimate the real size or direction of an agents trades just by
observing the transparent order flow; each visible trade might be offset by an invisible trade
at the anonymous venue.

In game theoretic terms, agents in anonymous markets can only adopt open-loop strate-
gies, i.e., strategies that depend only on time. Agents in transparent markets however can
follow closed-loop strategies, i.e., feedback strategies that depend on time but also on the
previous trades of the other agents. In this thesis, we are mainly concerned with trading
in highly developed markets such as the equities markets. Since at least one anonymous
trading venue exists for most of these markets, we believe that the open-loop setting is the
appropriate modeling framework. Although being significantly different in economic mean-
ing and mathematical approach, open-loop and closed-loop equilibria are often similar (see,
e.g., Fudenberg and Levine (1988)). In particular, Carlin, Lobo, and Viswanathan (2007)
found that the optimal open-loop and closed-loop strategies in the multiple player illiquid
market model used in Chapter 8 exhibit the same qualitative properties. Furthermore, we
determine both open-loop and closed-loop equilibrium strategies in a multiple player exten-
sion of the liquidity model introduced by Obizhaeva and Wang (2006) and find that they
are almost identical.

Part II of this thesis is structured as follows. In Chapter 8, we introduce a multiple player
extension of the single-asset market model that we already considered in Section 4.2. We
then solve for the optimal trading strategies for a seller and several informed competitors in
a two stage model, where the seller needs to quickly liquidate an asset position in the first
stage, while the informed competitors are more patient and can trade in the first and also in
a subsequent second stage. In Chapter 9, we determine the optimal trading strategies in a
multiple player extension of the limit order book model developed by Obizhaeva and Wang
(2006) and contrast them with the results of Chapter 8. We find that the cost of round
trip trades is an important feature of multiple player illiquid market models. Appendices A
and B contain supplementary material, including explicit statements of complex equations,
additional numerical illustrations and the Mathematica source code used to generate the

2Even this minimum level of transparency is often not provided by electronic crossing networks.
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figures in Chapters 8 and 9.



Chapter 8

Stealth vs. sunshine trading, predatory trading

vs. liquidity provision

8.1 Introduction

A variety of circumstances such as a margin call or a stop-loss strategy in combination with
a large price drop can force a market participant (the “seller”) to liquidate a large asset
position urgently. Such a swift liquidation may result in a significant impact on the asset
price. Hence, intuitively it seems to be crucial to prevent information leakage while executing
the trade, for informed market participants (the “competitors”) could otherwise try to earn
a profit by predatory trading: They can sell in parallel with the seller and cover their short
positions later at a lower price. Probably the most widely known example of such a situation
is the alleged predation on the hedge fund LTCM1. Surprisingly, however, some sellers do
not follow a secretive“stealth trading”strategy but rather practice“sunshine trading”, which
consists in pre-announcing the trade to competitors so as to attract liquidity2.

Our goal in this chapter is to propose a new model of a competitive trading environment
that explains the tradeoff that leads the seller to choose between stealth and sunshine
execution and the competitors to choose between predation and liquidity provision. We
argue that these choices are driven by the relations between the different liquidity parameters
of the market, the number of competitors of the seller and the trading time horizons. In
particular, different behavioral patterns may coexist within the same set of agents when they
are trading in markets of different liquidity types. Since our model market is semi-strong
efficient and allows for anonymous trading possibilities, our results are applicable to a wide
variety of real-world markets including most equity exchange markets.

To fully acknowledge the roles of the different liquidity parameters of the market and of
the number of competitors of the seller, we need to relax all exogenous trading constraints
in our model. In particular, we do not require that predators face the same time constraint
as the seller. This assumption is reasonable as sellers typically must achieve a trading target
in a fixed and relatively short time horizon—e.g., a margin call has to be covered by the
end of the day—while predators often may afford to maintain a long or a short position for
a number of days. In order to capture the structure of this situation, we consider a two
stage model of an illiquid market. In the first stage, the seller as well as the competitors
trade; in the second stage, only the competitors trade and unwind the asset positions they
acquired during the first stage. Liquidity effects are incorporated into our market model by

1See, e.g., Lowenstein (2001), Jorion (2000) and Cai (2003)).
2See, e.g., Harris (1997) and Dia and Pouget (2006). A similar phenomenon occurs in the sometimes

widespread distribution of so-called “indications of interest” in which brokers announce tentative conditions
for certain liquidity trades.
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applying a permanent as well as a temporary impact as in the market model introduced in
Section 4.2; this model was proposed by Almgren and Chriss (2001) and used by Carlin,
Lobo, and Viswanathan (2007). For the sake of simplicity, throughout this chapter we focus
on the liquidation of a long position of assets; equivalent statements hold for the liquidation
of a short position.

In our analysis of the optimal agent behavior in this model, we first assume that all
agents know the seller’s liquidation intentions. We derive a Nash equilibrium of optimal
trading strategies for the seller and the competitors, and we show that, in equilibrium,
the competitors’ optimal strategy depends heavily on the liquidity type of the market. We
identify two distinct types of illiquid markets: First, if the temporary price impact dominates
the permanent impact then prices show a high resilience after a large transaction. The price
in such “elastic” markets behaves similar to a rubber band: trading pressure can stretch
it, but after the trading pressure reduces, the price recovers. Such market conditions can
occur when it is difficult to find counterparties for a specific deal within a short time. In
such a market, the optimal strategy for the competitors is to cooperate with the seller: they
should buy some of the seller’s assets and sell them at a later point in time. On the other
hand, if the permanent price impact of a trade outweighs the temporary impact, then large
transactions have a long-lasting influence. In such “plastic” markets, the trading pressure
exerts a “plastic deformation” on the market price. Such a situation can arise when a large
supply or demand of the asset is interpreted as the revelation of new information on the
fundamentals of the asset. Under these conditions the optimal behavior of the competitors
is the opposite: they should sell in parallel to the seller and buy back at a later point in time
(predatory trading). In this case, the price is pushed far down during the first stage and
recovers during the second stage, resulting in price overshooting. The latter effect disappears
as the number of competitors increases; for a large number of competitors, the market price
incorporates the seller’s intentions almost instantly and exhibits little drift thereafter. This
effect indicates that our model market fulfills the semi-strong form of the efficient markets
hypothesis.

Through sunshine trading, the seller can increase the number of competitors. We find
that in elastic markets, the seller always achieves a higher return when competitors are
participating than when she is selling by herself. Therefore, sunshine trading appears to
be sensible in such a market. In a plastic market, the seller’s return can be significantly
reduced by competitors; however, as the number of competitors increases, the optimal strat-
egy for the competitors changes from predation to cooperation and the return for the seller
increases back, sometimes even above the level of return obtained in the absence of competi-
tors. Hence, if the seller has reason to believe that there is some leakage of information3,
it may be sensible to take the initiative of publicly announcing the impending trade so as
to turn around the adverse situation of predation by few competitors into the beneficial

3In practice, information leakage can occur due to a variety of circumstances. For instance, as in the
case of the LTCM crisis, the position may simply be too large to keep its liquidation secret. In a much more
common situation, the execution of the trade will be commissioned to an investment bank, but advance
price quotes are obtained from several banks. Banks that are not successful in bidding for the trade will
nevertheless be informed about its existence and hence constitute potential competitors. When obtaining
price quotes, it is therefore common practice for the client to distribute only a limited amount of information
on their “bid sheets” so as to to reduce the potentially adverse effects of predatory trading. Another example
is provided by market makers who must report large transactions.
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situation of liquidity provision.

Although our approach is normative rather than descriptive, our model provides a num-
ber of empirically testable hypotheses for both seller and competitor behavior. In our model,
sunshine trading is rational in elastic markets or when the trading horizon of the seller is
comparatively short. We therefore suspect that sunshine trades and indications of interest
are usually short-term and occur in markets with high temporary impact, while we conjec-
ture that efforts to conceal trading intentions are particularly strong in plastic markets.

We predict that competitors in plastic markets pursue predatory trading if they know
about selling intentions of other agents, while we expect them to provide liquidity in elastic
markets. Unfortunately, we are not aware of any systematic study of informed competitors
reactions to trading under varying market liquidity4. However, the analysis of distressed
hedge funds lends anecdotal support to our hypothesis. During the LTCM crisis in 1998,
several competitors allegedly engaged in front-running and predatory trading, while no in-
dividual investor was willing to acquire LTCM’s positions and thus provide liquidity. Ac-
cording to our results, such a behavior is rational in plastic markets. The price evolution
after the LTCM crisis indicates that its liquidation had a predominantly permanent effect5,
i.e., that the market was indeed plastic.

More recently, the hedge fund Amaranth experienced severe losses resulting in the need
for urgent liquidation6. Contrary to LTCM, Amaranth quickly found a buyer for its portfo-
lio7. In the Amaranth case, liquidity provision apparently appeared as the more profitable
option for competitors compared to predatory trading. How can the differences between
competitors’ behavior in the LTCM and Amaranth cases be explained? In both cases very
large market participants were in distress, promising large profit opportunities for competi-
tors. However, Amaranth operated in the natural gas market, which behaved elastic during
a previous hedge fund liquidation8. According to our model liquidity provision is the most
profitable behavior in such an elastic market.

The profitability of liquidity provision in elastic markets is confirmed by Coval and
Stafford (2007), who find that providing liquidity to open-ended mutual funds that suffer
severe cash outflows promises average annual abnormal excess returns well over 10%. This
supports our hypothesis since these profits are made on the temporary nature of the price
impact. Interestingly, the impact of stock sales in markets that do not suffer from extreme
cash outflows appears to be predominantly permanent, resulting in profitable predatory

4This could be carried out, e.g., by analyzing the order flow after pre-announcement of a sale. In plastic
markets, we expect to see an initial increase of additional seller initiated trades. In elastic markets, we
expect to see an increase in buy orders.

5Lowenstein (2001) notes that (Epilogue, page 229): “(...) a year after the bail-out [of LTCM], swap
spreads remained (...) far higher than when Long-Term had entered the (...) trade.”

6For a description of the Amaranth case, see Till (2006) and Chincarini (2007). Finger (2006) finds that
“The events of September [2006] led to the greatest losses ever by a single hedge fund, close to twice the
money lost by Long Term Capital Management.”

7Till (2006) notes that “Amaranth sold its entire energy-trading portfolio to J.P. Morgan Chase and
Citadel Investment Group on Wednesday, September 20th [2006].”

8Till (2006) observes that “There was a preview of the intense liquidation pressure on the Natural Gas
curve on 8/2/06, the day before the [natural-gas-oriented] energy hedge fund, MotherRock, announced that
they were shutting down. (...) A near-month calendar spread in Natural Gas experienced a 4.5 standard-
deviation move intraday before the spread market normalized by the close of trading on 8/2/06.”
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trading opportunities for insiders.

This chapter builds on previous work in three research areas. The first area to which
our work is connected is research on predatory trading. In previous studies, the size of the
liquidation completely determines the optimal action of the competitors. In these models,
predatory trading is always optimal for large liquidations. For small liquidations, predatory
trading is always or never optimal, depending of the model at hand.

Brunnermeier and Pedersen (2005) suggest a model in which the total rate of trading
as well as the asset positions of all traders face exogenous constraints. They show that in
equilibrium in their model predation and price overshooting occur necessarily, irrespective of
the market environment9. As a side effect of the exogenous trading constraint, their model
market is weakly inefficient: even if the number of informed competitors is large, the market
price changes continuously in reaction to the trading of the seller and the competitors.

Carlin, Lobo, and Viswanathan (2007) propose a model in which competitors can en-
gage in and refrain from predatory trading, however there is no room for optimal liquid-
ity provision. To explain abstinence from predatory trading, they assume that all market
participants repeatedly execute large transactions in a fully transparent market10; in such a
repeated game, predation can be punished by applying a tit-for-tat strategy. In their model,
competitors always refrain from predatory trading while others are liquidating small posi-
tions, but cooperation always breaks down if an unusually large distressed sale is occurring.
Although their analysis of a one stage game is also at the foundation of our model, the two
models diverge in their qualitative predictions of trading decisions: their model predicts
that predatory trading is most widespread in elastic markets, while our model predicts the
opposite.

Attari, Mello, and Ruckes (2005) discuss trading strategies against a financially con-
straint arbitrageur. Price impact in their model market is completely temporary, resulting
in an elastic market with profitable liquidity provision. By clever exploitation of the arbi-
trageur’s capital constraint, the competitors can profitably engage in predatory trading, but
only for arbitrageurs with very large asset positions.

In a second line of research, the effects of sunshine trading are investigated. In a theoret-
ical investigation, Admati and Pfleiderer (1991) propose a model in which sunshine trading
is always increasing the seller’s return as long as speculators do not face market entry costs.
The underlying motives for sunshine trading in this model and in our model are very differ-
ent11. Empirical evidence on the benefit of trade pre-announcements appears to be mixed
(see, e.g., Harris (1997), Dia and Pouget (2006)), which is in line with our observation

9The only situation in which predatory trading does not occur in the model of Brunnermeier and Pedersen
(2005) is when there is significant capacity on the sideline. In their model, this implies that the asset is
heavily undervalued. They show that this cannot be the case in equilibrium.

10Our model explains cooperation in a different way; in particular, our model is also applicable to anony-
mous markets.

11In the model of Admati and Pfleiderer (1991), sunshine traders can expect to obtain better trade
conditions in the market since it is assumed that their actions are not based on private information. In our
model, we do not assume that sunshine trades have a special motivation; instead, we show that sunshine
trading under certain market conditions can raise the attention of competitors and attract them to provide
liquidity. A different market perception of sunshine trades can easily be incorporated in our framework by
applying different liquidity parameters for sunshine trades and for unannounced trades.
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that the potential benefit of sunshine trading depends on the liquidity characteristics of the
market.

The third line of research consists of empirical investigations and theoretical modeling
of the market impact of large transactions. See Section 1.2 and Part I for an overview.

The remainder of this chapter is structured as follows. In Section 8.2, we introduce the
market model and specify the game theoretic optimization problem. As a preparation for
the general two stage model, we review predation in a one stage model in Section 8.3. In this
model, the seller and the competitors face the same time constraint, i.e., the competitors do
not have the opportunity to trade after the seller finished selling. In the main Section 8.4,
we turn to the more general two stage framework and derive our main results. After iden-
tifying the Nash equilibrium of optimal trading strategies in Section 8.5, we investigate the
qualitative properties of our model in three example markets in Section 8.6. Thereafter,
we summarize the general properties in Section 8.7. Appendix 8.A contains additional
propositions on the one stage model. All proofs of propositions are given in Appendix 8.B.
Appendix A of this dissertation contains supplementary material. An explicit statement of
some of the coefficients in this section is presented in Appendix A.1. Appendix A.2 contains
the Mathematica source code used to generate the figures in this chapter.

8.2 Market model for multiple players

We start by describing the market dynamics and trade motives of market participants. The
market consists of a risk-free asset and a risky asset. Trading takes place in continuous time.
We assume that the risk-free asset does not generate interest. In this market we consider
n + 1 strategic players and a number of noise traders. The strategic players are aware of
liquidity needs in the market and optimize their trading to profit from these needs, whereas
noise traders have less information and trade based on exogenous liquidity and investment
needs. We assume that the number of strategic players (n + 1) is given a priori. During our
analysis, we will perform comparative statics and discuss the incentives for each player to
change the number of strategic players in the market.

We denote the time-dependent risky asset positions of the strategic players by X0(t),
X1(t), ..., Xn(t) and assume that they are differentiable in t. Their trading Ẋi(t) affects the
market price in the form of a permanent impact and a temporary impact. Trades at time t
are thus executed at the price

P (t) = P̃ (t) + γ

n∑
i=0

(Xi(t)−Xi(0)) + λ

n∑
i=0

Ẋi(t).

Here, P̃ (t) is an arbitrary martingale, starting at P̃ (0) = P̃0 and defined on a probability
space (Ω,F ,P). This term reflects the price changes due to the random trades of noise
traders. The second term on the right hand side represents the permanent price impact
resulting from the change in total asset position of all strategic players. Its magnitude
is determined by the parameter γ > 0. The third term reflects the temporary impact
caused by the net trading speed of all strategic investors. Its magnitude is controlled by
the parameter λ > 0. This price dynamics model is a multi-player extension of the market
model introduced in Section 4.2.
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In this market, the strategic players are facing the following optimization problem. Each
player i knows all other players’ initial asset positions Xj(0) and their target asset positions
Xj(T ) for some fixed point T > 0 in the future12. We assume that these trading targets
are binding; players are not allowed to violate their targets. We assume that all players are
risk-neutral13; therefore, players want to maximize their own expected return by choosing
an optimal trading strategy Xi(t) given their boundary constraints on Xi(0) and Xi(T ). In
mathematical terms, each player is looking for a strategy that realizes the maximum

ri := max
Xi

E(Return for player i) = max
Xi

E
(∫ T

0

(−Ẋi(t))P (t)dt

)

= max
Xi

E

(
−

∫ T

0

Ẋi(t)

(
P̃ (t) + γ

n∑
j=0

(Xj(t)−Xj(0)) + λ

n∑
j=0

Ẋj(t)

)
dt

)
.

Although in principle the strategies Xi might be adapted, we limit our discussion to
deterministic strategies, where the function Xi does not depend on the stochastic price
component P̃ (t) or on the previous trades of the other agents. In such open-loop strategies,
all players determine their trade schedules ex ante14. Hence,

ri = max
Xi

(
−

∫ T

0

Ẋi(t)

(
P̃0 + γ

n∑
j=0

(Xj(t)−Xj(0)) + λ

n∑
j=0

Ẋj(t)

)
dt

)
. (8.1)

A set of strategies (X0, X1, ..., Xn) satisfying Equation (8.1) for all i = 0, 1, ..., n consti-
tutes a Nash equilibrium; we call such a set of strategies optimal15 and denote the corres-
ponding optimal returns in equilibrium by Ri := ri. These are determined by the expected
price

P̄ (t) := E(P (t)) = P̃0 + γ

n∑
i=0

(Xi(t)−Xi(0)) + λ

n∑
i=0

Ẋi(t).

Whenever we refer to price or return in the following, we will always refer to the expected
price P̄ (t) and the expected return − ∫

Ẋi(t)P̄ (t)dt.

12For the purposes of this chapter, we assume that all strategic players have perfect information. For
imperfect information, we expect to obtain slightly changed dynamics (potentially including a “waiting
game” as in Foster and Viswanathan (1996)), but expect the qualitative results on predatory trading and
liquidity provision to remain unchanged.

13See also Footnote 19.
14See Section 7.4 for a discussion of open-loop and closed-loop strategies. The analysis of closed-loop

strategies in which players can dynamically react to other players’ actions is mathematically more difficult.
It is often not possible to derive closed form solutions, on which we rely in the proof of Theorem 8.2.
Carlin, Lobo, and Viswanathan (2007) show numerically that closed-loop solutions of the one stage model
(see Section 8.3) are similar to the open-loop solutions and do not exhibit any new qualitative features.
Therefore, no major differences are expected in the two stage model introduced in Section 8.4.

15These strategies remain optimal for the entire trading time. At a future point in time t ∈ [0, T ], there
is no reason to deviate from the trade schedule chosen at time 0 as long as no other player deviated from
her trade schedule.
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8.3 A one stage model: agents with uniform time constraint

In this section, we investigate the optimal strategies in a one stage framework: all players
trade over the same time interval [0, T1]. The results in this section will be used in the
analysis of a two stage model in the following sections.

The optimal strategies in the one stage framework were derived by Carlin, Lobo, and
Viswanathan (2007). We repeat their result:

Theorem 8.1 (Carlin, Lobo, and Viswanathan (2007)). Assume that n + 1 players are
trading simultaneously in a time period t ∈ [0, T1]. They start with asset positions Xi(0) and
need to achieve a target asset position Xi(T1). Furthermore, these players are risk-neutral
and are aware of all other players’ asset positions and trading targets. Then the unique
optimal strategies for these n + 1 players (in the sense of a Nash equilibrium) are given by:

Ẋi(t) = ae−
n

n+2
γ
λ

t + bie
γ
λ

t

with

a =
n

n + 2

γ

λ

(
1− e−

n
n+2

γ
λ

T1

)−1
∑n

i=0(Xi(T1)−Xi(0))

n + 1

bi =
γ

λ

(
e

γ
λ

T1 − 1
)−1

(
Xi(T1)−Xi(0)−

∑n
j=0(Xj(T1)−Xj(0))

n + 1

)
.

Proof. See Carlin, Lobo, and Viswanathan (2007).

For the rest of this section, we consider the following more specific situation: One player
(say player 0) wants to sell an asset position X0(0) = X0 in the time interval [0, T1), i.e.
the target is given by X0(T1) = 0. All other players (i.e., players 1, 2, ..., n) do not
want to change their initial and terminal asset positions (for simplicity, we assume that
Xi(0) = Xi(T1) = 0 for i 6= 0), but they want to exploit their knowledge of player 0’s sales.

The result is preying of the n players on the first player (see Figure 8.1 and 8.2; see
Table 8.1 for the parameter values used for the figures): while the first player is starting to
sell off her asset position, the other players sell short the asset and realize a comparatively
high price per share. At the end of the trading period, the price has been pushed down by
the combined sales of both seller and competitors. While the seller liquidates the remaining
part of her long position at a fairly low price, the other players can now close their short
positions at a favorable price. Since the price has dropped, the preying players need to spend
less on average for buying back than they received for initially selling short. In the following,
we refer to player 0 as the “seller” and to the players 1, 2, ..., n as the “competitors”.

In the one stage model considered so far, there is no room for cooperation; preying always
occurs. The seller’s return is further deteriorating as the number of competitors increases;
preying becomes more competitive with more players being involved (see Figure 8.3). We
will see in the next section that relaxing the exogenous time constraint on the positions
of competitors can lead to a more differentiated behavior. It includes in particular the
possibility of liquidity provision to the seller.



116 Stealth vs. sunshine trading, predatory trading vs. liquidity provision

Parameter Value
Asset position X0 1

Initial price P̃0 10
Duration T1 1
Permanent impact sensitivity γ 3
Temporary impact sensitivity λ 1

Table 8.1: Parameter values used for numerical computation of the figures in Section 8.3.
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Figure 8.1: Asset positions Xi(t) over time. The solid line represents the seller, the dashed line the
competitor (n = 1).

8.4 A two stage model: agents with different time constraints

In the previous section, we have assumed that the seller and the competitors are limited
to trade during the same time interval. As we have mentioned earlier, in reality the seller
is often facing a stricter time constraint than the competitors do. While the seller usually
needs to liquidate her asset position within a few hours, the competitors can often afford to
close their positions at a later point in time. In the following, we therefore extend the one
stage model considered so far to a two stage framework16 and assume that:

• In stage 1, all players (the seller and the competitors) are trading.

• In stage 2, only the competitors are trading; the seller is not active.

16The framework can be extended further to a three stage model including a stage 0 in which only the
competitors are allowed to trade. Such a setup can capture the effects of front-running, which results in
different results in particular for price overshooting. We limit our analysis to the two stage model since in
most practical cases, there is little room for front-running due to legal constraints or insufficient time (i.e.,
stage 0 is very short); see the introduction for examples.
As another alternative, the model can account for a different trading horizon for each competitor. This
increases the mathematical complexity, but does not lead to qualitatively new phenomena within stage 1.
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Figure 8.2: Trading speeds Ẋi(t) over time. The solid line represents the seller, the dashed line the
competitor (n = 1).
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Figure 8.3: Expected cash return for the seller (player 0) from selling X0 shares, depending on the number
n of competitors. The expected return in absence of competitors is 7.5 (intersection point of x- and y-axes).
The grey line at the bottom corresponds to the limit n →∞.

The first stage runs from t = 0 to T1, the second stage17 from T1 to T2. The asset position
of player i is denoted by Xi(t) with t ∈ [0, T2]. We require the strategies Xi(t) to be
differentiable within each stage, but they need not be differentiable at t = T1.

17In reality, the seller usually has to liquidate an asset position by the end of the trading day. In this
case, the second stage begins at the open of the next trading day. Our framework can easily be extended to
accommodate for this setting by having the second stage run from T̃1 > T1 to T2. Since we assumed that the
seller and the competitors are risk-neutral, this does not change any of the statements in this exposition; for
notational simplicity, we therefore restrict ourselves to the case where the second stage starts immediately
after the first stage.
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The market prices are governed by

P (t) = P̃ (t) + γ

n∑
i=0

(Xi(t)−Xi(0)) + λ

n∑
i=0

Ẋi(t)

for t ∈ [0, T2]\T1. Again, P̃ (t) is a martingale, starting at P̃ (0) = P̃0. Since the Xi(t) might
be non-differentiable at t = T1, the above formula might not be well-defined; we therefore
set

P (T1) = lim
t↘T1

P (t), P (T1−) := lim
t↗T1

P (t),

forcing the price to be right-continuous.
The seller (player 0) is assumed to liquidate an asset position X0 = X0(0) during stage 1:

X0(t) = 0 for all t ∈ [T1, T2]. We assume that the n competitors want to exploit their knowl-
edge of the seller’s intentions, but do not want to change their asset position permanently.
We therefore require that the competitors have the same asset positions at the beginning of
stage 1 and at the end of stage 2: Xi(0) = Xi(T2). For notational simplicity, we assume18

Xi(0) = 0. All assumptions and notation introduced in Section 8.2 apply in our two stage
model; in particular, we restrict our analysis to risk-neutral players19 following deterministic
strategies.

There are no a-priori restrictions on competitors’ asset positions Xi(T1) at the end of
stage 1. They can be positive, i.e., the competitors buy some of the seller’s shares in stage 1
and thereby provide liquidity to the seller. Alternatively, they can be negative, i.e., the
competitors sell parallel to the seller, driving the market price further down and preying on
the seller. In the next section, we show that the occurrence of liquidity provision or predation
depends on the market characteristics, in particular on the balance between temporary and
permanent impact.

8.5 Optimal strategies in the two stage model

We can now describe the optimal behavior of all n+1 strategic players in the two stage model
introduced in the previous section. If the optimal asset positions Xi(T1) of the competitors
at the end of stage 1 are known, the entire optimal strategies are determined by Theorem 8.1:
In stage 1, n + 1 players are trading and the initial and final asset positions are known; in
stage 2, n players are trading and again the initial and final asset positions are known20.

18The optimal trading speed Ẋi(t) of the competitors is independent of their initial asset position Xi(0).
In particular, our results also hold in the case where competitors have different initial asset positions.

19Risk aversion can be incorporated in two different ways. The first is to regard the different execution
time frame of the seller and the competitors as proxies of their risk aversion. This provides a simple model
of a highly risk averse seller in a market environment with relatively risk-neutral competitors. Alternatively,
risk aversion can explicitly be modeled by introducing utility functions for the seller and the competitors.
This leads to the coexistence of liquidity provision and preying already in the one stage model introduced in
Section 8.3. The dynamics for a risk averse seller facing relatively risk-neutral competitors is qualitatively
very similar to the two stage model presented here. A detailed discussion of the effects of risk aversion lie
beyond the scope of this chapter and are subject of ongoing research.

20In the case n = 1, it follows from the results in Almgren and Chriss (2001) and Almgren (2003) that
the optimal trading strategy in stage 2 is a linear increase / decrease of the competitor’s asset position.
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Figure 8.4: Expected return R1 for a single competitor depending on her asset position X1(T1). Optimal
trading within stage 1 and stage 2 is assumed. Parameters are chosen as in the elastic market in Table 8.2.

Therefore, we only need to derive the optimal asset positions21 Xi(T1) for all competitors
i = 1, 2, ..., n (see Figure 8.4 for an illustration).

Theorem 8.2. In the unique Nash equilibrium, all competitors acquire the same asset po-
sition during stage 1:

Xi(T1) = F

(
γT1

λ
,
T2

T1

, n

)
X0. (8.2)

The function F is given in closed form in the proof in Appendix 8.B. For the special case
n = 1, we obtain

X1(T1) = −

(
−2− e

γT1
3λ − e

2γT1
3λ + e

γT1
λ

)
γ
λ
(T2 − T1)

6
(
−1 + e

γT1
λ

)
+

(
2 + e

γT1
3λ + e

2γT1
3λ + 2e

γT1
λ

)
γ
λ
(T2 − T1)

X0. (8.3)

Formulas (8.2) and (8.3) do not depend on γ and λ separately, but only on the fraction22

γT1

λ
= γ

λ/T1
, which can be interpreted as a normalized ratio of liquidity parameters. The

permanent impact parameter γ has unit “dollars per share” and is independent of the time
unit. The temporary impact parameter λ has unit “dollars per share per time unit”and thus
depends on the time unit. The fraction λ/T1 can be interpreted as the temporary impact
parameter normalized to the length of the first stage.

In the next section, we will analyze the qualitative influence of the ratio γT1

λ
by reviewing

some specific example markets. For notational simplicity, we will implicitly assume that

21Carlin, Lobo, and Viswanathan (2007) noted this for the single competitor case. They also conjectured
that in a two stage model there will be price overshooting. As we will see in Section 8.6 and Proposition 8.9,
the source of this price overshooting is not necessarily the presence of strategic players. In fact, price
overshooting is reduced by competitors in elastic markets.

22Since the dependence of F on n is non-reciprocal, the joint strategy of the competitors changes as the
number of competitors increases (see also the dependence on n in Theorem 8.1), resulting in a reduced joint
profit of the competitors. Hence, the competitors have an incentive to collude.
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Parameter Elastic Plastic Intermediate
market market market

Asset position X0 1

Initial price P̃0 10
Duration T1 of stage 1 1
Duration T2 − T1 of stage 2 1
Permanent impact sensitivity γ 1 3 1.8
Temporary impact sensitivity λ 3 1 1

Table 8.2: Parameter values used for numerical computation in Section 8.6.

T1 = 1 and thus restrict our discussion to γ and λ. We will return to the general situation
again in Section 8.7.

8.6 Example markets

8.6.1 Definition of the example markets

In an illiquid market, each market order causes a price impact. Some part of this initial
price impact is temporary and therefore vanishes after the execution of the market order.
In the following, we will analyze two polar market extremes in more detail:

• Elastic markets, in which the major part of the initial total market impact vanishes af-
ter the execution of a market order (i.e., temporary impact λ >> permanent impact γ).
The market price in such markets behaves similar to an elastic rubber band: trading
pressure can stretch it, but after the trading pressure reduces, the price recovers.

• Plastic markets, in which the price impact of market orders is predominantly perma-
nent (i.e., permanent impact γ >> temporary impact λ). In such markets, the trading
pressure exerts a “plastic deformation” on the market price.

Empirical studies report that markets are indeed sometimes plastic and sometimes elas-
tic23. In many practical cases however, the market will fall into neither of these two cate-
gories, but instead temporary and permanent impact will be balanced; we therefore conclude
our case analysis by reviewing an intermediate market, that is, a market where temporary
and permanent impact are balanced: λ ≈ γ. For the numerical computations, we used the
parameter values given in Table 8.2.

23Holthausen, Leftwich, and Mayers (1987) find that for their data sample, 75% of the total price impact
of large transactions was temporary, while the follow-up study Holthausen, Leftwich, and Mayers (1990)
finds that for a different sample, 85% of the total price impact was permanent. Coval and Stafford (2007)
show that in markets where investors withdraw their money from open-ended mutual funds, the total price
impact of transactions is predominantly temporary, while in other markets the price impact is predominantly
permanent. The anecdotal evidence presented in the introduction indicates that the market for derivatives
traded by LTCM was plastic, whereas the energy market was elastic during the Amaranth crisis.
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Figure 8.5: Asset position X0(t) of the seller when no competitors are active.

0.5 1 1.5 2

6

7

9

10
Expected price P̄ (t)

Time

Figure 8.6: Expected price P̄ (t) in an elastic market over time when no competitors are active; at time
t = 1, stage 1 ends and stage 2 begins.

8.6.2 Example market 1: Elastic market

To begin with, let us assume that no competitors are active in the market. In such a
situation, it is optimal for the seller to sell her asset position linearly (Figure 8.5). We
therefore expect that the market price in stage 1 drops dramatically (Figure 8.6), since in
order to satisfy the seller’s trading needs, liquidity is required fast — which is expensive in
an elastic market. In stage 2, no selling pressure from the seller exists any more; hence, the
market price will bounce back. Furthermore, since the permanent impact is comparatively
small, it will bounce back almost completely.

A competitor knowing of the seller’s intentions would expect this price pattern. Her
natural reaction would therefore be to buy some of the seller’s shares in stage 1 at the very
low price and to sell them in stage 2 at the much higher price. Figure 8.7 shows that this is
indeed what happens when the seller and the competitors follow their optimal strategies.
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Figure 8.7: Asset positions Xi(t) over time in an elastic market; at time t = 1, stage 1 ends and stage 2
begins. The solid lines represents the seller, the dashed lines the combined asset position of all n competitors.
The black lines correspond to n = 2, the dark grey lines to n = 10 and the light grey lines to n = 100.

As can be seen in these figures, the total asset position
∑n

i=1 Xi(T1) acquired by the
competitors at the end of stage 1 increases as the number of competitors increases (see also
Figure 8.8). To gain some intuition for this phenomenon, let us assume that n1 competitors
optimally acquire a joint asset position of n1Y1 shares. Imagine one of the competitors
increases her target asset position by 1. This will decrease the profit per share that she
makes, but adds another share to her profitable portfolio. If the original target position Y1

is optimal, then this increase will leave her total profit roughly unchanged:

Profit per share× 1−Decrease in profit per share× Y1 ≈ 0.

Let us now assume that n2 > n1 competitors are active and that they jointly acquire n1Y1

shares. Now, increasing the target position n1Y1

n2
of an individual competitor by one share

changes the competitor’s total profit by

Profit per share× 1−Decrease in profit per share× n1Y1

n2

> 0.

Therefore each competitor has an incentive to increase the trading target for the end of
stage 1, resulting in an increased joint trading target.

The effect of the competitors’ trading (buying in stage 1, selling in stage 2) is that prices
between stage 1 and stage 2 will even out; the large price jumps expected in the absence
of competitors will disappear if the number of competitors is large enough (see Figure 8.9).
The price overshooting created by the selling pressure of the seller is therefore reduced by
the competitors.

From the seller’s perspective, the competitors’ trading is beneficial; by buying some of her
shares, the competitors reduce the seller’s market impact and thus increase her return. As
we have just discussed, a larger number of competitors implies a larger combined purchase
by the competitors. Hence, the seller can expect to profit from each additional competitor,
i.e., the larger the number of competitors, the larger her profit. This is illustrated by
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Figure 8.8: Joint asset position
∑n

i=1 Xi(T1) of all competitors in an elastic market at time T1 depending
on the total number n of all competitors. The grey line represents the limit limn→∞

∑n
i=1 Xi(T1).
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Figure 8.9: Expected price P̄ (t) in an elastic market over time depending on the number of competitors
n; at time t = 1, stage 1 ends and stage 2 begins. The black line corresponds to n = 2, the dark grey
line to n = 10 and the light grey line to n = 100. A significant reduction in price drift can be observed;
furthermore, P̄ (0) is smaller than P̃0 = 10.

Figure 8.10; the seller’s return is higher when competitors are active than it is when there
are no competitors.

The practical implications are evident: in an elastic market, it is sensible to announce
any large, time-constrained asset transaction directly at the beginning of trading in order
to attract liquidity.

8.6.3 Example market 2: Plastic market

We will now turn to plastic markets, i.e., markets with a permanent impact that considerably
exceeds the temporary impact. In such a setting, we expect the price dynamics to be very
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Figure 8.10: Expected return R0 for the seller in an elastic market, depending on the number of com-
petitors. The grey line represents the limit n →∞. The return for the seller without competitors is at the
intersection of x- and y-axis.

different from the dynamics described for elastic markets in the previous section.

Let us again assume that no competitors are active. Then, the optimal trading strategy
for the seller is again a linear decrease of the asset position (see Figure 8.5). In stage 1,
the seller is constantly pushing the market price further and further down; we therefore
expect the price to be high at the beginning of stage 1 and low at the end of stage 1 (see
Figure 8.11). In stage 2, the price will bounce back, since the temporary impact of the
seller’s trading has vanishes. However, this jump will be comparatively small because the
temporary price impact is small.

For a competitor, this implies that buying some of the seller’s shares in stage 1 does not
promise any large profit; the price reversion in stage 2 is too small. Instead, it appears more
profitable to exploit the price changes within stage 1 instead of the price changes between
stage 1 and stage 2. By selling short the asset at the beginning of stage 1 and buying it
back at the end of stage 1, she can likely make a large profit. Thus, we expect to see preying
behavior similar to the behavior in the one stage framework discussed in Section 8.3. Our
hypothesis is verified by the numerical results shown in Figure 8.12.

It might be surprising that the asset position Xi(T1) of the competitors at the end of the
first stage changes from a short position to a long position as the number of competitors
increases. This can be explained in the following way. For a small number of competitors the
price evolution will be sufficiently close to the one shown in Figure 8.11, therefore preying
is attractive and the competitors will enter stage 2 with a short position. As the number
of competitors increases, the price curve flattens within the first stage due to the increased
competition for profit from predatory trading24 (Figure 8.13). In comparison, the recovery
of prices between stage 1 and stage 2 now becomes attractive, even though it is relatively
small. Similar to the line of argument in elastic markets, it now pays off for the competitors
to acquire a small asset position during stage 1 in order to sell it during stage 2. This is
illustrated in Figure 8.14. If the number of competitors is small, it is beneficial to enter

24See also Proposition 8.A.1 in the appendix.
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Figure 8.11: Expected price P̄ (t) in a plastic market over time when no competitors are active; at time
t = 1, stage 1 ends and stage 2 begins.
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Figure 8.12: Asset positions Xi(t) over time in a plastic market; at time t = 1, stage 1 ends and stage 2
begins. The solid lines represents the seller, the dashed lines the combined asset position of all n competitors.
The black lines correspond to n = 2, the dark grey lines to n = 10 and the light grey lines to n = 100.

stage 2 with a short position; if the number of competitors is large, it is more attractive to
enter stage 2 with a long position.

Based on this line of argument, we expect the price overshooting to disappear if the
number of competitors is large. A single competitor however can decrease or increase price
overshooting, depending on how plastic the market is. In the plastic market considered in
this section, even a single competitor reduces price overshooting; if the permanent impact is
increased to 7.0 and all other parameters are unchanged, a single competitor increases price
overshooting.

Similar to the results of Section 8.3, we might be tempted to expect that the return for
the seller is decreasing as the number of competitors increases and predation becomes more
fierce. Figure 8.15 shows that this is not the case. The return for the seller is significantly
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Figure 8.13: Expected price P̄ (t) in a plastic market over time depending on the number of competitors
n; at time t = 1, stage 1 ends and stage 2 begins. The black line corresponds to n = 2, the dark grey line
to n = 10 and the light grey line to n = 100. A significant reduction in price drift can be observed.
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Figure 8.14: Joint asset position
∑n

i=1 Xi(T1) of all competitors in a plastic market at time T1 depending
on the total number n of all competitors. The grey line represents the limit limn→∞

∑n
i=1 Xi(T1).

decreased by competitors; furthermore, two competitors decrease it more than a single
competitor. However, the return for the seller is higher when three competitors are active
than when only two competitors are active; as soon as at least two competitors are active,
each additional competitor is beneficial for the seller.

The connection between the return for the seller and the number of competitors is a
combination of effects from the one stage model and the two stage model in an elastic
market. The first effect (already observed in the one stage model) is that a larger number
of competitors leads to more aggressive preying and hence to a reduced return for the seller.
This effect is very strong for a small number of competitors, but not for a large number
of competitors. The second effect is that a larger number of competitors also results in an
increased total asset position

∑n
i=1 Xi(T1) of all competitors at the end of stage 1. This
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Figure 8.15: Expected return R0 for the seller in a plastic market, depending on the number of competitors.
The grey line represents the limit n →∞. The return for the seller without competitors is at the intersection
of x- and y-axis.

reduces the trading pressure in stage 1 and therefore increases the return for the seller. The
latter effect dominates the first if the number of competitors is large.

8.6.4 Example market 3: Intermediate market

In most cases, the differences between the temporary and permanent impact factors γ and
λ will not be as extreme as depicted above. If the two parameters are closer together, we
can expect to observe characteristics of both elastic as well as plastic markets:

• At the beginning of the first stage, the competitors “race the seller to market”, that
is, they sell in parallel to her. We say that intra-stage predation occurs.

• For a small number of competitors, the competitors end the first stage with either
a long or a short position depending on whether the market is more elastic or more
plastic (see Figure 8.16).

• For a large number of competitors, the competitors buy back more shares than they
sold at the beginning of stage 1; we say that inter-stage cooperation takes place sub-
sequently to the intra-stage predation.

• If the number of competitors is large, then prices do not overshoot. Instead, market
prices are almost flat and almost the same in stage 1 and stage 2.

• If a certain minimum number of competitors is active, then additional competitors
increase the return for the seller since the increase in inter-stage cooperation outweighs
the increase in intra-stage predation.

All of these characteristics hold; we prove them in general in the next section. However,
one interesting question remains open so far. We have already seen that in elastic markets
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Figure 8.16: Asset position X1(T1) of the competitors, depending on γ
λ . The black line corresponds to

n = 2, the dark grey line to n = 10 and the light grey line to n = 100. The other parameters are chosen as
in Table 8.2.
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Figure 8.17: Expected return R0 for the seller in an intermediate market, depending on the number of
competitors. The grey line represents the limit n →∞. The return for the seller without competitors is at
the intersection of x- and y-axis.

the seller benefits from competitors, whereas in plastic markets the seller prefers to have
no competitors at all. What is the situation in an intermediate market? Of course, both
effects may apply depending on whether the market is more plastic or more elastic in nature.
However, a new phenomenon can also arise: It might be the case that a small number of
competitors is harmful to the seller’s profits, but a large number increases the profits even
beyond the case of no predation (see Figure 8.17 for an example).

The practical implications are evident: If there are already some informed traders or if
the seller expects to be able to attract a sufficient number of competitors, announcing her
trading intentions can be attractive; if there is only a limited number of potential competitors
she is best advised to conceal her intentions.
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8.7 General properties of the two stage model

After having reviewed three explicit market examples, we summarize their common equilib-
rium properties.

8.7.1 Competitor behavior: Predatory trading versus liquidity provision

Proposition 8.3. As the number of competitors n tends to infinity, the combined asset
position of all competitors at the end of stage 1 converges to

lim
n→∞

n∑
i=1

Xi(T1) = lim
n→∞

nX1(T1) =
e

γ(T2−T1)
λ − 1

e
γ(T2)

λ − 1
X0.

In economic terms, this implies that for large n, intra-stage cooperation between the seller
and the competitors occurs regardless of the market parameters: in stage 1, the competitors
buy a portion of the seller’s asset position and sell this portion in stage 2. Thereby the
market impact in stage 1 is reduced.

We can draw an intuitive consequence for elastic markets: If the number of competitors
is high, then the net sale of seller and competitors in each stage is proportional to the time
available for selling. The following corollary expresses this in mathematical terms when
sending λ to ∞.

Corollary 8.4. As the number of competitors n and the temporary price impact coefficient
λ tend to infinity, the combined asset position of all competitors at time T1 converges:

lim
λ→∞

lim
n→∞

n∑
i=1

Xi(T1) =
T2 − T1

T2

X0

We summarize the drivers of inter-stage cooperation.

Corollary 8.5. For a large enough number n of competitors, the total net amount of liquidity∑n
i=1 Xi(T1) provided by strategic players in stage 1 is

• decreasing in γT1/λ,

• increasing in T2/T1, and

• increasing in n.

The first driver highlights the importance of the market environment; inter-stage coop-
eration is reduced in plastic markets25. The second driver relates to the influence of risk
management. If the competitors have enough capital, they will be willing to hold inventory
for a long period of time, i.e., T2 > T1. On the other hand, if they are in a financially weak
condition, risk management is likely to limit the maximum holding period T2 in order to
reduce the associated risk. The third driver reflects the effect of limited competition among

25In the repeated game model of Carlin, Lobo, and Viswanathan (2007), the opposite result is obtained
and cooperation is increased in plastic markets.
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strategic players. By a combination of the latter two drivers, liquidity can disappear in a
self-exciting vicious circle: Financial distress of some market participants can result in a
general tightening of risk management practices and a smaller number of players engaging
in strategic trading, leading to increased predatory trading and more distressed players.

8.7.2 Seller behavior: Stealth versus sunshine trading

We now turn to the return that the seller can expect to receive in a market with a certain
number n of strategic competitors.

Theorem 8.6. By selling an asset position X0 in stage 1, the seller receives an average
total cash position of

R0 = X0

(
P̃0 − γX0G

(
γT1

λ
,
T2

T1

, n

))
.

The function G is given in closed form in the proof in Appendix 8.B. For large n, the seller’s
return is

• decreasing in γT1/λ,

• increasing in T2/T1, and

• increasing in n.

It converges to:

lim
n→∞

R0 = X0

(
P̃0 − γX0

1

1− e−
γ
λ

T2

)

The cash received in the limit case n →∞ is exactly the initial asset position multiplied
by the limit of the expected market price derived in Proposition 8.8.

Given the result above, the benefits of sunshine trading can easily be quantified26. If the
seller’s intentions remain secret27, she can expect a return of28

X0

(
P̃0 − γX0/2− λX0/T1

)
. (8.4)

Alternatively, she can pre-announce her intentions, attract a large number of competitors
and thus expect a return of

X0

(
P̃0 − γX0

1

1− e−
γ
λ

T2

)
. (8.5)

26We assume that pre-announcing a trade does not change market-wide liquidity. In case sunshine traders
are structurally special, this can be modeled by changing λ and γ for sunshine trades. For example, Admati
and Pfleiderer (1991) assume that sunshine traders are uninformed; their trades should therefore result in
a smaller (or possibly even no) permanent price change. This can be incorporated by assuming a smaller
value for γ for sunshine trades.

27Even without pre-announcement, the market will try to infer the complete trading intentions from the
trading pattern observable in the market. Barclay and Warner (1993) and Chakravarty (2001) find that
the market reacts strongest to orders of medium size because such orders are most likely to be part of the
execution of a large, informed transaction. Such observations should be taken into account when performing
“stealth execution”.

28See Almgren and Chriss (2001) and Almgren (2003) for a discussion of the case without competitors.
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Corollary 8.7. Assuming that pre-announcement attracts a large number of competitors
(n ≈ ∞), sunshine trading is superior to stealth trading if

1

2
+

λ

γT1

>
1

1− e−
γ
λ

T2
. (8.6)

If the competitors do not face any material time constraint (T2 → ∞), sunshine trading is
beneficial if

λ

γ
>

T1

2
. (8.7)

In our model, the ratio γ/λ of the market liquidity parameters γ and λ and the length of
the two stages T1 and T2−T1 determine whether sunshine trading is beneficial. These drivers
are not relevant in existing models. Most notably, sunshine trading is always beneficial in
the model used by Admati and Pfleiderer (1991), while it is never beneficial in equilibrium
in the model of Brunnermeier and Pedersen (2005).

8.7.3 Price evolution

We now analyze the market prices resulting from the combined trading activities of the seller
and the competitors in more detail. In Figures 8.9 and 8.13, we observe that when trading
commences in t = 0, the expected price jumps downward from its level P̄ (0−) = P̃0 to P̄ (0)
due to the temporary impact of the selling. After the initial price jump, the expected price
P̄ (t) is exhibiting a downward trend. This indicates that our model market does not fulfill
the strong form of the efficient markets hypothesis as introduced by Fama (1970): if relevant
information is shared by only a small number of market participants, then this information
is only slowly reflected in market prices. On the other hand, empirical evidence suggests
that capital markets are efficient in the semi-strong sense. We would therefore expect that if
the seller’s intentions are known by a sufficiently large number of market participants, this
information is instantaneously fully reflected in market prices. Public information can thus
not be used to predict price changes. The following proposition states that this is indeed
the case in our market model.

Proposition 8.8. The absolute value of the drift | ˙̄P (t)| is a decreasing function of n. In
the limit, the expected market price instantaneously jumps to

P̃0 − γ

1− e−
γ(T2)

λ

X0

and is constant from thereon throughout stage 1 and stage 2 until the end of stage 2.

In plastic markets, the initial price jump |P̄ (0) − P̃0| is an increasing function of the
number n of competitors, while it is a decreasing function of n in elastic markets. It is
interesting to note that the new equilibrium price P̃0 − γ

1−e−
γ(T2)

λ

X0 does not depend on

whether the seller can trade in stage 2 (see Proposition 8.A.1).
To formally discuss price overshooting, we include the time after T2 in our analysis, i.e.,

the time after the seller and the competitors have stopped trading. The temporary impact of
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the trades during [0, T2] vanishes immediately at T2; therefore, only the permanent impact
remains. The seller sold X0 while the competitors did not change their asset positions.
Therefore we obtain an expected market price of P̄ (T2+) = P̃0 − γX0 for the time after T2.
If during the trading phase [0, T2] the price drops below P̄ (T2+), i.e.,

min
t∈[0,T2]

P̄ (t)− P̄ (T2+) < 0

we say that the price overshoots. We can now describe the relationship between price
overshooting and predatory activity.

Proposition 8.9. The price P̄ (t) attains its minimum in the interval [0, T2] at the end of
the first stage:

min
t∈[0,T2]

P̄ (t) = P̄ (T1−).

Price overshooting occurs irrespective of the presence of competitors:

P̄ (T1−) < P̄ (T2+).

The level of price overshooting P̄ (T2+) − P̄ (T1−) is increased by competitors only in very
plastic markets, i.e., only if the permanent impact is much larger than the temporary impact.
In all other circumstances, price overshooting is reduced by competitors. If competitors are
already active in the market (n ≥ 1), then additional competitors reduce price overshooting
irrespective of the market character.

It is interesting to compare our results to the models introduced by Brunnermeier and
Pedersen (2005) and by Carlin, Lobo, and Viswanathan (2007). Preying introduces price
overshooting in the first framework, but it reduces price overshooting in the latter (see
Proposition 8.A.2); in our model, the effect of preying on price overshooting depends on
the market. In all three models, price overshooting is reduced by additional competitors
(assuming that at least one competitor is active).

8.A Propositions on the one stage model

We first state two propositions concerning the one stage model introduced in Section 8.3.
These are used for comparison of the one stage model and the two stage model as well as
in the proofs presented in Appendix 8.B.

Proposition 8.A.1. In the one stage model, the absolute value of the drift | ˙̄P (t)| is a
decreasing function of n. In the limit case n →∞, the expected market price instantaneously
jumps to

P̃0 − γ

1− e−
γT1

λ

X0

and is constant from thereon until the end of trading at time t = T1.

Proof of Proposition 8.A.1. Using the notation from Theorem 8.1, the combined trad-
ing speed of the seller and all competitors amounts to

n∑
i=0

Ẋi(t) =
n∑

i=0

(ae−
n

n+2
γ
λ

t + bie
γ
λ

t) = (n + 1)ae−
n

n+2
γ
λ

t.
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The change in combined asset position at time t is therefore:

n∑
i=0

(Xi(t)−Xi(0)) =
n∑

i=0

∫ t

0

Ẋi(s)ds =

∫ t

0

n∑
i=0

Ẋi(s)ds

=

∫ t

0

(n + 1)ae−
n

n+2
γ
λ

sds = (n + 1)
n + 2

n

λ

γ
a

(
1− e−

n
n+2

γ
λ

t
)

.

Now, we can compute the expected market price:

P̄ (t) = P̃0 + γ

n∑
i=0

(Xi(t)−Xi(0)) + λ

n∑
i=0

Ẋi(t)

= P̃0 + γ(n + 1)
n + 2

n

λ

γ
a(1− e−

n
n+2

γ
λ

t) + λ(n + 1)ae−
n

n+2
γ
λ

t

= P̃0 + λ
n + 1

n
(n + 2− 2e−

n
n+2

γ
λ

t)a (8.8)

= P̃0 + λ
n + 1

n
(n + 2− 2e−

n
n+2

γ
λ

t)
n

n + 2

γ

λ

(
1− e−

n
n+2

γ
λ

T1

)−1 −X0

n + 1

= P̃0 − γX0
1

1− e−
n

n+2
γ
λ

T1
+ γX0

2

n + 2

e−
n

n+2
γ
λ

t

1− e−
n

n+2
γ
λ

T1
(8.9)

Only the last term in the expression above is time dependent; its influence decreases with
increasing n. In the limit, we obtain that the expected market price P̄ (t) is constant:

lim
n→∞

P̄ (t) ≡ P̃0 − γX0
1

1− e−
γ
λ

T1
.

Proposition 8.A.2. Without any competitors (i.e., nobody is aware of the seller’s inten-
tions), the price overshoots by λX0/T1. If competitors are present, the price overshooting
is reduced to

n

n + 2
γX0

e−
n

n+2
γ
λ

T1

1− e−
n

n+2
γ
λ

T1
,

which is a decreasing function of the number n of competitors.

Proof of Proposition 8.A.2. Without any competitors, the optimal strategy for the
seller is to liquidate her asset position linearly: X0(t) = (T1 − t)X0/T1. The market price
thus drops to

P̄ (T1−) = P̃0 − γX0 − λX0/T1.

and price overshooting amounts to λX0/T1.
From Equation (8.8), we know the structure of P̄ (t) when competitors are present and

deduce that the market price decreases to

P̄ (T1) = P̃0 − γX0
1

1− e−
n

n+2
γ
λ

T1
+ γX0

2

n + 2

e−
n

n+2
γ
λ

T1

1− e−
n

n+2
γ
λ

T1
.
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Thus, the price overshoots with magnitude

P̄ (T1)− P̄ (T1−) =
n

n + 2
γX0

e−
n

n+2
γ
λ

T1

1− e−
n

n+2
γ
λ

T1
.

The monotonicity follows directly.

8.B Proofs for propositions on the two stage model

The proofs of the theorems, propositions and corollaries presented in this chapter are given
in order of appearance in the main body of text. In order to keep the proofs compact, they
sometimes use results that are independently proven later in this appendix.

Proof of Theorem 8.2. The actual computations are lengthy; we will therefore only
sketch the approach.

Let us first discuss the case n = 1, i.e., the seller is facing only one competitor. By
computations similar to the ones in Proposition 8.A.1, we can express the expected market
price P̄ (t) as a linear function of the seller’s asset position X0 and the competitors asset
position X1(T1) = Z1 at the end of stage 1. Furthermore, by Theorem 8.1 the competitor’s

trading speed ˙X1(t) is linear in X0 and Z1. Therefore we can then calculate the return for
the competitor in the two stages as quadratic functions of X0 and Z1:

ReturnCompetitor = ReturnStage1(X0, Z1) + ReturnStage2(X0, Z1)

Now, we can determine the optimal Z1 by maximizing the quadratic function ReturnCompetitor,
i.e., by determining the root of its derivative, which is a linear function in X0.

Let us turn to the case n ≥ 2, i.e., the seller is facing at least two competitors. We
assume that n−1 competitors acquire optimal asset positions Xi(T1) = Yi for 1 ≤ i ≤ n−1
and solve for the optimal asset position Xn(T1) = Zn for the last competitor. Similar to
the case n = 1 discussed above, we can calculate the return for the last competitor as a
quadratic function of X0 +

∑n−1
i=1 Yi and Zn:

ReturnCompetitorn = ReturnStage1(X0 +
n−1∑
i=1

Yi, Zn) + ReturnStage2(X0 +
n−1∑
i=1

Yi, Zn)

We can again determine the optimal Zn by maximizing ReturnCompetitorn and obtain a
linear function of X0 +

∑n−1
i=1 Yi:

Zoptimal
n = f(X0 +

n−1∑
i=1

Yi)

Similarly we obtain the linear equations

Zoptimal
j = f(X0 +

n∑

i=1,i6=j

Yi)
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for all 1 ≤ j ≤ n. Since we assumed that (Y1, . . . , Yn) was optimal in the first place, we
know that the optimal Zoptimal

j has to be equal to Yj; we therefore obtain

Yj = f(X0 +
n∑

i=1,i 6=j

Yi) (8.10)

for all 1 ≤ j ≤ n. The set of linear equations (8.10) constitutes a symmetric, non-singular
linear problem of n equations in n variables. Its unique solution therefore has to fulfill
Y1 = · · · = Yn and these Yi are a linear function of X0. By computing this linear function
precisely, we obtain the functional form

F

(
γT1

λ
,
T2

T1

, n

)
= − A2n

2 + A1n + A0

B3n3 + B2n2 + B1n + B0

with parameters
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)
(1+n)(2+n)λ − e

γ

((
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T1+n(2+n)T2

)
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e
γ

((
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)
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2e
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(
2+5n+2n2
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(1+n)(2+n)λ − e

γ

(
−
(

2+4n+n2
)

T1+

(
2+5n+2n2

)
T2

)
(1+n)(2+n)λ +

e
nγT1+γT2

λ+nλ

)

B3 = −e
γ(−T1+T2)

λ+nλ + e
nγ(−T1+T2)

λ+nλ + e
γ(−T1+(2+n)T2)

(1+n)λ − e
nγ(−T1+(2+n)T2)

(1+n)(2+n)λ +

e
γ

((
−2+n2

)
T1+(2+n)T2

)
(1+n)(2+n)λ − e

γ

((
−2+n2

)
T1+(2+n)2T2
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e
γ

(
−nT1+

(
2+5n+2n2
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(1+n)(2+n)λ
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Note that the denominator B3n
3 + B2n

2 + B1n + B0 of the general expression

Xi(T1) = − A2n
2 + A1n + A0

B3n3 + B2n2 + B1n + B0

X0

is 0 in the case n = 1; however, the general expression as a whole converges for n → 1
against the optimal value of X1(T1) for n = 1 as given in Equation (8.3).

In the following proofs, we will need the limits limn→∞ Ai and limn→∞ Bi. All of these
limits exist and can be established by direct calculations. We obtain:

lim
n→∞

A0 = 2e
γT1

λ

(
− 1 + e

γT1
λ

)(
− 1 + e

γ(T2−T1)
λ

)2

lim
n→∞

A1 = −3
(
− 1 + e

γT1
λ

)(
− 1 + e

γ(T2−T1)
λ

)2

lim
n→∞

A2 = −
(
− 1 + e

γT1
λ

)(
− 1 + e

γ(T2−T1)
λ

)2

lim
n→∞

B0 = −2
(
− 1 + e

γT1
λ

)(
− 1 + e

γ(T2−T1)
λ

)(
− 1 + 2e

γT1
λ − 2e

γ(T2−T1)
λ + e

γT2
λ

)

lim
n→∞

B1 =
(
− 1 + e

γT1
λ

)(
− 1 + e

γ(T2−T1)
λ

)(
− 1 + e

γT2
λ

)

lim
n→∞

B2 = 4
(
− 1 + e

γT1
λ

)(
− 1 + e

γ(T2−T1)
λ

)(
− 1 + e

γT2
λ

)

lim
n→∞

B3 =
(
− 1 + e

γT1
λ

)(
− 1 + e

γ(T2−T1)
λ

)(
− 1 + e

γT2
λ

)

Proof of Proposition 8.3. We apply Theorem 8.2 and obtain:

lim
n→∞

n∑
i=1

Xi(T1) = − limn→∞ A2

limn→∞ B3

X0.

From the proof of Theorem 8.2, we know the values of the limits of A2 and B3 and the
desired result follows.

Proof of Corollary 8.4. Using Proposition 8.3 and L’Hospitale’s rule, we calculate

lim
λ→∞

lim
n→∞

n∑
i=1

Xi(T1) = lim
λ→∞

e
γ(T2−T1)

λ − 1

e
γT2

λ − 1
=

T2 − T1

T2

.

Proof of Corollary 8.5. We observe that by Theorem 8.2 all derivatives of Xi(T1) con-
verge locally uniformly. Hence, we have

lim
n→∞

d

dγ
Xi(T1) =

d

dγ
lim

n→∞
Xi(T1),
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and by computing the derivatives of limn→∞ Xi(T1) using Proposition 8.3 we obtain the first
two relations of the corollary.

Similar to the proof of Theorem 8.6, it can be shown that for large n, Xi(T1) is increasing
in n. This shows the last of the three relations stated in the corollary.

Proof of Theorem 8.6. Using Theorems 8.1 and 8.2 and Propositions 8.A.1 and 8.8, we
can calculate the return for the seller in a straightforward way and obtain:

R0 = X0

(
P̃0 − γX0

A7n
7 + A6n

6 + A5n
5 + A4n

4 + A3n
3 + A2n

2 + A1n + A0

B7n7 + B6n6 + B5n5 + B4n4 + B3n3 + B2n2 + B1n + B0

)
(8.11)

=: X0

(
P̃0 − γX0G

(
γT1

λ
,
T2

T1

, n

))

The coefficients Ai and Bi are functions of γT1

λ
, T2

T1
and n. They are of a similar structure

as the coefficients derived in the proof of Theorem 8.2, but even more complex. The coef-
ficients A6, A7, B6 and B7 are presented in Appendix A as examples; the other coefficients
are omitted for brevity.

The coefficients Ai and Bi converge for n → ∞; furthermore, their derivatives dAi

dn
and

dBi

dn
converge to 0 as n →∞. We compute

lim
n→∞

R0 = lim
n→∞

E(Return for the seller) = X0

(
P̃0 − γX0

limn→∞ A7

limn→∞ B7

)
.

Inserting A7 and B7 and computing the limit gives the desired limit.

To prove that limn→∞ R0 is increasing for large n, we compute the derivative of the
seller’s return R0 with respect to n as

d

dn
R0 = −γX0

Numerator

(B7n7 + B6n6 + B5n5 + B4n4 + B3n3 + B2n2 + B1n + B0)2

with

Numerator =

(
7A7B7n + 7A7B6 + 6A6B7 +

dA7

dn
B7n

2 +
dA7

dn
B6n

+
dA7

dn
B5 +

dA6

dn
B7n +

dA6

dn
B6 +

dA5

dn
B7

)
n12

−
(

7B7A7n + 7B7A6 + 6B6A7 +
dB7

dn
A7n

2 +
dB7

dn
A6n

+
dB7

dn
A5 +

dB6

dn
A7n +

dB6

dn
A6 +

dB5

dn
A7

)
n12 + o(n11).
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For large n, we can omit the o(n11) term; furthermore, we know that all derivatives converge
to 0 as n →∞. We therefore obtain for large n:

Numerator ≈
((

dA7

dn
B7 − dB7

dn
A7

)
n2

+

(
dA7

dn
B6 +

dA6

dn
B7 − dB7

dn
A6n− dB6

dn
A7

)
n

+ A7B6 −B7A6

)
n12

Inserting the expressions for Ai and Bi, we obtain

lim
n→∞

(
dA7

dn
B7 − dB7

dn
A7

)
n2 = 0

lim
n→∞

(
dA7

dn
B6 +

dA6

dn
B7 − dB7

dn
A6n− dB6

dn
A7

)
n = 0

lim
n→∞

(A7B6 −B7A6) = −e
γT1

λ

(
e

γT1
λ − 1

)7(
e

γ(T2−T1)
λ − 1

)5(
e

γT2
λ − 1

)3

< 0.

The derivative of the seller’s return has the opposite sign of the Numerator and is thus
positive for large values of n.

To prove that the seller’s return is decreasing in γT1/λ and increasing in T2/T1 for large n,
we proceed similar to the proof of Corollary 8.5, observe that the derivatives of R0 converge
locally uniformly for n → ∞ and obtain the desired relations by inspection of the limit
limn→∞ R0.

Proof of Corollary 8.7. The condition

1

2
+

λ

γT1

>
1

1− e−
γ
λ

T2

is obtained by direct comparison of the returns of sunshine and stealth trading given in
Equations (8.4) and (8.5). Equation (8.7) can be derived by passing to the limit T2 →∞.

Proof of Proposition 8.8. First, we note that by arguments similar to the proof of
Proposition 8.A.1 (in particular Formula (8.9)), the price during stage 1 (t ∈ [0, T1)) is

P̄ (t) = P̃0 − γ

(
X0 −

n∑
i=1

Xi(T1)

)
1

1− e−
n

n+2
γ
λ

T1

+ γ

(
X0 −

n∑
i=1

Xi(T1)

)
2

n + 2

e−
n

n+2
γ
λ

t

1− e−
n

n+2
γ
λ

T1
(8.12)
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and the price during stage 2 (t ∈ [T1, T2]) is

P̄ (t) = P̃0 − γ

(
X0 −

n∑
i=1

Xi(T1)

)
− γ

(
n∑

i=1

Xi(T1)

)
1
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+ γ

(
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)
2

n + 1
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γ
λ
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1− e−
n−1
n+1

γ
λ
(T2−T1)

. (8.13)

Again, the time-dependent terms vanish as n increases. For the first stage, we obtain the
limit

lim
n→∞

P̄ (t) = P̃0 − γ

(
X0 − lim

n→∞
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For the second stage, we compute
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Proof of Proposition 8.9. By Formulas (8.12) and (8.13), it is easy to see that within
each stage the price P̄ (t) moves monotonously. Therefore, the only four possible times at
which the minimum price can be achieved are T0, T1−, T1 and T2. It is straightforward to
calculate the prices for these four points in time using Theorem 8.2 and Formulas (8.12)
and (8.13), to show that P̄ (T1−) is the minimum of these four values and that it is lower
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than P̄ (T2+). Furthermore, it is direct to show that P̄ (T1−) is an increasing function of the
number of competitors n.

The different effect of competitors on price overshooting in plastic and elastic markets
is shown by the examples in Section 8.6.





Chapter 9

A cautionary note on multiple players in limit

order book models

9.1 Introduction

In the previous chapter, we chose a multiple player liquidity model and then derived the
optimal trading strategies for all players. By comparing optimal strategies in different
liquidity models, we can identify the features of the liquidity model that are required to
produce reasonable results in multiple player situations. In this chapter, we consider a
multiple player extension of the limit order book model of Obizhaeva and Wang (2006). In
this model, the price after a large trade does not recover instantaneously, but with a finite
speed (“resilience”).

We derive the optimal discrete-time trading strategies for two players in a one stage
framework, i.e., a framework in which both players are trading during the same time span.
As we observed in the previous chapter, this one stage framework is the fundamental building
block of multiple stage setups. We consider both open-loop and closed-loop strategies and
find that they exhibit the same qualitative properties in equilibrium. Surprisingly, if the
discretization time step is small, the optimal strategy is to quickly buy and sell large asset
positions. Such a strategy provides a hedge against market manipulations by the other
player. The low cost of round trip trades in this market model encourages such oscillatory
trading by two effects: First, the hedge trading strategy is relatively cheap, since it consists
mainly of round trip trades. Second, market manipulation by round trip trades is also
cheap and therefore a large and realistic threat for traders that do not pursue a hedge
trading strategy. Both of these effects result in an incentive to pursue the hedge strategy.

By no means do we believe that the strategies derived in this chapter describe trad-
ing behavior in practice, nor do we recommend them to traders as normatively “rational”
strategies. On the contrary, we believe that our results show that round trip costs are an
important part of market models for multiple players. In reality, round trip costs are signif-
icant and grow with the size of the round trip (see Loeb (1983)). Such round trip costs can
be modeled for example by including a completely temporary price impact component as
in the market model considered in Chapter 8, or by modeling a trading dependent spread,
e.g., by modeling the transient impacts on both sides of the limit order book independently.

In this chapter, we first introduce the market model (Section 9.2) and then solve for the
unique open-loop equilibrium (Section 9.3) and closed-loop equilibrium (Section 9.4). In
Section 9.5, we compare the findings of this chapter with those of Chapter 8 and suggest
adjustments to the model considered in this chapter. Supplementary material to this chapter
is contained in Appendix B of this dissertation. Section B.1 presents an example recursion
function for the dynamic programming solution obtained in Section 9.4, and Section B.2
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illustrates the stability of the findings in this chapter with additional numerical examples.
The Mathematica source code used for generation of the figures in this chapter and in
Appendix B is given in Section B.3.

9.2 Market model with finite resilience and no spread

In this section, we present a multiple player extension of the limit order book market model
of Obizhaeva and Wang (2006). We limit our discussion to trading in discrete time; a
generalization of the model to continuous time is straightforward. Similar to our approach
in Section 8.2, we assume that the market consists of a risk-free asset without interest
and a risky asset. In this market, two strategic players and a number of noise traders are
trading. We denote the asset positions of the two strategic players at time tn by Xn and
Yn and assume that they are both aware of their initial asset positions X0 and Y0 and their
target asset positions XN+1 = YN+1 = 0. The (sell) orders1 Ẋn := −(Xn+1 − Xn) and
Ẏn := −(Yn+1 − Yn) at time tn are executed at a market price that depends on previous
trades through a linear permanent impact and a transient impact Dn := D(tn):

P (tn) := Pn := P̃ (tn)− γ(X0 −Xn + Y0 − Yn)−Dn − γ + λ

2
(Ẋn + Ẏn).

We already know the first two terms on the right hand side from the market model introduced
in Section 3.2: they are the market price in absence of large traders modeled as a martingale
P̃ , and the permanent impact of previous trades. The third term reflects the transient price
impact of previous trades, while the last term accounts for the average permanent and
transient price impact of the current trade. We assume that the transient impact is changed
in a linear way by each trade and decreases exponentially between trades:

Dn+1 := (Dn + λ(Ẋn + Ẏn))e−ρ(tn+1−tn).

The parameter ρ ≥ 0 quantifies the resilience, i.e., the speed of price recovery. The structural
difference between this market model and the market model we considered in Chapter 8 is
that the transient impact Dn depends on the entire trade history, whereas the temporary
impact in Chapter 8 only depends on the current trade. It is assumed that the market is
in equilibrium at the beginning of trading, i.e., that D0 = 0. This market model was first
introduced by Obizhaeva and Wang (2006) as a limit order book model of liquidity: the
transient price impact represents the limit orders that were consumed by previous market
orders of the large trader, and the price resilience reflects the arrival of new limit orders in
the order book. Alternatively, this model can be economically motivated as a market maker
model with utility indifference pricing, where the market maker can continuously offload her
inventory after large trades. We assume that at all points in time, there is only one market
price, i.e., there is no spread. Again following our approach in Section 8.2, we assume that
both players are risk neutral.

1In line with previous notation, we use the convention Ẋ > 0 for sell orders.
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9.3 Optimal open-loop strategies

First, we determine the optimal open-loop strategies for two players in this market, i.e.,
strategies that do not depend on the previous trades of the other player. Therefore, we
assume in this section that both players choose deterministic strategies at the beginning of
trading, i.e., strategies that only depend on time. As discussed in Section 7.3, we require
that these strategies do not depend on Pn or P̃n.

Theorem 9.1. Let λ, ρ, τ > 0. In the unique open-loop Nash equilibrium, both players
follow a trading strategy that is linear in X0 and Y0:

Ẋn = ΦnX0 + ΨnY0 (9.1)

Ẏn = ΦnY0 + ΨnX0 (9.2)

with constants Φn and Ψn that only depend on γ and λ and are independent of X0 and Y0.

Proof. When player 1 follows the strategy (Xn)0≤n≤N and player 2 follows the strategy
(Yn)0≤n≤N , then the expected cash proceeds for player 1 are given by

RX := E

[
N∑

n=0

ẊnPn

]

= X0P̃0 +
N∑

n=0

Ẋn

(
− γ

(
n−1∑
i=0

Ẋi +
n−1∑
i=0

Ẏi

)

−
( n−1∑

i=0

λ(Ẋi + Ẏi)e
−ρ(tn−ti)

)
− γ + λ

2
(Ẋn + Ẏn)

)
.

Similarly we define RY as the cash proceeds for player 2. Under the optimal strategy for
player 1, the combined effect of reducing Ẋi and increasing Ẋ0 by the same amount either
leaves RX unchanged or decreases it; the same holds for the opposite change of the strategy,
i.e., an increase in Ẋi and a reduction of Ẋ0. Therefore the optimal open-loop strategy for
player 1 has to satisfy

dRX

dẊi

=
dRX

dẊ0

for all i = 1, . . . , N . Analogous equations need to hold for player 2. The optimal strategies
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for player 1 and player 2 therefore need to fulfill the linear equations

dRX

dẊ1

=
dRX

dẊ0

. . .

dRX

dẊN

=
dRX

dẊ0

dRY

dẎ1

=
dRY

dẎ0

. . .

dRY

dẎN

=
dRY

dẎ0

N∑
n=0

Ẋn = X0

N∑
n=0

Ẏn = Y0.

This set of 2N + 2 linear equations in 2N + 2 variables Ẋ0, . . . , ẊN , Ẏ0, . . . , ẎN is non-
degenerate and linear in X0 and Y0. This establishes the existence and uniqueness of the
open-loop equilibrium as well as the functional form of the optimal trading strategies given
in the statement of the theorem.

The proof of the previous theorem provides a simple method to compute the equilibrium
trading strategies. In this chapter, we illustrate these for the predatory trading case of
X0 > 0 and Y0 = 0; numerical examples for the case Y0 6= 0 are given in Appendix B.2.
Figure 9.1 shows the optimal trading trajectories for the predatory trading situation in
an elastic market (see Table 9.1 for parameter values). The qualitative properties of the
strategies are very similar to the strategies in the one stage model discussed in Section 8.3:
while player 1 sells her asset position, player 2 pursues predatory trading by first selling in
parallel and then covering her short position later on at a lower price.

Unfortunately, the intuitive properties of Figure 9.1 disappear when the transient impact
parameter λ is reduced (Figure 9.2), the resilience parameter ρ is reduced (Figure 9.3), or
the time interval τ between trades is reduced (Figure 9.4). In all of these cases, oscillations
appear in the optimal strategies. Most disturbingly, the change of the number of discrete
time points N + 1 from an odd number to an even number can dramatically change the
optimal trading strategies (Figure 9.5) and lead to first trades that increase the asset po-
sitions of both players. In order to analyze the source of these counterintuitive results, we
first turn to the case of trading at an odd number N + 1 of points in time and the limiting
case λ = 0, ρ = 0 or τ = 0. For this simple setting, we can derive explicit formulas for Ẋ
and Ẏ .

Proposition 9.2. Let N + 1 be odd and let λ = 0, ρ = 0 or τ = 0. Then the unique
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Parameter Fig. Fig. Fig. Fig. Fig.
9.1, 9.2, 9.3, 9.4, 9.5,
9.6a 9.6b 9.6c 9.6d 9.7

Player 1’s asset position X0 1
Player 2’s asset position Y0 0
Duration T of trading time 1
Permanent impact sensitivity γ 1
Transient impact sensitivity λ 10 0.1 10 10 0.1
Resilience parameter ρ 200 200 10 200 10
Time interval between trades τ 1/100 1/100 1/100 1/1000 var.
Number of time steps N 100 100 100 1000 var.

Table 9.1: Parameter values used for numerical computation in Sections 9.3 and 9.4.
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Figure 9.1: Asset positions X(tn) = Xn and Y (tn) = Yn in the open-loop equilibrium over time. The solid
line represents player 1 (the seller), the dashed line player 2 (the competitor). Base case; see Table 9.1 for
parameter values.

open-loop Nash equilibrium is given by

Xn = X0 for even n Xn = 0 for odd n

Yn = Y0 for even n Yn = 0 for odd n.

Proof. First, observe that when λ = 0, ρ = 0 or τ = 0, then the trading game for player 1
and player 2 is a constant sum game, i.e., player 2 can only gain at player 1’s expense. Now
assume that Xn 6= Xn+2. Then the strategy Yi = 0 for all i 6= 0, n + 1 and Yn+1 = Y yields
expected cash proceeds for player 2 of

RY = Y (γ + λ)(Xn+2 −Xn)/2 + Y0(P̃0 − (γ + λ)(Y0 + Ẋ0)/2).

By choosing a very large respectively small Y , player 2 can therefore achieve arbitrarily
large gains and impose arbitrarily large losses on player 1. Hence, any strategy for player 1
with Xn 6= Xn+2 cannot be optimal for player 1. By the same argument, Yn = Yn+2 needs
to hold for any optimal strategy for player 2. This shows that the strategies suggested in



148 A cautionary note on multiple players in limit order book models

0.2 0.4 0.6 0.8 1.0

-0.5

0.5

1.0

Asset positions Xn, Yn

Time tn

Figure 9.2: Asset positions X(tn) = Xn and Y (tn) = Yn in the open-loop equilibrium over time. The solid
line represents player 1 (the seller), the dashed line player 2 (the competitor). Reduced transient impact
parameter λ; see Table 9.1 for parameter values.
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Figure 9.3: Asset positions X(tn) = Xn and Y (tn) = Yn in the open-loop equilibrium over time. The solid
line represents player 1 (the seller), the dashed line player 2 (the competitor). Reduced resilience parameter
ρ; see Table 9.1 for parameter values.

the proposition represent the only candidate for an open-loop equilibrium. To see that they
indeed establish an equilibrium, observe that when player 1 follows the suggested strategy,
the expected cash proceeds of player 1 and player 2 are independent of player 2’s trading
strategy. The same holds for player 2’s strategy.

For small λ, ρ or τ , the oscillations act as a kind of hedge; they provide a cushion against
market manipulations of the other player. Such a hedge is only possible for an odd number
N + 1 of trading time points; for an even number, Xn = Xn+2 cannot hold for all n since
X0 6= XN+1 = 0. Hence, no Nash equilibrium exists for even N + 1 and λ = 0, ρ = 0 or
τ = 0. If λ, ρ, τ > 0, then an equilibrium exists, and for the special case of trading at two
points in time, we can state closed form expressions for the optimal trading strategy.
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Figure 9.4: Asset positions X(tn) = Xn and Y (tn) = Yn in the open-loop equilibrium over time; the
inset shows a closeup for the final time period t ∈ [0.98, 1.0]. The solid line represents player 1 (the seller),
the dashed line player 2 (the competitor). Reduced discretization time step τ ; see Table 9.1 for parameter
values.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Asset positions Xn, Yn

Time tn

(a) N=50

0.2 0.4 0.6 0.8 1.0

-8

-6

-4

-2

2

4

Asset positions Xn, Yn

Time tn

(b) N=51

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Asset positions Xn, Yn

Time tn

(c) N=52

0.2 0.4 0.6 0.8 1.0

-8

-6

-4

-2

2

4

Asset positions Xn, Yn

Time tn

(d) N=53

Figure 9.5: Asset positions X(tn) = Xn and Y (tn) = Yn in the open-loop equilibrium over time. The solid
line represents player 1 (the seller), the dashed line player 2 (the competitor). Reduced transient impact
parameter λ and resilience ρ; see Table 9.1 for parameter values. Four different numbers of simulation time
steps are compared: N = 50, 51, 52, 53. Note the different scales in the subfigures.

Proposition 9.3. Consider the case of trading at two points in time t0 and t1 with τ :=
t1− t0. Let λ > 0, ρ > 0 and τ > 0. If player 1 needs to sell X0 shares and player 2 does not
want to change her overall asset position (Y0 = 0), then the open-loop equilibrium is given
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by

Ẋ0 =

(
2

3
− (γ + λ)eρτ

6λ(eρτ − 1)

)
X0
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(
1

3
+
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)
X0

Ẏ0 =

(
γeρτ + λ

3λ(eρτ − 1)

)
X0

= −Ẏ1.

The expected cash proceeds are

E
[
Ẋ0P0 + Ẋ1P1

]
= X0P̃0 −

(
2γ + (e−ρτ + 1)λ

9
+

5(γ + λ)2

36λ(1− e−ρτ )

)
X2
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E
[
Ẏ0P0 + Ẏ1P1

]
=

(γ + e−ρτλ)2

9λ(1− e−ρτ )
X2

0 .

Proof. This follows by a straightforward application of the computation method for the
optimal strategies given in the proof of Theorem 9.1.

By the formulas of the preceding proposition, we see that if the transient impact pa-
rameter λ, the resilience parameter ρ and the time between the two trades τ is large, then
player 1 is selling a part of her asset position at the first time point and the remainder at
the second time point. As the three parameters λ, ρ and τ decrease, player 1’s first trade
Ẋ1 changes sign and she increases her asset position at the first time point. This behavior
can best be explained by first looking at player 2’s situation. Player 2 knows that player 1
sells X0 shares and that player 1 cannot completely hedge against market manipulation. By
front running or preying on player 1’s sell order, player 2 can thus make a profit. She will
therefore sell at time t0 and cover her position at time t1. The size of her orders is driven
by the trade-off between increased gains of predation and increased cost of trading due to
her own transient price impact. The smaller λ, ρ and τ , i.e., the smaller this effect of the
transient impact, the larger her trades. For player 1, such large trades of player 2 offer a
profitable opportunity to provide liquidity; the more shares player 2 is selling at time t0,
the more shares player 1 will be willing to buy in spite of her own selling intentions. The
same logic extends to larger even numbers N + 1 of trading time points: player 2 exploits
the inability of player 1 to hedge by large sell orders at the first point in time; player 1
counteracts this by providing liquidity and buying a large number of shares. Thereafter,
both players follow an oscillating strategy that hedges them against market manipulation
by the other player.

9.4 Optimal closed-loop strategies

In the previous section, we determined the open-loop Nash equilibrium and observed sur-
prising oscillations. We now turn to closed-loop strategies, i.e. strategies, that at time tn
take into account the trades of the other player at times t0, . . . , tn−1. As discussed in Sec-
tion 7.4, the execution of such strategies requires market transparency. For the limiting case
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of λ = 0, ρ = 0 or τ = 0, we note that the oscillations of the optimal open-loop strategies
for odd N + 1 in Proposition 9.2 disappear in the closed-loop setting: both players can stop
trading at time t1 when they realize that both of them have a zero asset position. They
only need to execute their oscillatory hedge strategy if they find out that the other player
deviated from her optimal strategy and manipulated the market price.

We now turn to general parameter values of λ, ρ, τ > 0. In order to account for the
feedback effect of trades at time tn on future trades of the other player at times tn+1, . . . , tN ,
we follow a dynamic programming approach. We define the “cost function” Jn(X,Y,D) as
the difference between P̃0X (the mark-to-market value of the asset position X before the
beginning of the liquidation) and the expected cash proceeds from optimally selling X shares
between time tn and tN in a market where

• another player optimally liquidates Y shares in the same time frame

• the transient impact at the beginning of trading is D

• X0−X+Y0−Y shares were sold between t0 and tn, and this sale permanently impacted
the market price.

The following theorem provides a recursive description of the optimal trading strategy and
the cost function Jn(X, Y,D).

Theorem 9.4. In the unique closed-loop equilibrium, both players follow a trading strategy
that is linear in Xn, Yn and Dn:

Ẋn = ΦnXn + ΨnYn + ΞnDn (9.3)

Ẏn = ΦnYn + ΨnXn + ΞnDn. (9.4)

The cost function is quadratic in Xn, Yn and Dn:

Jn(Xn, Yn, Dn) = γ(X0+Y0)Xn+κnX
2
n+µnXnDn+νnD

2
n+φnY

2
n +ψnYnDn+ξnXnYn. (9.5)

All of the parameters Φn, Ψn, Ξn, κn, µn, νn, φn, ψn and ξn at time tn are real numbers
that can be recursively computed from the values of the parameters at time tn+1 and are
independent of Xn, Yn and Dn.

As a representative example, the recursion equation for κn is presented in Appendix B.1.
It is interesting to note that the evolution of Dn (reflecting trading of both players with
the general market) depends only on X0 + Y0. From the evolution of market prices, it is
hence not distinguishable whether two players each liquidate a medium sized asset position
or whether one player liquidates a large asset position and is preyed on by another player.

Proof. We show by backwards induction that J , Ẋ and Ẏ can be expressed as in Equa-
tions (9.3), (9.4) and (9.5), and we prove that explicit recursion formulas for the parameters
Φn, Ψn, Ξn, κn, µn, νn, φn, ψn and ξn exist.
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For the base case n = N , Equations (9.3), (9.4) and (9.5) hold with parameters

ΦN = 1

ΨN = 0

ΞN = 0

κN = (λ− γ)/2

µN = 1

νn = φN = ψN = 0

ξN = (λ− γ)/2.

Since both players have no choice but to liquidate their remaining asset positions at time
tN , the equilibrium is unique.

We now prove the inductive step. Assuming that selling Ẏn shares at time tn is optimal for
player 2, we can determine player 1’s minimal cost by the following dynamic programming
equation:

Jn(Xn, Yn, Dn) = min
Ẋn

{ [
γ(X0 −Xn + Y0 − Yn) + Dn +

γ + λ

2
(Ẋn + Ẏn)

]
Ẋn

+Jn+1

(
Xn − Ẋn, Yn − Ẏn, (Dn + λ(Ẋn + Ẏn))e−ρ(tn+1−tn)

) }

=: min
Ẋn

fn(Ẋn)

By the inductive hypothesis, Equation (9.5) holds for n + 1, and we have

fn(Ẋn) =

[
γ(X0 −Xn + Y0 − Yn) + Dn +

γ + λ

2
(Ẋn + Ẏn)

]
Ẋn

+ γ(X0 + Y0)(Xn − Ẋn)

+ κn+1(Xn − Ẋn)2

+ µn+1(Xn − Ẋn)(Dn + λ(Ẋn + Ẏn))e−ρ(tn+1−tn)

+ νn+1((Dn + λ(Ẋn + Ẏn))e−ρ((tn+1−tn)))2

+ φn+1(Yn − Ẏn)2

+ ψn+1(Yn − Ẏn)(Dn + λ(Ẋn + Ẏn))e−ρ(tn+1−tn)

+ ξn+1(Xn − Ẋn)(Yn − Ẏn). (9.6)

The function fn therefore is a quadratic function of Ẋn. We can find its minimum by setting
its derivative to zero and obtain that in equilibrium

−ΘnẊn = anDn + bnXn + cnYn + enẎn (9.7)
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with

an = 1− µne−ρ(tn+1−tn) + 2νnλe−2ρ(tn+1−tn)

bn = −γ − 2κn + µnλe−ρ(tn+1−tn)

cn = −γ + ψnλe−ρ(tn+1−tn) − ξn

en = (γ + λ)/2− µnλe−ρ(tn+1−tn) + 2νnλ2e−2ρ(tn+1−tn) − ψnλe−ρ(tn+1−tn) + ξn

Θn = γ + λ + 2κn − 2µnλe−ρ(tn+1−tn) + 2νnλ
2e−2ρ(tn+1−tn).

By symmetry, we know that if player 2 is following an optimal strategy, we must have

−ΘnẎn = anDn + bnYn + cnXn + enẊn. (9.8)

We can now solve this interdependency and obtain the unique solution

Ẋn =
1

Θ2
n − e2

n

[Dnan(en −Θn) + Xn(cnen −Θnbn) + Yn(bnen −Θncn)] (9.9)

Ẏn =
1

Θ2
n − e2

n

[Dnan(en −Θn) + Yn(cnen −Θnbn) + Xn(bnen −Θncn)] . (9.10)

This establishes Equations (9.3) and (9.4) for n. By plugging the previous two equations into
Equation (9.6), we obtain Jn(Xn, Yn, Dn) and find that it is of the form of Equation (9.5).
The recursion formulas for the parameters κn, µn, νn, φn, ψn and ξn follow explicitly, but
are complex. An example is presented in Appendix B.1.

In the derivation of Equations (9.9) and (9.10), we implicitly assumed that Θn 6= ±en.
By way of contradiction, assume that Θn = ±en. If Xn = Yn = Dn = 0, then this implies
that the optimal trade Ẋn for player 1 is Ẋn = ±Ẏn by Equation (9.7), irrespective of
player 2’s choice of Ẏn. Trading ±Ẏn however cannot be optimal for player 1 in general,
since it brings her in a symmetric position to player 2 and thus does not promise her any
profit, while there clearly exists a trade Ẋn that promises a profit to her.

The recursive description of the optimal trading strategies given in Theorem 9.4 can be
implemented to analyze the properties of optimal trading in different market environments.
The Mathematica source code is provided in Appendix B.3. Figures 9.6 and 9.7 show the
optimal closed-loop strategies for the same parameters as Figures 9.1 to 9.5. In all cases,
the same qualitative behavior can be observed for the optimal closed-loop strategies as for
the optimal open-loop strategies. The breakdown of oscillation that we discussed for odd
N + 1 and λ = 0, ρ = 0 or τ = 0 at the beginning of this section does not generalize to
positive values of λ, ρ and τ . To gain an intuitive understanding, assume that λ, ρ and
τ are small and consider the time point tN−1. Because Proposition 9.3 also holds in the
closed-loop setting, we see that having a large position XN−1 leads to large trades at time
tN−1 and large costs. Therefore both players will try hard to achieve XN−1 ≈ 0 = XN+1

respectively YN−1 ≈ 0 = YN+1. Now we realize that the situation at tN−3 is similar to
the situation at tN−1: Within two time steps, both players need to liquidate (almost) all
of their asset positions XN−3 respectively YN−3 and no hedge trading strategy is available.
Therefore even small asset positions XN−3 and YN−3 will lead to large trades ẊN−3 and
ẎN−3 and large costs. Hence both players will try to have small asset positions at time tN−3,
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Figure 9.6: Asset positions X(tn) = Xn and Y (tn) = Yn in the closed-loop equilibrium over time; the inset
in Subfigure (d) shows a closeup for the final time period t ∈ [0.98, 1.0]. The solid line represents player 1
(the seller), the dashed line player 2 (the competitor). See Table 9.1 for parameter values.

and we see that the situation at time tN−5 is similar to tN−3. The persistence of oscillations
in the closed-loop framework can therefore be understood by the player’s need to have small
asset positions at times tN−1, tN−3, . . . and the inflation of the positions at the intermediary
time points tN , tN−2, . . . .

9.5 Comparison with Chapter 8 and potential adjustments

In this chapter, we determined the open-loop and closed-loop equilibria for two players
trading in a market with finite resilience and no spread. We found that for small values
of λ, ρ and τ , the optimal trading strategies oscillate: both players perform large round
trip trades. From a mathematical point of view, the main issue is that this effect occurs
for small τ . For a reasonable multiple player model, one can expect the optimal trading
strategies to converge when the discretization time step τ is reduced further and further. For
the model considered in this chapter, we found numerically that such a convergence does
not hold, and we supported this observation by intuitive explanations and an analytical
treatment of limiting cases (Propositions 9.2 and 9.3). The source of the oscillations is that
the cost of round trip trading (selling at time tn and buying back at time tn+1) goes to
zero as the discretization time step τ goes to zero. This leads to an ever decreasing cost
of market manipulation and hedging and thus a shift in focus from interacting with the
market (liquidating the initial asset position) to interacting with the other strategic player
(profiting from her trading intentions respectively hedging against market manipulations by
the other player).

The market model described in Section 8.2 builds on the discrete-time precursors of
Almgren and Chriss (1999) and Almgren and Chriss (2001). In these discrete-time models,
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Figure 9.7: Asset positions X(tn) = Xn and Y (tn) = Yn in the closed-loop equilibrium over time. The solid
line represents player 1 (the seller), the dashed line player 2 (the competitor). Reduced transient impact
parameter λ and resilience ρ; see Table 9.1 for parameter values. Four different numbers of simulation time
steps are compared: N = 50, 51, 52, 53. Note the different scales in the subfigures.

the discretization time step τ has the exact opposite effect: when τ is reduced, the cost of a
round trip trade increases. This effect appears to be connected to the existence of optimal
trading strategies in multiple player settings in continuous time.

In order to account for the significant cost of round trip trades in reality, we suggest two
adjustments to the market model of Section 9.2. First, a purely temporary price impact
component can be added to the model. The resulting model reflects three different price
impacts: a permanent price impact, a transient price impact that decays over time, and a
temporary price impact that instantaneously vanishes. Practitioners find that including all
three price impacts improves pre-trade analysis accuracy (see Simmonds (2007)). Schulz
(2007) analyzes the optimal trading strategies for a single player in such a model. For our
multiple player setting, we expect that the optimal strategies are similar to the ones stated
in Section 8.3, i.e., that the qualitative features of Figure 9.1 carry over to general values of
λ, ρ and τ .

As a second modeling approach, both sides of the limit order book can be modeled
explicitly. A large sell order widens the spread; after the trade, the spread narrows again
until it is increased by the next order. In such a model, the cost of a round trip trade
grows when the time between the two orders is reduced, because the spread has less time
to narrow. Based on the favorable results of Figure 9.1, we expect that the oscillations of
Figures 9.2, 9.3 and 9.4 disappear and optimal trading behavior similar to the results of
Chapter 8 emerges. Unfortunately, explicitly modeling both sides of the limit order book
significantly complicates the already complex computations. We therefore leave this task
for future research.





Appendix A

Supplementary material for Chapter 8

A.1 Explicit function of the seller’s cash position after liquidation

The coefficients Ai and Bi in Formula (8.11) are complex. As an illustration of their struc-
ture, we explicitly state A7 and B7 as examples of “simple” coefficients, and A6 and B6 as
more complex examples.
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A.2 Mathematica source code

In this section, we provide the Mathematica source code used to generate the figures in
Chapter 8. Two slightly different programs were used for the case of one competitor and
the case of more than one competitor. We only provide the program for more than one
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competitor; the simpler version for only one competitor can be obtained by replacing the
multiple player optimization in the second stage by a linear trading strategy for the single
competitor and by adjusting the computations for the optimal asset position Z0.

Stage 1 (all players active)

First, we set the parameters for the first stage according to Theorem 8.1. We divide the
players in three groups: group X consists of the seller liquidating X0 shares, group Y consists
of n−1 competitors each buying Y0 shares, and group Z consists of the remaining competitor
buying Z0 shares. Furthermore, we let Mathematica know that T1 is a positive real number;
this allows Mathematica to simplify the computations.

a1 = n/(n + 2)γ/λ (1− Exp [−(n)/(n + 2) ∗ γ/λT1])
∧(−1)a1 = n/(n + 2)γ/λ (1− Exp [−(n)/(n + 2) ∗ γ/λT1])
∧(−1)a1 = n/(n + 2)γ/λ (1− Exp [−(n)/(n + 2) ∗ γ/λT1])
∧(−1)

(−X0 + (n− 1)Y0 + Z0)/ (n + 1);(−X0 + (n− 1)Y0 + Z0)/ (n + 1);(−X0 + (n− 1)Y0 + Z0)/ (n + 1);
bX1 = γ/λ (Exp [γ/λT1]− 1) ∧(−1)bX1 = γ/λ (Exp [γ/λT1]− 1) ∧(−1)bX1 = γ/λ (Exp [γ/λT1]− 1) ∧(−1)

(−X0 − (−X0 + (n− 1)Y0 + Z0)/ (n + 1)) ;(−X0 − (−X0 + (n− 1)Y0 + Z0)/ (n + 1)) ;(−X0 − (−X0 + (n− 1)Y0 + Z0)/ (n + 1)) ;
bY1 = γ/λ (Exp [γ/λT1]− 1) ∧(−1)bY1 = γ/λ (Exp [γ/λT1]− 1) ∧(−1)bY1 = γ/λ (Exp [γ/λT1]− 1) ∧(−1)

(Y0 − (−X0 + (n− 1)Y0 + Z0)/ (n + 1)) ;(Y0 − (−X0 + (n− 1)Y0 + Z0)/ (n + 1)) ;(Y0 − (−X0 + (n− 1)Y0 + Z0)/ (n + 1)) ;
bZ1 = γ/λ (Exp [γ/λT1]− 1) ∧(−1)bZ1 = γ/λ (Exp [γ/λT1]− 1) ∧(−1)bZ1 = γ/λ (Exp [γ/λT1]− 1) ∧(−1)

(Z0 − (−X0 + (n− 1)Y0 + Z0)/ (n + 1)) ;(Z0 − (−X0 + (n− 1)Y0 + Z0)/ (n + 1)) ;(Z0 − (−X0 + (n− 1)Y0 + Z0)/ (n + 1)) ;
T1 > 0;T1 > 0;T1 > 0;

Now we can define the optimal trading speeds x1, y1, z1 in stage 1 for players in all three
groups according to Theorem 8.1.

x1[t ] = a1Exp[−(n)/(n + 2)γ/λt] + bX1Exp[γ/λt];x1[t ] = a1Exp[−(n)/(n + 2)γ/λt] + bX1Exp[γ/λt];x1[t ] = a1Exp[−(n)/(n + 2)γ/λt] + bX1Exp[γ/λt];
y1[t ] = a1Exp[−(n)/(n + 2)γ/λt] + bY1Exp[γ/λt];y1[t ] = a1Exp[−(n)/(n + 2)γ/λt] + bY1Exp[γ/λt];y1[t ] = a1Exp[−(n)/(n + 2)γ/λt] + bY1Exp[γ/λt];
z1[t ] = a1Exp[−(n)/(n + 2)γ/λt] + bZ1Exp[γ/λt];z1[t ] = a1Exp[−(n)/(n + 2)γ/λt] + bZ1Exp[γ/λt];z1[t ] = a1Exp[−(n)/(n + 2)γ/λt] + bZ1Exp[γ/λt];

The asset positions X1, Y1, Z1 are obtained by integration.

X1[t ] = Integrate [x1[s], {s, 0, t}] + X0;X1[t ] = Integrate [x1[s], {s, 0, t}] + X0;X1[t ] = Integrate [x1[s], {s, 0, t}] + X0;
Y1[t ] = Integrate [y1[s], {s, 0, t}] ;Y1[t ] = Integrate [y1[s], {s, 0, t}] ;Y1[t ] = Integrate [y1[s], {s, 0, t}] ;
Z1[t ] = Integrate [z1[s], {s, 0, t}] ;Z1[t ] = Integrate [z1[s], {s, 0, t}] ;Z1[t ] = Integrate [z1[s], {s, 0, t}] ;

Now we can compute the price P1 in stage 1.

P1[t ] = Simplify[P0 + γ(X1[t]−X0 + (n− 1)Y1[t] + Z1[t])P1[t ] = Simplify[P0 + γ(X1[t]−X0 + (n− 1)Y1[t] + Z1[t])P1[t ] = Simplify[P0 + γ(X1[t]−X0 + (n− 1)Y1[t] + Z1[t])
+λ(x1[t] + (n− 1)y1[t] + z1[t])];+λ(x1[t] + (n− 1)y1[t] + z1[t])];+λ(x1[t] + (n− 1)y1[t] + z1[t])];

The gains for players in all three groups follow.

GainX1 = −Simplify [Integrate [P1[t]x1[t], {t, 0, T1}] , T1 > 0] ;GainX1 = −Simplify [Integrate [P1[t]x1[t], {t, 0, T1}] , T1 > 0] ;GainX1 = −Simplify [Integrate [P1[t]x1[t], {t, 0, T1}] , T1 > 0] ;
GainY1 = −Simplify [Integrate [P1[t]y1[t], {t, 0, T1}] , T1 > 0] ;GainY1 = −Simplify [Integrate [P1[t]y1[t], {t, 0, T1}] , T1 > 0] ;GainY1 = −Simplify [Integrate [P1[t]y1[t], {t, 0, T1}] , T1 > 0] ;
GainZ1 = −Simplify [Integrate [P1[t]z1[t], {t, 0, T1}] , T1 > 0] ;GainZ1 = −Simplify [Integrate [P1[t]z1[t], {t, 0, T1}] , T1 > 0] ;GainZ1 = −Simplify [Integrate [P1[t]z1[t], {t, 0, T1}] , T1 > 0] ;



160 Supplementary material for Chapter 8

Stage 2 (only competitors active)

Similar to the first stage, we compute the parameters, trading speeds, asset positions and
gains for the players in all three groups. The seller does not trade, and the competitors in
group Y respectively Z sell their asset positions Y0 respectively Z0. To keep the commands
for the second stage similar to the commands for the first stage, we denote the length of the
second stage by T2 (in Chapter 8, T2 denoted the end point of the second stage, i.e., the
combined length of both the first and the second stage).

a2 = (n− 1)/(n + 1) ∗ γ/λa2 = (n− 1)/(n + 1) ∗ γ/λa2 = (n− 1)/(n + 1) ∗ γ/λ
(1− Exp [−(n− 1)/(n + 1) ∗ γ/λT2])

∧(−1)(1− Exp [−(n− 1)/(n + 1) ∗ γ/λT2])
∧(−1)(1− Exp [−(n− 1)/(n + 1) ∗ γ/λT2])
∧(−1)

((−(n− 1)Y0 − Z0)/ (n)) ;((−(n− 1)Y0 − Z0)/ (n)) ;((−(n− 1)Y0 − Z0)/ (n)) ;
bY2 = γ/λ (Exp [γ/λT2]− 1) ∧(−1)bY2 = γ/λ (Exp [γ/λT2]− 1) ∧(−1)bY2 = γ/λ (Exp [γ/λT2]− 1) ∧(−1)

(−Y0 − ((n− 1) (−Y0)− Z0)/ (n)) ;(−Y0 − ((n− 1) (−Y0)− Z0)/ (n)) ;(−Y0 − ((n− 1) (−Y0)− Z0)/ (n)) ;
bZ2 = γ/λ (Exp [γ/λT2]− 1) ∧(−1)bZ2 = γ/λ (Exp [γ/λT2]− 1) ∧(−1)bZ2 = γ/λ (Exp [γ/λT2]− 1) ∧(−1)

(−Z0 − ((n− 1) (−Y0)− Z0)/ (n)) ;(−Z0 − ((n− 1) (−Y0)− Z0)/ (n)) ;(−Z0 − ((n− 1) (−Y0)− Z0)/ (n)) ;

x2[t ] = 0;x2[t ] = 0;x2[t ] = 0;
y2[t ] = a2Exp[−(n− 1)/(n + 1)γ/λt] + bY2Exp[γ/λt];y2[t ] = a2Exp[−(n− 1)/(n + 1)γ/λt] + bY2Exp[γ/λt];y2[t ] = a2Exp[−(n− 1)/(n + 1)γ/λt] + bY2Exp[γ/λt];
z2[t ] = a2Exp[−(n− 1)/(n + 1)γ/λt] + bZ2Exp[γ/λt];z2[t ] = a2Exp[−(n− 1)/(n + 1)γ/λt] + bZ2Exp[γ/λt];z2[t ] = a2Exp[−(n− 1)/(n + 1)γ/λt] + bZ2Exp[γ/λt];

X2[t ] = X1 [T1] + Integrate [x2[s], {s, 0, t}] ;X2[t ] = X1 [T1] + Integrate [x2[s], {s, 0, t}] ;X2[t ] = X1 [T1] + Integrate [x2[s], {s, 0, t}] ;
Y2[t ] = Y1 [T1] + Integrate [y2[s], {s, 0, t}] ;Y2[t ] = Y1 [T1] + Integrate [y2[s], {s, 0, t}] ;Y2[t ] = Y1 [T1] + Integrate [y2[s], {s, 0, t}] ;
Z2[t ] = Z1 [T1] + Integrate [z2[s], {s, 0, t}] ;Z2[t ] = Z1 [T1] + Integrate [z2[s], {s, 0, t}] ;Z2[t ] = Z1 [T1] + Integrate [z2[s], {s, 0, t}] ;

P2[t ] = Simplify[P0 + γ(X2[t]−X0 + (n− 1)Y2[t] + Z2[t])P2[t ] = Simplify[P0 + γ(X2[t]−X0 + (n− 1)Y2[t] + Z2[t])P2[t ] = Simplify[P0 + γ(X2[t]−X0 + (n− 1)Y2[t] + Z2[t])
+λ(x2[t] + (n− 1)y2[t] + z2[t])];+λ(x2[t] + (n− 1)y2[t] + z2[t])];+λ(x2[t] + (n− 1)y2[t] + z2[t])];

GainX2 = −Simplify [Integrate [P2[t] ∗ x2[t], {t, 0, T2}]] ;GainX2 = −Simplify [Integrate [P2[t] ∗ x2[t], {t, 0, T2}]] ;GainX2 = −Simplify [Integrate [P2[t] ∗ x2[t], {t, 0, T2}]] ;
GainY2 = −Simplify [Integrate [P2[t] ∗ y2[t], {t, 0, T2}]] ;GainY2 = −Simplify [Integrate [P2[t] ∗ y2[t], {t, 0, T2}]] ;GainY2 = −Simplify [Integrate [P2[t] ∗ y2[t], {t, 0, T2}]] ;
GainZ2 = −Simplify [Integrate [P2[t] ∗ z2[t], {t, 0, T2}]] ;GainZ2 = −Simplify [Integrate [P2[t] ∗ z2[t], {t, 0, T2}]] ;GainZ2 = −Simplify [Integrate [P2[t] ∗ z2[t], {t, 0, T2}]] ;

Calculation of optimal Y0

The overall gain for each player is the sum of the gains in the two stages.

GainX = Simplify [GainX1 + GainX2] ;GainX = Simplify [GainX1 + GainX2] ;GainX = Simplify [GainX1 + GainX2] ;
GainY = Simplify [GainY1 + GainY2] ;GainY = Simplify [GainY1 + GainY2] ;GainY = Simplify [GainY1 + GainY2] ;
GainZ = Simplify [GainZ1 + GainZ2] ;GainZ = Simplify [GainZ1 + GainZ2] ;GainZ = Simplify [GainZ1 + GainZ2] ;

We compute the optimal asset position Z0 for the single competitor by setting the derivative
of GainZ to zero. This gives an expression that depends on Y0. In equilibrium, we must
have Y0 = Z0, which allows us to solve for Y0 and Z0.

Y0 = Simplify[Y0/.Solve[Y0 == Z0/.Y0 = Simplify[Y0/.Solve[Y0 == Z0/.Y0 = Simplify[Y0/.Solve[Y0 == Z0/.
Solve[Simplify[D[GainZ , Z0], T2 > 0] == 0, Z0][[1]], Y0][[1]]];Solve[Simplify[D[GainZ , Z0], T2 > 0] == 0, Z0][[1]], Y0][[1]]];Solve[Simplify[D[GainZ , Z0], T2 > 0] == 0, Z0][[1]], Y0][[1]]];

Z0 = Y0;Z0 = Y0;Z0 = Y0;
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Numerical example

To generate figures, we first set the parameters.

T1 = 1;T1 = 1;T1 = 1;
T2 = 1;T2 = 1;T2 = 1;
X0 = 1;X0 = 1;X0 = 1;
γ = 3;γ = 3;γ = 3;
λ = 1;λ = 1;λ = 1;
P0 = 10;P0 = 10;P0 = 10;

Then, we concatenate the asset positions of stage 1 and stage 2.

X[t ] = If[t < T1, X1[t], X2[t− T1]];X[t ] = If[t < T1, X1[t], X2[t− T1]];X[t ] = If[t < T1, X1[t], X2[t− T1]];
Y [t ] = If[t < T1, Y1[t], Y2[t− T1]];Y [t ] = If[t < T1, Y1[t], Y2[t− T1]];Y [t ] = If[t < T1, Y1[t], Y2[t− T1]];

Finally, we can plot the asset position evolution in equilibrium for varying numbers of
competitors.

Plot[{X[t]/.n → 2, X[t]/.n → 10, X[t]/.n → 100,Plot[{X[t]/.n → 2, X[t]/.n → 10, X[t]/.n → 100,Plot[{X[t]/.n → 2, X[t]/.n → 10, X[t]/.n → 100,
n ∗ Y [t]/.n → 2, n ∗ Y [t]/.n → 10, n ∗ Y [t]/.n → 100},n ∗ Y [t]/.n → 2, n ∗ Y [t]/.n → 10, n ∗ Y [t]/.n → 100},n ∗ Y [t]/.n → 2, n ∗ Y [t]/.n → 10, n ∗ Y [t]/.n → 100},
{t, 0, T1 + T2}, PlotStyle → {GrayLevel[0],{t, 0, T1 + T2}, PlotStyle → {GrayLevel[0],{t, 0, T1 + T2}, PlotStyle → {GrayLevel[0],
GrayLevel[0.5], GrayLevel[0.8],GrayLevel[0.5], GrayLevel[0.8],GrayLevel[0.5], GrayLevel[0.8],
{GrayLevel[0], Dashing[{0.05, 0.02}]},{GrayLevel[0], Dashing[{0.05, 0.02}]},{GrayLevel[0], Dashing[{0.05, 0.02}]},
{GrayLevel[0.5], Dashing[{0.05, 0.02}]},{GrayLevel[0.5], Dashing[{0.05, 0.02}]},{GrayLevel[0.5], Dashing[{0.05, 0.02}]},
{GrayLevel[0.8], Dashing[{0.05, 0.02}]}}]{GrayLevel[0.8], Dashing[{0.05, 0.02}]}}]{GrayLevel[0.8], Dashing[{0.05, 0.02}]}}]





Appendix B

Supplementary material for Chapter 9

B.1 Recursion function for the parameter κn

As explained in the proof of Theorem 9.4, the coefficients in Formula (9.5) for time tn−1 can
be computed recursively from the coefficients for time tn. The recursion equations are very
complex. We therefore provide only the equation for κn−1; the recursion equations for the
other parameters have a similar form and complexity.

κn−1 = (4λ2νn(eρτ (2γ+2κn+ξn)−λ(µn+ϕ))2+(κn(e3ρτ (γ2+λ(8κn+3λ−2ξn)+2γ(2λ+
ξn))−8λ2νn(−2κnψn+λ(µn+ψn))+4eρτ (2λ3νn−κ2

nψ2
n+κnλψn(−2µn+ψn)+λ2(µ2

n+2νn(γ+
2κn−ξn)+µnψn))−2e2ρτ (γλ(2µn+ψn)+κn(4λµn−2λψn−2ξnψn)+λ(4λµn−2µnξn+λψn+
2ξnψn)))2)/(−2λµn+eρτ (γ+4κn+λ−2ξn)+2κnψn)2+ 1

−2λµn+eρτ (γ+4κn+λ−2ξn)+2κnψn
2λµn(−eρτ (2γ+

2κn + ξn) + λ(µn + ψn))(−e3ρτ (γ2 + λ(8κn + 3λ − 2ξn) + 2γ(2λ + ξn)) + 8λ2νn(−2κnψn +
λ(µn +ψn))−4eρτ (2λ3νn−κ2

nψ
2
n +κnλψn(−2µn +ψn)+λ2(µ2

n +2νn(γ +2κn−ξn)+µnψn))+
2e2ρτ (γλ(2µn + ψn) + κn(4λµn − 2λψn − 2ξnψn) + λ(4λµn − 2µnξn + λψn + 2ξnψn))) −

1
−2λµn+eρτ (γ+4κn+λ−2ξn)+2κnψn

2(8γλ2νn +e2ρτ (γ2−λ(2κn +ξn)+γ(2κn +λ+ξn))+eρτ (λ2(µn +

ψn) + γ(−5λµn− 2κnψn + λψn)))(e3ρτ (γ2 + 8κ2
n + 4κnλ + γ(8κn + λ− 3ξn)− ξn(λ + 2ξn)) +

4λ3νn(−µn+ψn)+2eρτλ(−κnψ
2
n+λ(2µ2

n+4κnνn−2νnξn−µnψn))+e2ρτ (κn(−12λµn+2ξnψn)+
γ(2κnψn +λ(−4µn +ψn))+λ(λ(−2µn +ψn)+2ξn(µn +ψn))))− (2ξn(e3ρτ (γ2 +λ(8κn +3λ−
2ξn)+2γ(2λ+ξn))−8λ2νn(−2κnψn+λ(µn+ψn))+4eρτ (2λ3νn−κ2

nψ
2
n+κnλψn(−2µn+ψn)+

λ2(µ2
n+2νn(γ+2κn−ξn)+µnψn))−2e2ρτ (γλ(2µn+ψn)+κn(4λµn−2λψn−2ξnψn)+λ(4λµn−

2µnξn+λψn+2ξnψn)))(e3ρτ (γ2+γ(2κn+λ)+2λ(−κn+ξn))+4λ3νn(µn−ψn)−2eρτλ(κnµnψn+
λ(µ2

n + 4κnνn − 2νnξn − 2µnψn)) + e2ρτ (4κnλ(µn − ψn) + 4κ2
nψn + λ(λµn − 2µnξn − 2λψn) +

γ(2κnψn−λ(µn+2ψn)))))/(−2λµn+eρτ (γ+4κn+λ−2ξn)+2κnψn)2+(4φn(e3ρτ (γ2+γ(2κn+
λ) + 2λ(−κn + ξn)) + 4λ3νn(µn − ψn)− 2eρτλ(κnµnψn + λ(µ2

n + 4κnνn − 2νnξn − 2µnψn)) +
e2ρτ (4κnλ(µn−ψn)+4κ2

nψn+λ(λµn−2µnξn−2λψn)+γ(2κnψn−λ(µn+2ψn))))2)/(−2λµn+
eρτ (γ + 4κn + λ− 2ξn) + 2κnψn)2− 1

−2λµn+eρτ (γ+4κn+λ−2ξn)+2κnψn
4λψn(−eρτ (2γ + 2κn + ξn) +

λ(µn + ψn))(−e3ρτ (γ2 + γ(2κn + λ) + 2λ(−κn + ξn)) + 4λ3νn(−µn + ψn) + 2eρτλ(κnµnψn +
λ(µ2

n+4κnνn−2νnξn−2µnψn))+e2ρτ (−4κ2
nψn+4κnλ(−µn+ψn)+λ(−λµn+2µnξn+2λψn)+

γ(−2κnψn + λ(µn + 2ψn)))))/(8λ2νn + e2ρτ (3γ + 4κn + 3λ + 2ξn)− 2eρτ (3λµn + κnψn))2

B.2 Additional numerical examples

The numerical examples in this section shall illustrate the behavior of the optimal trading
strategies for the case Y0 6= 0. We compare the evolution of the optimal asset positions over
time for the three cases Y0 = X0, Y0 = 0 and Y0 = −X0 in a market with large λ and ρ
and in a market with small λ and ρ. The exact parameter values are given in Table B.1.
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Parameter Large λ, ρ Small λ, ρ
Player 1’s asset position X0 1
Duration T of trading time interval 1
Permanent impact sensitivity γ 1
Transient impact sensitivity λ 10 0.1
Resilience parameter ρ 200 10
Time interval between trades τ 1/50
Number of time steps N 50

Table B.1: Parameter values used for numerical computation in Section B.2.
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Figure B.1: Optimal asset positions X(tn) = Xn and Y (tn) = Yn over time for the open-loop setting. The
solid line represents player 1 (the seller), the dashed line player 2 (the competitor). Note the different scales
in the subfigures.

Figures B.1 and B.2 graphically show the open-loop and closed-loop equilibria. We find that
in line with our observation in Chapter 9, open-loop and closed-loop strategies are similar.
For large λ and ρ, the results are qualitatively similar to the behavior derived in Chapter
8. For small λ and ρ, oscillations appear irrespective of the asset position Y0 of the second
player.
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Figure B.2: Optimal asset positions X(tn) = Xn and Y (tn) = Yn over time for the closed-loop setting.
The solid line represents player 1 (the seller), the dashed line player 2 (the competitor). Note the different
scales in the subfigures.

B.3 Mathematica source code for the closed-loop setting

In this section, we provide the Mathematica source code used to generate the closed-loop
figures in Chapter 9 and in this appendix. The Mathematica computations for the open-loop
figures are straightforward and therefore omitted.

Derivation of recursion equations

First, we define the parameters a, b, etc., such that −ΘẊ = aD + bX + cY + eẎ .

a = 1− µExp[−ρτ ] + 2νλExp[−2ρτ ];a = 1− µExp[−ρτ ] + 2νλExp[−2ρτ ];a = 1− µExp[−ρτ ] + 2νλExp[−2ρτ ];
b = −γ − 2κ + µλExp[−ρτ ];b = −γ − 2κ + µλExp[−ρτ ];b = −γ − 2κ + µλExp[−ρτ ];
c = −γ + ψλExp[−ρτ ]− ξ;c = −γ + ψλExp[−ρτ ]− ξ;c = −γ + ψλExp[−ρτ ]− ξ;
e = (γ + λ)/2− µλExp[−ρτ ] + 2νλ∧2Exp[−2ρτ ]e = (γ + λ)/2− µλExp[−ρτ ] + 2νλ∧2Exp[−2ρτ ]e = (γ + λ)/2− µλExp[−ρτ ] + 2νλ∧2Exp[−2ρτ ]

−ψκExp[−ρτ ] + ξ;−ψκExp[−ρτ ] + ξ;−ψκExp[−ρτ ] + ξ;
Θ = γ + λ + 2κ− 2µλExp[−ρτ ] + 2νλ∧2Exp[−2ρτ ];Θ = γ + λ + 2κ− 2µλExp[−ρτ ] + 2νλ∧2Exp[−2ρτ ];Θ = γ + λ + 2κ− 2µλExp[−ρτ ] + 2νλ∧2Exp[−2ρτ ];
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Now, we transform these such that xtilde := Ẋ = a1D + b1X + c1Y .

a1 = a(e−Θ)/(Θ∧2− e∧2);a1 = a(e−Θ)/(Θ∧2− e∧2);a1 = a(e−Θ)/(Θ∧2− e∧2);
b1 = (ce−Θb)/(Θ∧2− e∧2);b1 = (ce−Θb)/(Θ∧2− e∧2);b1 = (ce−Θb)/(Θ∧2− e∧2);
c1 = (be−Θc)/(Θ∧2− e∧2);c1 = (be−Θc)/(Θ∧2− e∧2);c1 = (be−Θc)/(Θ∧2− e∧2);
xtilde = a1D + b1X + c1Y ;xtilde = a1D + b1X + c1Y ;xtilde = a1D + b1X + c1Y ;
ytilde = a1D + b1Y + c1X;ytilde = a1D + b1Y + c1X;ytilde = a1D + b1Y + c1X;

Next, we define J to be the cost incurred from the next period onwards when player 1 still
needs to sell X shares, player 2 needs to sell Y shares, and the market exhibits a transient
impact of D. J2 is the cost expected now given sales of x respectively y at the current point
in time.

J [X , Y , D ] = γ(X0 + Y0)X + κX∧2 + µXD + νD∧2J [X , Y , D ] = γ(X0 + Y0)X + κX∧2 + µXD + νD∧2J [X , Y , D ] = γ(X0 + Y0)X + κX∧2 + µXD + νD∧2
+φY ∧2 + ψY D + ξXY ;+φY ∧2 + ψY D + ξXY ;+φY ∧2 + ψY D + ξXY ;

J2[x , y ] = (γ(X0−X + Y0− Y ) + D + (x + y)(γ + λ)/2)xJ2[x , y ] = (γ(X0−X + Y0− Y ) + D + (x + y)(γ + λ)/2)xJ2[x , y ] = (γ(X0−X + Y0− Y ) + D + (x + y)(γ + λ)/2)x
+J [X − x, Y − y, (D + λ(x + y))Exp[−ρτ ]];+J [X − x, Y − y, (D + λ(x + y))Exp[−ρτ ]];+J [X − x, Y − y, (D + λ(x + y))Exp[−ρτ ]];

The optimal cost is therefore

Dummy = J2[xtilde, ytilde];Dummy = J2[xtilde, ytilde];Dummy = J2[xtilde, ytilde];

We separate this term into its different components as a polynomial of X, Y and D.

kappaG = Simplify[Coefficient[Dummy, X∧2]];kappaG = Simplify[Coefficient[Dummy, X∧2]];kappaG = Simplify[Coefficient[Dummy, X∧2]];
muG = Simplify[Coefficient[Coefficient[Dummy, X], D]];muG = Simplify[Coefficient[Coefficient[Dummy, X], D]];muG = Simplify[Coefficient[Coefficient[Dummy, X], D]];
nuG = Simplify[Coefficient[Dummy, D∧2]];nuG = Simplify[Coefficient[Dummy, D∧2]];nuG = Simplify[Coefficient[Dummy, D∧2]];
phiG = Simplify[Coefficient[Dummy, Y ∧2]];phiG = Simplify[Coefficient[Dummy, Y ∧2]];phiG = Simplify[Coefficient[Dummy, Y ∧2]];
psiG = Simplify[Coefficient[Coefficient[Dummy, Y ], D]];psiG = Simplify[Coefficient[Coefficient[Dummy, Y ], D]];psiG = Simplify[Coefficient[Coefficient[Dummy, Y ], D]];
xiG = Simplify[Coefficient[Coefficient[Dummy, X], Y ]];xiG = Simplify[Coefficient[Coefficient[Dummy, X], Y ]];xiG = Simplify[Coefficient[Coefficient[Dummy, X], Y ]];

Definition of the market

AuctionNumber = 100;AuctionNumber = 100;AuctionNumber = 100;
T = 1;T = 1;T = 1;
τ = T/AuctionNumber;τ = T/AuctionNumber;τ = T/AuctionNumber;
γ = 1.0;γ = 1.0;γ = 1.0;
λ = 10.0;λ = 10.0;λ = 10.0;
ρ = 200.0;ρ = 200.0;ρ = 200.0;

Recursion for parameter evolution over time

The parameters for the cost function at the last time step are given as a starting point for
the recursion.
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Clear[kappa, mu, nu, phi, psi, xi]Clear[kappa, mu, nu, phi, psi, xi]Clear[kappa, mu, nu, phi, psi, xi]
kappa[AuctionNumber] = (λ− γ)/2;kappa[AuctionNumber] = (λ− γ)/2;kappa[AuctionNumber] = (λ− γ)/2;
mu[AuctionNumber] = 1;mu[AuctionNumber] = 1;mu[AuctionNumber] = 1;
nu[AuctionNumber] = 0;nu[AuctionNumber] = 0;nu[AuctionNumber] = 0;
phi[AuctionNumber] = 0;phi[AuctionNumber] = 0;phi[AuctionNumber] = 0;
psi[AuctionNumber] = 0;psi[AuctionNumber] = 0;psi[AuctionNumber] = 0;
xi[AuctionNumber] = (λ− γ)/2;xi[AuctionNumber] = (λ− γ)/2;xi[AuctionNumber] = (λ− γ)/2;

Based on these, we can define the previous parameters recursively.

kappa[n ]:=kappa[n] = kappaG/.{κ → kappa[n + 1],kappa[n ]:=kappa[n] = kappaG/.{κ → kappa[n + 1],kappa[n ]:=kappa[n] = kappaG/.{κ → kappa[n + 1],
µ → mu[n + 1], ν → nu[n + 1], φ → phi[n + 1],µ → mu[n + 1], ν → nu[n + 1], φ → phi[n + 1],µ → mu[n + 1], ν → nu[n + 1], φ → phi[n + 1],
ψ → psi[n + 1], ξ → xi[n + 1]}ψ → psi[n + 1], ξ → xi[n + 1]}ψ → psi[n + 1], ξ → xi[n + 1]}

mu[n ]:=mu[n] = muG/.{Y → 0}/.{κ → kappa[n + 1],mu[n ]:=mu[n] = muG/.{Y → 0}/.{κ → kappa[n + 1],mu[n ]:=mu[n] = muG/.{Y → 0}/.{κ → kappa[n + 1],
µ → mu[n + 1], ν → nu[n + 1], φ → phi[n + 1],µ → mu[n + 1], ν → nu[n + 1], φ → phi[n + 1],µ → mu[n + 1], ν → nu[n + 1], φ → phi[n + 1],
ψ → psi[n + 1], ξ → xi[n + 1]}ψ → psi[n + 1], ξ → xi[n + 1]}ψ → psi[n + 1], ξ → xi[n + 1]}

nu[n ]:=nu[n] = nuG/.{κ → kappa[n + 1],nu[n ]:=nu[n] = nuG/.{κ → kappa[n + 1],nu[n ]:=nu[n] = nuG/.{κ → kappa[n + 1],
µ → mu[n + 1], ν → nu[n + 1], φ → phi[n + 1],µ → mu[n + 1], ν → nu[n + 1], φ → phi[n + 1],µ → mu[n + 1], ν → nu[n + 1], φ → phi[n + 1],
ψ → psi[n + 1], ξ → xi[n + 1]}ψ → psi[n + 1], ξ → xi[n + 1]}ψ → psi[n + 1], ξ → xi[n + 1]}

phi[n ]:=phi[n] = phiG/.{κ → kappa[n + 1],phi[n ]:=phi[n] = phiG/.{κ → kappa[n + 1],phi[n ]:=phi[n] = phiG/.{κ → kappa[n + 1],
µ → mu[n + 1], ν → nu[n + 1], φ → phi[n + 1],µ → mu[n + 1], ν → nu[n + 1], φ → phi[n + 1],µ → mu[n + 1], ν → nu[n + 1], φ → phi[n + 1],
ψ → psi[n + 1], ξ → xi[n + 1]}ψ → psi[n + 1], ξ → xi[n + 1]}ψ → psi[n + 1], ξ → xi[n + 1]}

psi[n ]:=psi[n] = psiG/.{κ → kappa[n + 1],psi[n ]:=psi[n] = psiG/.{κ → kappa[n + 1],psi[n ]:=psi[n] = psiG/.{κ → kappa[n + 1],
µ → mu[n + 1], ν → nu[n + 1], φ → phi[n + 1],µ → mu[n + 1], ν → nu[n + 1], φ → phi[n + 1],µ → mu[n + 1], ν → nu[n + 1], φ → phi[n + 1],
ψ → psi[n + 1], ξ → xi[n + 1]}ψ → psi[n + 1], ξ → xi[n + 1]}ψ → psi[n + 1], ξ → xi[n + 1]}

xi[n ]:=xi[n] = xiG/.{κ → kappa[n + 1],xi[n ]:=xi[n] = xiG/.{κ → kappa[n + 1],xi[n ]:=xi[n] = xiG/.{κ → kappa[n + 1],
µ → mu[n + 1], ν → nu[n + 1], φ → phi[n + 1],µ → mu[n + 1], ν → nu[n + 1], φ → phi[n + 1],µ → mu[n + 1], ν → nu[n + 1], φ → phi[n + 1],
ψ → psi[n + 1], ξ → xi[n + 1]}ψ → psi[n + 1], ξ → xi[n + 1]}ψ → psi[n + 1], ξ → xi[n + 1]}

In order to stay within Mathematica’s recursion limits, we need to compute the parameters
in 200-step-sizes.

For[counter = AuctionNumber− 200, counter > 0,For[counter = AuctionNumber− 200, counter > 0,For[counter = AuctionNumber− 200, counter > 0,
counter = counter− 200, kappa[counter]]counter = counter− 200, kappa[counter]]counter = counter− 200, kappa[counter]]

Definition of the sales

X0 = 1;X0 = 1;X0 = 1;
Y0 = 0;Y0 = 0;Y0 = 0;

Recursion for sales trajectory evolution

With the parameters readily at hand, we can determine the exact values for the optimal
trading strategies.
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Clear[x, y, RemainingX, RemainingY, DAtTime];Clear[x, y, RemainingX, RemainingY, DAtTime];Clear[x, y, RemainingX, RemainingY, DAtTime];
x[n ]:=x[n ]:=x[n ]:=
x[n] = xtilde/.{κ → kappa[n + 1], µ → mu[n + 1],x[n] = xtilde/.{κ → kappa[n + 1], µ → mu[n + 1],x[n] = xtilde/.{κ → kappa[n + 1], µ → mu[n + 1],

ν → nu[n + 1], φ → phi[n + 1], ψ → psi[n + 1],ν → nu[n + 1], φ → phi[n + 1], ψ → psi[n + 1],ν → nu[n + 1], φ → phi[n + 1], ψ → psi[n + 1],
ξ → xi[n + 1], X → RemainingX[n],ξ → xi[n + 1], X → RemainingX[n],ξ → xi[n + 1], X → RemainingX[n],
Y → RemainingY[n], D → DAtTime[n]}Y → RemainingY[n], D → DAtTime[n]}Y → RemainingY[n], D → DAtTime[n]}

y[n ]:=y[n ]:=y[n ]:=
y[n] = ytilde/.{κ → kappa[n + 1], µ → mu[n + 1],y[n] = ytilde/.{κ → kappa[n + 1], µ → mu[n + 1],y[n] = ytilde/.{κ → kappa[n + 1], µ → mu[n + 1],

ν → nu[n + 1], φ → phi[n + 1], ψ → psi[n + 1],ν → nu[n + 1], φ → phi[n + 1], ψ → psi[n + 1],ν → nu[n + 1], φ → phi[n + 1], ψ → psi[n + 1],
ξ → xi[n + 1], X → RemainingX[n],ξ → xi[n + 1], X → RemainingX[n],ξ → xi[n + 1], X → RemainingX[n],
Y → RemainingY[n], D → DAtTime[n]}Y → RemainingY[n], D → DAtTime[n]}Y → RemainingY[n], D → DAtTime[n]}

x[AuctionNumber]:=RemainingX[AuctionNumber];x[AuctionNumber]:=RemainingX[AuctionNumber];x[AuctionNumber]:=RemainingX[AuctionNumber];
y[AuctionNumber]:=RemainingY[AuctionNumber];y[AuctionNumber]:=RemainingY[AuctionNumber];y[AuctionNumber]:=RemainingY[AuctionNumber];

RemainingX[0] = X0;RemainingX[0] = X0;RemainingX[0] = X0;
RemainingX[n ]:=RemainingX[n]RemainingX[n ]:=RemainingX[n]RemainingX[n ]:=RemainingX[n]

= RemainingX[n− 1]− x[n− 1];= RemainingX[n− 1]− x[n− 1];= RemainingX[n− 1]− x[n− 1];
RemainingY[0] = Y0;RemainingY[0] = Y0;RemainingY[0] = Y0;
RemainingY[n ]:=RemainingY[n]RemainingY[n ]:=RemainingY[n]RemainingY[n ]:=RemainingY[n]

= RemainingY[n− 1]− y[n− 1];= RemainingY[n− 1]− y[n− 1];= RemainingY[n− 1]− y[n− 1];
DAtTime[0] = 0;DAtTime[0] = 0;DAtTime[0] = 0;
DAtTime[n ]:=DAtTime[n]DAtTime[n ]:=DAtTime[n]DAtTime[n ]:=DAtTime[n]

= (DAtTime[n− 1] + λ(x[n− 1] + y[n− 1]))Exp[−ρτ ];= (DAtTime[n− 1] + λ(x[n− 1] + y[n− 1]))Exp[−ρτ ];= (DAtTime[n− 1] + λ(x[n− 1] + y[n− 1]))Exp[−ρτ ];

Output of derived sales trajectories

We can now plot the optimal trajectories.

For[xvector = {}; counter = 0, counter ≤ AuctionNumber,For[xvector = {}; counter = 0, counter ≤ AuctionNumber,For[xvector = {}; counter = 0, counter ≤ AuctionNumber,
counter++, xvector = Append[xvector,counter++, xvector = Append[xvector,counter++, xvector = Append[xvector,
{counter/AuctionNumberT, x[counter]}]]{counter/AuctionNumberT, x[counter]}]]{counter/AuctionNumberT, x[counter]}]]

For[yvector = {}; counter = 0, counter ≤ AuctionNumber,For[yvector = {}; counter = 0, counter ≤ AuctionNumber,For[yvector = {}; counter = 0, counter ≤ AuctionNumber,
counter++, yvector = Append[yvector,counter++, yvector = Append[yvector,counter++, yvector = Append[yvector,
{counter/AuctionNumberT, y[counter]}]]{counter/AuctionNumberT, y[counter]}]]{counter/AuctionNumberT, y[counter]}]]

ListPlot[{xvector, yvector}, PlotJoined → True,ListPlot[{xvector, yvector}, PlotJoined → True,ListPlot[{xvector, yvector}, PlotJoined → True,
AxesOrigin → {0, 0}, PlotRange → All,AxesOrigin → {0, 0}, PlotRange → All,AxesOrigin → {0, 0}, PlotRange → All,
PlotStyle → {{GrayLevel[0], Dashing[{}]},PlotStyle → {{GrayLevel[0], Dashing[{}]},PlotStyle → {{GrayLevel[0], Dashing[{}]},
{GrayLevel[0.5], Dashing[{0.05, 0.02}]}}]{GrayLevel[0.5], Dashing[{0.05, 0.02}]}}]{GrayLevel[0.5], Dashing[{0.05, 0.02}]}}]
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For[RemainingXvector = {}; counter = 0,For[RemainingXvector = {}; counter = 0,For[RemainingXvector = {}; counter = 0,
counter ≤ AuctionNumber, counter++,counter ≤ AuctionNumber, counter++,counter ≤ AuctionNumber, counter++,
RemainingXvector = Append[RemainingXvector,RemainingXvector = Append[RemainingXvector,RemainingXvector = Append[RemainingXvector,
{counter/AuctionNumberT, RemainingX[counter]}]]{counter/AuctionNumberT, RemainingX[counter]}]]{counter/AuctionNumberT, RemainingX[counter]}]]

RemainingXvector = Append[RemainingXvector,RemainingXvector = Append[RemainingXvector,RemainingXvector = Append[RemainingXvector,
{T + 1/AuctionNumber, 0}];{T + 1/AuctionNumber, 0}];{T + 1/AuctionNumber, 0}];

For[RemainingYvector = {}; counter = 0,For[RemainingYvector = {}; counter = 0,For[RemainingYvector = {}; counter = 0,
counter ≤ AuctionNumber, counter++,counter ≤ AuctionNumber, counter++,counter ≤ AuctionNumber, counter++,
RemainingYvector = Append[RemainingYvector,RemainingYvector = Append[RemainingYvector,RemainingYvector = Append[RemainingYvector,
{counter/AuctionNumberT, RemainingY[counter]}]]{counter/AuctionNumberT, RemainingY[counter]}]]{counter/AuctionNumberT, RemainingY[counter]}]]

RemainingYvector = Append[RemainingYvector,RemainingYvector = Append[RemainingYvector,RemainingYvector = Append[RemainingYvector,
{T + 1/AuctionNumber, 0}];{T + 1/AuctionNumber, 0}];{T + 1/AuctionNumber, 0}];

ListPlot[{RemainingXvector, RemainingYvector},ListPlot[{RemainingXvector, RemainingYvector},ListPlot[{RemainingXvector, RemainingYvector},
PlotJoined → True, PlotRange → All,PlotJoined → True, PlotRange → All,PlotJoined → True, PlotRange → All,
PlotStyle → {{GrayLevel[0], Dashing[{}]},PlotStyle → {{GrayLevel[0], Dashing[{}]},PlotStyle → {{GrayLevel[0], Dashing[{}]},
{GrayLevel[0.5], Dashing[{0.05, 0.02}]}}]{GrayLevel[0.5], Dashing[{0.05, 0.02}]}}]{GrayLevel[0.5], Dashing[{0.05, 0.02}]}}]

For[DAtTimevector = {}; counter = 0,For[DAtTimevector = {}; counter = 0,For[DAtTimevector = {}; counter = 0,
counter ≤ AuctionNumber, counter++,counter ≤ AuctionNumber, counter++,counter ≤ AuctionNumber, counter++,
DAtTimevector = Append[DAtTimevector,DAtTimevector = Append[DAtTimevector,DAtTimevector = Append[DAtTimevector,
{counter/AuctionNumberT, DAtTime[counter]}]]{counter/AuctionNumberT, DAtTime[counter]}]]{counter/AuctionNumberT, DAtTime[counter]}]]

ListPlot[DAtTimevector, PlotJoined → True,ListPlot[DAtTimevector, PlotJoined → True,ListPlot[DAtTimevector, PlotJoined → True,
AxesOrigin → {0, 0}, PlotRange → All,AxesOrigin → {0, 0}, PlotRange → All,AxesOrigin → {0, 0}, PlotRange → All,
PlotStyle → {{GrayLevel[0], Dashing[{}]},PlotStyle → {{GrayLevel[0], Dashing[{}]},PlotStyle → {{GrayLevel[0], Dashing[{}]},
{GrayLevel[0], Dashing[{0.05, 0.02}]}}]{GrayLevel[0], Dashing[{0.05, 0.02}]}}]{GrayLevel[0], Dashing[{0.05, 0.02}]}}]
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Föllmer, H. and A. Schied (2004). Stochastic Finance. Gruyter.

Foster, F. D. and S. Viswanathan (1996, September). Strategic trading when agents forecast the
forecasts of others. Journal of Finance 51 (4), 1437–78.

Frey, R. (1997). Derivative asset analysis in models with level-dependent and stochastic volatility.
CWI Quarterly 10 (1), 1–34.

Frey, R. and P. Patie (2002). Risk management for derivatives in illiquid markets: a simulation-
study. In Advances in finance and stochastics, pp. 137–159. Berlin: Springer.

Fudenberg, D. and D. Levine (1988, February). Open-loop and closed-loop equilibria in dynamic
games with many players. Journal of Economic Theory 44 (1), 1–18.

Glosten, L. R. and P. R. Milgrom (1985, March). Bid, ask and transaction prices in a specialist
market with heterogeneously informed traders. Journal of Financial Economics 14 (1), 71–100.

Grossman, S. J. and M. H. Miller (1988, July). Liquidity and market structure. Journal of
Finance 43 (3), 617–37.



174 Bibliography

Gruber, U. M. (2004, September). Convergence of Binomial Large Investor Models and General
Correlated Random Walks. Ph. D. thesis, Technische Universität Berlin.

Harris, L. E. (1997, December). Order exposure and parasitic traders. Working paper .

Harris, L. E. and E. Gurel (1986, September). Price and volume effects associated with changes
in the s&p 500 list: New evidence for the existence of price pressures. Journal of Finance 41 (4),
815–29.

He, H. and H. Mamaysky (2005, May). Dynamic trading policies with price impact. Journal of
Economic Dynamics and Control 29 (5), 891–930.

Hisata, Y. and Y. Yamai (2000, December). Research toward the practical application of liquidity
risk evaluation methods. Monetary and Economic Studies 18 (2), 83–127.

Holthausen, R. W., R. W. Leftwich, and D. Mayers (1987, December). The effect of large block
transactions on security prices: A cross-sectional analysis. Journal of Financial Economics 19 (2),
237–267.

Holthausen, R. W., R. W. Leftwich, and D. Mayers (1990, July). Large-block transactions,
the speed of response, and temporary and permanent stock-price effects. Journal of Financial
Economics 26 (1), 71–95.

Huberman, G. and W. Stanzl (2004, July). Price manipulation and quasi-arbitrage. Economet-
rica 72 (4), 1247–1275.

Huberman, G. and W. Stanzl (2005, June). Optimal liquidity trading. Review of Finance 9 (2),
165–200.

Jarrow, R. A. and P. Protter (2007, October). Liquidity risk and option pricing theory. In J. Birge
and V. Linetsky (Eds.), Handbooks in operations research and management science: Financial
Engineering, Volume 15, Chapter 17. Elsevier.

Jorion, P. (2000, September). Risk management lessons from Long-Term Capital Management.
European Financial Management 6 (3), 277–300.

Kahneman, D. and A. Tversky (1979, March). Prospect theory: An analysis of decision under
risk. Econometrica 47 (2), 263–291.

Kempf, A. and O. Korn (1999, Febuary). Market depth and order size. Journal of Financial
Markets 2 (1), 29–48.

Kissell, R. and M. Glantz (2003). Optimal Trading Strategies: Quantitative Approaches for
Managing Market Impact and Trading Risk. Mcgraw-Hill Professional.

Kissell, R. and R. Malamut (2005, February). Understanding the profit and loss distribution of
trading algorithms. Algorithmic Trading: Precision, Control, Execution.

Kissell, R. and R. Malamut (2006, Winter). Algorithmic decision making framework. Journal of
Trading 1, 12–21.

Konishi, H. and N. Makimoto (2001, Summer). Optimal slice of a block trade. Journal of
Risk 3 (4), 33–51.



Bibliography 175

Kraus, A. and H. R. Stoll (1972, June). Price impacts of block trading on the New York Stock
Exchange. Journal of Finance 27 (3), 569–588.

Kyle, A. S. (1985, November). Continuous auctions and insider trading. Econometrica 53 (6),
1315–1336.

Ladyzhenskaya, O. A., V. A. Solonnikov, and N. N. Ural’ceva (1968). Linear and Quasi-linear
Equations of Parabolic Type. Number 23 in Translations of Mathematical Monographs. American
Mathematical Society.

Large, J. (2007, February). Measuring the resiliency of an electronic limit order book. Journal
of Financial Markets 10 (1), 1–25.

Leinweber, D. (2007, Febuary). Algo vs. algo. Institutional Investor’s Alpha Magazine 2, 44–51.

Lillo, F., J. D. Farmer, and R. N. Mantegna (2003, January). Econophysics: Master curve for
price-impact function. Nature 421, 129–130.

Loeb, T. (1983, May/June). Trading cost: The critical link between investment information and
results. Financial Analysts Journal 39 (3), 39–44.

Lowenstein, R. (2001). When genius failed: The rise and fall of Long-Term Capital Management.
Fourth Estate.

Mönch, B. (2004, January). Optimal liquidation strategies. EFMA 2004 Basel Meetings Paper .

Obizhaeva, A. (2007, January). Information vs. liquidity: Evidence from portfolio transition
trades. Working paper .

Obizhaeva, A. and J. Wang (2006, April). Optimal trading strategy and supply/demand dynam-
ics. Forthcoming in Journal of Financial Markets.

O’Hara, M. (1998). Market Microstructure Theory. Blackwell Publishers.

Perold, A. F. (1998, Spring). The implementation shortfall: Paper versus reality. Journal of
Portfolio Management 14 (3), 4–9.

Potters, M. and J.-P. Bouchaud (2003, June). More statistical properties of order books and price
impact. Physica A 324 (1-2), 133–140.

Pratt, J. (1964, January/April). Risk aversion in the small and in the large. Economet-
rica 32 (1/2), 122–136.

Rockafellar, R. T. (1970). Convex Analysis. Princeton Landmarks in Mathematics and Physics.
Princeton University Press.

Rogers, L. C. G. and S. Singh (2007, August). The cost of illiquidity and its effects on hedging.
Working paper .

Roux, A. (2007, October). Optimal portfolio liquidation with quadratic and non-quadratic risk
measures. Master’s thesis, Technical University Berlin.

Schack, J. (2004, November). The orders of battle. Institutional Investor 11, 77–84.



176 Bibliography

Schulz, A. (2007, July). Optimal execution in limit order book markets with call auctions. Master’s
thesis, Technical University Berlin.

Simmonds, M. (2007, February). The use of quantitative models in execution analytics and
algorithmic trading. Presentation at the University Finance Seminar, Judge Business School,
Cambridge University.

Submaranian, A. and R. A. Jarrow (2001, October). The liquidity discount. Mathematical
Finance 11 (4), 447–474.

Till, H. (2006). EDHEC comments on the Amaranth case: Early lessons from the debacle.
EDHEC Comments.

Weber, P. and B. Rosenow (2005, August). Order book approach to price impact. Quantitative
Finance 5 (4), 357–364.


