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Abstract. A pseudocircle is a simple closed curve on the sphere or
in the plane. The study of arrangements of pseudocircles was initiated
by Grünbaum, who defined them as collections of simple closed curves
that pairwise intersect in exactly two crossings. Grünbaum conjectured
that the number of triangular cells p3 in digon-free arrangements of n
pairwise intersecting pseudocircles is at least 2n−4. We present examples
to disprove this conjecture. With a recursive construction based on an
example with 12 pseudocircles and 16 triangles we obtain a family with
p3(A)/n→ 16/11 = 1.45. We expect that the lower bound p3(A) ≥ 4n/3
is tight for infinitely many simple arrangements. It may however be that
digon-free arrangements of n pairwise intersecting circles indeed have at
least 2n− 4 triangles.

For intersecting arrangements with digons we have a lower bound of
p3 ≥ 2n/3, and conjecture that p3 ≥ n− 1.

Concerning the maximum number of triangles in intersecting arrange-
ments of pseudocircles, we show that p3 ≤ 2n2/3+O(n). This is essentially
best possible because families of intersecting arrangements of n pseudo-
circles with p3/n

2 → 2/3 as n→∞ are known.

The paper contains many drawings of arrangements of pseudocircles and
a good fraction of these drawings was produced automatically from the
combinatorial data produced by the generation algorithm. In the final
section we describe some aspects of the drawing algorithm.

1 Introduction

Arrangements of pseudocircles generalize arrangements of circles in the same vein
as arrangements of pseudolines generalize arrangements of lines. The study of
arrangements of pseudolines was initiated 1918 with an article of Levi [7] where
he studied triangles in arrangements. Since then arrangements of pseudolines
were intensively studied and the handbook article on the topic [3] lists more than
100 references.

? Partially supported by DFG Grant FE 340/11-1
?? ERC Advanced Research Grant no 267165 (DISCONV)

1



Grünbaum [6] initiated the study of arrangements of pseudocircles. By stating
a large number of conjectures he was hoping to attract the attention of researchers
for the topic. The success of this program was limited and several of Grünbaum’s
45 year old conjectures remain unsettled. In this paper we report on some progress
regarding conjectures involving numbers of triangles and digons in arrangements
of pseudocircles.

Some of our results and new conjectures are based on a program written
by the second author that enumerates all arrangements of up to 7 pairwise
intersecting pseudocircles. Before formally stating our main results we introduce
some terminology:

An arrangement of pseudocircles is a collection of closed curves in the plane
or on the sphere, called pseudocircles, with the property that the intersection of
any two of the pseudocircles is either empty or consists of two points where the
curves cross. An arrangement A of pseudocircles is

simple, if no three pseudocircles of A intersect in a common point.
pairwise intersecting, if any two pseudocircles of A have non-empty intersec-

tion. We will frequently abbreviate and just write “intersecting” instead of
“pairwise intersecting”.

completely intersecting, if there are two cells of the arrangement, which are
separated by each of the pseudocircles.

digon-free, if there is no cell of the arrangement which is incident to only two
pseudocircles.

We consider the sphere to be the most natural ambient space for arrangements
of pseudocircles. Consequently we call two arrangements isomorphic if they induce
homeomorphic cell decompositions of the sphere. In many cases, in particular
in all our figures, arrangements of pseudocircles are embedded in the Euclidean
plane, i.e., there is a distinguished outer/unbounded cell. An advantage of such a
representation is that we can refer to the inner and outer side of a pseudocircle.
Note that for every completely intersecting arrangement of pseudocircles it is
possible to choose the unbounded cell such that there is a point in the intersection
of the interiors of all pseudocircles.

In an arrangement A of pseudocircles, we denote a cell with k crossings on
its boundary as a k-cell and let pk(A) be the number of k-cells of A. Following
Grünbaum we call 2-cells digons and remark that some other authors call them
lenses. 3-cells are triangles, 4-cells are quadrangles, and 5-cells are pentagons.

Conjecture 3.7 from Grünbaum’s monograph [6] is: Every (not necessarily
simple) digon-free arrangement of n pairwise intersecting pseudocircles has at least
2n− 4 triangles. Grünbaum also provides examples of arrangements with n ≥ 6
pseudocircles and 2n− 4 triangles.

Snoeyink and Hershberger [10] showed that the sweeping technique, which
serves as an important tool for the study of arrangements of lines and pseudolines,
can be adapted to also work in the case of arrangements of pseudocircles. They
used sweeps to show that, in an intersecting arrangement of pseudocircles, every
pseudocircle is incident to two cells which are digons or triangles on either side.
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Therefore, 2p2 + 3p3 ≥ 4n, and whence, every intersecting digon-free arrangement
of n pseudocircles has at least 4n/3 triangles.

Felsner and Kriegel [4] observed that the bound from [10] also applies to non-
simple intersecting digon-free arrangements and gave examples of arrangements
showing that the bound is tight on this class for infinitely many values of n.
These examples disprove the conjecture in the non-simple case.

In Section 2, we give counterexamples to Grünbaum’s conjecture which are
simple. With a recursive construction based on an example with 12 pseudocircles
and 16 triangles we obtain a family with p3/n

n→∞−−−−→ 16/11 = 1.45. We then
replace Grünbaum’s conjecture by Conjecture 2: The lower bound p3(A) ≥ 4n/3
is tight for infinitely many non-isomorphic simple arrangements.

A specific arrangement N6 of 6 pseudocircles with 8 triangles appears as
a subarrangement in all known simple, intersecting, digon-free arrangements
with p3 < 2n − 4. From [5] it is known that N6 is not circularizable, i.e., not
representable by circles. This motivates the question, whether indeed Grünbaum’s
conjecture is true when restricted to intersecting arrangements of circles, see
Conjecture 1. In Subsection 2.1 we discuss arrangements with digons. We give an
easy extension of the argument of Snoeyink and Hershberger [10] to show that
these arrangements contain at least 2n/3 triangles. All arrangements known to
us have at least n− 1 triangles and therefore our Conjecture 3 is that n− 1 is a
tight lower bound for intersecting arrangements with digons.

In Section 3 we study the maximum number of triangles in arrangements
of n pseudocircles. We show an upper bound of order 2n2/3 + O(n). For the
lower bound construction we glue two arrangements of n pseudolines into an
arrangement of n pseudocircles. Since respective arrangements of pseudolines are
known, we obtain arrangements of pseudocircles with 2n(n− 1)/3 triangles for
n = 0, 4 (mod 6).

The paper contains many drawings of arrangements of pseudocircles and a
good fraction of these drawings was produced automatically from the combinato-
rial data produced by the generation algorithm. In Section 4 we describe some
aspects of the drawing algorithm which is based on iterative calls to a Tutte
embedding a.k.a. spring embedding with adapting weights on the edges.

From now on (unless explicitly stated otherwise) the term arrangement is
used as equivalent to simple arrangement of pairwise intersecting pseudocircles.

2 Arrangements with few Triangles

The main result of this section is the following theorem, which disproves Grünbaum’s
conjecture.

Theorem 1. The minimum number of triangles in digon-free arrangements of
n pseudocircles is

(i) 8 for 3 ≤ n ≤ 6.
(ii) d 43ne for 6 ≤ n ≤ 14.

(iii) < 16
11n for all n = 11k + 1 with k ∈ N.
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Fig. 1: Arrangements of n = 3, 4, 5 circles and p3 = 8 triangles each. Triangles (except
the outer face) are colored gray.

The basis for this theorem was laid by exhaustive computations, which
generated all simple arrangements of up to n = 7 pseudocircles. Since counting
arrangements is also interesting, we state the numbers in Table 1. The table
shows the number of simple intersecting pseudocircle arrangements on the sphere.
The first row shows the numbers when digons are allowed and the second row
shows the numbers of digon-free arrangements. The arrangements and more
information can be found on the companion website [8].

n 2 3 4 5 6 7

general 1 2 8 278 145 058 447 905 202

digon-free 0 1 2 14 2 131 3 012 972

Table 1: Number of combinatorially different arrangements of n pseudocircles.

From the complete enumeration we know the minimum number of triangles
for n ≤ 7. In the range from 8 to 14, we iteratively used arrangements with n
pseudocircles and a small number of triangles and digons to generate arrangements
with n+ 1 pseudocircles and the same property. Using this strategy, we found
arrangements with d4n/3e triangles for all n in this range. The corresponding
lower bound p3(A) ≥ 4n/3 is known from [10].

Fig. 2: Arrangements with n = 6, 7, 8 and 8, 10, 11 triangles respectively.
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A result of the computations was that the triangle-minimizing example for
n = 6 is unique, i.e., there is a unique simple arrangement N6 with 6 pseudocircles
and only 8 triangles. In [5] we have shown that N6 is not circularizable. The
arrangement N6 is a subarrangement of all known arrangements with less than
2n− 4 triangles. Therefore, the following weakening of Grünbaum’s conjecture
may be true.

Conjecture 1 (Weak Grünbaum Conjecture). Every digon-free arrangement of n
circles has at least 2n− 4 triangles.

We know that this conjecture is true for all n ≤ 9. The claim, that we
have checked all arrangements with p3(A) < 2n − 4 in this range, is justified
by the following lemma, which restricts the pairs (p2, p3) of arrangements of n
pseudocircles whose extension has p3(A) < 2n−4. In particular, to get all relevant
arrangements with n = 9 and 12 triangles we only had to extend arrangements
with n = 7 and n = 8, where p3 + 2p2 ≤ 12 which have no subarrangement
isomorphic to N6.

Lemma 1. Let A be an arrangement of pseudocircles. Then for every subar-
rangement A′ of A we have

p3(A′) + 2p2(A′) ≤ p3(A) + 2p2(A).

Proof. We show the statement for a subarrangement A′ in which one pseudocircle
C is removed from A. The inequality then follows by iterating the argument.

Consider a triangle of A′. After adding C one of the following cases occurs:
(1) the triangle remains untouched, or (2) the triangle is split into a triangle and
a quadrangle, or (3) a digon is created in the region of the triangle.

Now consider a digon of A′. After adding C, either (1) there is a digon in
this region, or (2) the digon has been split into two triangles.

We now prepare for the proof of Theorem 1(iii). The basis of the construction
is the arrangement A12 with 12 pseudocircles and 16 triangles shown in Figure 3.
This arrangement will be used iteratively for a ‘merge’ as described by the
following lemma.

Lemma 2. Let A and B be arrangements of nA and nB pseudocircles, respec-
tively, and let PA be a path in A, that intersects every pseudocircle exactly once.
If PA traverses τ triangles of A and forms δ triangles with pairs of pseudocircles
from A, then there is an arrangement C of nA + nB − 1 pseudocircles with
p3( C) = p3(A) + p3(B) + δ − τ − 1.

Proof. Take a drawing of A and make a hole in the two cells, where the path PA

ends. This yields a drawing of A on a cylinder such that none of the pseudocircles
is contractible. The path PA connects the two boundaries of the cylinder. Now
we stretch the drawing such that it becomes a narrow belt, where all intersections
of pseudocircles take place in a small disk, which we call belt-buckle. This drawing
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Fig. 3: A digon-free, completely intersecting arrangement A12 of n = 12 pseudocircles
with exactly 16 triangles. The dashed curve intersects every pseudocircle exactly once.

4

D

(2)

(1)

(3)

(4)

Fig. 4: An illustration of the construction in Lemma 2. Pseudocircles of A (B) are
drawn red (blue).

of A is called a belt drawing. The drawing of the red subarrangement in Figure 4
shows a belt drawing.

Choose a triangle 4 in B and a pseudocircle B which is incident to 4. Let
b be the edge of B on the boundary of 4. Specify a disk D, which is traversed
by b and disjoint from all other edges of B. Now replace B by a belt drawing
of A in a small neighborhood of B such that the belt-buckle is drawn within D;
see Figure 4.

The arrangement C obtained from the merge of B and A along B consists
of nA + nB − 1 pseudocircles. Most of the cells c of C are of one of the following
four types:

(1) All boundary edges of c belong to pseudocircles of A.

(2) All boundary edges of c belong to pseudocircles of B.
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(3) All but one of the boundary edges of c belong to pseudocircles of B and the
remaining edge belongs to A. (These cells correspond to cells of B with a
boundary edge on B.)

(4) Quadrangular cells, whose boundary edges alternatingly belong to A and B.

From the cells of B, only 4 and the other cell containing b (which is not
a triangle since B is simple) have not been taken into account. In C, the
corresponding two cells have at least two boundary edges from B and at least
two from A. Consequently, neither of the two cells are triangles. The remaining
cells of C are formed by pseudocircles from A together with one of the two
boundary pseudocircles of 4 other than B. These two pseudocircles cross through
A following the path prescribed by PA. There are δ triangles among these cells,
but τ of these are obtained because PA traverses a triangle of A. Among cells
of C of types (1) to (4) all the triangles have a corresponding triangle in A or B.
But 4 is a triangle of B which does not occur in this correspondence. Hence,
there are p3(A) + p3(B) + δ − τ − 1 triangles in C.

Proof (Proof of Theorem 1(iii)). We use A12, the arrangement shown in Figure 3,
in the role of A for our recursive construction. The dashed path in the figure is
used as PA with δ = 2 and τ = 1. Starting with C1 = A12 and defining Ck+1

as the merge of Ck and A12, we construct a sequence {Ck}k∈N of arrangements
with n( Ck) = 11k + 1 pseudocircles and p3( Ck) = 16k triangles. The fraction
16k/(11k+ 1) is increasing with k and converges to 16/11 = 1.45 as n goes to ∞.

We remark that using other arrangements from Theorem 1(ii) (which also
admit a path with δ = 2 and τ = 1) in the recursion, we obtain arrangements
with p3 = d 1611ne triangles for all n ≥ 6.

Since the lower bound d 43ne is tight for 6 ≤ n ≤ 14, we believe that the
following is true:

Conjecture 2. There are digon-free arrangements A with p3(A) = d4n/3e for
infinitely many values of n.

2.1 Arrangements with Digons

We know arrangements of n pseudocircles with digons and only n− 1 triangles.
The example shown in Figure 5a is part of an infinite family of such arrangements.

Using ideas based on sweeps (cf. [10]), we can show that every pseudocircle is
incident to at least two triangles. This implies the following theorem:

Theorem 2. Every arrangement of n ≥ 3 pseudocircles has at least 2n/3 trian-
gles.

The proof of the theorem is based on the following lemma:

Lemma 3. Let C be a pseudocircle in an arrangement of n ≥ 3 pseudocircles.
Then all digons incident to C lie on the same side of C.
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(a) (b)

Fig. 5: (a) An illustration of an arrangement of n = 5 pseudocircles with n digons and
n− 1 triangles. (b) An illustration of a “tree of circles” with no triangles.

Proof. Consider a pseudocircle C ′ that forms a digon D′ with C that lies, say,
“inside” C. As the segment of C ′ inside C is non-intersected, the intersection
points of C ′ with any other circles C ′′ lie outside C. If C ′′ also forms a digon D′′

with C then, by the same argument, D′′ also has to lie “inside” C. Consequently,
all digons incident to C lie on the same side of C.

Proof (Proof of Theorem 2). Let A be an arrangement and consider a drawing
of A in the plane. Snoeyink and Hershberger [10] have shown that starting with
any circle C from A the outside of C can be swept with a closed curve γ until
all of the arrangement is inside of γ. During the sweep γ is intersecting every
pseudocircle from A at most twice. The sweep uses two types3 of move to make
progress:

(1) take a crossing, in [10] this is called ‘pass a triangle’;
(2) leave a pseudocircle, this is possible when γ and some pseudocircle form a

digon which is on the outside of γ, in [10] this is called ‘pass a hump’.

Let C be a pseudocircle of A. By the previous lemma, all digons incident
to C lie on the same side of C. Redraw A so that all digons incident to C are
inside C. The first move of a sweep starting at C has to take a crossing, and
hence, there is a triangle 4 incident to C. Redraw A such that 4 becomes the
unbounded face. Again consider a sweep starting at C. The first move of this
sweep reveals a triangle 4′ incident to C. Since 4 is not a bounded triangle
of the new drawing we have 4 6= 4′, and hence, C is incident to at least two
triangles. The proof is completed by double counting the number of incidences of
triangles and pseudocircles.

Since for 3 ≤ n ≤ 7 every arrangement has at least n− 1 triangles, we believe
that the following is true:

Conjecture 3. Every intersecting arrangement of n ≥ 3 pseudocircles has at least
n− 1 triangles.

If the arrangement is not required to be intersecting, then the proof of
Lemma 3 fails and indeed there are examples of non-intersecting arrangements
without triangles, e.g., a “tree of circles” as illustrated in Figure 5b.

3 There is a third type of move for sweeps of arrangements of pseudocircles, it is
called take a hump and does not occur in our case, as each two pseudocircles already
intersect.
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3 Maximum Number of Triangles

(a) (b) (c) (d)

Fig. 6: (a) and (b) show arrangements with n = 5 pseudocircles. The first one is
digon-free and has 12 triangles and the second one has 13 triangles and one digon.
(c) and (d) show arrangements with n = 6 and 20 triangles. Moreover, the arrangement
in (c) is the skeleton of the Icosidodecahedron.

Regarding the maximal number of triangles the complete enumeration provides
precise data for n ≤ 7. We used heuristics to generate examples with many
triangles for larger n. Table 2 shows the results. For n ≥ 4 there is only one
instance where we know an arrangement with more than 4

3

(
n
2

)
triangles. This

number is 1/3 times the number of edges of the arrangement, i.e., it is an upper
bound for the number of triangles in arrangements where each edge is incident
to at most one triangle. In the next subsection we show that asymptotically
the contribution of edges that are incident to two triangles is neglectable. The
last subsection gives a construction of arrangements which show that b 43

(
n
2

)
c is

attained for infinitely many values of n.

2 3 4 5 6 7 8 9 10

simple 0 8 8 13 20 29 ≥ 37 ≥ 48 ≥ 60

digon-free - 8 8 12 20 29 ≥ 37 ≥ 48 ≥ 60

b 4
3

(
n
2

)
c 1 4 8 13 20 28 37 48 60

Table 2: Upper bound on the number of triangles.

Recall that we only study simple arrangements. Grünbaum [6] also looked
at non-simple arrangements. His Figures 3.30, 3.31, and 3.32 show drawings of
simplicial arrangements that have n = 7 with p3 = 32, n = 8 with p3 = 50, and
n = 9 with p3 = 62, respectively. Hence, non-simple arrangements can have more
triangles.

Theorem 3. p3(A) ≤ 2
3n

2 +O(n).

The proof of this theorem has been moved to Appendix A.
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Remarks.

– Since intersecting arrangements have 2
(
n
2

)
+ 2 = n2 −O(n) faces we can also

state the bound as: at most 2
3+O( 1

n ) of all cells of an arrangement are triangles.
However, this is not true if we consider non-intersecting arrangements. Figure 7
shows a construction where this ratio converges to 5

6 as n → ∞. It can be
shown with a counting argument that 5

6 is an upper bound for the triangle-
cell-ratio of simple arrangements.

– It would be interesting to get more precise results. In particular, we would
like to know whether p3 ≤ 4

3

(
n
2

)
+O(1) is true for all n.

Fig. 7: An illustration of connected arrangements of n pseudocircles with triangle-cell-
ratio 5

6
−O( 1√

n
).

3.1 Constructions using Arrangements of Pseudolines

Great circles on the sphere are a well known model for projective arrangements
of lines. Antipodal pairs of points on the sphere correspond to points of the
projective plane. Hence, the great circle arrangement corresponding to a projective
arrangement A of lines has twice as many vertices, edges and faces of every type
as A. The same idea can be applied to projective arrangement of pseudolines.
If A is a projective arrangement of pseudolines take a drawing of A in the unit
disk D such that every line ` of A connects two antipodal points of D. Project
D to the upper hemisphere of a sphere S, such that the boundary of D becomes
the equator of S. Use a projection through the center of ` to copy the drawing
from the upper hemisphere to the lower hemisphere of S. By construction the
two copies of a pseudoline ` from A join together to form a pseudocircle. The
collection of these pseudocircles yield an arrangements of pseudocircles on the
sphere twice as many vertices, edges and faces of every type as A. Arrangements
of pseudocircles obtained by this construction have a special property:

– If three pseudocircles C, C ′ and C ′′ have no common crossing, then C ′′

separates the two crossings of C and C ′.
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Grünbaum calls arrangements with this property ‘symmetric’. In the context
of oriented matroids the property is part of the definition of arrangements of
pseudocircles.

Arrangements of pseudolines which maximize the number of triangles have
been studied intensively. The end of this line of research is marked by Blanc [2].
This paper gives precise bounds for the maximum both in the Euclidean and
in the projective case. In particular, Blanc constructs examples of projective
arrangements of pseudolines with 2

3

(
n
2

)
triangles for an infinite number of values

of n. This directly yields arrangements of pseudocircles with 4
3

(
n
2

)
triangles. We

have convinced ourselves that the ‘doubling method’ that has been used for
constructions of arrangements of pseudolines with many triangles, see [2], can
also be applied for pseudocircles. In fact, in the case of pseudocircles there is
more flexibility for applying the method. Therefore, it might be that b 43

(
n
2

)
c

triangles can be achieved for all n.

4 Visualization

Most of the figures in this paper have been automatically generated by our
framework, which was written in the mathematical software SageMath [11]
and is available on demand. We encode an arrangement of pseudocircles by its
dual graph. Each face in the arrangement is represented by a vertex and two
vertices share an edge if and only if the two corresponding faces share a common
pseudosegment. As our arrangements are intersecting, it is easy to see that the
dual graph is 3-connected and thus its embedding is unique on the sphere (up to
isomorphism).

To visualize an arrangements of pseudocircles, we draw the primal (multi)graph
using straight-line segments, in which vertices represent crossings of pseudocircles
and edges connect two vertices if they are connected by a pseudocircle segment.
Note that in the presence of digons we obtain double-edges.

In our drawings, pseudocircles are colored by distinct colors, and triangles
(except the outer face) are filled gray. In straight-line drawings edges corresponding
to digons are drawn dashed in the two respective colors alternatingly, while in
the curved drawings digons are represented by a point where the two respective
pseudocircles touch.

4.1 Iterated Tutte Embeddings

To automatically generate nice aesthetic drawings, we iteratively use weighted
Tutte embeddings. We fix a non-digon cell as the outer cell and arrange the
vertices of the outer cell as the corners of a regular polygon. Starting with
edge-weights all equal to 1, we obtain an ordinary plane Tutte embedding.

For iteration j, we set the weights (force of attraction) of an edge e = {u, v}
proportional to p(A(f1)) + p(A(f2)) + q(‖u − v‖/j) where f1, f2 are the faces
incident to e, A(.) is the area function, and p, q are suitable monotonically
increasing functions from R+ to R+ (we use p(x) = x4 and q(x) = x2/10).
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Intuitively, if the area of a face becomes too large, the weights of its incident
edges are increased and will rather be shorter so that the area of the face will also
get smaller in the next iteration. It turned out that in some cases the areas of
the faces became well balanced but the some edges where very short and others
long. Therefore we added the dependence on the edge length which is strong
at the beginning and decreases with the iterations. The particular choice of the
functions was the result of interactive tuning. The iteration is terminated when
the change of the weights is small.

4.2 Visualization using Curves

On the basis of the straight-line embedding obtained with the Tutte iteration
we use splines to smoothen the curves. The details are as follows. First we take
a 2-subdivision of the graph, where all subdivision-vertices adjacent to a given
vertex v are placed at the same distance d(v) from v. We choose d(v) so that it
is at most 1/3 of the length of an edge incident to v. We then use B-splines to
visualize the curves. Even though one can draw Bézier curves directly with Sage,
we mostly generated ipe files (xml-format) so that we can further process the
arrangements. Figures 8a and 8b show the straight-line and curved drawing of
the same arrangement to give an illustration.

(a) (b) (c)

Fig. 8: (a) Straight-line and (b) curved drawings of the arrangement of
pseudo(great)circles, which consists of two copies of (c) the (non-stretchable) non-
Pappus pseudoline arrangement of pseudolines.

4.3 Visualization of Arrangements of Pseudolines

We also adopted the code to nicely visualize arrangements of pseudolines. One of
the lines is considered as the “line at infinity” which is then drawn as a regular
polygon. Figure 8c gives an illustration.

For arrangements of pseudolines we used the framework pyotlib, which origi-
nated from the Bachelor’s thesis of Scheucher [9].
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Math.-Phys. Kl. sächs. Akad. Wiss. Leipzig, 78:256–267, 1926.
8. M. Scheucher. http://www.ist.tugraz.at/scheucher/arrangements_of_

pseudocircles/.
9. M. Scheucher. On Order Types, Projective Classes, and Realizations, Bachelor’s

thesis, 2014.
10. J. Snoeynik and J. Hershberger. Sweeping Arrangements of Curves. In Goodman,

Pollack, and Steiger, editors, Discrete and computational geometry, volume 6 of
DIMACS Ser. Discr. Math. Theo. Comp. Sci., pages 309–349. AMS, 1991.

11. W. Stein et al. Sage Mathematics Software (Version 7.6). The Sage Development
Team, 2017. http://www.sagemath.org.

13

http://csconferences.mah.se/eurocg2017/proceedings.pdf
http://csconferences.mah.se/eurocg2017/proceedings.pdf
http://www.ist.tugraz.at/scheucher/arrangements_of_pseudocircles/
http://www.ist.tugraz.at/scheucher/arrangements_of_pseudocircles/
http://www.sagemath.org


A Proof of Theorem 3

Let A be an arrangement of n ≥ 4 pseudocircles. We view A as a 4-regular plane
graph, i.e., the set X of crossings is the vertex set and edges are the segments
which connect consecutive crossings on a pseudocircle.

Claim. A. No crossing is incident to 4 triangular cells.

Assume that a crossing u of Ci and Cj is incident to four triangular cells. Then
there is a pseudocircle Ck which bounds those 4 triangles, see Figure 9(a). Now
Ck only intersects Ci and Cj . This, however, this is impossible because n ≥ 4
and A is intersecting. 4

Cj

Ck

Ci

Ci

Ck

w

u′ v′

Cj

u
v

(b)(a)

Fig. 9: Illustrations of the proof of Claim A and Claim B.

Let X ′ ⊆ X be the set of crossings of A that are incident to 3 triangular cells.
Our aim is to show that |X ′| is small, in fact |X ′| ∈ O(n). When this is shown
we can bound the number of triangles in A as follows. The number of triangles
incident to a crossing in X ′ clearly is in O(n). Now let Y = X \X ′. Each of the
remaining triangles is incident to three crossings from Y and each crossing of Y is
incident to at most 2 triangles. Hence, there are at most 2|Y |/3 +O(n) triangles.
Since |Y | ≤ |X| = n(n− 1) we obtain the bound claimed in the statement of the
theorem.

To show that |X ′| is small we need some preparation.

Claim. B. Two adjacent crossings u, v in X ′ share two triangles.

Since u and v are both incident to 3 triangles, there is at least one triangle
4 incident to both of them. Assume for a contradiction that the other cell
which is incident to the segment uv is not a triangle. Let Ci, Cj , Ck be the three
pseudocircles such that u is a crossing of Ci and Cj , v is a crossing of Ci and Ck,
and 4 is bounded by Ci, Cj , Ck; see Figures 9(b). We denote the third vertex of
4 by w and note that w is a crossing of Cj and Ck.

Since u is incident to three triangles, the segment uw bounds another triangle,
which is again defined by Ci, Cj , Ck. Let u′ be the third vertex incident to that
triangle. Similarly, the segment vw is incident to another triangle which is also
defined by Ci, Cj , Ck, and has a third vertex v′.
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Again, by the same argument, the segments uu′ and vv′, respectively, are
both incident to another triangle. However, this is impossible as the two circles
Cj and Ck intersect three times. Thus both faces incident to segment uv are
triangles. 4

Claim. C. Let u, v, w be three distinct crossings in X ′. If u is adjacent to both v
and w, then v is adjacent to w.

Since u is incident to three triangles and the segments uv and uw are both
incident to two triangles, there is a triangle 4 with corners u, v, w. This triangle
shows that u, v, and w are adjacent to each other. 4

Claim C implies that each connected component of the graph induced by X ′

is a complete graph. It is easy to see that a K4 induced by X ′ is impossible, and
therefore, all components induced by X ′ are either singletons, edges, or triangles.
Figure 10 shows the local structure of the arrangement around components of
these three types.

4 4

4
N N
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4 4

4 4N

N

N

N
?

?

(b)

4 4
4

4
N

N

N

?
?

?

(c)

Fig. 10: An illustration. In this figure 4 marks a triangle, “N” marks a k-cell with
k ≥ 4 (“neither a triangle, nor a digon”), “?” marks an arbitrary cell. Crossings with 3
incident triangles are shown as black vertices (these are the crossings in X ′).
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Fig. 11: The configurations in (a), (b), and (c) are obtained by flipping the gray triangle
in the configuration from Figure 10(a), 10(b), and 10(c), respectively. The digons created
by the flip are marked “D”.
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To show that |X ′| is small, we are going to trade crossings of X ′ with digons
and then refer to a result of Agarwal et al. [1]. They have shown that the number
of digons in intersecting arrangements of pseudocircles is at most linear in n.

To convert crossings of X ′ into digons we use triangle flips. Each of the
configurations shown in Figure 10 has a gray triangle. By flipping these triangles
we obtain the configurations shown in Figure 11. These so-obtained configurations
have at least as many new digons as the original configurations contain crossings
in X ′. It may be that with the flip we create new triangles and even new vertices
which are incident to 3 triangles. However, the flips that we apply never remove
a digon.

Therefore, thanks to the result from [1] we can make no more than O(n) flips
before all the crossings are incident to at most 2 triangles.

Remarks.

– Using flips we can also trade segments which are incident to two triangles
against digons.

– It can be shown that at most one component of the graph induced by X ′ are
K3’s.
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