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Abstract
The Erdős–Szekeres theorem states that, for every positive integer k, every sufficiently large point
set in general position contains a subset of k points in convex position – a k-gon. In the same vein,
Erdős later asked for the existence of k-holes which are k-gons with no additional points in their
convex hulls. Today it is known that every sufficiently large point set in general position contains
6-holes, while there exist arbitrarily large point sets without 7-holes.

Harborth (1978) started the investigation of empty triangles in simple drawings of the complete
graph. In a simple drawing, vertices are mapped to points in the plane and edges are drawn as
simple curves connecting the corresponding endpoints such that any two edges intersect in at most
one point, which is either a common vertex or a proper crossing. For the subclass of convex drawings,
which in particular includes point sets, Arroyo et al. (2018) showed that quadratically many empty
triangles exist.

In this article, we generalize the concept of k-holes to simple drawings of the complete graph
Kn and investigate their existence. We provide arbitrarily large simple drawings without 4-holes,
show that convex drawings contain quadratically many 4-holes, and generalize the Empty Hexagon
theorem (Gerken 2006; Nicolás 2007) by proving the existence of 6-holes in sufficiently large convex
drawings.

1 Introduction

The study of holes in point sets was motivated by the Erdős–Szekeres theorem [12] and
continues to be an active research branch. The classic theorem states that for every k ∈ N
every sufficiently large point set in general position (i.e., no three points on a line) contains a
subset of k points in convex position – a so called k-gon. A variation suggested by Erdős [11]
is about the existence of holes. A k-hole H in a point set S is a k-gon with the property
that there are no points of S in the interior of the convex hull of H.

In this article, we investigate holes in simple drawings of the complete graph Kn. Even
though the notation of holes generalizes to simple drawings in a natural manner, we have to
introduce some basic notation before we can talk about these structures and our results.

In a simple drawing, vertices are mapped to distinct points in the plane (or on the sphere)
and edges are mapped to simple curves connecting the corresponding points such that two
edges have at most one point in common which is either a common endpoint or a proper
intersection. Furthermore we assume that no three edges cross in a common point. Simple
drawings can be considered as a generalization of point sets because a set of n points in
general position yields a geometric drawing of Kn where the vertices are the points and the
edges are the straight-line segments connecting the vertices.

Moreover, we investigate the subclass of convex drawings introduced by Arroyo et al. [4].
To define convexity, we consider triangles which are subdrawings of K3 induced by three
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Figure 1 Drawing of the two forbidden subconfigurations of convex drawings. Note that the right
drawing is the T5.

vertices. Since the three edges of a triangle do not cross, the triangle separates the plane
(resp. the sphere) into two connected components. The closure of each of the components is
called a side of the triangle. A side S is convex, if for every two vertices in S, the connecting
edge is fully contained in S. A simple drawing is convex if every triangle has a convex side.
Furthermore, a convex drawing is f-convex if there is a marking point f in the plane such
that for all triangles the side not containing f is convex. A pseudolinear drawing is a simple
drawing in the plane such that all edges can be extended to pseudolines such that two have
at most one point in common. A pseudoline is a simple curve partitioning the plane in two
unbounded components. As shown by Arroyo et al. [3], a simple drawing of Kn is convex
if and only if the two non-convex drawings of the K5 (see Figure 1) do not appear as a
subdrawing. Furthermore, they showed that a simple drawing of Kn is pseudolinear if and
only if it is f -convex and the marking point f is in the unbounded cell. For more information
about the convexity hierarchy, we refer the reader to [3, 4, 9].

Next, we introduce the notions of k-gons in simple drawings of the complete graph. A
k-gon Ck is a subdrawing isomorphic to the geometric drawing of k points in convex position,
see Figure 2(left). Two simple drawings are isomorphic if there exists a bijection on the
vertex sets such that the same pairs of edges cross. Note that isomorphism is independent
of the choice of the outer cell. Thus, in terms of crossings, a k-gon Ck is a (sub)drawing
with vertices v1, . . . , vk such that {vi, vℓ} crosses {vj , vm} for i < j < ℓ < m. In contrast
to the geometric setting where every sufficiently large geometric drawing contains a k-gon,
simple drawings of complete graphs do not necessarily contain k-gons [16]. For example,
the perfect twisted drawing Tn depicted in Figure 2(right) does not contain any 5-gon. In
terms of crossings, Tn can be characterized as a drawing of Kn with vertices v1, . . . , vn such
that {vi, vj} crosses {vℓ, vm} for i < j < ℓ < m. However, a theorem by Pach, Solymosi
and Tóth [21] states that every sufficiently large drawing of Kn contains a k-gon or a Tk.
The currently best known bound is due to Suk and Zeng [23] who showed that every simple
drawing of Kn with n > 29·log2(a) log2(b)a2b2 contains a Ca or a Tb. Since convex drawings
do not contain T5 as a subdrawing, every convex drawing of Kn with n sufficiently large
contains a k-gon.

To eventually define k-holes for general k, let us first consider the special case of 3-holes,
which are also known as empty triangles. A triangle is empty if one of its two sides does
not contain any vertices in its interior. For general simple drawings Harborth [16] proved
that there are at least two empty triangles and conjectured that the minimum among all
simple drawings on n vertices is 2n − 4, which is obtained by Tn. García et al. [13] recently
showed that the conjecture holds for a class containing the perfect twisted drawings, the so
called generalized twisted drawing. However, the conjecture remains open in general. The
best known lower bound is by Aichholzer et al. [2], who proved that there are at least n

empty triangles.
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In the geometric setting, the number of empty triangles behaves quite differently: every
point set has a quadratic number of empty triangles, and this bound is asymptotically
optimal [6]. Moreover, determining the minimum number remains a challenging problem
[10, Chapter 8.4]. For the current bounds, see [1]. The class of convex drawings behaves
similarly to the geometric setting: the minimum number of empty triangles is asymptotically
quadratic as shown by Arroyo et al. [3].
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Figure 2 A drawing of Cn (left) and Tn (right) for n ≥ 4.

In this article, we go beyond empty triangles and investigate the existence of k-holes in
simple drawings for k ≥ 4. In the subdrawing induced by a k-gon with k ≥ 4, all triangles
have exactly one empty side which is the convex side. We define the convex side of a k-gon
as the union of all convex sides of its triangles and call a vertex which lies in the interior of
its convex side an interior vertex. The convex side of Cn in Figure 2 is highlighted grey. Note
that the triangles of a k-gon for k ≥ 4 have exactly one convex side, which is the one not
containing the other vertices of the k-gon and hence the convex side of a k-gon is well-defined.
A k-hole is a k-gon which has no interior vertices. For example the vertices 1, 2, n − 1, n form
a 4-hole in Tn which is highlighted grey in Figure 2. For a k-gon Ck in a convex drawing,
Arroyo et al. [4] showed that the edges from an interior vertex to a vertex of Ck and edges
between two interior vertices are fully contained in the convex side of Ck.

In the geometric setting it is known that for k ≤ 6 every sufficiently large point set
contains a k-hole [15, 14, 19] and that there are arbitrarily large point sets without 7-holes [17].
Since the latter applies to simple drawings, the remaining questions in simple drawings are
about the existence of 4-, 5- and 6-holes.

Our Results: For n ≥ 5 we present a non-convex simple drawing of Kn without 4-holes
(Section 2). Furthermore, we show that – as in the geometric setting – the number of
4-holes in convex drawings of Kn is at least Ω(n2) (Theorem 3.1), generalizing a result by
Bárány and Füredi [6], and that every sufficiently large convex drawing contains a 5-hole
and a 6-hole (Theorem 3.2), generalizing the Empty Hexagon theorem by Gerken [14] and
Nicolás [19]. In order to show the latter, we prove that if a subdrawing of a convex drawing is
induced by a minimal k-gon with k ≥ 5 together with its interior vertices, then it is f -convex

EuroCG’23



10:4 Holes in convex drawings

(Theorem 3.3). This result might be of independent interest as it allows to transfer results
from the straight-line, pseudolinear, and f -convex setting to convex drawings.

2 Holes in simple drawings

The perfect twisted drawing Tn depicted in Figure 2(right) has exactly 2n−4 empty triangles,
which are spanned by the vertices {1, 2, i} for 3 ≤ i ≤ n and {i, n−1, n} for 1 ≤ i ≤ n−2 [16].
For n ≥ 4, Tn has exactly one 4-hole, which is spanned by {1, 2, n − 1, n}.

For n ≥ 5, let T̃n denote the non-convex drawing of Kn that is obtained by starting with
the drawing of Tn and rerouting the edge {1, n} as illustrated in Figure 3. More precisely,
while in Tn the edge {1, n} crosses every edge {i, j} with 2 ≤ i < j ≤ n − 1, in T̃n it only
crosses the edges {i, j} with 2 ≤ i < j ≤ n − 2. Recall that the pairs of crossing edges
determine isomorphism class.

i21 ... n...

Figure 3 An illustration of the drawing T̃n without 4-holes. The edge {1, n} is highlighted red.

▶ Proposition 2.1. For n ≥ 5 the drawing T̃n does not contain a 4-hole.

Proof. Rerouting the edge {1, n} only affects the emptiness of triangles incident to both
vertices 1 and n. In particular it only affects the vertex n − 1 which changes the side of
every triangles incident to {1, n}. In T̃n, the only empty triangles incident to {1, n} are
{1, n − 1, n} and {1, n − 2, n}. Note that the triangle {1, 2, n} is not empty in T̃n. Hence,
the empty triangles in T̃n are {1, 2, i} for 3 ≤ i ≤ n − 1, and {i, n − 1, n} for 1 ≤ i ≤ n − 2,
and {1, n − 2, n}. Since no four vertices span four empty triangles, T̃n does not contain a
4-hole. ◀

3 Holes in convex drawings

In this section, we show that convex drawings of the complete graph behave similarly to
geometric point sets when it comes to the existence of holes.

▶ Theorem 3.1. Every convex drawing of Kn contains at least Ω(n2) 4-holes.

The proof generalizes the idea of Bárány and Füredi [6] and is deferred to the full version.
The bound is asymptotically best possible as there are point sets (squared Horton sets [7]
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and random point sets [5]) which have only quadratically many 3-holes, 4-holes, 5-holes, and
6-holes.

Furthermore, we investigate larger holes. We show that every sufficiently large convex
drawing contains a 6-hole (and hence a 5-hole).

▶ Theorem 3.2. Every convex drawing of Kn with n sufficiently large contains a 6-hole.

For the proof below we use the existence of a k-gon in sufficiently large simple drawings [21,
23]. Even though the existence of 6-holes directly implies the existence of 5-holes, when
adapting the proof to 5-holes one can obtain a better bound on the required number of
vertices.

An important part of the proof is that the subdrawing induced by a minimal k-gon together
with its interior vertices is f -convex, which then can be transformed into a pseudolinear
drawing. A k-gon is minimal if its convex side does not contain the convex side of another
k-gon.

▶ Theorem 3.3. Let Ck be a minimal k-gon with n ≥ k ≥ 5 in a convex drawing of Kn.
Then the subdrawing induced by the vertices on the convex side of Ck is f -convex.

Since the proof for the existence of 6-holes in point sets [14] also applies to the setting of
pseudolinear drawings [22], we can now use Theorem 3.3 to derive Theorem 3.2. Similarly, the
text-book proof for the existence of 5-holes in every 6-gon of a point set (see e.g. Section 3.2
in [18]) applies to pseudolinear drawings as it only uses triple orientations. However, proving
the existence of 6-holes via 9-gons1 is far more technical. Hence we refer the interested reader
to [22] for a computer-assisted proof and [24] for a simplified proof of the Empty Hexagon
theorem with worse bounds.

Proof of Theorem 3.2. By the result of Suk and Zeng [23] every convex drawing of Kn with
n > 2225 log2(5)·k2 log2(k) contains a k-gon. In order to find a 6-hole, we apply this result for
k = 9. (To find a 5-hole, we can use k = 6.) Consider a minimal k-gon. By Theorem 3.3,
the subdrawing induced by the vertices from the convex side of the k-gon is f -convex. Since
the existence of holes is invariant under the choice of the outer cell, we can choose the cell
containing f as the unbounded cell to make the subdrawing pseudolinear. Next we apply
the results concerning the existence of a 6-hole (resp. 5-hole) in pseudolinear drawings and
conclude that the subdrawing induced by the k-gon and the interior vertices contains a 6-hole
(resp. 5-hole). This 6-hole (resp. 5-hole) in the subdrawing does not contain vertices of the
original drawing of Kn since those vertices would be interior vertices of the k-gon. Therefore
it is also a 6-hole (resp. 5-hole) in the original drawing. This completes the argument. ◀

4 Discussion

We have shown that every convex drawing of Kn with n ≥ 5 contain a quadratic number
of 4-holes and that sufficiently large drawings contain 5- and 6-holes, while 7-holes do not
exist in general. However, it remains to determine the precise values of hconv(5) and hconv(6),
where hconv(k) (resp. hgeom(k)) denotes the smallest integer such that every convex (resp.
geometric) drawing of size n ≥ hconv(k) contains a k-hole. In the geometric setting it is
known that hgeom(5) = 10 [15] and 30 ≤ hgeom(6) ≤ 1717 [14, 20]. In this article we showed

1 Gerken [14] showed that every 9-gon in a point set yields a 6-hole and Nicolás [19] showed that a 25-gon
yields a 6-hole. Both articles involve very long case distinctions.
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hconv(k) ≤ 2225·k2·log2 5·log2 k + 1 for k = 5 and k = 6 (Theorem 3.2). Moreover, we used
the SAT framework from [8] to find configurations for n ≤ 10 and n = 12 without 5-holes
and to prove that every drawing for n = 11, 13, 14, 15, 16 contains a 5-hole. Based on our
computational data, we conjecture that hconv(5) = 13. Note that unlike in the geometric
setting, the existence of 5-holes in convex drawings is not monotone as the existence of a
5-hole in all convex drawings of K11 does not imply the existence for n = 12.

It would be interesting to obtain better bounds on the size of a largest k-gon and on
the size of a largest f -convex subdrawing in a convex drawing of Kn. The currently best
estimate for a k-gon is by Suk and Zeng [23], which yields Ω((log n)1/2−o(1)), and combining
this with Theorem 3.3 yields an f -convex drawing of the same size.
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