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Abstract
For d ∈ N, let S be a finite set of points in Rd in general position. A set H of k points from S is
a k-hole in S if all points from H lie on the boundary of the convex hull conv(H) of H and the
interior of conv(H) does not contain any point from S. A set I of k points from S is a k-island
in S if conv(I) ∩ S = I. Note that each k-hole in S is a k-island in S.

For fixed positive integers d, k and a convex body K in Rd with d-dimensional Lebesgue
measure 1, let S be a set of n points chosen uniformly and independently at random from K.
We show that the expected number of k-islands in S is in O(nd). In the case k = d+ 1, we prove
that the expected number of empty simplices (that is, (d+ 1)-holes) in S is at most 2d−1 ·d! ·

(
n
d

)
.

Our results improve and generalize previous bounds by Bárány and Füredi (1987), Valtr (1995),
Fabila-Monroy and Huemer (2012), and Fabila-Monroy, Huemer, and Mitsche (2015).

1 Introduction

For d ∈ N, let S be a finite set of points in Rd. The set S is in general position if, for every
k = 1, . . . , d − 1, no k + 2 points of S lie in an affine k-dimensional subspace. A set H of
k points from S is a k-hole in S if H is in convex position and the interior of the convex
hull conv(H) of H does not contain any point from S; see Figure 1 for an illustration in the
plane. We say that a subset of S is a hole in S if it is a k-hole in S for some integer k.

(a) (b) (c)

Figure 1 (a) A 6-tuple of points in convex position in a planar set S of 10 points. (b) A 6-hole
in S. (c) A 6-island in S whose points are not in convex position.

Let h(k) be the smallest positive integer N such that every set of N points in general
position in the plane contains a k-hole. In the 1970s, Erdős [7] asked whether the number h(k)
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exists for every k ∈ N. It was shown in the 1970s and 1980s that h(4) = 5, h(5) = 10 [12],
and that h(k) does not exist for every k ≥ 7 [13]. That is, while every sufficiently large set
contains a 4-hole and a 5-hole, Horton constructed arbitrarily large sets with no 7-holes.
His construction was generalized to so-called Horton sets by Valtr [18]. The existence of
6-holes in every sufficiently large point set remained open until 2007, when Gerken [11] and
Nicolas [16] independently showed that h(6) exists; see also [20].

These problems were also considered in higher dimensions. For d ≥ 2, let hd(k) be the
smallest positive integer N such that every set of N points in general position in Rd contains
a k-hole. In particular, h2(k) = h(k) for every k. Valtr [18] showed that hd(k) exists for
k ≤ 2d + 1 but it does not exist for k > 2d−1(P (d − 1) + 1), where P (d − 1) denotes the
product of the first d − 1 prime numbers. The latter result was obtained by constructing
multidimensional analogues of the Horton sets.

After the existence of k-holes was settled, counting the minimum number Hk(n) of k-holes
in any set of n points in the plane in general position attracted a lot of attention. It is known,
and not difficult to show, that H3(n) and H4(n) are in Ω(n2). The currently best known
lower bounds on H3(n) and H4(n) were proved in [1]. The best known upper bounds are
due to Bárány and Valtr [6]. Altogether, these estimates are

n2 + Ω(n log2/3 n) ≤ H3(n) ≤ 1.6196n2 + o(n2)

and
n2

2 + Ω(n log3/4 n) ≤ H4(n) ≤ 1.9397n2 + o(n2).

For H5(n) and H6(n), the best quadratic upper bounds can be found in [6]. The best lower
bounds, however, are only H5(n) ≥ Ω(n log4/5 n) [1] and H6(n) ≥ Ω(n) [21]. For more
details, we also refer to the second author’s dissertation [17].

The quadratic upper bound on H3(n) can be also obtained using random point sets. For
d ∈ N, a convex body in Rd is a compact convex set in Rd with a nonempty interior. Let k be
a positive integer and let K ⊆ Rd be a convex body with d-dimensional Lebesgue measure
λd(K) = 1. We use EHK

d,k(n) to denote the expected number of k-holes in sets of n points
chosen independently and uniformly at random from K. The quadratic upper bound on
H3(n) then also follows from the following bound of Bárány and Füredi [5] on the expected
number of (d+ 1)-holes:

EHK
d,d+1(n) ≤ (2d)2d2

·
(
n

d

)
(1)

for any d and K. In the plane, Bárány and Füredi [5] proved EHK
2,3(n) ≤ 2n2 +O(n logn) for

every K. This bound was later slightly improved by Valtr [19], who showed EHK
2,3(n) ≤ 4

(
n
2
)

for any K. In the other direction, every set of n points in Rd in general position contains at
least

(
n−1

d

)
(d+ 1)-holes [5, 14].

The expected number EHK
2,4(n) of 4-holes in random sets of n points in the plane was

considered by Fabila-Monroy, Huemer, and Mitsche [10], who showed

EHK
2,4(n) ≤ 18πD2n2 + o(n2) (2)

for any K, where D = D(K) is the diameter of K. Since we have D ≥ 2/
√
π, by the

Isodiametric inequality [8], the leading constant in (2) is at least 72 for any K.
In this paper, we study the number of k-holes in random point sets in Rd. In particular,

we obtain results that imply quadratic upper bounds on Hk(n) for any fixed k and that both
strengthen and generalize the bounds by Bárány and Füredi [5], Valtr [19], and Fabila-Monroy,
Huemer, and Mitsche [10].
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2 Our results

Throughout the whole paper we only consider point sets in Rd that are finite and in general
position.

2.1 Islands and holes in random point sets
First, we prove a result that gives the estimate O(nd) on the minimum number of k-holes in
a set of n points in Rd for any fixed d and k. In fact, we prove the upper bound O(nd) even
for so-called k-islands, which are also frequently studied in discrete geometry. A set I of k
points from a point set S ⊆ Rd is a k-island in S if conv(I) ∩ S = I; see part (c) of Figure 1.
Note that k-holes in S are exactly those k-islands in S that are in convex position. A subset
of S is an island in S if it is a k-island in S for some integer k.

I Theorem 2.1. Let d ≥ 2 and k ≥ d+ 1 be integers and let K be a convex body in Rd with
λd(K) = 1. If S is a set of n ≥ k points chosen uniformly and independently at random
from K, then the expected number of k-islands in S is at most

2d−1 ·
(

2d2d−1
(

k

bd/2c

))k−d−1
· (k − d) · n(n− 1) · · · (n− k + 2)

(n− k + 1)k−d−1 ,

which is in O(nd) for any fixed d and k.

The bound in Theorem 2.1 is tight up to a constant multiplicative factor that depends
on d and k, as, for any fixed k ≥ d, every set S of n points in Rd in general position contains
at least Ω(nd) k-islands. To see this, observe that any d-tuple T of points from S determines
a k-island with k − d closest points to the hyperplane spanned by T (ties can be broken by,
for example, taking points with lexicographically smallest coordinates), as S is in general
position and thus T is a d-hole in S. Any such k-tuple of points from S contains

(
k
d

)
d-tuples

of points from S and thus we have at least
(

n
d

)
/
(

k
d

)
∈ Ω(nd) k-islands in S.

Thus, by Theorem 2.1, random point sets in Rd asymptotically achieve the minimum
number of k-islands. This is in contrast with the fact that, unlike Horton sets, they contain
arbitrarily large holes. Quite recently, Balogh, González-Aguilar, and Salazar [3] showed
that the expected number of vertices of the largest hole in a set of n random points chosen
independently and uniformly over a convex body in the plane is in Θ(logn/(log logn)).

For k-holes, we modify the proof of Theorem 2.1 to obtain a slightly better estimate.

I Theorem 2.2. Let d ≥ 2 and k ≥ d+ 1 be integers and let K be a convex body in Rd with
λd(K) = 1. If S is a set of n ≥ k points chosen uniformly and independently at random
from K, then the expected number EHK

d,k(n) of k-holes in S is in O(nd) for any fixed d and
k. More precisely,

EHK
d,k(n) ≤ 2d−1 ·

(
2d2d−1

(
k

bd/2c

))k−d−1
· n(n− 1) · · · (n− k + 2)

(k − d− 1)! · (n− k + 1)k−d−1 .

For d = 2 and k = 4, Theorem 2.2 implies EHK
2,4(n) ≤ 128 · n2 + o(n2) for any K, which

is a worse estimate than (2) if the diameter of K is at most 8/(3
√
π) ' 1.5. However, the

proof of Theorem 2.2 can be modified to give EHK
2,4(n) ≤ 12n2 + o(n2) for any K, which is

always better than (2). We believe that the leading constant in EHK
2,4(n) can be estimated

even more precisely and we hope to discuss this direction in future work.
In the case k = d+ 1, the bound in Theorem 2.2 simplifies to the following estimate on

the expected number of (d+ 1)-holes (also called empty simplices) in random sets of n points
in Rd.

EuroCG’20
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I Corollary 2.3. Let d ≥ 2 be an integer and let K be a convex body in Rd with λd(K) = 1.
If S is a set of n points chosen uniformly and independently at random from K, then the
expected number of (d+ 1)-holes in S satisfies

EHK
d,d+1(n) ≤ 2d−1 · d! ·

(
n

d

)
.

Corollary 2.3 is stronger than the bound (1) by Bárány and Füredi [5] and, in the planar
case, coincides with the bound EHK

2,3(n) ≤ 4
(

n
2
)
by Valtr [19]. In fact, the bound in the

plane seems to be tight up to a smaller order term. Again, we hope to discuss this direction
in future work.

We also consider islands of all possible sizes and show that their expected number is in
2Θ(n(d−1)/(d+1)).

I Theorem 2.4. Let d ≥ 2 be an integer and let K be a convex body in Rd with λd(K) = 1.
Then there are constants C1 = C1(d), C2 = C2(d), and n0 = n0(d) such that for every set S
of n ≥ n0 points chosen uniformly and independently at random from K the expected number
E[X] of islands in S satisfies

2C1·n(d−1)/(d+1)
≤ E[X] ≤ 2C2·n(d−1)/(d+1)

.

Since each island in S has at most n points, there is a k ∈ {1, . . . , n} such that the
expected number of k-islands in S is at least (1/n)-fraction of the expected number of all
islands, which is still in 2Ω(n(d−1)/(d+1)). This shows that the expected number of k-islands
can become asymptotically much larger than O(nd) if k is not fixed.

2.2 Islands and holes in d-Horton sets
To our knowledge, Theorem 2.1 is the first nontrivial upper bound on the minimum number
of k-islands a point set in Rd with d > 2 can have. For d = 2, Fabila-Monroy and Huemer [9]
showed that, for every fixed k ∈ N, the Horton sets with n points contain only O(n2)
k-islands. For d > 2, Valtr [18] introduced a d-dimensional analogue of Horton sets. Perhaps
surprisingly, these sets contain asymptotically more than O(nd) k-islands for k ≥ d+ 1. For
each k with d+ 1 ≤ k ≤ 3 · 2d−1, they even contain asymptotically more than O(nd) k-holes.

I Theorem 2.5. Let d ≥ 2 and k be fixed positive integers. Then every d-dimensional Horton
set H with n points contains at least Ω(nmin{2d−1,k}) k-islands in H. If k ≤ 3 · 2d−1, then H
even contains at least Ω(nmin{2d−1,k}) k-holes in H.

3 Idea of the proof of Theorem 2.1

Let d and k be fixed integers with k > d ≥ 2. To show that the number of k-islands in a set
S of n points chosen uniformly and independently at random from the convex body K ⊂ Rd

is of order O(nd), we prove an O(1/nk−d) bound on the probability that an ordered k-tuple
I = (p1, . . . , pk) of points from S determines a k-island in S with the following two additional
properties:

(P1) The points p1, . . . , pd+1 determine the largest volume simplex 4 with vertices in I.
(P2) For some a ∈ {0, . . . , k − d− 1}, the points pd+2, . . . , pd+1+a lie inside 4 and the points

pd+2+a, . . . , pk lie outside 4. Moreover, roughly speaking, the points pd+2+a, . . . , pk have
increasing distance to 4 as their index increases.
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First, we prove an O(1/na+1) bound on the probability that 4 contains precisely the
points pd+2, . . . , pd+1+a from S, which means that the points p1, . . . , pd+1+a determine an
island in S.

Next, for i = d+ 2 + a, . . . , k, we show that, conditioned on the fact that the (i− 1)-tuple
(p1, . . . , pi−1) determines an island in S satisfying (P1) and (P2), the i-tuple (p1, . . . , pi)
determines an island in S satisfying (P1) and (P2) with probability O(1/n).

Then it immediately follows that the probability that I determines a k-island in S with
the desired properties is at most

O
(

1/na+1 · (1/n)k−(d+1+a)
)

= O(1/nk−d).

Since there are n · (n− 1) · · · (n−k+ 1) = O(nk) possibilities to select such an ordered subset
I and each k-island in S is counted at most k! times, we obtain the desired bound

O
(
nk · nd−k · k!

)
= O(nd)

on the expected number of k-islands in S.
To be more precise: to get rid of technical difficulties and also to obtain better multi-

plicative constants, we consider a so-called canonical labeling of the points p1, . . . , pk which
requires more conditions on I than properties (P1) and (P2). This labeling is unique and
therefore we avoid the above mentioned overcounting and get rid of the factor k!.
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