Analysis I - Stetige Funktionen

Prof. Dr. Reinhold Schneider

Prof. Dr. Reinhold Schneider

Analysis I - Stetige Funktionen

Funktionengrenzwert

Definition

Seien (X, d_X) und (Y, d_Y) metrische Räume. Desweiteren seien E eine Teilmenge von $X, f : E \to Y$ eine Funktion und p ein Häufungspunkt der Menge E.

Wir sagen f hat den **Funktionsgrenzwert** y an der Stelle p, kurz $f(x) \to y$ für $x \to p$ bzw. $\lim_{x \to p} f(x) = y$, falls ein $y \in Y$ existiert, so dass es zu jedem $\varepsilon > 0$ ein $\delta > 0$ gibt derart, dass

$$d_Y(f(x), y) < \varepsilon$$

$$\text{für alle } x \in \{x \in E : 0 < d_X(x,p) < \delta\} = \big(U_\delta(p) \setminus \{p\}\big) \cap E.$$

Funktionsgrenzwert

Theorem

Es gilt $f(x) \to y$ für $x \to p$ genau dann, wenn für jede Folge $(x_k)_{k \in \mathbb{N}}$ aus $E \setminus \{p\}$ mit $\lim_{k \to \infty} x_k = p$ gilt $\lim_{k \to \infty} f(x_k) = y$.

Beweis.

"\(\Rightarrow\)": Falls $\lim_{x\to p} f(x) = y$, so folgt nach Definition für beliebiges $\varepsilon>0$, dass ein $\delta>0$ existiert mit $d_Y(f(x),y)<\varepsilon$ für alle $x\in \left(U_\delta(p)\setminus\{p\}\right)\cap E$. Falls die Folge $(x_k)_{k\in\mathbb{N}}$ für $k\to\infty$ gegen p konvergiert, gibt es ein $N_\delta\in\mathbb{N}$ mit $0< d_X(x_k,p)<\delta$ für alle $k>N_\delta$. Die bedeutet $x_k\in \left(U_\delta(p)\setminus\{p\}\right)\cap E$ und folglich gilt $d_Y(f(x_k),y)<\varepsilon$ für alle $k>N_\delta$.

Funktionsgrenzwert

Beweis.

" \Leftarrow ": Angenommen, es gilt $f(x) \not\to y$ für $x \to p$. Dann existiert ein $\varepsilon > 0$, so dass für jedes $\delta > 0$ ein $x \in E \setminus \{p\}$ existiert mit $d_Y(f(x),y) \ge \varepsilon$, aber $0 < d_X(x,p) < \delta$. Wir setzen $\delta = \delta_n = \frac{1}{n}$ und nehmen einen zugehörigen Punkt $x_n = x$. Dann gilt $x_n \to p$ für $n \to \infty$, aber $d_Y(f(x_n),y) \ge \varepsilon > 0$ für alle $n \in \mathbb{N}$. Dies steht im Widerspruch zur Voraussetzung $f(x_n) \to y$.

Corollary

Hat eine Funktion f an der Stelle p einen Funktionsgrenzwert, so ist dieser eindeutig.

Die Limesregeln übertragen sich analog auf die Funktionsgrenzwerte.

Funktionsgrenzwert

Theorem

Sei \mathbb{R}^m und \mathbb{R}^n , $m, n \in \mathbb{N}$, versehen mit der Euklidischen Norm. Desweiteren seien $E \subseteq \mathbb{R}^m$ und \mathbf{p} ein Häufungspunkt der Menge E. Dann gilt für die Funktionen $f: E \to \mathbb{R}^n$, $g: E \to \mathbb{R}^n$ und beliebigen $\mathbf{a} \in \mathbb{R}^n$ und $\alpha \in \mathbb{R}$, dass

$$\begin{split} &\lim_{\mathbf{x} \to \mathbf{p}} \left(\mathbf{f}(\mathbf{x}) + \mathbf{g}(\mathbf{x}) \right) = \lim_{\mathbf{x} \to \mathbf{p}} \mathbf{f}(\mathbf{x}) + \lim_{\mathbf{x} \to \mathbf{p}} \mathbf{g}(\mathbf{x}), \\ &\lim_{\mathbf{x} \to \mathbf{p}} \left(\mathbf{f}(\mathbf{x}) + \mathbf{a} \right) = \lim_{\mathbf{x} \to \mathbf{p}} \mathbf{f}(\mathbf{x}) + \mathbf{a}, \\ &\lim_{\mathbf{x} \to \mathbf{p}} \left(\alpha \mathbf{f}(\mathbf{x}) \right) = \alpha \lim_{\mathbf{x} \to \mathbf{p}} \mathbf{f}(\mathbf{x}), \\ &\lim_{\mathbf{x} \to \mathbf{p}} \langle \mathbf{f}(\mathbf{x}), \mathbf{g}(\mathbf{x}) \rangle = \langle \lim_{\mathbf{x} \to \mathbf{p}} \mathbf{f}(\mathbf{x}), \lim_{\mathbf{x} \to \mathbf{p}} \mathbf{g}(\mathbf{x}) \rangle. \end{split}$$

Stetigkeit

Definition

Sei $E \subseteq X$ und $f: E \to Y$ eine Funktion sowie $x_0 \in E$. Die Funktion f heißt **stetig an der Stelle** $x_0 \in E$, falls es zu jedem $\varepsilon > 0$ ein $\delta > 0$ gibt derart, dass $d_Y(f(x), f(x_0)) < \varepsilon$ für alle $d_X(x, x_0) < \delta$ gilt. Die Funktion f heißt **stetig in** E, falls f in jedem Punkt $x \in E$ stetig ist.

In einem isolierten Punkt $x_0 \in E$ ist jede Funktion stetig, wie man leicht sieht.

Stetige Funktionen

Theorem

Unter der Voraussetzung des vorigen Satzes gilt in einem Häufungspunkt x_0 von E, dass f dort genau dann stetig ist, falls

$$\lim_{x\to x_0} f(x) = f(x_0) \ \text{ist.}$$

Theorem

Es seien (X, d_X) , (Y, d_Y) und (Z, d_Z) metrische Räume. Für $E \subseteq X$ seien durch $f: E \to f(E) \subseteq Y$ und $g: f(E) \to Z$ Abbildungen gegeben und $h = g \circ f: E \to Z$ bezeichne ihre Komposition. Falls f in $x_0 \in E$ und g in $f(x_0)$ beide stetig sind, so ist h an der Stelle x_0 ebenfalls stetig.

Stetige Funktionen

Proof.

Da g an der Stelle $y_0:=f(x_0)\in Y$ stetig ist, gibt es zu jedem $\varepsilon>0$ ein $\gamma>0$ mit $d_Z\big(g(y),g(f(x_0)\big)<\varepsilon$ für alle $y\in Y$ mit $d_Y\big(y,f(x_0)\big)<\gamma$. Aufgrund der Stetigkeit von f in $x_0\in E$ existiert zu diesem $\gamma>0$ ein $\delta>0$ mit $d_Y\big(f(x),f(x_0)\big)<\gamma$ für alle $x\in E$ mit $d_X(x,x_0)<\delta$. Dies bedeutet, es gilt

$$d_{Z}\big(g(f(x)),g(f(x_{0}))\big)=d_{Z}\big(h(x),h(x_{0})\big)<\varepsilon$$

für alle $x \in E$ mit $d_X(x, x_0) < \delta$.

Stetige Funktionen und offene Mengen

Theorem

Die Abbildung $f: X \to Y$ ist genau stetig auf X, falls für jede offene Menge $W \subseteq Y$ das Urbild $f^{-1}(W)$ eine offene Teilmenge in X ist.

Proof.

"⇒": Sei f stetig auf X und W ⊆ Y eine offene Teilmenge von Y. Wir zeigen, dass jeder Punkt p ∈ f⁻¹(W) ein innerer Punkt der Menge f⁻¹(W) ist. Sei p ∈ X mit f(p) ∈ W. Dann ist f(p) ein innerer Punkt in W, d.h. es existiert $\varepsilon > 0$ mit U_ε(f(p)) ⊆ W. Aufgrund der Stetigkeit existiert ein $\delta > 0$ mit f(x) ∈ U_ε(f(p)) für alle x mit d_X(x,p) < δ . Damit gilt für alle x ∈ U_δ(p) dass f(x) ∈ U_ε(f(p)) ⊆ W, d.h. x ∈ f⁻¹(W) bzw. U_δ(p) ⊆ f⁻¹(W). Da dies zeigt dass *p* innerer Punkt von f⁻¹(W) ist, Teil des Satzes bewiesen.

Stetige Funktionen und offene Mengen

Proof.

" \Leftarrow ": Sei f⁻¹(W) eine offene Menge in X für jede offene Menge W ⊆ Y. Zu $x_0 \in X$ und beliebigem $\varepsilon > 0$ sei

W:= { $x \in X : d_X(x, f(x_0)) < \varepsilon}$ Da W eine offene Teilmenge in

 $W:= \big\{y \in Y: d_Y\big(y,f(x_0)\big) < \varepsilon \big\}$. Da W eine offene Teilmenge in Y, ist $U=f^{-1}(W)\subseteq X$ ebenfalls offen und $x_0\in W$ ist ein innerer Punkt von U. Das heißt, es existiert eine offene Umgebung

$$U_{\delta}(x_0) = \{x \in X : d_X(x, x_0) < \delta\} \subseteq W.$$

Somit gilt für alle $x\in U_\delta(x_0)$, das heißt $d_X(x,x_0)<\delta$, dass $d_X\big(f(x),f(x_0)\big)<\varepsilon$ ist.

Stetige Funktionen

Theorem

Seien f und $g:X\to\mathbb{C}$ (bzw. \mathbb{R}) stetige Funktionen, dann sind ebenfalls f+g und $f\cdot g$ stetig. Falls $g(x)\neq 0$ für alle $x\in X$, dann ist sogar f/g eine stetig Funktion.

Proof.

Der Beweis ist eine einfache Anwendung der Limesregeln für Folgen.

Stetige Funktionen

Theorem

Seien $f_1, f_2, \ldots, f_n : X \to \mathbb{R}$ stetige Funktionen, dann ist $\mathbf{f} = (f_1, f_2, \ldots, f_n) : X \to \mathbb{R}^n$ stetig. Sei $\mathbf{g} : X \to \mathbb{R}^n$ ebenfalls stetig, so gilt dies auch für die Funktionen $\mathbf{f} + \mathbf{g} : X \to \mathbb{R}^n$ und $\langle \mathbf{f}, \mathbf{g} \rangle : X \to \mathbb{R}$.

Proof.

Der erste Teil des Beweises folgt aus der Ungleichung

$$|f_i(x) - f_i(x_0)| \le ||f(x) - f(x_0)||.$$

Der Rest verbleibt dem Leser als Übung.

Example (Beispiel)

- ① Sei $f : \mathbb{R} \to \mathbb{R}$ ein Polynom, so ist f stetig.
- 2 Sei $f : \mathbb{R} \to \mathbb{R}$ gegeben durch

$$f(x) = sgn(x) = \begin{cases} +1, & x > 0, \\ 0, & x = 0, \\ -1, & x < 0, \end{cases}$$

so ist f in x=0 nicht stetig, aber in $\mathbb{R}\setminus\{0\}$ stetig.

 $f(x) = \begin{cases} \frac{1}{x}, & x \neq 0, \\ 0, & x = 0, \end{cases}$

so ist f in x = 0 nicht stetig, aber in $\mathbb{R} \setminus \{0\}$.

Die Funktion $f(x) = \begin{cases} \sin\frac{1}{x}, & x \neq 0, \\ 0, & x = 0, \end{cases},$

ist in x = 0 nicht stetig, aber in $\mathbb{R} \setminus \{0\}$.

5 Die Funktion $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0, \end{cases}$

ist in $\mathbb R$ stetig.

Einseitiger Grenzwert und Stetigkeit

Sei $E \subseteq \mathbb{R}$ und $f : E \to Y$ eine Funktion. Häufig treten Grenzwerte auf, bei denen x von rechts oder von links gegen x₀ strebt, bei denen also E ein Intervall $(x_0, x_0 + a)$ bzw. $(x_0, x_0 - a)$ mit a > 0 ist. Man spricht dann von einem rechtsseitigen bzw. linksseitigen Grenzwert und verwendet zu seiner Kennzeichnung das Symbol $x \rightarrow x_0 + bzw. \ x \rightarrow x_0 -$ (gelegentlich auch $x \rightarrow x_0 + 0$ bzw. $x \rightarrow x_0 - 0$). Es existiert also zum Beispiel $y = \lim_{x \to x_0 +} f(x)$, wenn es zu jedem $\varepsilon > 0$ ein $\delta > 0$ gibt, so dass für alle $x_0 < x < x_0 + \delta$ stets die Ungleichung $|f(x) - y| < \varepsilon$ besteht. Diese Begriffe werden auch dann benutzt, wenn f in einer vollen Umgebung von x_0 definiert ist, aber der Grenzwert $\lim_{x\to x_0} f(x)$ nicht existiert. Man überzeugt sich leicht, dass genau dann $\lim_{x\to x_0} f(x) = y$ existiert, wenn $\lim_{x\to x_0-} f(x) = \lim_{x\to x_0+} f(x) = y$ ist.

Analog ist die *einseitige Stetigkeit* definiert. Eine Funktion ist linksseitig stetig, wenn

$$\lim_{x\to x_0-}f(x)=f(x_0),$$

bzw. rechtsseitig stetig, wenn

$$\lim_{x\to x_0+}f(x)=f(x_0).$$

Wenn f in einer vollen Umgebung von x_0 definiert ist, so gilt "rechtsseitig stetig und linksseitig stetig \Leftrightarrow stetig".

Example

Für die Signumfunktion aus Beispiel 11 gilt

$$\lim_{x\to 0-} sgn(x) = -1, \qquad \lim_{x\to 0+} sgn(x) = +1.$$

Insbesondere ist sie rechtseitig stetig im Nullpunkt aber nicht linkseitig stetig.

Zusammenhängende Mengen und Stetigkeit

Definition

Sei (X, d) ein metrischer Raum und $A, B \subseteq X$. Die beiden Mengen A und B heißen **getrennt**, falls

$$\overline{A} \cap B = \emptyset$$
 und $A \cap \overline{B} = \emptyset$.

Insbesondere ist somit die leere Menge von jeder anderen Menge getrennt. Eine Menge $M \subseteq X$ heißt **zusammenhängend**, wenn sie nicht als Vereinigung zweier nichtleerer getrennter Mengen geschrieben werden kann.

Example

- Die beiden Mengen A = (0, 1) und B = (1, 2) sind getrennt.
- ② Die beiden Mengen A = [0, 1] und B = (1, 2) sind zwar disjunkt, aber nicht getrennt.

Theorem

Eine Teilmenge $M \subseteq \mathbb{R}$ ist genau dann zusammenhängend, falls für alle $x, y \in M$ mit x < y jedes $z \in (x, y)$ auch $z \in M$ ist.

Proof.

"⇒": Seien $x, y \in M$ mit x < y und $z \in (x, y)$ mit $z \notin M$. Wir setzen

$$A:=(-\infty,z)\cap M,\quad B:=(z,\infty)\cap M.$$

Dann gilt $M = A \cup B$ und $\overline{A} \cap B = \emptyset$ sowie $A \cap \overline{B} = \emptyset$, das heißt M ist nicht zusammenhängend. Dies steht aber im Widerspruch zur Voraussetzung. " \Leftarrow ": Sei M nicht zusammenhängend. Dann existieren zwei getrennte Mengen A und B mit $M = A \cup B$. Sei $X \in A$ und $Y \in B$. Ohne Beschränkung der Allgemeinheit gelte $X \in Y$. Wir setzen

$$z:=\sup(A\cap(x,y)).$$

Dann ist $z \in \overline{A}$, aber wegen der Getrenntheit $z \not\in B$. Falls $z \not\in A$, so gilt x < z < y und $z \not\in M$. Falls $z \in A$, so existiert wegen $z \not\in \overline{B}$ ein weiteres $z' \not\in B$ mit z < z' < y. Das heißt $z' \not\in A$ und somit $z' \not\in M$.

Theorem

Sei $f: X \to Y$ eine auf X stetige Funktion. Zu jeder zusammenhängenden Menge $M \subseteq X$ ist auch $f(M) \subseteq Y$ eine zusammenhängende Teilmenge von Y.

Proof.

Angenommen, f(M) sei nicht zusammenhängend, d.h. $f(M) = A \cup B$ mit geeigneten, getrennten Mengen A, B \subseteq Y. Wir definieren

$$G:=f^{-1}(A)\cap M\neq\emptyset\quad \text{und}\quad H:=f^{-1}(B)\cap M\neq\emptyset.$$

Dann gilt $M = G \cup H$, da $M \subseteq f^{-1}(A) \cup f^{-1}(B)$. Aufgrund der Stetigkeit von f ist $f^{-1}(\overline{A})$ in X abgeschlossen und es gilt $\overline{G} \subseteq f^{-1}(\overline{A})$, somit $f(\overline{G}) \subseteq \overline{A}$. Da f(H) = B, folgt aus $\overline{A} \cap B = \emptyset$ auch $\overline{G} \cap H = \emptyset$. Analog zeigt man $G \cap \overline{H} = \emptyset$, d.h. die Menge M ist nicht zusammenhängend.

Zwischenwertsatz

Example

Sei $f : \mathbb{R} \to \mathbb{R}$ definiert durch

$$f(x) := \begin{cases} \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

Dann ist f in $x_0 = 0$ nicht stetig. Dennoch wird jede zusammenhängende Menge M wieder auf eine zusammenhängende Menge abgebildet.

Theorem (Zwischenwertsatz)

Sei $f : [a,b] \to \mathbb{R}$ eine stetige Funktion mit f(a) < f(b). Dann existiert zu jedem $c \in \mathbb{R}$ mit f(a) < c < f(b) ein $x \in (a,b)$ mit f(x) = c.

Zwischenwertsatz

Proof.

Da das Intervall [a, b] nach Satz 15 zusammenhängend ist, ist auch f([a,b]) eine zusammenhängende Menge, d.h. f([a,b]) = [f(a), f(b)].

Definition

Eine Funktion $f:[a,b] \to \mathbb{R}$ heißt monoton wachsend bzw. monoton fallend falls $f(x) \le f(y)$ bzw. $f(x) \ge f(y)$ für alle x < y gilt. Wir sprechen von **strenger Monotonie** falls die strenge Ungleichung gilt.

Corollary

Sei $f:[a,b]\to\mathbb{R}$ streng monoton wachsend und stetig, dann ist

$$f: [a,b] \rightarrow [f(a),f(b)]$$
 bijektiv.

Theorem

Seien (X, d_X) und (Y, d_Y) metrische Räume und die Menge $K \subseteq X$ kompakt. Ist $f : K \to Y$ eine stetige Abbildung, dann ist $f(K) \subseteq Y$ kompakt.

Beweis.

Wir betrachten eine beliebige offene Überdeckung $\{V_{\alpha}\}_{\alpha\in I}$ von f(K). Aufgrund von Satz 8 sind die Mengen $f^{-1}(V_{\alpha})$ für alle $\alpha\in I$ offen in X. Wegen $f(K)\subseteq\bigcup_{\alpha\in I}V_{\alpha}$ gilt $K\subseteq\bigcup_{\alpha\in I}f^{-1}(V_{\alpha})$, d.h. $\{f^{-1}(V_{\alpha}):\alpha\in I\}$ bildet eine offene Überdeckung von X. Infolge der Kompaktheit von K existiert eine endliche Teilüberdeckung $K\subseteq\bigcup_{i=1}^Nf^{-1}(V_{\alpha_i})$. Damit gilt

$$f(K) \subseteq \bigcup_{i=1}^N f(f^{-1}(V_{\alpha_i})) = \bigcup_{i=1}^N V_{\alpha_i}.$$

Die bedeutet, dass $\{V_{\alpha_i}, i=1,\ldots,N\}$ eine endliche Teilüberdeckung von f(K) bildet.

Definition

Seien (X, d_X) und (Y, d_Y) metrische Räume und $E \subseteq X$. Die Abbildung $f : E \to Y$ heißt **beschränkt**, falls R > 0 und $y_0 \in Y$ existieren mit $d_Y(f(x), y_0) < R$ für alle $x \in E$.

Theorem

Seien (X, d_X) und (Y, d_Y) metrische Räume und die Menge $K \subseteq X$ kompakt. Sei ferner $f : K \to Y$ eine stetige Funktion, dann ist $f(K) \subseteq Y$ eine abgeschlossene und beschränkte Menge, d.h. f ist eine beschränkte Funktion.

Beweis.

Wegen Satz 21 ist $f(K) \subseteq Y$ kompakt. Folglich ist f(K) auch beschränkt und abgeschlossen.

Theorem

Sei (X, d) ein metrischer Raum, $K \subseteq X$ eine kompakte Menge und $f : K \to \mathbb{R}$ eine stetige Funktion. Ferner seien $m := \inf_{x \in K} f(x)$ und $M := \sup_{x \in K} f(x)$. Dann existieren $p, q \in K$ mit f(p) = m und f(q) = M.

Beweis.

Nach Satz 23 ist $f(K) \subseteq \mathbb{R}$ eine abgeschlossene und beschränkte Menge. Somit gilt $m, M \in f(K)$, d.h. es existieren $p, q \in X$ mit f(p) = m und f(q) = M.

Theorem

Seien (X, d_X) und (Y, d_Y) metrische Räume und die Menge $K \subseteq X$ kompakt. Die Funktion $f : K \to Y$ sei stetig und bijektiv. Dann ist die inverse Abbildung $f^{-1} : Y \to K$ ebenfalls stetig auf Y.

Beweis.

Wegen Satz 8 genügt es zu zeigen, dass die Bildmenge f(V) einer offenen Menge $V \subseteq K$ in Y offen ist. Nun ist das Komplement von V in K, d.h. $K \setminus V$, abgeschlossen in X. Eine abgeschlossene Teilmenge einer kompakten Menge ist wieder kompakt und infolge Satz 21 ist daher $f(K \setminus V) \subseteq Y$ kompakt und somit abgeschlossen in Y. Wegen der Bijektivität gilt

$$Y \setminus f(K \setminus V) = f(V)$$

und daher ist die Menge f(V) offen.

Definition

Seien (X, d_X) und (Y, d_Y) metrische Räume. Eine Funktion $f: X \to Y$ heißt **gleichmäßig stetig**, falls zu jedem $\varepsilon > 0$ ein $\delta > 0$ existiert derart, dass für alle $x, y \in X$ mit $d_X(x, y) < \delta$ gilt

$$d_Y(f(x), f(y)) < \varepsilon$$
.

Die gleichmäßige Stetigkeit ist eine globale Eigenschaft. Die Funktion $f:(0,\infty)\to\mathbb{R}$ gegeben durch $f(x)=\frac{1}{x}$ ist in allen Punkten $x\in(0,\infty)$ stetig, aber nicht gleichmäßig stetig.

Theorem

Seien (X, d_X) und (Y, d_Y) metrische Räume und die Menge $K \subseteq X$ kompakt. Ist die Funktion $f : K \to Y$ stetig, so ist f auch gleichmäßig stetig auf K.

Beweis.

Sei $\varepsilon>0$ beliebig aber fest gewählt. Wegen der Stetigkeit gibt es zu jedem $x_0\in X$ eine Zahl $\delta_{x_0}>0$ mit $d_Y\big(f(x),f(x_0)\big)<\frac{\varepsilon}{2}$ für alle $x\in K$ mit $d_X(x,x_0)<\delta_{x_0}$. Wir betrachten die Mengen $V_{x_0},\,x_0\in K$, definiert durch

$$V_{x_0} = \left\{ x \in X : d_X(x, x_0) < \frac{\delta_{x_0}}{2} \right\}.$$

Dann ist $\{V_{x_0}: x_0 \in K\}$ eine offene Überdeckung von K. Wegen der Kompaktheit von K existiert eine endliche Teilüberdeckung $\{V_{x_i}: i=1,\ldots,N\}$. Sei nun $2\delta:=\min\{\delta_{x_i}: i=1,\ldots,N\}$, dann gibt es zu jedem $x,y\in K$ mit $d_X(x,y)<\delta$ einen Index $m\in\{1,\ldots,N\}$ mit

$$d_X(x, x_m) < \delta_{x_m}$$

und

$$d_X(y, x_m) < \delta_{x_m}$$
.

Somit gilt

$$d_Y(f(x), f(y)) \leq d_Y(f(x), f(x_m)) + d_Y(f(x_m), f(y)) < \varepsilon.$$

