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Abstract
Let L be an arrangement of n lines in the Euclidean plane. The k-level of L consists of all
vertices v of the arrangement which have exactly k lines of L passing below v. The complexity
(the maximum size) of the k-level in a line arrangement has been widely studied. In 1998 Dey
proved an upper bound of O(n · (k +1)1/3). Due to the correspondence between lines in the plane
and great-circles on the sphere, the asymptotic bounds carry over to arrangements of great-circles
on the sphere, where the k-level denotes the vertices at distance at most k to the south pole.

We prove an upper bound of O((k + 1)2) on the expected complexity of the k-level in great-
circle arrangements if the south pole is chosen uniformly at random among all cells.

We also consider arrangements of great (d−1)-spheres on the sphere Sd which are orthogonal
to a set of random points on Sd. In this model, we prove that the expected complexity of the
k-level is of order Θ((k + 1)d−1).

1 Introduction

Let L be an arrangement of n lines in the Euclidean plane. The vertices of L are the
intersection points of lines of L. Throughout this article we consider arrangements with
the properties that no line is vertical and no three lines intersect in a common vertex. The
k-level of L consists of all vertices v which have exactly k lines of L below v. We denote
the k-level by Vk(L) and its size by fk(L). Moreover, by fk(n) we denote the maximum of
fk(L) over all arrangements L of n lines, and by f(n) = fb(n−2)/2c(n) the maximum size of
the middle level.

A k-set of a finite point set P in the Euclidean plane is a subset K of k elements of
P that can be separated from P \K by a line. Paraboloid duality is a bijection P ↔ LP

between point sets and line arrangements (for details on this duality see [17, Chapter 6.5] or
[8, Chapter 1.4]). The number of k-sets of P equals |Vk−1(LP ) ∪ Vn−1−k(LP )|.
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11:2 On the Average Complexity of the k-Level

In discrete and computational geometry bounds on the number of k-sets of a planar
point set, or equivalently on the size of k-levels of a planar line arrangement have important
applications. The complexity of k-levels was first studied by Lovász [14] and Erdős et al. [11].
They bound the size of the k-level by O(n · (k + 1)1/2). Dey [6] used the crossing lemma
to improve the bound to O(n · (k + 1)1/3). In particular, the maximum size f(n) of the
middle level is O(n4/3). Concerning the lower bound on the complexity, Erdős et al. [11]
gave a construction showing that f(2n) ≥ 2f(n) + cn = Ω(n log n) and conjectured that
f(n) ≥ Ω(n1+ε). An alternative Ω(n log n)-construction was given by Edelsbrunner and
Welzl [10]. The current best lower bound fk(n) ≥ n · eΩ(

√
log k) was obtained by Nivasch [16]

improving on a bound by Tóth [22].

1.1 Generalized Zone Theorem
In order to define “zones”, let us introduce the notion of “distances”. For x and x′ being a
vertex, edge, line, or cell of an arrangement L of lines in R2 we let their distance distL(x, x′)
be the minimum number of lines of L intersected by the interior of a curve connecting a point
of x with a point of x′. Pause to note that the k-level of L is precisely the set of vertices
which are at distance k to the bottom cell.

The (≤ j)-zone Z≤j(`,L) of a line ` in an arrangement L is defined as the set of vertices,
edges, and cells from L which have distance at most j from `. See Figure 1a for an illustration.

0-zone

1-zone

2-zone3-zone

`

1-zone2-zone

(a) (b)

Figure 1 (a) The higher order zones of a line `. (b) The correspondence between great-circles
on the unit sphere and lines in a plane. Using the center of the sphere as the center of projection
points on the sphere are projected to the points in the plane.

For arrangements of hyperplanes in Rd the (≤ j)-zone is defined alike. The classical
zone theorem provides bounds for the zone ((≤ 0)-zone) of a hyperplane (cf. [9] and [15,
Chapter 6.4]). A generalization with bounds for the complexity of the (≤ j)-zone appears as
an exercise in Matoušek’s book [15, Exercise 6.4.2]. In the proof of Theorem 2.1 we use a
variant of the 2-dimensional case (Theorem 1.1). For the sake of completeness and to provide
explicit constants, we include the proof in the full version [5].

I Theorem 1.1. Let L be a simple arrangement of n lines in R2 and ` ∈ L. The (≤ j)-zone
of ` contains at most 2e · (j + 2)n vertices strictly above `.
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1.2 Arrangements of Great Circles
Let Π be a plane in 3-space which does not contain the origin and let S2 be a sphere in 3-space
centered at the origin. The central projection ΨΠ yields a bijection between arrangements of
great circles on S2 and arrangements of lines in Π. Figure 1b gives an illustration.

The correspondence ΨΠ preserves intersesting properties, e.g. simplicity of the arrange-
ments. If ΨΠ(C) = L, and L has no parallel lines, then ΨΠ induces a bijection between pairs
of antipodal vertices of C and vertices of L.

As in the planar case, we define the distance between points x, y of S2 relative to a
great-circle arrangement C as the minimum number of circles of C intersected by the interior
of a curve connecting x with y. The k-level (≤ k-zone resp.) of C is the set of all the vertices
of C at distance k (distance at most k resp.) from the south pole.

Let Π1 and Π2 be two parallel planes in 3 space with the origin between them and let Ψ1
and Ψ2 be the respective central projections. For a great-circle arrangement C we consider
L1 = Ψ1(C) and L2 = Ψ2(C). A vertex v from the k-level of C maps to a vertex of the k-level
in one of L1, L2 and to a vertex of the (n− k − 2)-level in the other. Hence, bounds for the
maximum size of the k-level of line arrangements carry over to the k-level of great-circle
arrangements except for a multiplicative factor of 2.

The (≤ j)-zone of a great-circle C in C projects to a (≤ j)-zone of a line in each of L1 and
L2. Hence, the complexity of a (≤ j)-zone in C is upper bounded by two times the maximum
complexity of a (≤ j)-zone in a line arrangement. Theorem 1.1 implies that the (≤ j)-zone
of a great-circle C in an arrangement of n great-circles contains at most 4e · (j + 2)n vertices.

1.3 Higher Dimensions
The problem of determining the complexity of the k-level admits a natural extension to
higher dimensions. We consider arrangements in Rd of hyperplanes with the properties that
no hyperplane is parallel to the xd-axis and no d + 1 hyperplanes intersect in a common point.
The k-level Vk(A) of A consists of all vertices (i.e. intersection points of d hyperplanes)
which have exactly k hyperplanes of A below them (with respect to the d-th coordinate).
We denote the k-level by Vk(A) and its size by fk(A). Moreover, by f

(d)
k (n) we denote the

maximum of fk(A) among all arrangements A of n hyperplanes in Rd.
As in the planar case, there remains a gap between lower and upper bounds;

Ω(nbd/2ckdd/2e−1) ≤ f
(d)
k (n) ≤ O(nbd/2ckdd/2e−cd),

here cd > 0 is a small positive constant only depending on d. Details and references can be
found in Chapter 11 of Matoušek’s book [15]. In dimensions 3 and 4 improved bounds have
been established. For example, for d = 3, it is known that f

(3)
k (n) ≤ O(n(k + 1)3/2) (see [21]).

For the middle level in dimension d ≥ 2 an improved lower bound f (d)(n) ≥ nd−1 · eΩ(
√

log n)

is known (see [22] and [16]).
We call the intersection of Sd with a central hyperplane in Rd+1 a great-(d− 1)-sphere

of Sd. Similar to the planar case, arrangements of hyperplanes in Rd are in correspondence
with arrangements of great-(d− 1)-spheres on the unit sphere Sd (embedded in Rd+1). The
terms “distance” and “k-level” generalize in a natural way.

2 Our Results

In the first part of this paper we consider arrangements of great-circles on the sphere and
investigate the average complexity of the k-level when the southpole is chosen uniformly
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at random among the cells. This question was raised by Barba, Pilz, and Schnider while
sharing a pizza [4, Question 4.2].

In Section 3 we prove the following bound on the average complexity.

I Theorem 2.1. Let C be a simple arrangement of n great-circles. For k < n/3 the expected
size of the k-level is at most 4e · (k + 2)2 when the southpole is chosen uniformly at random
among the cells of C.

The condition k < n/3 is needed for Lemma 3.2 as for larger k we would have to double
the multiplicative constant. However, for k in Ω(n3/5) the stated bound is implied by the
O(nk1/3) bound on the maximum size of a k-level. Still it is remarkable that the bound is
independent of the number n of great-circles in the arrangement.

In the second part, we investigate arrangements of randomly chosen great-circles. Here we
propose the following model of randomness. On S2 we have the duality between points and
great-circles (each antipodal pair of points defines the normal vector of the plane containing
a great-circle). Since we can choose points uniformly at random from S2, we get random
arrangements of great-circles. The duality generalizes to higher dimensions so that we can
talk about random arrangements on Sd for a fixed dimension d ≥ 2. Using the duality
between antipodal pairs of points on Sd and great-(d− 1)-spheres, we prove the following
bound on the expected size of the k-level in this random model (the proof can be found in
the full version [5]). Again the bound does not depend on the size of the arrangement.

I Theorem 2.2. Let d ≥ 2 be fixed. In an arrangement of n great-(d− 1)-spheres chosen
uniformly at random on the unit sphere Sd (embedded in Rd+1), the expected size of the
k-level is of order Θ((k + 1)d−1) for all k ≤ n/2.

3 Proof of Theorem 2.1

For the proof of Theorem 2.1, we fix a great-circle C from C and denote the closures of the
two hemispheres of C on S2 as C+ and C−. As an intermediate step, we bound the size of
the set Fk(C+) of pairs (F, v), where F is a cell of C− touching C and v is a vertex of C+

whose distance to F is k. We show |Fk(C+)| ≤ 2e · (k + 1)2n. In the case k = 0, vertex v

must be one of the 2n vertices on C and F is one of the two cells of C− which is adjacent
to v. Hence, we obtain |F0(C+)| ≤ 4n. It remains to deal with the general case k ≥ 1. Note
that if (v, F ) ∈ Fk(C+) then v belongs to the (≤ k − 1)-zone of C.

Consider a family I of half-intervals in R, it consists of left-intervals of the form (−∞, a]
and right-intervals [b,∞). A subset J of k half-intervals from I is a k-clique if there is a
point p ∈ R that lies in all the half-intervals of J but not in any half-interval of I \ J .

I Lemma 3.1. Any family H of half-intervals in R contains at most k + 1 different k-cliques.

Proof. For p ∈ R, let l(p) be the number of left-intervals and r(p) the number of right-
intervals containing p. A point p certifies a k-clique if and only if l(p) + r(p) = k. From the
monotonicity of the functions l and r it follows that if (l(p1), r(p1)) = (l(p2), r(p2)) for two
points p1 and p2, then they are contained in the same intervals. Thus the number of k-cliques
is at most the number of pairs (l, r) such that l + r = k and l, r ≥ 0, which is k + 1. J

The next lemma is a corresponding result for half-circles on the circle S1.

I Lemma 3.2. Any family H of n half-circles in S1 with n > 3k contains at most k + 1
different k-cliques.
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Proof. For this proof, we embed S1 as the unit-circle in R2, which is centered at the origin o.
We consider the set X of all points from S1, which are contained in precisely k of the
half-circles of I, and distinguish the following two cases.

Case 1: The origin o is not contained in the convex hull of X. There is a line separating o
from X and rotational symmetry allows us to assume that X is contained in Π+ = {(x, y) ∈
R2 : y > 0}. For each half-circle C ∈ H, the central projection of C ∩ Π+ to the line y = 1 is
a half-interval. Since k-cliques of H and k-cliques of the half-intervals are in bijection we get
from Lemma 3.1 that H has at most k + 1 different k-cliques.

Case 2: The origin o is contained in the convex hull of X. By Carathéodory’s theorem,
we can find three points p1, p2, p3 such that o lies in the convex hull of p1, p2, p3. Since each
of the n half-circles from H contains at least one of these three points, and each of these
three points lies on precisely k half-circles, we have n ≤ 3k – a contradiction to n > 3k. J

For a fixed vertex v in the (≤ k − 1)-zone of C with v ∈ C+, let BC+(v) be the set of
cells F such that (F, v) ∈ Fk(C+), in particular dist(F, v) = k.

Claim. For k ≥ 1, we have |BC+(v)| ≤ k.

Proof. Consider a great-circle D 6= C from C. For a point x ∈ C, we say that (v, x) is D-
separated if every path from v to x in C+ intersects D. The set of all D-separated points forms
a half-circle HD on C. Let H be the set of these half-circles, i.e., H = {HD : D ∈ C, D 6= C}.
See Figure 2.

v
D

D′

HD

HD′

C

Figure 2 An illustration of the cyclic half-circles H.

We claim that there is a bijection between BC+(v) and the (k − 1)-cliques in H. Indeed,
if the intersection of the half-circles of a clique K, viewed as a subset of C, is IK , then
IK is the interval of C which is reachable from v by crossing the circles corresponding to
the half-circles of K. If F is a cell from C− at distance k from v, then C and a subset of
k − 1 additional circles have to be crossed to reach v from F , i.e., there is a (k − 1)-clique
in H whose intersection is F ∩ C. The number of (k − 1)-cliques in H is at most k by
Lemma 3.2. J

Claim. For k ≥ 1, we have |Fk(C+)| ≤ 2e · k(k + 1)n.

Proof. By definition, the set Fk(C+) is the set of pairs (F, v) such that v ∈ C+ is in the
(≤ k)-zone of C and F ∈ BC+(v). As already noted in Section 1.2, the (≤ k)-zone contains
at most 4e · (k + 1)n vertices of C and at most 2e · (k + 1)n vertices in C+. From the above
claim we have |BC+(v)| ≤ k, hence we conclude that |Fk(C+)| ≤ 2e · k(k + 1)n. J

EuroCG’20



11:6 On the Average Complexity of the k-Level

To include the case k = 0 we relax the bound to |Fk(C+)| ≤ 2e · (k + 1)2n. Since C

was chosen arbitrarily among all great-circles from C and C+ was chosen arbitrarily among
the two hemispheres of C, the upper bound from the above claim holds for any induced
hemisphere of C. For the union Fk of the Fk(C+) over all the 2n choices of the hemisphere
C+, we have

|Fk| ≤
∑

C+ hemisphere

|Fk(C+)| ≤ 4e(k + 1)2n2.

Proof of Theorem 2.1. The k-level with the southpole chosen in cell F consists of the
vertices at distance k from F . Thus, the expected complexity of the k-level when choosing F

uniformly at random equals |Fk| divided by the number of cells. Since the number of cells in
an arrangement of n great-circles is 2

(
n
2
)

+ 2 and |Fk| ≤ 4e(k + 1)2n2, we can conclude the
statement from

4e · (k + 1)2 · n2

2
(

n
2
)

+ 2
≤ 4e · (k + 1)2 · n

n− 1 ≤ 4e · (k + 2)2 · k + 1
k + 2 ·

n

n− 1︸ ︷︷ ︸
≤1

. J

4 Discussion

Theorem 2.1 is about arrangements of great-circles. All the elements of the proof, however,
carry over to great-pseudocircles whence the result could also be stated for arrangements of
great-pseudocircles. Projective arrangements of lines are obtained by antipodal identification
from arrangements of great-circles. Hence, if you pick a cell u.a.r. in a projective arrangement
of lines (pseudo-lines) the the expected number of vertices at distance k from the cell is as in
Theorem 2.1. If the projection ΨΠ is used to project an arrangements C of great-pseudocircles
to an Euclidean arrangement L on Π such that the south-poles coincide, then the k-level of
C corresponds to the union of the k- and the (n− k − 2)-level of L.

With respect to lower bounds we would like to know the answer to:
I Question 1. Is there a family of arrangements where the expected size of the middle level
is superlinear when the southpole is chosen uniformly at random?

Recursive constructions from [10] and [11] show that the size of the (n/2− s)-level can be
in Ω(n log n) for any fixed s. Nevertheless computer experiments suggest that if we choose a
random southpole for these examples the expected size of the middle level drops to be linear.

Theorem 2.2 deals with the average size of the k-level in arrangements of randomly chosen
great-circles. In our model, great-circles are chosen independently and uniformly at random
from the sphere. Since point sets, line arrangements, and great-circle arrangements are in
strong correspondence the bound from Theorem 2.2 also applies to k-sets in point sets and
k-levels of line arrangements from a specific random distribution.

In the context of Erdős–Szekeres-type problems, several articles made use of point sets
which are sampled uniformly at random from a convex shape [3, 23, 2, 1]. Also the average
size of the convex hull (0-level) is well-studied for sets of points which are sampled uniformly
at random from a convex shape K. If K is a disk, the convex hull has expected size O(n1/3),
and if K is a convex polygon with k sides, the expected size is O(k log n) [13, 18, 19, 20].
In particular, the expected size of the convex hull is not constant, which is a substantial
contrast to our setting. In fact, our setting appears to be closer to the setting of random
order types, for which the expected size of the convex hull was recently shown to be 4 + o(1)
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[12]. Hence it would be very interesting to obtain bounds on the average number of k-sets
also in this setting. Last but not least, Edelman [7] showed that the expected number of
k-sets of an allowable sequence is of order Θ(

√
kn).
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