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1 Abstract

In this thesis we describe some basic methods to efficiently work with order types
and projective classes and some realization techniques. In addition, we give a
short documentation of the framework pyotlib which provides implementations
of the mentioned methods. Furthermore we give an overview of the results
obtained by using the provided methods.
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2 Introduction

After finishing some calculations for Manfred Scheucher’s Bachelor’s thesis in
Computer Science [36] there were exactly 168 abstract order types with 13 points
that contained exactly 3 convex 5-holes. Most of them were easy to realize and
some of them could be proven to be non-realizable. But there were also some
order types that could not be realized for months. In general, the realization
problem is known to be NP-hard. Using the implementation developed for this
thesis, which can also make use of the power of Wolfram Mathematica [13], 156
order types could be realized and the 12 remaining abstract order types could
be proven to be not realizable with just about 30 minutes computation time.

As there exist lots of small scripts from the preceding Bachelor’s thesis and
because there are lots of calculations that can be done with order types and
projective classes, we decided to establish a whole framework called pyotlib to
provide the core functionality. Thus, we analyzed and implemented all impor-
tant algorithms from scratch to provide an efficient implementation.

After the BSc thesis [36] there were also some abstract order types with a
larger number of points and a low number of convex 5-holes known. By realizing
them, the upper bound on the minimal number of convex 5-holes h5(n) could
be slightly improved for some n. For example, by realizing an order type with
19 points and 27 convex 5-holes it is proven that h5(19) ≤ 27.
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3 Theoretical Part

There are infinite possibilites to pick three distinct (labeled) points in the Eu-
clidean plane, as the number of points in the Euclidean plane is infinite. How-
ever, there are only three cases that can occur:

1. the third point lies on the directed line through point one and point two,
i.e., these three points are “collinear”;

2. the third point lies on the left side of the directed line through point one
and point two, i.e, these three points are “left oriented”;

3. the third point lies on the right side of the directed line through point one
and point two, i.e, these three points are “right oriented”.

Analogously, for any set of points with more than three points each point triple
has a certain orientation. Hence, it is a good approach to group sets of points
by their orientations. This concept was first introduced by Goodman and Pol-
lack [28] who denoted these groups as order types. Consecutively, given an order
type one might ask for a realization, i.e, a set of points with the desired orienta-
tions. One approach to enumerate all order types was proposed by Aichholzer,
Aurenhammer and Krasser [15, 31]. Prior work has also been done by Bokowski,
Laffaille and Richter-Gebert [21, 20], and by Finschi and Fukuda [26, 27].

In this section we give an introduction to the theory of order types as it is
necessary to know the definitions and ideas to understand the methods that we
use later for realization.

3.1 Pointsets

Definition 1. For n ∈ N we define the symmetric group

Sn := {π : {1, . . . , n} → {1, . . . , n} | π bijective}

as the set of all permutations of length n. Given π ∈ Sn we denote πi := π(i).

Definition 2. We denote the tuple P = (p1, . . . , pn) with pairwise different
pi = (xi, yi) ∈ R2 as (real) pointset.

If pi ∈ Q2 holds for all i we denote P as rational pointset.
If pi ∈ Z2 holds for all i we denote P as integer pointset.
If pi ∈ N2

0 holds for all i we denote P as natural pointset.
We define the set of real, rational, integer, and natural pointsets as

Pn := {(p1, . . . , pn) | pi ∈ R2 pairwise different},
PQn := {(p1, . . . , pn) | pi ∈ Q2 pairwise different} = Pn ∩ (Q2)n,

PIn := {(p1, . . . , pn) | pi ∈ Z2 pairwise different} = Pn ∩ (Z2)n, and

PNn := {(p1, . . . , pn) | pi ∈ N2
0 pairwise different} = Pn ∩ (N2

0)n, respectively.

Remark that in natural pointsets point coordinates can also be zero. We
could also denote PNn as “non-negative integer pointset”.
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Definition 3. Let P = (p1, . . . , pn) ∈ PIn be an integer pointset. We define the
diameter of the pointset P as

diam(P ) := max

{
max

i∈{1,...,n}
|xi|, max

i∈{1,...,n}
|yi|
}
.

For P ∈ Pn\PIn we can set diam(P ) :=∞.

Definition 4. Let P = (p1, . . . , pn) ∈ Pn be a pointset. Three points pi, pj , pk
for i, j, k pairwise different are said to be collinear if and only if

pk = λpi + (1− λ)pj

holds for some λ ∈ R. The points p1, . . . , pn are said to be in general position
and the pointset P is said to be general if and only if there are no collinear
points.

3.2 Λ-Matrices

As line arrangements and pseudoline arrangements are used only for the
definition of Λ-matrices we refer to [31, 15] for the defintion and construction
methods.

Definition 5. Let Λ = (Λijk)i,j,k∈{1,...,n} ∈ {−1, 0, 1}n×n×n be a tensor of
orientations such that Λ can be constructed via pseudoline arrangements.

We will denote Λ as Λ-matrix (“big lambda matrix”) of size n and define
the set of Λ-matrices of size n as

Λ∗n := {Λ ∈ {−1, 0, 1}n×n×n | Λ is a Λ-matrix}.

Note that by defintion for i, j, k ∈ {1, . . . , n} the following three conditions
must hold:

1. Λijk = Λjki, i.e, relabeling three points (counter) clockwise does not
change the orientation of this point triple;

2. Λijk = −Λjik, i.e., switching two points of inverts the orientation;

3. Λijk 6= 0 holds for i, j, k pairwise different, i.e., no collinear points.

Remark that these conditions are necessary but not sufficient! [31]

Note 1. Note that we could also use a less restrictive definition for Λ-matrices
such that collinear index triples are allowed where an index triple (i, j, k), i, j, k
pairwise different, is said to be collinear if and only if Λijk = 0. Otherwise it is
said to be general. If there is a collinear index triple Λ is said to be collinear.
Otherwise Λ is said to be general. But for our purposes we only consider so
called “general” Λ-matrices. [26, 27]

Definition 6. Let P ∈ Pn be a general pointset. We denote

Λ(P ) := (Λijk)i,j,k∈{1,...,n}
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as the induced Λ-matrix by the pointset P with the induced orientation
triples

Λijk := sgn det

 1 1 1
xi xj xk
yi yj yk


where det is the determinant function and sgn is the sign function.

Proposition 1. Any general pointset is the dual of a line arrangement which is
per definition also a pseudo line arrangement [31]. Hence any induced Λ-matrix
is a Λ-matrix by definition.

Definition 7. Let Λ ∈ Λ∗n. For any i, j ∈ {1, . . . , n} we define the left set
Lij(Λ) and the right set Rij(Λ) as

Lij(Λ) := {k | Λijk > 0} and

Rij(Λ) := {k | Λijk < 0}, respectively.

Remark that this definition of Lij(Λ) was proposed by Goodman and Pol-
lack [28] as defintion of (induced) Λ-matrices.

3.3 Order Types

Motivation: There is a large number of Λ-matrices even for small n which store
the same information so one might want to group them.

Definition 8. Let n be fixed. We define the lexicographical ordering � on
Rn as

a � b :⇔ a = b ∨ ∃k ∈ {1, . . . , n} : (ak < bk ∧ ∀i ∈ {1, . . . , k − 1} : ai = bi)

for any a, b ∈ Rn.

Proposition 2. � defines a total order on Rn.

Definition 9. Let n be fixed and let π ∈ Sn be a permutation. We define

Ππ : Λ∗n → Λ∗n

(Λi,j,k)i,j,k∈{1,...,n} 7→ (Λπi,πj ,πk
)i,j,k∈{1,...,n}.

For Λ ∈ Λ∗n we denote Ππ(Λ) as the permutation of Λ induced by π.

Since this Ππ is a bijection on Λ∗ we can define an equivalence-relation
OT∼

on Λ∗:

Definition 10. We define

Λ
OT∼ M :⇔ ∃π ∈ Sn : Ππ(Λ) = M ∨Ππ(Λ) = −M,

where −M denotes the mirrored Λ-matrix, i.e., the Λ-matrix where every
single orientation is inverted. We denote the equivalence class

[Λ]OT∼
=: [Λ] =: OT(Λ)

as the order type of Λ and Λ is said to be a representative of the order type
[Λ]. We define the set of order types as the set of all equivalence classes as

OT∗n :=
(

Λ∗n

/
OT∼

)
.
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Definition 11. For an order type O ∈ OT∗n we denote the unique lexicograph-
ically minimal representative (or “lexicographical minimum”) as Λmin(O)
or Λmin if O is given by the context, i.e.,

Λmin(O) := lexminO.

For Λ ∈ Λ∗n we also define

Λmin(Λ) := Λmin([Λ]).

Note that, since � is a total order, the lexicographically minimal represen-
tative Λmin is well defined.

3.4 Projective Classes

Since there are lots of order types that contain similar information one might
want to group them.

Definition 12. For Λ ∈ Λ∗n we define the set of extremal points as

∂Λ := {i ∈ {1, . . . , n} | ∃j ∈ {1, . . . , n}\{i} : ∀k ∈ {1, . . . , n} : Λijk 6= 1}.

We can also write ∂Λ = {ei}i∈{1,...,k} ⊆ {1, . . . , n} for some k ∈ {1, . . . , n}
with Λei,ei+1,f 6= 1 for i ∈ {1, . . . , k−1} and Λek,e1,f 6= 1 for every f ∈ {1, . . . , n}.

Proposition 3. Let Λ ∈ Λ∗n. There exists a unique j for every i ∈ ∂Λ since
there are no collinear indices in the extremal set by our definition of Λ-matrices.

Definition 13. Let n be fixed. For i0 ∈ {1, . . . , n} we define the flipping
functions

fi0 : Λ∗n;i0 → Λ∗n;i0

Λ 7→ Λ̃

where Λ∗n;i0
is the set of Λ-matrices where i0 is extremal, i.e.,

Λ∗n;i0 := {Λ ∈ Λ∗n | i0 ∈ ∂Λ}

and

Λ̃ijk :=

{
−Λijk if i0 ∈ {i, j, k}
Λijk otherwise.

Note that the flipping function fi0 inverts all orientation triples containing
index i0 but does not change any other orientations. An extremal index i0 stays
extremal if fi0 is applied.

Proposition 4. The flipping function fi0 fulfills the following properties:

• fi0 ◦ fi0 = id where id is the identity function;

• fi0 = f−1
i0

;

• fi0 is bijective.
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Definition 14. Let n be fixed. We define an equivalence relation
PC∼ on Λ∗n with

Λ
PC∼ M if and only if there exist

• k ∈ N,

• Λ(1), . . . ,Λ(k) ∈ Λ∗n, and

• i1, . . . , ik−1 ∈ {1, . . . , n}

such that

• Λ(1) ∈ [Λ],

• Λ(k) ∈ [M ], and

• ij ∈ ∂(Λ(j)) and fij (Λ(j)) = Λ(j+1) holds for all j ∈ {1, . . . , k − 1}.

We denote the equivalence class [Λ]PC∼
=: 〈Λ〉 =: PC(Λ) as the projective class

of Λ. We further define the set of projective classes as the set of all equiv-
alence classes, i.e.,

PC∗n :=
(

Λ∗n

/
PC∼

)
.

Remark that Λ and M are in the same projective class if and only if there
is a flipping sequence of extremal indices from Λ̃ ∈ [Λ] to M̃ ∈ [M ].

Proposition 5. We can write the projective class as the union of all order types
spanned by elements in 〈Λ〉, i.e.,

〈Λ〉 =
⋃

M∈〈Λ〉

[M ].

Further, there exists k ∈ N and Λ(1), . . . ,Λ(k) ∈ 〈Λ〉 such that

〈Λ〉 =
⊎

i∈{1,...,k}

[Λ(i)],

where
⊎

denotes the disjoint union operation.

Definition 15. We can also define an equivalence relation
PC∼ on OT∗n as

O1
PC∼ O2 :⇔ ∃Λ ∈ O1,M ∈ O2 : Λ

PC∼ M

for any O1, O2 ∈ OT∗n. We denote the equivalence class [O]PC∼
=: 〈O〉 as pro-

jective class of an order type. Furthermore, we can split the set of order
types into equivalence classes which we will also denote as projective classes
of the order types and denote the set as PC∗∗n , i.e.,

PC∗∗n :=
(

OT∗n

/
PC∼

)
=
((

Λ∗n

/
OT∼

)/
PC∼

)
.

Remark that k in the previous proposition is equal to |〈[Λ]〉|.
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Corollary 1. According to Preposition 5 for every P ∈ PC∗∗n there is exactly
one Q ∈ PC∗n (and vice versa) such that⊎

O∈P
O = Q.

Thus, we can write

P =
(
Q
/

OT∼

)
.

According to this Corollary any projective class (a set of Λ-matrices) can be
partitioned into a disjoint set of order types.

Definition 16. For a projective class P ∈ PC∗n we denote the lexicograph-
ically minimal representative (or simply “lexicographical minimum”) as
ΛPC

min(P ) or simply as ΛPC
min if P is given by the context, i.e.,

ΛPC
min(P ) := lexminP.

For Λ ∈ Λ∗n we also define

ΛPC
min(Λ) := ΛPC

min(〈Λ〉).

Note that, since � is a total order, the lexicographically minimal represen-
tative ΛPC

min is well defined.

3.5 λ-Matrices

Because there are n3 entries in a Λ-matrix one might want to find a structure
to store the information more efficiently.

Definition 17. We define λ(Λ) := (λij)i,j∈{1,...,n} ∈ {0, . . . , n}n×n with λij :=
|Lij(Λ)| as the (induced) λ-matrix (“small lambda matrix”) where Lij(Λ) de-
notes the left set of Λ (see Definition 7). We further define the set of (induced)
λ-matrices of size n as

λ∗n := {λ ∈ {0, . . . , n}n×n | ∃Λ ∈ Λ∗n : λ(Λ) = λ}.

Proposition 6. Let λ ∈ λ∗n. Then λij + λji = n− 2 holds for any i 6= j.

Note 2. Note that for a definition which allows collinear index triples another
set for collinear indices Cij(Λ) would be necessary. Using such a definition the
equation from the previous proposition would hold if and only if

Cij(Λ) := {k | Λijk = 0} = ∅.

We will show that a Λ-matrix and its induced λ-matrix store the same in-
formation such that we can use “Λ-matrix” and “λ-matrix” as synonyms and
just talk about “lambda matrices”. We show that the mapping Λ 7→ λ(Λ) is
injective and thus bijective by definition.

Lemma 1. The mapping λ : Λ∗n → λ∗n; Λ 7→ λ(Λ) is injective.
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Proof. To proof this lemma we give an algorithm to find Λ:
Let i0 ∈ ∂Λ. Since there are no collinear indices there exists a unique

permutation π ∈ Sn such that π1 = i0 and Li0,πj
= j − 2 for j ≥ 2. According

to ordering around the index i0 we can see that Λπ1,πj ,πk
= 1 must hold for

1 < j < k.
One can remove the index i0 and continue iteratively until no more points

are left.

Note 3. Note that using a definition which allows collinear index triples it can
also be shown that given λ ∈ λ∗n there exists a unique Λ ∈ Λ∗n with λ(Λ) = λ.
To proof this collinear version via an algorithm we might need to consider more
than one extremal point.

Corollary 2. We denote the inverse function as λ−1 =: Λ and have a mapping
Λ: Λ∗n → λ∗n that gives the induced Λ-matrix by λ.

We now identify
Λ(λ) = Λ =̂ λ = λ(Λ).

Since a λ-matrix has n2 entries of size O(log n), O(n2 log n) bits are needed
for encoding. Hence, we already got an improvement for storing Λ-matrices.

Definition 18. For λ ∈ λ∗n with λ = λ(Λ) we can define the order type [λ] and
the projective classes 〈λ〉 as

λ([Λ]) := {λ(M) |M ∈ [Λ]} and

λ(〈Λ〉) := {λ(M) |M ∈ 〈Λ〉}, respectively.

Proposition 7. Λ([λ]) = {Λ(µ) | µ ∈ [λ]} and Λ(〈λ〉) = {Λ(µ) | µ ∈ 〈λ〉} hold
by definition.

According to this proposition we can identify [λ] =̂ [Λ] and 〈λ〉 =̂ 〈Λ〉.

Instead of calculating the lexicographical minimum of [Λ] we can also use the
lexicographical minimum of [λ] as representative which is also unique according
to the previous proposition. The same holds for the representative of 〈λ〉.

Definition 19. For λ ∈ λ∗n we define the lexicographical minimum as

λmin(λ) := lexmin[λ] and

λPC
min(λ) := lexmin〈λ〉.

Proposition 8. Let λ ∈ λ∗n and λ = λ(Λ). Then

i ∈ ∂Λ⇔ ∃j : λij = 0.

Proposition 9. Let λ ∈ λ∗n. For the lexicographical minimum

λmin = (λij)i,j∈{1,...,n} ∈ [λ]

it is necessary (but not sufficient) that λ1j = j − 2 holds for j ≥ 2.

According to the previous proposition, there at most 2n λ-matrices in [λ]
that fulfill this property since |∂Λ(λ)| ≤ n (+mirrored).
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Corollary 3. λmin can be calculated by comparing the O(n) candidates. Since
there are n2 integer entries in a λ-matrix of size O(n) (O(log n) bits) the cal-
culation of λmin can be done in O(n3 log n) time.

Theorem 1. Let λ ∈ λ∗n. The complete projective class P := 〈λ〉 and thus also
the lexicographical minimum λPC

min can be calulated in O(|P | log |P |n2 log n) time
using O(|P |n2 log n) space (output sensitive).

Proof. Let G = (V,E) be a undirected graph with V = P and {u, v} ∈ V if and

only if u
PC∼ v.

There are at most |n| neighbors for each v ∈ V because at most n flip-
operations are possible. Thus, the calculation can be done by enumerating the
whole graph recursively. There are |V | nodes and every node is entered at most
n times. All duplicate checks can be done with O(|V |log|V |) comparisons using
O(|V |) space. Each operation on a node (e.g., storing, comparison) can be
performed in O(n2 log n) time if λ-matrices are used.

Instead of storing one Λ-matrix per order type we can also just store one
Λ-matrix per projective class since all order types in a projective class can be
enumerated according to this theorem.

3.6 Realizations

Definition 20. Let Λ ∈ Λ∗n. We define the set of realizations of Λ as

R(Λ) := {P ∈ Pn | Λ(P ) = Λ}.

We further define the set of rational, integer, and natural realizations
as

RQ(Λ) := R(Λ) ∩ PQn ,
RI(Λ) := R(Λ) ∩ PIn, and

RN (Λ) := R(Λ) ∩ PNn , respectively.

Furthermore, Λ is said to be realizable if R(Λ) 6= ∅, otherwise it is said to be
non-realizable or pure abstract.

Lemma 2. For O ∈ OT∗n either all Λ ∈ O are realizable or all Λ ∈ O are
pure abstract. An order type Λ is said to be realizable or pure abstract,
respectively.

Proof. Let {p1, . . . , pn} ∈ R(Λ) be a realization of Λ and M = Ππ(Λ) ∈ [Λ].
Then {pπ1

, . . . , pπn
} is a realization of M .

3.6.1 Sub Order Types

Definition 21. Let Λ = (Λijk)i,j,k∈{1,...,n} ∈ Λ∗n and let A = {a1, . . . , am} ⊆
{1, . . . , n}. By construction of Λ-matrices (via pseudoline arrangements), it
holds that

Λ′ := (Λai,aj ,ak)i,j,k∈{1,...,m} ∈ Λ∗m.

We denote

11



• Λ′ as the sub Λ-matrix induced by the index set A of Λ;

• [Λ′] as a sub order type of [Λ];

• 〈Λ′〉 as a sub projective class of 〈Λ〉.

Note 4. These definitions give ordering relations on Λ∗n, on OT∗n, and on PC∗n.

Lemma 3. Let P = (p1, . . . , pn) be a realization of Λ ∈ Λ∗n and let Λ′ ∈ Λ∗m
be the sub Λ-matrix induced by the set A = {a1, . . . , am} ⊆ {1, . . . , n}. Then
P ′ := (pa1 , . . . , pam) is a realization of Λ′.

Corollary 4. Let Λ ∈ Λ∗n. If there exists a non-realizable sub Λ-matrix of Λ
then Λ is also non-realizable.

According to this corollary we can search for a (small) non-realizable sub
order type to proof the non-realizability of a (large) order type.

3.6.2 The Rotation Functions

Let Λ ∈ Λ∗n be realizable and let i0 ∈ ∂Λ. Since Λ is realizable there exists
P ∈ R(Λ). Since there are no collinear points, we can find a line that separates
the extremal point pi0 from the others. Formally: There exists a function
g(x, y) = ax+ by + c such that g(pi0) > 0 and g(pi) < 0 for i 6= i0.

As any general pointset P ∈ R(Λ) is invariant to affine linear transformations
that conserve the orientation of each point triple, i.e.,

(x, y) 7→ (x, y) ·MT + (x0, y0)

where detM > 0 (e.g., rotation, translation, shearing, and certain scalings), we
can find a bijective affine linear transformation sP,i0 such that P ′ = sP,i0(P )
holds, where

• p′i0 = (1, 0),

• ∀i 6= i0 : x(p′i) ≤ −1, and

• ∃!j, k : p′j = (−1, 1), p′k = (−1,−1).

By construction, a = 1, b = 0, c = 0 (i.e., the y-axis) gives a separation line
in P ′. We can define a rotation function r that maps the y-axis to the line at
infinity in a way such that p′i0 is moved over the line at infinity and others are
not. Formally that is

r : {(x, y) ∈ R2 | x 6= 0} → {(x, y) ∈ R2 | x 6= 0}

(x, y) 7→ (− 1

x
,−y

x
).

Note that this function corresponds to the -90 degree rotation around the
y-axis in the three dimensional space, i.e., the mapping (x, y, z) 7→ (z, y,−x),
that maps a point (x, y, 1) to (1, y,−x). Projecting the resulting point into the
z = 1 plane gives (− 1

x ,−
y
x ).

Definition 22. Using the functions sP,i0 and r as above we can define the
rotation function rP,i0 as

rP,i0 := r ◦ sP,i0 .

12



Corollary 5. Let Λ ∈ Λ∗n, P ∈ R(Λ) and i0 ∈ ∂Λ. Then

P ′ := rP,i0(P )

is a realization of Λ′ = fi0(Λ) ∈ 〈Λ〉, i.e., P ′ ∈ R(Λ′).

Theorem 2. For P ∈ PC∗n either all Λ ∈ P are realizable or all Λ ∈ P
are abstract. A projective class P is said to be realizable or pure abstract,
respectively.

Proof. Let k ∈ N0 and let i0, . . . , ik−1 ∈ {1, . . . , n} be the flipping sequence such
that Λ(0), . . . ,Λ(k) ∈ Λ∗n with Λ(0) ∈ [Λ],Λ(k) ∈ [M ]. (see Definition 14)

Assume that Λ is realizable. According to Lemma 2 there also exists a
realization P0 of Λ(0). For j = 1, . . . , k (iteratively) Pj := rPj−1,ij−1

(Pj−1) gives

a realization of Λ(j). Thus, Pk is a realization of Λ(k) ∈ [M ]. According to
Lemma 2 there exists a realization of M .

Corollary 6. The problem of realizing Λ ∈ Λ∗n can be solved by realizing an-
other M ∈ 〈Λ〉 and transforming back the solution to the original problem using
rotation functions.

We denote this realization method as back-rotation-realization.

Theorem 3. Let Λ ∈ Λ∗n. There are realizations with real coordinates if and
only if there are natural realizations. Formally,

R(Λ) = ∅ ⇔ RQ(Λ) = ∅ ⇔ RI(Λ) = ∅ ⇔ RN (Λ) = ∅.

Proof. By the defintion of real, rational, integer, and natural pointsets we have

PN ⊆ PI ⊆ PQ ⊆ P.

So only one direction needs to be shown for each of the three equivalences.

• The third equivalence holds because of the translation invariance and be-
cause there exists a minimum (pointsets are finite by definition):

Let P I = ((x1, y1), . . . , (xn, yn)) ∈ PIn be an integer pointset. We define
X := mini∈{1,...,n} xi and Y := mini∈{1,...,n} yi. Then

PN := ((x1 −X, y1 − Y ), . . . , (xn −X, yn − Y ))

is a natural pointset that induces the same Λ-matrix.

• The second equivalence holds because of the invariance of multiplication
with positiv numbers:

Let xi = ai
bi

and yi = ci
di

with ai, ci ∈ Z and bi, di ∈ N be the coordinates of

the points in the pointset PQ = ((x1, y1), . . . , (xn, yn)) ∈ PQn . We define
B :=

∏
i∈{1,...,n} bi and D :=

∏
i∈{1,...,n} di. Then

P I := ((B · x1, D · y1), . . . , (B · xn, D · yn))

is an integer pointset that induces the same Λ-matrix.

13



• A proof for the first equivalence:

Let P ∈ R(Λ). Let pi0 be the first point that has non-rational coordinates,
i.e., pi ∈ Q2 for i < i0 and pi0 6∈ Q2. Since Λi0,j,k 6= 0 for any j, k (i0, j, k
pairwise different), the Euclidean distance from pi0 to any line is greater
than some ε > 0 for any j, k-tuple. Hence, the point pi0 can be moved
arbitrarily in an ε-neighborhood without changing any orientation triple.
As the rational numbers are dense in the real numbers there exists a point
p′i0 ∈ Q2 with ||pi0 − p′i0 ||2 < ε. Hence,

P ′ = (p1, . . . , pi0−1, p
′
i0 , pi0+1, . . . , pn)

is a realization of Λ where the first i0 points all have rational coordinates.
Applying this inductively yields a rational realization.

Corollary 7. Deciding whether there exists a real realization is as hard as
deciding whether there exists a natural (or integer) realization.

Theorem 4. The decision problem whether there exists a realization of a given
Λ ∈ Λ∗n is known to be NP-hard. [32, 31]

Theorem 5 (Goodman and Pollack). There exists Λ ∈ Λ∗n such that for every
natural realization diamP = Ω(22n

) holds. [29, 31]

Instead of storing a λ-matrix using O(n2 log n) space we can also store the
realization of λ. For small n this method has been shown to be more efficient.

For n ≤ 11 an enumeration of all order types and projective classes was given
by Aichholzer et. al. [15, 31]. A data base up to n = 10 was also generated by
Bokowski, Laffaille, and Richter-Gebert but has never been published [21, 20].

Using a definition that allows collinear index triples an enumeration of all
order types was given by Lukas Finschi and Komei Fukuda for n ≤ 9 [26, 27].

3.7 Approaches for Realization

3.7.1 QCP-Realization

Theorem 6. Let Λ ∈ Λ∗n. There is a QCP (Quadratic Constrained Program)
with

(
n
3

)
quadratic constraints in 2n variables that decides whether realization

is possible or not. For every orientation triple i, j, k ∈ {1, . . . , n} with Λijk = 1
there is a quadratic constraint

xiyj − xjyi + xjyk − xkyj + xkyi − xiyk > 0

that is equivalent to Λijk = 1 by definition. By construction, any solution
x1, . . . , xn, y1, . . . , yn of this problem yields a realization

P := ((x1, y1), . . . , (xn, yn)) ∈ R(Λ)

and vice versa.
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Remark that we can also write

xiyj − xjyi + xjyk − xkyj + xkyi − xiyk ≥ 1

since “≥ 1” is not more restrictive than “> 0”, is as we only consider finite
pointsets. For every real pointset P = ((x1, y1), . . . , (xn, yn)) there exists

min{xiyj − xjyi + xjyk − xkyj + xkyi − xiyk | Λijk(P ) = 1} =: ε > 0

and we have the desired property “≥ 1” in the scaled pointset

P̃ := ((
1

ε
x1,

1

ε
y1), . . . , (

1

ε
xn,

1

ε
yn)).

According to the previous theorem we can either let xi, yi ∈ R, xi, yi ∈ Z,
or xi, yi ∈ N0 in the QCP - the feasibility will not change.

Proposition 10. Finding a solution of an arbitrary QCP is known to be NP-
hard in general even if some certain instances (e.g., if the problem is convex)
can be solved efficiently.

Proof. Quadratic Programming is known to be NP-hard [34] and a QP (Quadratic
Program) is a QCP without quadratic constraints.

Note 5. As x(1 − x) = 0 is a quadratic constraint that forces a variable x
to be boolean, a QCP can be used to find (or disproof) a solution to a given
SAT-instance.

Proposition 11. A feasible point of the problem (P)

minimize 0

subject to g(x1, . . . , xn) ≤ 0, 1 ≤ j ≤ m
xi ∈ R , 1 ≤ i ≤ n

can be found by solving the problem (P’)

minimize

m∑
i=1

φi(gi(x1, . . . , xn))

subject to xi ∈ R , 1 ≤ i ≤ n

where φi : R → R maps any non-positive number to zero and any positive
number to a positive number, e.g.,

x 7→

{
xα if x > 0

0 else.

By construction, any optimal solution of (P’) with an objective value 0 is also
a solution of (P) and vice versa. Hence, if the minimal objective value of (P’)
is greater than 0 then (P) is infeasible.

According to this preposition a feasible point of a QCP can be found by
minimizing a function.
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3.7.2 Grassmann-Plücker Heuristic

Theorem 7 (Grassmann-Plücker Heuristic. “GP-Heuristic”). An LP (Linear
Program) with 10

(
n
5

)
constraints in

(
n
3

)
variables can be constructed to a given

Λ ∈ Λ∗. If this LP has an optimal solution then Λ is not realizable (and thus
also the order type [Λ] and the projective class 〈Λ〉 are not realizable as well).
Otherwise no statement about realizability can be made. [31, 21]

Proof. Let Λ ∈ Λ∗n. Assume that Λ is realizable. Let P be a realization of Λ.
For i, j, k ∈ {1, . . . , n} let

Xijk := det

 1 1 1
xi xj xk
yi yj yk

 .

Remark that there are no collinear points and thus Xi,j,k 6= 0 holds for pairwise
different i, j, k.

For a, b, c, d, e ∈ {1, . . . , n} pairwise different, the Grassmann-Plücker equa-
tion must hold, i.e.,

Xabc ·Xade +Xabd ·Xaec +Xabe ·Xacd = 0

We can observe two properties of the GP-equation:

1. (a′, b′, c′, d′, e′) := (a, c, b, d, e) (i.e., switching b and c) yields the same
equation:

0 = Xabc ·Xade +Xabd ·Xaec +Xabe ·Xacd

= Xabc ·Xade +Xacd ·Xabe +Xaec ·Xabd

= (−Xacb) ·Xade +Xacd · (−Xaeb) + (−Xace) ·Xabd

= −(Xab′c′ ·Xade +Xab′d ·Xaec′ +Xab′e ·Xac′d)

2. (a′, b′, c′, d′, e′) := (a, c, d, e, b) (i.e., rotating b, c, d, e) yields the same equa-
tion:

0 = Xabc ·Xade +Xabd ·Xaec +Xabe ·Xacd

= Xacd ·Xabe +Xaec ·Xabd +Xabc ·Xade

= −Xacd ·Xaeb −Xace ·Xabd −Xacb ·Xade

= −(Xab′c′ ·Xad′e′ +Xab′d′ ·Xae′c′ +Xab′e′ ·Xac′d′)

According to this two properties any permutation of b, c, d, e yields the same
equation. Hence, for a fixed a there are only

(
n−1

4

)
equations.

As Λijk = sgnXijk holds by definition, exactly one or two of the following
terms must have negative sign to fulfil the GP-equation:

Λabc · Λade, Λabd · Λaec, Λabe · Λacd.

W.l.o.g. one term has negative sign. Otherwise, switch c and e.
W.l.o.g. Λabd · Λaec is the negative term. Otherwise (c′, d′, e′) := (d, e, c) or

(c′, d′, e′) := (e, c, d) fulwills this property.
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We can rewrite our equation to

Xabc ·Xade +Xabe ·Xacd = Xabd ·Xace

where every product has positive sign. This yields two inequalities:

Xabc ·Xade < Xabd ·Xace

Xabe ·Xacd < Xabd ·Xace

Let Lijk := log |Xijk| for any i, j, k ∈ {1, . . . , n}. We can apply the logarithm
on both equations

Labc + Lade < Labd + Lace

Labe + Lacd < Labd + Lace

and rewrite them to

Labc + Lade − Labd − Lace < 0

Labe + Lacd − Labd − Lace < 0

Hence, a linear system of 2n
(
n−1

4

)
= 10

(
n
5

)
strict inequalities in

(
n
3

)
variables is

established.

When modelling the LP to check the GP-Heuristic for a given Λ ∈ Λ∗n we
need to handle the strict inequalities for every constraint, i.e., we have a problem
(P) of the form

maximize 0

subject to aj1x1 + . . .+ ajnxn < 0, 1 ≤ j ≤ m
xi ∈ R , 1 ≤ i ≤ n

We can find a solution of (P) by solving a similar linear problem (P’)

maximize ε

subject to aj1x1 + . . .+ ajnxn + ε ≤ 0, 1 ≤ j ≤ m
ε ≥ 0, xi ∈ R , 1 ≤ i ≤ n

By construction, any feasible (not necessarily optimal) solution (ε, x1, . . . , xn)
of (P’) with ε > 0, i.e., objective value greater than 0, yields a solution of (P)
since

aj1x1 + . . .+ ajnxn ≤ −ε < 0.

Also, every solution (x1, . . . , xn) of (P) yields an

ε := min
1≤j≤m

−(aj1x1 + . . .+ ajnxn) > 0

such that (ε, x1, . . . , xn) is a feasible solution of (P’) with objective value greater
than 0.

Furthermore, assume that there exists a solution (ε, x1, . . . , xn) of (P’). Then
(λε, λx1, . . . , λxn) is also a feasible solution of (P’) for any λ > 0 and thus (P’)
is unbounded.
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Lemma 4. The following three statements are equivalent:

1. (P) is infeasible;

2. (P’) has optimal value 0;

3. (P’) is bounded.

Note 6. Note that there are lots of ways to model the GP-Heuristic as an LP.
For example:

• One could add the constraint ε ≤ 1 to (P’) such that the optimal value of
(P’) is either 1 or 0.

• One could add the constraint ε ≥ 1 to (P’) such that (P’) is feasible if and
only if (P) is feasible.

• One could use the constraints aj1x1 + . . .+ ajnxn ≤ −1 to model (P’).

Proposition 12 (Some facts about LPs).

• It is known that an LP can be solved using interior-point methods in weakly
polynomial time. [30] Thus, it is possible to find an optimal solution, i.e.,
a proof for infeasibility in polynomial elementary operations.

• It is also known that the simplex algorithm takes expected polynomial
time. [22]

• If an optimal solution is already known the validation can be done much
faster than solving the problem from scratch because the optimality condi-
tions for LPs can be checked by performing only one simplex step, i.e., by
inverting the matrix of coefficients once. [37, Chapter 6]

Corollary 8. Let Λ ∈ Λ∗.

• If a realization P of Λ is known we can check its validity in O(n3 log n)
by calculating Λ(P ).

• If the LP for the GP-Heuristic has an optimal value 0 then Λ is non-
realizable.

• Given a solution of the LP (GP-Heuristic) the optimality can be validated
efficiently by checking the optimality conditions. Therefore, such an opti-
mal solution yields a non-realizability-certificate.

3.7.3 Back-Rotation-Realization

Given Λ ∈ Λ∗n and a realization P ′ of Λ′ for some Λ′ = fi1 ◦ . . .◦fik ◦Λ ∈ 〈Λ〉 we
want to find a realization P of Λ by rotating the pointset P ′. This can be done
by applying the rotation functions ri1 , . . . , rik one after another. Since every
single rotation blows up the coordinates we might want to find a better way to
perform back rotation to get a realization with smaller coordinates.

We also have to be careful when rotating, since rotation around arbitrary
axes and arbitrary degree might get hard to calculate. For example, a rotation
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by 45 degrees requires an evaluation of sin(π4 ) = 1√
2

and cos(π4 ) = 1√
2

which can

only be approximated since
√

2 is irrational. Hence, the resulting coordinates
might be useless because of numerical instability.

Note that instead of generating approximated irrational values of the sine
and cosine function we could also use pythagorean triples which also fulfill the
required properties needed to perform the rotation.

We use another approach to avoid these problems: From now on we only
consider the rotation function r (from Subsection 3.6.2) that moves the y-axis
to infinity, i.e., the mapping

r : (x, y) 7→ (− 1

x
,−y

x
).

By definition, the induced Λ-matrix of a pointset is invariant to affine linear
transformations that keep the positive orientation of a triple (e.g., rotation,
translation, shearing), i.e., any mapping

(x, y) 7→ (x, y) ·MT + (x0, y0)

with detM > 0 and x0, y0 arbitrary.

Let P = {p1, . . . , pn} ∈ Pn be a pointset and let A ] B = {1, . . . , n} be a
partition for some non-empty, disjoint sets A and B. We can write

P = PA ] PB := {pa | a ∈ A} ] {pb | b ∈ B}.

Furthermore, let L = {(x, y) | αx+βy+γ = 0} be a line that separates sets PA
and PB , i.e.,

• αx+ βy + γ > 0 for (x, y) ∈ PA

• αx+ βy + γ < 0 for (x, y) ∈ PB

We can transform P to P ′ = f(P ) such that x(p′a) > 0 for a ∈ A and x(p′b) < 0
for b ∈ B by moving L to the y-axis. Since L = g(y-axis) = g({(0, y) | y ∈ R})
for the mapping

g : (x, y) 7→ (x, y) ·
(
α −β
β α

)T
︸ ︷︷ ︸

MT

+
(−γ)

α2 + β2
(α, β)︸ ︷︷ ︸

(x0,y0)

the inverse g−1 =: f is the affine transformation we were looking for. Note that
in P ′ the y-axis separates P ′A and P ′B .

Applying the rotation function r to P ′ we get a pointset P ′′ = r(P ′) and
Λ′′ := Λ(P ′′) such that

• the orientation of 3 points in P ′′B stays the same as in P ′ and thus the
same as in P :

i, j, k ∈ B ⇒ Λ′′ijk = Λijk
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• the orientation of 2 points in P ′′B and 1 point in P ′′A alters:

i ∈ A, j, k ∈ B ⇒ Λ′′ijk = −Λijk

• the orientation of 1 point in P ′′B and 2 points in P ′′A stays the same:

i, j ∈ A, k ∈ B ⇒ Λ′′ijk = Λijk

• the orientation of 3 points in P ′′A alters:

i, j, k ∈ A⇒ Λ′′ijk = −Λijk

Hence, the induced Λ-matrix of P ′′ is the same as applying the flip functions
fa1 , . . . , fak (i.e., fa1 ◦ . . . ◦ fak) to the Λ-matrix of P .

Note that there exists π ∈ Sk such that aπ1 , . . . , aπk
is a flipping sequence,

i.e., aπk
∈ ∂(aπk−1

◦ . . .◦aπ1 ◦Λ). Such a permutation π can be found by sorting
P ′A by descending x-coordinates since the rightmost point of a pointset is always
extremal by definition.

Lemma 5. Let Λ ∈ Λ∗n, P ∈ R(Λ) ∩ PIn, Λ′ ∈ 〈Λ〉 with Λ′ = fik ◦ . . . ◦ fi1 ◦ Λ
and let A := {i1, . . . , ik}. Then there exists a seperating line L = {(x, y) |
αx+ βy + γ = 0} with α, β ∈ Z, α, β ∈ O(diamP ), that separates PA and PB.

Proof. We know that A and B can be separated. This holds since Λ′ is known to
be realizable by applying the rotations function as mentioned above that gives
a realization with large coordinates.

W.l.o.g.

• x(pa) > 0 holds for a ∈ A and x(pb) < 0 holds for b ∈ B (transformation
from above);

• y(pa0) = y(pb0) = 0 holds for some a0 ∈ A and some b0 ∈ B (can be
assumed since orientations are shearing invariant).

We construct two affine mappings l1, l2 such that

• li(x, y) := αix+ βix+ γi;

• li(pa) ≥ 0 for a ∈ A and li(pb) ≤ 0 for b ∈ B;

• the slope β1

α1
is maximal and the slope β2

α2
is minimal.

Note that 1
αi

exists since αi needs to be positive by our construction.

Since li(pa) ≥ 0 for a ∈ A and li(pb) ≤ 0 for b ∈ B must hold, there
must exist points a1, a2 ∈ A and b1, b2 ∈ B such that the inequality is fulfilled
with equality. Otherwise, there would exist a mapping with a better slope (i.e.,
larger or smaller, respectively). Since there are at least 3 points in P , a1 6= a2

or b1 6= b2 must hold. W.l.o.g. b1 6= b2 holds (otherwise switching A and B does
the trick).
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Hence, we only need to iterate over a ∈ A and b ∈ B and check for max-
imality or minimality, respectively, to find l1 and l2. The mapping given by
a = (xa, ya) and b = (xb, yb) and n := (xn, yn) := (yb − ya, xa − xb):

(x, y) 7→ nx(x− xa) + ny(y − ya) = nx︸︷︷︸
α

x+ ny︸︷︷︸
β

y + (−nxxa − nyya)︸ ︷︷ ︸
γ

We know l1 and l2 now and can set l3 := l1 + l2.

• In case a1 6= a2 we have l1(pa1) 6= l2(pa1) and thus l3(pa1) > 0. Otherwise,
there would exist collinear points by the construction of li. The same
argument also holds for a2. For any other a ∈ A\{a1, a2} the same holds
since ai is the only point where li(pai) = 0 holds. The same holds for B
and therefore l3(pa) > 0 for a ∈ A and l3(pb) < 0 for b ∈ B.

Hence, l3 yields a line L = {(x, y) | l3(x, y) = 0} seperating PA and PB .

• In case a1 = a2 we have l3(pa1) = 0, and thus l3(pa) ≥ 0 for a ∈ A and
l3(pb) ≤ ε < 0 for b ∈ B with ε := minb∈B l3(pb) ∈ Z.

The line L = {(x, y) | 2 · l3(x, y) = ε} separates PA and PB .

Lemma 6. Let Λ ∈ Λ∗n, P ∈ R(Λ) ∩ PIn, Λ′ ∈ 〈Λ〉 with Λ′ = fik ◦ . . . ◦ fi1 ◦ Λ
and let A := {i1, . . . , ik}. Then we can calculate a realization P ′ ∈ R(Λ′) by
calculating

P ′ = r(f(P ))

where f is an affine transformation that moves the separating line L to the
y-axis.

Furthermore, let B := dlog2(diamP )e. We can find P ′ ∈ R(Λ′) ∩ PIn
such that log2(diamP ′) = O(nB). Therefore, the encoding of P ′ succeeds with
O(n2B) bits.

Proof. The first part was already proven on page 19 in the text above lemma 5
and we only have to show the second part.

Let P ∈ R(Λ) ∩ PIn and B = dlog2(diamP )e. Let α, β, γ ∈ Z with
log2 α, log2 β, log2 γ ∈ O(B) be the parameters of the separating line L. Instead
of using the inverse g−1 =: f with f(x, y) = (x− x0, y − y0) ·M−T we can use

f̃(x, y) := (x− x0, y − y0) · (M#)T where

M# :=

(
α β
−β α

)
is the adjoint matrix of M . Since M# = detM ·M−1 and f̃ = f ·detM hold, f̃
also yields the desired transformation as a scaling of f . So f̃ maps integer points
to integer points by construction and thus P ′ := f̃(P ) has integer coordinates.

When rotating P ′′ := r(P ′) we get rational points where the denominator
of x(p′′i ) and y(p′′i ) is x(p′i) for any i.

Let
C :=

∏
p′∈P ′

x(p′).
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Since α, β, xi, yi ∈ 2O(B) holds for pi = (xi, yi) for any i it follows that

log2 x(p′i) = log2(α · (xi − x0) + β · (yi − y0)) = log2(2O(B) + 2O(B)) = O(B)

and thus
log2(C) =

∑
b∈B

log2 x(p′i) = n · O(B).

So we can scale P ′′ by C and get an integer pointset

P ′′′ := C · P ′′ := {(Cx,Cy) | (x, y) ∈ P ′′}

with log2(diamP ′′′) = O(nB).

Corollary 9. Let Λ ∈ Λ∗n such that for every integer realization P ∈ RI(Λ)
log2(diamP ) is superpolynomial in n (i.e., can not be bounded by any polynomial
in n). Then for every Λ′ ∈ 〈Λ〉 and every P ′ ∈ R(Λ′) it holds that log2(diamP ′)
is superpolynomial.

3.8 Research Topics

Since we mainly focused on realization techniques, none of the following defini-
tions was needed so far, but as pyotlib also provides certain implementations
on other topics and as some results on these topics could be achieved using these
implemenations, we decided to give a short listing of those definitions and the
corresponding references.

3.8.1 k-Gons and k-Holes

For a general pointset P it is natural to define a k-gon as a simple polygon
spanned by k points of P . A k-gon is said to be empty if and only if it does
not contain any points of P in its interior. An empty k-gon is also said to be
a k-hole. A k-gon spanned by a convex polygon is said to be convex. We
also denote a 3-gon as triangle, a 4-gon as quadrilateral, a 5-gon as pentagon, a
6-gon as hexagon, and so on. Further, we can define gk(n) (hk(n)) as the least
number of convex k-gons (k-holes) determined by any set of n points in general
position. [18, 31, 19, 24, 25]

Remark that there exists exactly one Λ-matrix Λ(k) ∈ Λ∗k with Λ
(k)
abc = 1 for

a < b < c which corresponds to any pointset with k points in convex position
and counterclockwise labeling. For an abstract order type we denote the tuple
(a1, . . . , ak) as an abstract convex k-gon if and only if the sub order type
induced by {a1, . . . , ak} is equal to [Λ(k)]. Analogously we denote an abstract
convex k-gon as empty (i.e., an abstract convex k-hole) if and only if any
index b is in the extremal set of the sub order type induced by {a1, . . . , ak, b}.
Note that for realizable order types the definitions are conform.

3.8.2 Rectilinear Crossings

The rectilinear crossing number c̄r(n) is the minimum number of intersec-
tions in any drawing of Kn in the plane that has straight-line-segment edges.
It can be shown that c̄r(n) is exactly the number of convex quadrilaterals
g4(n). [35, 18, 31, 19, 9, 23]
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3.8.3 Universal Pointset

A realizable order type O ∈ OT∗n and any realization P ∈ ∪Λ∈OR(Λ) is said to
be universal of order m if any realizable order type O′ ∈ OT∗m occurs as an
induced sub order type of O.

Analogously we can denote a projective class C ∈ PC∗n as universal of
order m if any realizable projective class C ′ ∈ PC∗m occurs as an induced sub
projective class of C.
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4 pyotlib

The provided library pyotlib contains implementations of all features described
in this thesis. Using the class PYOTScript it is easy to write a script that iterates
over a given input and performs a certain action. As the basic read- and write-
operations are done in the background automatically, only the desired action
needs to be implemented by when using pyotlib.

4.1 Programming Language and Modules

Most of the source code was written in Python 2.7 [11] but also some parts
(especially bottlenecks) that were written in Cython [1] to gain a little speedup.
As IPython [7] allows interactive computation with the python programming
language this framework can also be used interactively.

For the realization of order types we wrote a small C implemenation simple

which tries to find a realization by geometric insertion on an n × n integer
grid. To speed up this implementation forward checking, backtracking, and a
quadtree search technique have been implemented. This implementation can be
used by pyotlib as executable (simple_c) or as shared library (libsimple).

Certain classes, especially Realization testers (see Subsection 4.3.3), require
miscellaneous software to be installed when in use.

4.2 Supported Filetypes

The most important filetypes supported by (merged) cape [39, 38, 36] are also
supported in pyotlib. Hence, order types enumerated by cape can be processed
using pyotlib for example.

Since 4-byte integer coordinates (b32 filetype) can be insufficient for a large
number of points, the filetypes pt and asc were added to allow arbitrary large
coordinates.

• lt - λ-matrix text

• pb - pointset binary (1, 2, and 4 byte encoding, i.e., b08, b16, and b32)

• pt, asc - pointset text

4.3 Provided Functionality

4.3.1 Core Classes

The core classes of pyotlib are:

• SmallLambda - This class can store a λ-matrix and provides basic func-
tionality.

• BigLambda - This class can store a Λ-matrix and provides basic function-
ality.

• PointSet - This class can store a Pointset (not necessary integer) and
provides basic functionality.
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A SmallLambda and a PointSet instance can be transformed into an in-
stance of BigLambda using the toBigLambda method. A BigLambda and a
PointSet instance can be transformed into an instance of SmallLambda using
the toSmallLambda method.

Since realizations are not that trivial there is no “toPointSet” method any-
where but if there is a realization known for a SmallLambda or BigLambda

instance, it is stored as member variable realization.

4.3.2 Order Types and Projective Classes

As many applications require order types or projective classes each of the three
classes provide a getLexMin method that returns an instance (with realization if
a realization was given as member) that represents the lexicographical minimum
of the order type λmin.

To calculate lexicographical minimum of the projective class λPC
min the class

ProjectiveClass provides a method getRepresenterOT that returns an in-
stance of BigLambda. There is also a method getAllOTs that returns all order
types in a projective class.

4.3.3 Realization

As there are many different methods to find (or disproof) a realization of an
order type pyotlib provides an abstract class RealizationTester that allows
to combine different RealizationTesters. Every RealizationTester instance can
store a so called “parent-tester”, that will be called whenever the realization (or
the disproof) fails. So it is possible to build a RealizationTester-chain.

...
RealizationTester = None
if self.useMathematica:

RealizationTester = MathematicaRealizationTester(RealizationTester)
else:

RealizationTester = PascalWrapperRealizationTester(RealizationTester)

RealizationTester = PCRealizationTester(RealizationTester)

if not self.skipGP:
RealizationTester = GPRealizationTester(RealizationTester)

...

Listing 1: Example code snipped from pyotlib.Realize.py

A list currently implemented Realization Testers:

• GlpkQCPRealizationTester - This tester formulates the QCP (see Theo-
rem 6) as LP with integer variables and try to solve it using GLPK. Since
there are no efficient methods to find optimal solution of (Mixed) Integer
Linear Programs this implementation only works for a small number of
points and small integer grids.

• GPRealizationTester - This tester allows to check if a given order type
can be proven to be non-realizable by checking the GP-Heuristic using
a simplex algorithm implementation provided by GLPK (GNU Linear
Programming Kit) [2, 3]. Because GLPK works much faster when using
floating points instead of rational numbers we try to find a solution with
floating points first. Then we make use of a nice property of the simplex
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algorithm: Whenever an optimal solution is found given by a corner in
the polyhedron we can proof the optimality of this solution using rational
numbers by validating the optimality of this corner. Therefore, only one
simplex iteration needs to be done using rational numbers. We also force
GLPK to solve the dual problem since this can be done much faster than
the primal problem.

Whenever an order type can be proven to be non-realizable with GPRe-
alizationTester a certificate is created:

– filename.OT#.proof.lp - The LP (textfile)

– filename.OT#.proof.lp.log.txt - Logfile generated by GLPK

– filename.OT#.proof.lp.sol - Solution in plain text format (can be
loaded by GLPK and verified)

– filename.OT#.proof.lp.sol.txt - Solution in printable format

Using the parameter useCPLEXpresolver it is also possible to use IBM
ILOG CPLEX [6] to find a solution that we will use as initial basis for
GLPK. If CPLEX already found an optimal solution GLPK will only need
to perform one Simplex Iteration to verify the solution - otherwise GPLK
will continue as usual.

The CPLEXremote parameter allows to use CPLEX on a remote computer.

• InnerPointHeuristicRealizationTester - This tester tries to remove
as many points as possible using an inner point heuristic and realize the
resulting sub order type. If a realization can be found the removed points
are re-inserted and the thus obtained realization of the initial order type
is returned. There are two possibilites: Either only points are removed
that can be guaranteed to be re-insertable or some other points can also
be removed that can probably be re-inserted.

• MathematicaRealizationTester - This tester formulates a problem to
decide whether a given order type is realizable and tries to solve it using
Wolfram Mathematica [13]. As Mathematica provides lots of methods to
solve problems, we decided to implement two similar methods which can
be chosen by the parameter formulateProblemAs:

– QCP - a Quadratic Constrained Program (QCP) (see Theorem 6) is
formulated and solved that yields a realization for a given order type.
The parameter speedup_for_numerical_instability can be used
to gain a speedup but the solution might also not be feasible as a
consequence of numerical instability.

– MP - a Minimization Problem (MP) is formulated and solved that
yields a solution of the corresponding QCP. The MPmethod param-
eter can be used to specify the method used by Mathematica for
minimization.

For both methods it is possible to specify the precision by the parameter
Precision but we recommend to use the default since higher precision
requires additional computation time.

It is also possible to use Mathematica on a remote computer using the
remote parameter.
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• MatlabRealizationTester - This tester formulates a problem to decide
whether a given order type is realizable and tries to solve it using Mat-
lab [8] or Octave [4] (similar to MathematicaRealizationTester).

• PascalWrapperRealizationTester - This tester uses the Pascal imple-
mentation realizeot to realize an order type. Note that the executable
realizeot has to be callable when using this tester.

• PCRealizationTester - This tester picks a (random) order type in the
given projective class (given by a representative order type) and tries to
realize it by calling the parent-tester. If the parent-tester fails another
order type in the projective class will be tested, until either one order
type can be realized, proven to be not realizable, or if there are no more
order types left to be tested.

• ScipyRealizationTester - This tester formulates a problem to decide
whether a given order type is realizable and tries to solve it using SciPy [12].
This tester implements the same functionality as
MathematicaRealizationTester to provide a performant iterative real-
ization with open source software.

• SimpleRealizationTester - This tester uses the C implementation simple

to realize an order type. Note that the shared library libsimple.so and
libsimple.so.1 needs to be accessible when using this tester. Also make
sure that this library exists when pyotlib is built and installed - otherwise
rebuild pyotlib.

• SimpleWrapperRealizationTester - This tester uses the C implementa-
tion simple to realize an order type. Note that the executable simple_c

has to be callable when using this tester.

• PySimpleRealizationTester - This tester gives a python implementation
of simple to realize an order type.

4.3.4 Further Classes

• PointSetOptimizer - This class provides some experimental methods to
minimize or beautify the integer coordinates of a given pointset.

• PolygonCount - This class provides some methods to count the number
of (abstract) k-gons and k-holes. When counting 4-gons (i.e., rectilin-
ear crossings) the method descriped by Aichholzer et. al. is used [17].
Otherwise we refer to [36].

4.3.5 Provided Scripts

There are some scripts provided by pyotlib that demonstrate its functionality:

• pyotlib.BeautifyCoords.py - try to beautify a given realization

• pyotlib.CountSubOTs.py - count the number of sub order types of size k

• pyotlib.CountSubPCs.py - count the number of sub projective classes of
size k
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• pyotlib.EnumeratePC.py - enumerate all order types in a projective class
given by a representative order type

• pyotlib.EnumerateSubOTs.py - enumerate all sub-order types of size k

• pyotlib.FindSubOTs.py - given a list of order types of size n and a list of
’reference’ order types of size rn (’reference n’), search for reference order
types that occure as sub order types (size rn) of an order type in the first
list (size n)

• pyotlib.FindUniversalOT.py - search for universal order types by count-
ing the number of sub order types of size k

• pyotlib.FindUniversalPC.py - search for universal projective classes by
counting the number of sub projective classes of size k

• pyotlib.IterativeRealization.py - script to find realizations of very
large order types or to proof non-realizability:

– phase 1: choose sub order types of size kmin..n to realize

– phase 2: try to realize sub order types iteratively

– phase 3: try to proof non-realizability

• pyotlib.ListProperties.py - prints some properties of a given order
type

• pyotlib.MinimizeCoords.py - try to minimize the diameter of a given
realization

• pyotlib.PointMove.py - try to move points in a given realization to
generate pointsets with similar properties (BFS)

• pyotlib.PointWalk.py - try to move points in a given realization to
generate pointsets with minimal number of (empty) convex k-gons (DFS)

• pyotlib.PolygonCount.py - count the number of (empty) convex k-gons
in a given order type and output all order types with at most maxcount
(or minimimal count so far)

• pyotlib.Realize.py - script to find realizations of order types or to proof
non-realizability

• pyotlib.UnifyOTs.py - remove duplicates from a given list of order types

• pyotlib.UnifyPCs.py - remove duplicates from a given list of projective
classes

When executing these scripts without parameters a usage information, i.e.,
a description of available parameters, is printed.

Another script check_integer_grid was written to count (enumerate) all
order types with n points on an N ×N integer grid that have realizations with
pairwise different coordinates.
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...

for X in combinations(range(N),n):

for Y in permutations(range(N),n):

PS = PointSet(n,[(X[i],Y[i]) for i in range(n)])

ct += 1

if not PS.hasCollinearPoints ():

OT = PS.toSmallLambda (). getLexMin ()

OTstr= OT.toString ()

if OTstr not in OTs:

OTs.add(OTstr)

...

Listing 2: Code snipped from check integer grid.py

4.4 Some Benchmarks

The environment we used for most of the calculations and all benchmarks listed
beneath:

• Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz, 6 GB memory, Gentoo
Linux 3.13.6

• Python 2.7.6

• Cython version 0.20.1

• Mathematica 9.0 for Linux x86 (64-bit)

• GLPSOL: GLPK LP/MIP Solver, v4.48

• GNU Octave, version 3.8.1

• ILOG CPLEX 11.000

4.5 Realization of small Order Types

When realizing or proving the non-realizability of the 168 n = 13 order types
with 3 convex 5-holes [36] we got the following results:

• Using MathematicaRealizationTester + QCP with the parameter
speedup_for_numerical_instability the whole calculation took about
30 minutes.

• Using MathematicaRealizationTester + QCP without the parameter
speedup_for_numerical_instability the whole calculation took about
60 minutes. Even if the parameter speedup_for_numerical_instability
yields a speedup for small order types, the resulting realizations are not
valid in most cases when realizing larger order types with n ≥ 20.

• Using MathematicaRealizationTester + QCP without the PCRealization-
Tester the calculation took about 75 minutes and 6 order types remained
unknown. Hence, we recommend to use PCRealizationTester or to enu-
merate the projective class using the pyotlib.FullPCs.py script manu-
ally.
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• Using MathematicaRealizationTester + MP the whole calculation took
about 23 minutes.

• Using PascalWrapperRealizationTester the whole calculation took about
4 hours.

• Using MatlabRealizationTester after about 4 hours 136 OTs could be re-
alized (20 were still missing).

As n = 13 is relatively small the GP-Heuristic can be checked using GLPK in
some seconds and CPLEX is not needed. The GP-Heuristic checks for the 168
order types took about 8 minutes, hence this time has to be subtracted when
comparing the needed time for realization.

4.6 Realization of large Order Types

When comparing GLPK and CPLEX it is obvious that CPLEX is much faster
than GLPK for larger n. For n > 17 GLPK already takes some minutes to
find a solution where CPLEX (with the right parameters) can solve problems
with n ≤ 25 in a very short time. The most important feature of CPLEX is the
so called sifting optimizer that solves the LP by solving certain sub-problems. [5]

The script pyotlib.IterativeRealization.py provides three phases to
realize an Order Type (or to proof non-realizability) by realizing certain Sub
Order Types. In phase 1 the sub order types are chosen by removing indices
iteratively. Calculations have shown that the removal order can be crucial for
the success or failure of the realization process, i.e., for phase 2 and phase 3.
For re-inserting points in a realization of a sub order type there might be points
that could be inserted easier than others and also for proving non-realizability it
is desirable to find a non realizable sub order type of minimal size. Thus, some
labeling approaches have been implemented and tested. When using Mathe-
matica’s Nelder-Mead Method [14, 33] for realization, i.e., to reinsert a point,
we observed that inserting inner points (i.e., points inside the convex hull) is
much easier than inserting outer points (i.e., points outside the convex hull).
The parameter labeling can be set to

• standard: insert the points according to the given labeling (i.e., 1, 2, . . . , n);

• onion: insert the points according to the convex-hull-onion from the out-
side to the inside;

• heuristic: start with the convex hull and insert the point that is con-
tained in the fewest number of triangles (i.e., yields the most crossings).

As listed above there are also RealizationTesters which can make use of Mat-
lab, Octave and SciPy. Unfortunately, even though each of them also provides
an implementation of the Nelder-Mead algorithm [33], none of them could com-
pete with the MathematicaRealizationTester when realizing large order types.
The ScipyRealizationTester takes much time and/or fails when realizing order
types with 20 points and more, whereas the Mathematica implementation also
works fine for 30 points and more. The MatlabRealizationTester seems to work
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pretty good even for 20 points and more when using Octave (out of the box,
i.e., no special parameters needed). Even though the MatlabRealizationTester
(+Octave) is not as fast as the MathematicaRealizationTester it is also quite
good for larger order type realization. When using Matlab the realization of or-
der types of size about 20 seems to fail even with different parameters. Hence, we
recommend to use MatlabRealizationTester+Octave as an alternative to Math-
ematicaRealizationTester in case Mathematica is not available.
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5 Overview of Results

5.1 Results on Empty Convex 5-Holes:

As already mentioned in the introduction all 168 resulting abstract order types
with n = 13 points and exactly 3 convex 5-holes [36] could be shown to be
realizable (156) or non-realizable (12).

We also managed to improve the upper bound on the minimal number of
convex 5-holes h5(n) [18, 36] for n = 19 and n = 20 by realizing certain order
types with pyotlib:

h5(19) ≤ 27, h5(20) ≤ 34

Using the scripts pyotlib.PointMove.py and pyotlib.PointWalk.py most
known pointsets [36] could be altered in a way, such that the number of convex
5-holes was slightly decreased. For n = 20 an order type with 33 convex 5-holes
could be found. Table 1 lists the old and the currently known upper bound on
the minimal number of convex 5-holes for n = 17..36.

n h5(n) (old bound) h5(n) (improved bound)
17 ≤16
18 ≤21
19 ≤28 ≤27
20 ≤36 ≤33
21 ≤43 ≤41
22 ≤52 ≤48
23 ≤63 ≤59
24 ≤71 ≤67
25 ≤82 ≤75
26 ≤90 ≤88
27 ≤103 ≤100
28 ≤117 ≤115
29 ≤134 ≤131
30 ≤155 ≤150
31 ≤177
32 ≤200
33 ≤223 ≤222
34 ≤255 ≤251
35 ≤290 ≤283
36 ≤330 ≤322

Table 1: The old [36] and the improved upper bound on the minimal number
of convex 5-holes h5(n) for n = 17..36 points.

5.2 Results on Rectilinear Crossing Numbers and on Re-
alizability of Large Order Types:

Using pyotlib we managed to proof that three known n = 96 abstract order
types with a small number of crossings [16, 9] (given as λ-matrices) are non-
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realizable. For each of these three abstract order types we reduced the order
type to sub order types of size 95, 94, . . . , 11, 10 using the bash command

for i in {95..10}; do

pyotlib.EnumerateSubOTs.py ft lt n $(($i+1)) k $i \

fp $(($i +1)). txt maxcount 1 && mv *$i* $i.txt;

done

Note that with this reduction approach only extremal points are removed.
Then we started to realize the sub order types using the pyotlib.Realize.py

script with the parameter skipGP=1 (i.e., GP-Heuristic disabled) starting with
10, 11, . . ., i.e., the bash command

for i in {10..21}; do

pyotlib.Realize.py n $i ft lt fp $i.txt skipGP 1 useMathematica 1;

done

Realizations of all sub order types of size 10, . . . , 21 could be found in about
30 minutes but the realization of the sub order type of size 22 failed every single
time. Because GLPK [2] is not that fast for such a large n we generated the
LP-file for the GP-Heuristic (see Theorem 7) and tested it using IBM ILOG
CPLEX [6] which can also handle larger instances of linear programs in very
short time (about 1 minute for this instance). The problem using CPLEX is
that calculations can not be done using rational numbers. Hence, a floating
point result calculated by CPLEX might not be a proof!

As CPLEX could not proof the LP (for the GP-Heuristic) to be unbounded,
the order type seemed to be non-realizable by construction. Therefore, we
decided to look for sub order types of this one for which CPLEX also could not
find a better solution, i.e., sub order types that also seemed to be non-realizable.

We managed to find sub order types of size 21, 20, 19, 18 and 17 iteratively by
enumerating all sub order types of size k−1 of the sub order type of size k using
the script pyotlib.EnumerateSubOTs.py and testing each of them for “probable
non-realizability” using CPLEX. As GLPK could proof (using rational numbers)
that the sub order type of size 17 is indeed not realizable, the n = 96 order type
was proven to be not realizable as well.

This method worked for each of the three n = 96 order types. Hence,
for order types of a large size this method might also work pretty good. An
implemenation of the basic steps of this method is provided by the script
pyotlib.IterativeRealization.py but we also recommend an interactive us-
age since a variety of ideas and tricks can be applied manually when realizing
larger order types iteratively.

Using the pyotlib.IterativeRealization.py script with Mathematica an
order type with n = 40 points and 33070 crossings could be realized. Hence,
the upper bound on the number of crossings was slightly improved:

c̄r(40) ≤ 33070

Using the script pyotlib.PointMove.py and pyotlib.PointWalk.py some
known pointsets [16, 9] could be altered in a way, such that the number of
crossings was slightly decreased. Table 2 lists the attained improvements on the
upper bound on the minimal number of rectilinear crossings. We refer to [9] for
the current values and more information.
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n c̄r(n)
40 ≤ 33070
52 ≤ 99161
57 ≤ 145170
58 ≤ 156042
60 ≤ 179523
61 ≤ 192267
98 ≤ 1347651
99 ≤ 1404666

Table 2: Improvements on the minimal number of rectilinear crossings c̄r(n).

5.3 Results on Realizations of Minimal Size:

For this subsection when talking about “realizations”, any realization needs to
provide different x and y coordinates and must not contain cocircular points!
That is because the order type database [10, 15] provides these properties.

Using pyotlib we could find realizations of all (realizable) n = 9 order
types with 7 bit integer coordinates by minimizing the known coordinates and
re-realizing the order types. Remark that the previous realizations from the
order type database needed 16 bits. Except for some n = 9 order types that
require 7 bits, for the others 6 bits are sufficient. Furthermore, every n = 9
order type could be realized on a 6-bit integer grid by dropping the desired
properties.

For n = 10 the minimization task is not that easy and there are still order
types that we could not realize with less than 13 bit integer coordinates. Except
for some n = 10 order types that require 9 bits, for the others 8 bits are sufficient
(without properties).

n 3 4 5 6 7 8 9 10
# bits needed (with properties) 2 2 3 3 4 5 ≤ 7 ≤ 13
# bits needed (without properties) 1 2 2 3 4 5 ≤ 6 ≤ 9

For example, to realize an order type with 5 or more points and pairwise
different x and y coordinates at least 3 bits are needed since a 4 × 4 grid is
insufficient. Therefore, 3 is the exact lower bound on the number of necessary
bits as any n = 5 order type is realizable with 3 bits.

To show that there exists an order type with 7 points such that every re-
alization needs more than 3 bits we wrote a script check_integer_grid that
enumerates all order types with n points on a N ×N grid. By executing

python check_integer_grid.py 8 7

it can be calculated in about one minute that only 70 of 135 order types can be
realized on an 8 × 8 grid. Thus, at least 4 bits are needed to realize any order
type with 7 or more points. So every order type with 7 points is realizable on a
16×16 grid as we could find a realization for every order type with 4 bit integer
coordinates. As this script tests all possible pointsets it would take some time
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to proof that any order type with k or more points for k ≥ 8 can not be realized
on a 16× 16 grid since

(
16
k

)
·
(

16
k

)
· k! ≥ 1012 pointsets will be tested.

By executing python check_integer_grid_withoutproperties.py 4 5 it
can be shown that at most 2 bits are needed for any n = 5 order type (without
properties).

By executing python check_integer_grid_withoutproperties.py 4 6 it
can be shown that at least 3 bits are needed for some n = 6 order types (without
properties) as only 8 different n = 6 order types can be found on a 2-bit grid.

By executing python check_integer_grid_withoutproperties.py 8 6 it
can be shown that at most 3 bits are needed for any n = 6 order types (without
properties).

By executing python check_integer_grid_withoutproperties.py 8 7 it
can be shown that at least 4 bits are needed for some n = 7 order types (without
properties) as only 70 different n = 7 order types can be found on a 3-bit grid.

A better approach to show that a certain order type can not be realized
on a k-bit integer grid is to use PySimpleRealizationTester which tries to
realize it by geometric insertion. If no realization can be found, there is no such
realization as all possibilites are checked. Using this approach we could show
that there exist n = 8 order types that can not be realized on a 4-bit integer
(even without properties). As any n = 8 order type can be realized (with
properties) on a 5-bit integer grid, 5 is the exact lower bound on the number of
necessary bits.

5.4 Results on Universal Order Types:

Using pyotlib an n = 30 order type (a result of other calculations) could be
shown to be universal of order 8. Also an n = 20 projective class could be
shown to be universal of order 8. The number of points could be improved
slightly by removing certain points and moving points via using the script
pyotlib.PointMove.py. The calculations on order 9 universal order types and
projective classes is very time consuming and hence, we did not try to minimize
the number of points for these results. The following table states the number
of points of the smallest universal order types and projective classes of order m
known so far:

m 3 4 5 6 7 8 9
OT 3 5 6 9 12 ≤ 22 ?
PC 3 4 5 7 9 ≤ 14 ≤ 30

As there can be at most
(
n
m

)
sub order types of size m in an order type of
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size n, a lower bound on the number of points needed can be calculated as(
n

8

)
≥ 3315⇒ n ≥ 15,(

n

9

)
≥ 158817⇒ n ≥ 20,(

n

10

)
≥ 14309547⇒ n ≥ 29,(

n

11

)
≥ 2334512907⇒ n ≥ 41.

Remark that the number of realizable order types (n ≤ 11) was stated
in [15, 31].
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