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Triangles in Arrangements of Pseudocircles∗

Stefan Felsner† Manfred Scheucher‡§

Abstract

Grünbaum conjectured that the number of triangular
cells p3 in digon-free arrangements of n pairwise inter-
secting pseudocircles is at least 2n − 4. We present
examples to disprove this conjecture. With a re-
cursive construction based on an example with 12
pseudocircles and 16 triangles we obtain a family with
p3(A)/n → 16/11 = 1.45. We conjecture that the
lower bound p3 ≥ 4n/3 of Hershberger and Snoeyink
is tight for infinitely many arrangements. For inter-
secting arrangements with digons we have p3 ≥ 2n/3,
and conjecture that p3 ≥ n− 1.

First counterexamples to Grünbaum’s conjecture
were found on the basis of an exhaustive enumeration
of all arrangements of n intersecting pseudocircles for
n ≤ 7. It turned out that there is a unique digon-free
intersecting arrangement N6 with n = 6 and only 8
triangles. This arrangement is a subarrangement of
all minimizing examples for n = 7, 8, 9. We show
that N6 is not circularizable, i.e., there is no equivalent
arrangement of circles. These results suggest that
Grünbaum’s conjecture might be true for digon-free
intersecting arrangements of circles.

1 Introduction

We study simple, intersecting arrangements of pseudo-
circles on the sphere. Here intersecting means that any
two pseudocircles cross twice, while simple means that
no three pseudocircles intersect in a common point.

An arrangement of pseudocircles is called completely
intersecting if there are two cells, which are separated
by each of the pseudocircles. Note that for every
completely intersecting arrangement of pseudocircles
there is a stereographic projection from the sphere
to the plane such that those two cells are mapped
to the outer cell and a cell, which lies “inside” every
pseudocircle, respectively.

In an arrangement A of pseudocircles, we denote
a cell with k crossings on its boundary as k-cell and
let pk(A) be the number of k-cells of A. As usual we
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call 2-cells digons, 3-cells triangles, 4-cells quadrangles,
and 5-cells pentagons.

In his monograph [3] from 1972, Grünbaum states
Conjecture 3.7: Every (not necessarily simple) digon-
free arrangement of n pairwise intersecting pseudocir-
cles has at least 2n− 4 triangles. Grünbaum also pro-
vides examples of arrangements with n ≥ 6 pseudocir-
cles and 2n−4 triangles. Snoeyink and Hershberger [7]
showed that every connected digon-free arrangement
of n pseudocircles has at least 4n/3 triangles. Felsner
and Kriegel [2] observed that the bound from [7] also
applies to non-simple intersecting digon-free arrange-
ments and gave examples of arrangements showing
that the bound is tight on this class.

In Section 2, we give counterexamples to Grün-
baum’s conjecture. A specific arrangement N6 of 6
pseudocircles appears as subarrangement in most of
the known counterexamples. In Section 3, we show
that N6 is not circularizable, i.e., representable by
circles. This motivates the question, whether indeed
Grünbaum’s conjecture is true when restricted to in-
tersecting arrangements of circles. In the course of
the presentation, we offer some additional conjectures,
e.g., in Subsection 2.1 where we discuss arrangements
with digons.

In this paper (unless explicitly stated otherwise)
the term arrangement is used as equivalent to simple
arrangement of pairwise intersecting pseudocircles.

2 Arrangements with few Triangles

In this section, we discuss arrangements with few trian-
gles. The main result is the following theorem, which
disproves Grünbaum’s conjecture.

Theorem 1 The minimum number of triangles in
digon-free arrangements of n pseudocircles is

(i) 8 for 3 ≤ n ≤ 6.

(ii) d 43ne for 6 ≤ n ≤ 14.

(iii) < 16
11n for all n = 11k + 1 with k ∈ N.

The basis for this theorem was laid by exhaustive
computations, which generated all simple arrange-
ments of up to n = 7 pseudocircles. We generated
all possible dual graphs of such arrangements, that
is, the graph on the faces, where two vertices share
an edge if the correspond faces share a common seg-
ment of a pseudocircle. Since counting arrangements
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is also interesting, we digress to present the enumer-
ative results in Table 1. The four rows of the table
show the number of simple pseudocircle arrangements
without fixed outer cell (sphere) and with fixed outer
cell (plane). In both cases, we first state the num-
bers when digons are allowed and then the numbers of
digon-free arrangements. The arrangements and more
information can be found on our website [6].

n 2 3 4 5 6 7

sphere 1 2 8 278 145 058 447 905 202

+digon-free 0 1 2 14 2 131 3 012 972

plane 1 4 45 5 108 4 598 809 ?

+digon-free 0 1 5 157 63 808 132 355 602

Table 1: Number of combinatorially different arrange-
ments of n pseudocircles.

Starting with n = 7, we iteratively used arrange-
ments with n pseudocircles and a small number of
triangles and digons to generate arrangements with
n+ 1 pseudocircles and the same property. Using this
strategy, we found the arrangements from (i) and (ii)
of Theorem 1. Details can be found at [6]. From [7] we
know the lower bound: Every digon-free arrangement
has at least 4n/3 triangles.

A result of the computations was that the triangle-
minimizing example for n = 6 is unique, i.e., there
is a unique simple arrangement N6 with 6 pseudo-
circles and only 8 triangles. This arrangement is a
subarrangement of each of the minimizing examples for
7 ≤ n ≤ 9. The claim, that indeed we found all mini-
mizing examples in this range, is justified by Lemma 2,
which allows to quantify the range of pairs (p2, p3) of
arrangements of n pseudocircles whose extension may
yield a minimizing example for n + 1. In particular,
to get all arrangements with n = 9 and 12 triangles
we only had to extend arrangements with n = 7 and
n = 8, where p3 + 2p2 ≤ 12.

Lemma 2 For any arrangement A and C ∈ A, we
have p3(A) + 2p2(A) ≥ p3(A − C) + 2p2(A − C).

Proof. Consider a triangle of A − C. After adding C,
either the triangle remains untouched, or the triangle
is split into a triangle and a quadrangle, or a digon
is created in the region covered by the triangle. Now
consider a digon of A − C. After adding C, either
there is a digon in this region or the digon has been
split into two triangles. �

It turns out that N6 is a subarrangement of many
arrangements, that violate Grünbaum’s conjecture. In
Section 3, we show that N6 is not circularizable, i.e.,
there is no equivalent arrangement of circles. This
property is inherited by all arrangements, that have
N6 as a subarrangement. For the examples with less
than 2n − 4 triangles, that do not contain a subar-
rangement equivalent to N6, we could not find realiza-

tions by circles. Therefore, the following weakening of
Grünbaum’s conjecture may be true.

Conjecture 1 (Weak Grünbaum Conjecture)
Every digon-free arrangement of n circles has at least
2n− 4 triangles.

We now come to the proof of (iii) of Theorem 1.
The basis of the construction is an arrangement A12

with 12 pseudocircles and 16 triangles shown in Fig-
ure 1. This arrangement will be used iteratively in a
‘merge’ operation as described by the following lemma.

Figure 1: A digon-free, completely intersecting arrange-
ment A12 of n = 12 pseudocircles with exactly 16 triangles.
The dotted curve intersects every pseudocircle exactly once.

Lemma 3 Let A and B be arrangements of nA

and nB pseudocircles, respectively, and let PA be
a path in A, that intersects every pseudocircle exactly
once. If PA traverses τ triangles of A and forms δ tri-
angles with pairs of pseudocircles from A, then there
is an arrangement C of nA + nB − 1 pseudocircles
with p3( C) = p3(A) + p3(B) + δ − τ − 1.

Proof. Take a drawing of A and make a hole in the
two cells, where the path PA ends. This yields a
drawing of A on a cylinder such that none of the
pseudocircles is contractible. The path PA connects
the two boundaries of the cylinder. Now we stretch
the drawing such that it becomes a narrow belt, where
all intersections of pseudocircles take place in a small
disk, which we call belt-buckle. This drawing of A is
called a belt drawing. The construction is illustrated
with the blue subarrangement in Figure 2.

Let B be a pseudocircle in B and let4 be a triangle
incident to B. Let b be the edge of B, which bounds4.
Specify a disk D, which is traversed by b and disjoint
from all other edges of B. Now replace B by a belt
drawing of A in a small neighborhood of B such that
the belt-buckle is drawn within D; see Figure 2.
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Figure 2: An illustration of the construction in Lemma 3.
Pseudocircles of A (B) are drawn red (blue).

The arrangement C obtained from the merge of B
and A along B consists of nA + nB − 1 pseudocircles.
Most of the cells of C are of one of the following four
types: (1) All boundary edges belong to pseudocircles
of A. (2) All boundary edges belong to pseudocircles
of B. (3) All boundary edges but one belong to pseu-
docircles of B and the remaining edge belongs to the
first or the last pseudocircle of A intersected by PA.
These cells correspond to cells of B with a boundary
edge on B. (4) Quadrangular cells, whose boundary
edges alternatingly belong to A and B.

From the cells of B, only 4 and the other cell con-
taining b (which is not a triangle since B is simple)
have not been taken into account. In C, the corre-
sponding two cells have at least two boundary edges
from B and at least two from A. Consequently, nei-
ther of the two cells are triangles. The remaining
cells of C have been created by inserting PA into A.
To be precise, the role of PA in these cells is taken
by one of the two boundary pseudocircles of 4 other
than B. There are δ triangles among these cells, but τ
of these are obtained because PA traverses a triangle
of A. All other triangles of C have a corresponding
triangle in A or B, except for 4, which does not
occur in this correspondence. Altogether, there are
p3(A) + p3(B) + δ − τ − 1 triangles in C. �

Proof of Theorem 1(iii). We use A12, the arrangement
shown in Figure 1, in the role of A for our recursive
construction. The dotted path in the figure is used
as PA with δ = 2 and τ = 1. Starting with C1 = A12

and defining Ck+1 as the merge of Ck and A12, we
construct a sequence {Ck}k∈N of arrangements with
n( Ck) = 11k + 1 pseudocircles and p3( Ck) = 16k
triangles. The fraction 16k/(11k+1) is increasing as k
increases with limit 16/11 = 1.45. �

We remark that using other arrangements from The-
orem 1(ii) (which also admit a path with δ = 2 and
τ = 1) in the recursion, we obtain arrangements with
p3 ≤ d 1611ne triangles for all n ≥ 6.

Since the lower bound d 43ne is tight for 6 ≤ n ≤ 14,
we believe that the following is true:

Conjecture 2 There are infinitely digon-free arrange-
ments A with p3(A) = d4n/3e.

2.1 Arrangements with Digons

Concerning arrangements with digons, we know of two
constructions for families of arrangements with only
n− 1 triangles. An example is shown in Figure 3.

Figure 3: An illustration of an arrangement of n = 5
pseudocircles with n digons and n− 1 triangles.

Using ideas based on sweeps (cf. [7]), we can show
that every pseudocircle is incident to at least two
triangles. This implies the following theorem:

Theorem 4 Every arrangement of n ≥ 3 pseudocir-
cles has at least 2n/3 triangles.

Since for 3 ≤ n ≤ 7 every arrangement has at least
n− 1 triangles, we believe that the following is true:

Conjecture 3 Every arrangement of n ≥ 3 pseudo-
circles has at least n− 1 triangles.

3 Non-circularizable Arrangements

Little is known about circularizability, i.e., deciding
whether a given arrangement of pseudocircles is iso-
morphic to an arrangement of circles. Edelsbrunner
and Ramos [1] proved non-circularizability of an ar-
rangement of 6 pseudocircles with digons. Linhart and
Ortner [5] found a non-intersecting arrangement of 5
pseudocircles with digons, that is non-circularizable.
Kang and Müller [4] proved that all arrangements
with at most 4 pseudocircles are circularizable and
that deciding circularizability is NP-hard in general.

Having generated all intersecting arrangements with
n ≤ 7, we used a randomized procedure to see, which
of them are realizable as circle arrangement. After
realizing some remaining hard instances with n = 5
by hand, we now have:

Proposition 5 The arrangement N5 shown in Fig-
ure 4(a) is the unique non-circularizable arrangement
among the 278 equivalence classes of intersecting ar-
rangements of n = 5 pseudocircles.

Proof (Sketch). Since we have realizations of all
278 intersecting arrangements of n = 5 pseudocircles
except N5, it remains to show that N5 is not circu-
larizable. Suppose for a contradiction that there is
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Figure 4: (a) The unique intersecting non-circularizable
arrangement N5 of 5 pseudocircles. (b) An illustration of
the proof of Proposition 5.

an equivalent arrangement A of circles. Shrink the
red, green, and blue circle into their interior so that
they touch each other and they all touch the pink
circle; see Figure 4(b). Four of the touching points
have been labeled. The bisectors of the chords ab and
cd intersect in a point p, which is equidistant to a,
b, c, and d. Hence, there is a circle C with center p,
which is incident to each of the four points. Since the
four labeled points are in four of the digons of A, we
know that the yellow circle of A has a and c in its
interior but b and d in its exterior. Since on C, the
counter-clockwise order of the four points is a, b, c, d,
there is no circle with the properties needed for the
yellow circle of A. A contradiction. �

The proposition together with the work of Kang and
Müller implies that all digon-free intersecting arrange-
ments of at most 5 pseudocircles are circularizable.
For n = 6 there are digon-free intersecting arrange-
ments, which are non-circularizable. Figure 5 shows
such an arrangement, which we denote as N6. The
arrangement N6 is the unique arrangement for n = 6
minimizing the number of triangles, and, since N6 oc-
curs as a subarrangement of every triangle-minimizing
arrangement for n = 7, 8, 9, also neither of those ar-
rangements is circularizable. From the 2131 digon-free
intersecting arrangements of 6 pseudocircles 2128 are
circularizable and 3 are not. In the following we sketch
the proof of the non-circularizability of the arrange-
ment N6. All realizations and the two additional
non-circularizable arrangements can be found at [6].

Proposition 6 The arrangement N6, as depicted in
Figure 5, is non-circularizable.

Proof (Sketch). Suppose for a contradiction that
there is an equivalent arrangement of circles on the
unit sphere. Choose a point in each of the eight tri-
angles on the sphere and label them with letters as in
Figure 5. Now embed R3 as an affine subspace into R4

such that a, b, c, d are mapped onto the standard basis
vectors e1, e2, e3, e4 in this order. On the sphere, the
circle through a, b, c separates d and z. This implies
that the first three components z1, z2, z3 of z are pos-
itive and that z4 is negative. Similarly, the unique
negative components of w, x, y are w1, x2, and y3, re-

c
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Figure 5: The unique digon-free intersecting arrangement
N6 of 6 pseudocircles with 8 triangles. This arrangement
is non-circularizable.

spectively. Next, for each circle of the arrangement,
we consider the determinant of the four points in the
incident triangles. E.g., for the green circle, we look at
det(abwx). Geometric considerations allow us to argue
that det(abwx) is positive. Therefore, w3x4 > w4x3.
In an analogous manner, we obtain:

green : det(abwx)> 0 ; w3x4 > w4x3

red : det(cayw)> 0 ; w4y2 > w2y4

light blue : det(adwz)> 0 ; w2z3 > w3z2

pink : det(cbyx) > 0 ; x1y4 > x4y1

blue : det(bdxz) > 0 ; x3z1 > x1z3

yellow : det(dczy) > 0 ; y1z2 > y2z1

The negative values do not show up in the inequalities.
Moreover, if we take the product of the left-hand-sides
and right-hand-sides, resp., we obtain the same value
on both sides of the inequality – a contradiction. �
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