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Abstract

A straight-line drawing of a graph is called monotone
if for each pair of vertices there exists a path which is
monotonically increasing in some direction, and it is
called a strongly monotone if the direction of mono-
tonicity is given by the direction of the line segment
connecting the two vertices.

We present algorithms to compute crossing-free
strongly monotone drawings for some classes of planar
graphs; namely, 3-connected planar graphs, outerpla-
nar graphs, and 2-trees. The drawings of 3-connected
planar graphs are based on primal-dual circle pack-
ings. Our drawings of outerplanar graphs depend on
a new algorithm that constructs strongly monotone
drawings of trees which are also convex. For trees
without degree-2 vertices, these drawings are strictly
convex.

1 Introduction

When reading data visualized as a drawing of a graph,
a common task is to find a path between a source
vertex and a target vertex. This task serves as the
motivation for the following quality criterion for graph
drawings.

Let Γ be a straight-line drawing of graph G =
(V,E). We say that a path P in Γ is monotone with
respect to a direction (or vector) d if the orthogonal
projections of the vertices of P on a line with direc-
tion d appear in the same order as in P . Drawing Γ
is called monotone if for each pair of vertices u, v ∈ V
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there is a connecting path that is monotone with re-
spect to some direction. To support the path-finding
tasks it is useful to restrict the monotone direction for
each path to the direction of the line segment connect-
ing the source and the target vertex: a path v1v2 . . . vk
is called strongly monotone if it is monotone with re-
spect to the vector −−→v1vk. Drawing Γ is called strongly
monotone if each pair of vertices u, v ∈ V is con-
nected by a strongly monotone path. We are inter-
ested in strongly monotone drawings which are also
planar. If crossings are allowed, then any strongly
monotone drawing of a spanning tree of G yields a
strongly monotone drawing of G [1]. For the results
stated in this abstract we interpret monotonicity in a
strict sense, i.e., we do not allow edges on the path
that are orthogonal to the segment between the end-
points.

Is has been shown that every connected planar
graph admits a monotone drawing on a grid of size
O(n)×O(n2) [4]. On the other hand, there exists an
infinite class of 1-connected graphs that do not admit
strongly monotone drawings [5]. Any tree and any
2-connected outerplanar graph has a strongly mono-
tone drawing [5]. It is known that the area required
for strongly monotone drawings of trees and binary
cacti is exponential [6].

In this work, we show that any 3-connected pla-
nar graph admits a strongly monotone drawing (Sec-
tion 2). Then, we answer in the affirmative the open
question of Kindermann et al. [5] on whether ev-
ery tree has a strongly monotone drawing which is
(strictly) convex. We use this result to show that
every outerplanar graph admits a strongly monotone
drawing (Section 3). Finally, we prove that 2-trees
can be drawn strongly monotone (Section 4). All our
proofs are constructive and admit efficient drawing
algorithms. Our main open question is whether ev-
ery planar 2-connected graph admits a plane strongly
monotone drawing. Due to space constraints we ei-
ther sketch or omit the proofs; detailed proofs can be
found in the full preprint version [3].

2 3-Connected Planar Graphs

In this section, we prove the following:

Theorem 1 Every 3-connected planar graph has a
strongly monotone drawing.
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Figure 1: A primal-dual circle packing. Vertex circles
in red, face circles in blue, regions of faces in white
and regions of vertices in gray.

We show that the straight-line drawing correspond-
ing to a primal-dual circle packing of a graph G is
strongly monotone. The theorem then follows from
the fact that any 3-connected planar graph G =
(V,E) admits a primal-dual circle packing [2].

A primal-dual circle packing of a plane graph G
consists of two families CV and CF of circles such that,
there is a bijection v ↔ Cv between the set V of
vertices of G and circles of CV and a bijection f ↔ Cf

between the set F of faces of G and circles of CF .
Moreover, the following three properties hold: (I) The
circles in the family CV are interiorly disjoint and their
contact graph is G, i.e., Cu ∩ Cv 6= ∅ if and only
if (u, v) ∈ E(G). (II) If Co ∈ CF is the circle of the
outer face o, then the circles of CF \{Co} are interiorly
disjoint while Co contains all of them. The contact
graph of CF is the dual G∗ of G, i.e., Cf∩Cg 6= ∅ if and
only if (f, g) ∈ E(G∗). (III) The circle packings CV

and CF are orthogonal, i.e., if e = (u, v) and the dual
of e is e∗ = (f, g), then there is a point pe = Cu∩Cv =
Cf∩Cg; moreover, the common tangents te∗ of Cu, Cv

and te of Cf , Cg cross perpendicularly in pe.

Let a primal-dual circle packing of a graph G be given.
For each vertex v, let pv be the center of the corre-
sponding circle Cv. By placing each vertex v at pv, we
obtain a planar straight-line drawing Γ of G. In this
drawing, the edge e = (u, v) is represented by the seg-
ment with end-points pu and pv on te. The face circles
are inscribed circles of the faces of Γ; moreover, Cf is
touching each boundary edge of the face f ; see Fig-
ure 1. A straight-line drawing Γ∗ of the dual G∗ of G
with the dual vertex of the outer face o at infinity can
be obtained similarly by placing the dual vertex of
each bounded face f at the center of the correspond-
ing circle Cf . In this drawing, a dual edge e∗ = (f, o)
is represented by the ray supported by te∗ that starts
at pf and contains pe.

We make use of a specific partition Π of the plane;
Figure 1 gives an illustration. The regions of Π corre-
spond to the vertices and the faces of G. For a vertex
or face x, let Dx be the interior of the disk Cx. We
define the region Rf of a bounded face f as Df . The
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Figure 2: The path Pi connecting pi−1 and pi.

region Rv of a vertex v is obtained from the diskDv by
removing the intersections with the disks of bounded
faces, i.e., Rv = Dv \

⋃
f 6=oRf = Dv \

⋃
f 6=oDf . To

get a partition of the whole plane, we assign the com-
plement of the already defined regions to the outer
face. Note that the edge-points pe are part of the
boundary of four regions of Π. Additionally, if two
regions of Π share more than one point on the bound-
ary, then one of them is a vertex region Rv, the other
is a face-region Df , and v is incident to f in G.

We are now prepared to prove the strong mono-
tonicity of Γ. Consider two vertices u and v and let `
be the line spanned by pu and pv. W.l.o.g., assume
that ` is horizontal and pu lies left of pv. Let `s be
the directed segment from pu to pv. Since pu ∈ Ru

and pv ∈ Rv, the segment `s starts and ends in these
regions. In between, the segment will traverse some
other regions of Π. This is true unless (u, v) is an
edge of G whence the strong monotonicity for the
pair is trivial. We assume non-degeneracy in the sense
that the interior of the segment `s contains no vertex-
point pw, edge-point pe, or face-point pf .

Let u = w0, w1, . . . , wk = v be the sequence of ver-
tices whose region is intersected by `s, in the order of
intersection from left to right and let pi = pwi

. We
will construct a strongly monotone path P from pu
to pv in Γ that contains pu = p0, p1, . . . , pk = pv in
this order. We show how to construct Pi, the sub-
path of P from pi−1 to pi. Since `s may revisit a
vertex-region, it is possible that pi−1 = pi; in this
case we set Pi = pi. Now suppose that pi−1 6= pi.
Non-degeneracy implies that the segment `s alter-
nates between vertex-regions and face-regions; hence,
a unique disk Df is intersected by `s between the re-
gions of wi−1 and wi. It follows that wi−1 and wi

are vertices on the boundary of f . The boundary of f
contains two paths from wi−1 to wi. In Γ, one of these
two paths from pi−1 to pi is above Df ; we call it the
upper path, the other one is below Df , this is the lower
path. If the center pf of Df lies below `, we choose
the upper path from pi−1 to pi as Pi; otherwise, we
choose the lower path.

Suppose that this rule led to the choice of the up-
per path; see Figure 2. The case that the lower
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path was chosen works analogously. We have to
show that Pi is monotone with respect to `s, i.e., to
the x-axis. Let e1, . . . , er be the edges of this path
and let ej = (qj−1, qj); in particular q0 = pi−1 and
qr = pi. Since Rwi−1

is star-shaped with center pi−1,
the segment connecting pi−1 with the first intersec-
tion point of ` with Cf belongs to Rwi−1 . There-
fore, the point pe1 of tangency of edge e1 at Cf lies
above `. Similarly, per and, hence, all the points pej
lie above `. Since the points pe1 , . . . , per appear in
this order on Cf and the center of Cf lies below `,
we obtain that their x-coordinates are increasing in
this order. This sequence is interleaved with the x-
coordinates of q0, q1, . . . , qr, whence this is also mono-
tone. This proves that the chosen path Pi is mono-
tone with respect to `. Monotonicity also holds for
the concatenation P = P1 + P2 + . . .+ Pk.

Even if degenerancy is allowed, there still exists a
strongly monotone path consisting of the edges tan-
gent to the circles intersected by ls. This can be shown
by carefully examining the arising special cases.

3 Trees and Outerplanar Graphs

Consider a straight-line, crossing-free drawing Γ of a
tree and replace each edge that leads to a leaf by a
ray that begins with the edge and extends accross
the leaf. If all the unbounded polygonal regions in
the obtained drawing Γ′ are convex, then drawing Γ
is called convex. If all angles in Γ′ are less than π,
then Γ is called strictly convex.

Kindermann et al. [5] have shown that any tree has
a strongly monotone drawing and that any binary
tree has a strictly convex strongly monotone draw-
ing. They left as an open question whether every tree
admits a convex strongly monotone drawing; noticing
that, in the positive case, this would imply that every
Halin graph has a convex strongly monotone draw-
ing. We give an affirmative answer to this question
by stating the following:

Theorem 2 Every tree has a convex strongly mono-
tone drawing. If the tree has no degree-2 vertex, then
the drawing is strictly convex.

The theorem can be proven by inductively generat-
ing a corresponding drawing. In the beginning some
root vertex v0 is placed in the plane and its k children
are placed at the corners of a regular k-gon with cen-
ter v0. The drawing if then generated by iteratively
expanding leafs while maintaining the following:
Invariant: (I) Every leaf is located on a corner of

the convex hull of the vertices. (II) If a1, . . . , a` is
the counterclockwise order of the leaves on the con-
vex hull, then for i = 1, . . . , ` the vectors (−−−−→aiai−1)⊥,
−−−→pi, ai, (−−−−→ai+1ai)

⊥ appear in counterclockwise radial or-
der, where pi denotes the unique vertex adjacent to ai.

(III) The angle between two consecutive edges inci-
dent to a vertex v is at most π and is equal to π only
when v has degree two. (IV) Γ is strongly monotone.

We can utilize Theorem 2 to show that every outer-
planar graph has a strongly monotone drawing that is
convex, i.e. every internal face is realized as a convex
region.

Theorem 3 Every outerplanar graph has a convex
strongly monotone drawing.

Proof. Let G be an outerplanar graph with at least 2
vertices. For every vertex v ∈ V , we add two dummy
vertices v′, v′′ and edges (v, v′), (v, v′′). By construc-
tion, the resulting graph H is outerplanar and does
not contain vertices of degree 2. Let ΓH be an out-
erplanar drawing of H. We will construct a convex
strongly monotone drawing Γ′H of H with the same
combinatorial embedding as ΓH .

Let T be an arbitrary spanning tree of H. By con-
struction, no vertex in T has degree 2. Thus, ac-
cording to Theorem 2, T admits a strongly monotone
drawing ΓT which is strictly convex and which also
preserves the order of the children for every vertex,
i.e., the rotation system coincides with the one in ΓH .

Now, we insert all the missing edges. Recall that,
by removing an edge from a planar drawing, the two
adjacent faces are merged. Since the drawing ΓT of T
is strictly convex and since ΓT preserves the rotation
system of ΓH , by inserting an edge e of the graph H
into ΓT one strictly convex face is partitioned into two
strictly convex faces. Furthermore, the insertion of
an edge does not destroy strong monotonicity. We re-
insert all edges ofH iteratively. The resulting drawing
Γ′H of H is a strictly convex and strongly monotone.

Finally, we remove all the dummy vertices and ob-
tain a strongly monotone drawing of G. Since Γ′H
has the same combinatorial embedding as ΓH , every
dummy vertex lies in the outer face. Hence, no inter-
nal face is affected by the removal of dummy vertices,
and thus all interior faces remain strictly convex. �

4 2-Trees

A 2-tree is a graph produced by starting with a K3

and then repeatedly adding vertices such that each
added vertex v has exactly two neighbours v1, v2 and
there is an edge e = (v1, v2). We say that v is stacked
on e. In this section, we provide a proof sketch for
the following theorem:

Theorem 4 Every 2-tree admits a strongly mono-
tone drawing.

We begin by introducing some notation. A drawing
with bubbles of a graph G = (V,E) is a straight-line
drawing of G in the plane such that, for some E′ ⊆ E,
every edge e ∈ E′ is associated with a circular region
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Figure 3: A drawing with bubbles (a) together with
an extension (b). Stacking vertices into a bubble (c).

in the plane, called a bubble Be; see Figure 3(a). An
extension of a drawing with bubbles is a straight-line
drawing that is obtained by taking some subset of
edges with bubbles E′′ ⊆ E′ and stacking one vertex
on top of each edge e ∈ E′′ into the corresponding
bubble Be; see Figure 3(b). (Since every bubble is as-
sociated with a unique edge we often simply say that
a vertex is stacked into a bubble without mention-
ing the corresponding edge.) We call a drawing with
bubbles Γ strongly monotone if every extension of Γ
is strongly monotone. Note that this implies that if a
vertex w is stacked on top of edge e into bubble Be,
then there exists a strongly monotone path from w
to any other vertex in the drawing and, furthermore,
there exists a strongly monotone path from w to any
of the current bubbles, i.e., to any vertex that might
be stacked into another bubble.

Every 2-tree T = (V,E) can be constructed through
the following iterative procedure: 1. Start with one
edge and tag it as active. During the entire proce-
dure, every present edge is tagged either as active or
inactive. 2. Pick one active edge e and stack vertices
w1, . . . , wk on top of this edge for some k ≥ 0 (we
note that k might equal 0). Edge e is then tagged
as inactive and all new edges incident to the stacked
vertices w1, . . . , wk are tagged as active. 3. If there
are active edges remaining, repeat Step 2.

Observe that Step 2 is performed exactly once per
edge and that an according decomposition for T can
always be found by the definition of 2-trees. We con-
struct a strongly monotone drawing of T by geometri-
cally implementing the iterative procedure described
above, so that after every step of the algorithm the
present part of the graph is realized as a drawing with
bubbles. We maintain the following:

Invariant: After each step of the algorithm every
active edge comes with a bubble and the drawing with
bubbles is strongly monotone. Additionaly, for an
edge e = (u, v) with bubble Be for each point w ∈ Be,
the angle ∠(−→uw,−→wv) is obtuse.

In Step 1, we arbitrarily draw the edge e0 in the
plane. Clearly, it is possible to define a bubble for e0
that only allows obtuse angles. In Step 2, we place
the vertices w1, . . . , wk over an edge e = (u, v) as fol-

lows. The fact that stacking a vertex into Be gives
an obtuse angle allows us to place the to-be stacked
vertices w1, . . . wk in Be on a circular arc around u
such that, for any 1 ≤ i, j ≤ k, there exists a strongly
monotone path between wi and wj ; see Figure 3(c).
Due to our invariant, there also exists a strongly
monotone path between any of the newly stacked ver-
tices and any vertex of an extension of the previous
drawing with bubbles. Hence, after removing the bub-
ble Be, the resulting drawing is a strongly monotone
drawing with bubbles.

In order to maintain the invariant, it remains to
describe how to define the bubbles for the new active
edges incident to the stacked vertices. For this pur-
pose, we state the following Lemma 5, which enables
us to define the two bubbles for the edges incident to
any degree-2 vertex with an obtuse angle. The Lemma
is then iteratively applied to the vertices w1, . . . , wk

and after every usage of the Lemma the produced
drawing with bubbles is strongly monotone. This it-
erative approach is used to ensure that, when defining
bubbles for some vertex wi, the previously added bub-
bles for w1, . . . , wi−1 are taken into account.

Lemma 5 Let Γ be a strongly monotone drawing
with bubbles and let w be a vertex of degree 2 with
an obtuse angle such that the two incident edges e1 =
(u,w) and e2 = (v, w) have no bubbles. Then, there
exist bubbles Be1 and Be2 for edges e1 and e2 respec-
tively that only allow obtuse angles such that Γ re-
mains strongly monotone with bubbles if we add Be1

and Be2 .
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[6] M. Nöllenburg, R. Prutkin, and I. Rutter. On
self-approaching and increasing-chord drawings of 3-
connected planar graphs. arXiv:1409.0315, 2014.


	Introduction
	3-Connected Planar Graphs
	Trees and Outerplanar Graphs
	2-Trees

