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Abstract
For a positive integer d, a set of points in d-dimensional Euclidean space is called almost-
equidistant if for any three points from the set, some two are at unit distance. Let f(d) denote
the largest size of an almost-equidistant set in d-space.

It is known that f(2) = 7, f(3) = 10, and that the extremal almost-equidistant sets are
unique. We have independent, computer-assisted proofs of these statements. It is also known
that f(5) ≥ 16. We further show that 12 ≤ f(4) ≤ 13, f(5) ≤ 20, 18 ≤ f(6) ≤ 26, 20 ≤ f(7) ≤ 34,
and f(9) ≥ f(8) ≥ 24. Up to dimension 7, our work is based on various computer searches, and
in dimensions 6 to 9, we have constructions based on the known construction for d = 5.

For every dimension d ≥ 3, we have an example of an almost-equidistant set of 2d+ 4 points
in the d-space and we prove the asymptotic upper bound f(d) ≤ O(d3/2).

1 Introduction and our results

For a positive integer d, we denote the d-dimensional Euclidean space by Rd. A set V of
(distinct) points in Rd is called almost-equidistant if among any three of them, some pair is at
distance 1. Let f(d) be the maximum size of an almost-equidistant set in Rd. For example,
the vertex set of the well-known Moser spindle (Figure 1(a)) is an almost-equidistant set of 7
points in the plane and thus f(2) ≥ 7.

In this paper we study the growth rate of the function f . We first consider the case when
the dimension d is small and give some almost tight estimates on f(d) for d ≤ 9. Then we
turn to higher dimensions and show 2d+ 4 ≤ f(d) ≤ O(d3/2).

It is trivial that f(1) = 4 and that, up to congruence, there is a unique almost-equidistant
set on 4 points in R. Bezdek, Naszódi, and Visy [5] showed that an almost-equidistant set in
the plane has at most 7 points. Talata (personal communication) showed in 2007 that there
is a unique extremal set. We have a simple, computer-assisted proof of this result [3].
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Figure 1 (a) The Moser spindle. (b) An almost-equidistant set in R3 on 10 points.

I Theorem 1.1 (Talata, 2007). The largest number of points in an almost-equidistant
set in R2 is 7, that is, f(2) = 7. Moreover, up to congruence, there is only one planar
almost-equidistant set with 7 points, namely the Moser spindle.

Figure 1(b) shows an example of an almost-equidistant set of 10 points in R3. It is
made by taking a so-called biaugmented tetrahedron, which is a non-convex polytope formed
by gluing three unit tetrahedra together at faces, and rotating a copy of it along the axis
through the two simple vertices so that two additional unit-distance edges are created. This
unit-distance graph is used in a paper of Nechushtan [12] to show that the chromatic number
of R3 is at least 6. Györey [8] showed, by an elaborate case analysis, that this is the unique
largest almost-equidistant set in R3. We have an independent, computer-assisted proof [3].

I Theorem 1.2 (Györey [8]). The largest number of points in an almost-equidistant set in R3

is 10, that is, f(3) = 10. Moreover, up to congruence, there is only one almost-equidistant
set in R3 with 10 points.

In dimension 4, we have only been able to obtain the following bounds.

I Theorem 1.3. The largest number of points in an almost-equidistant set in R4 is either
12 or 13, that is, f(4) ∈ {12, 13}.

The lower bound comes from a generalization of the example in Figure 1(b); see also
Theorem 1.6. The proofs of the upper bounds in the above theorems are computer assisted.
Based on some numerical work to find approximate realisations of graphs, we believe, but
cannot prove rigorously, that an almost-equidistant set of 13 points in R4 does not exist.

I Conjecture 1.4. The largest number of points in an almost-equidistant set in R4 is 12.

In dimension 5, Larman and Rogers [11] showed that f(5) ≥ 16 by a construction based
on the so-called Clebsch graph. In dimensions 6 to 9, we use their construction to obtain
lower bounds that are stronger than the lower bound 2d+ 4 stated below in Theorem 1.6.
We again complement this with some computer-assisted upper bounds.

I Theorem 1.5. The largest number of points in an almost-equidistant set in R5, R6, R7,
R8 and R9 satisfy the following: 16 ≤ f(5) ≤ 20, 18 ≤ f(6) ≤ 26, 20 ≤ f(7) ≤ 34,
24 ≤ f(8) ≤ 41, and 24 ≤ f(9) ≤ 49.

The unit-distance graph of an almost-equidistant point set P in Rd is obtained from P by
letting P be its vertex set and by placing an edge between pairs of points at unit distance.

For every d ∈ N, a unit-distance graph in Rd does not contain Kd+2 (see Corollary 2.2)
and the complement of the unit-distance graph of an almost-equidistant set is triangle-free.
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Dimension d 1 2 3 4 5 6 7 8 9 d ≥ 9
Lower bounds on f(d) 4 7 10 12 16 18 20 24 24 2d + 4
Upper bounds on f(d) 4 7 10 13 20 26 34 41 49 4(d3/2 +

√
d)

Table 1 Lower and upper bounds on the largest size of an almost-equidistant set in Rd.

Thus we have f(d) ≤ R(d+ 2, 3)− 1, where R(d+ 2, 3) is the Ramsey number of Kd+2 and
K3, that is, the smallest positive integer N such that for every graph G on N vertices there
is a copy of Kd+2 in G or a copy of K3 in the complement of G.

Ajtai, Komlós, and Szemerédi [1] showed R(d + 2, 3) ≤ O(d2/ log d) and this bound is
known to be tight [9]. We thus have an upper bound f(d) ≤ O(d2/ log d), which, as we show
below, is not tight. For small values of d where the Ramsey number R(d+ 2, 3) is known
or has a reasonable upper bound, we obtain an upper bound for f(d). In particular, we
get f(5) ≤ 22, f(6) ≤ 27, f(7) ≤ 35, f(8) ≤ 41, and f(9) ≤ 49 [16]. For d ∈ {5, 6, 7}, we
slightly improve these estimates to the bounds from Theorem 1.5 using our computer-assisted
approach [3].

We now turn to higher dimensions. The obvious generalization of the Moser spindle
gives an example of an almost-equidistant set of 2d + 3 points in Rd. The next theorem
improves this by 1. It is a generalization of the almost-equidistant set on 10 points in R3

from Figure 1(b).

I Theorem 1.6. For every d ≥ 3, there is an almost-equidistant set in Rd with 2d+ 4 points.

Rosenfeld [17] showed that an almost-equidistant set on a sphere in Rd of radius 1/
√

2
has size at most 2d, which is best possible. Rosenfeld’s proof, which uses linear algebra,
was adapted by Bezdek and Langi [4] to spheres of other radii. They showed that an
almost-equidistant set on a sphere in Rd of radius ≤ 1/

√
2 has at most 2d + 2 elements,

which is attained by the union of two d-simplices inscribed in the same sphere.
Pudlák [15] and Deaett [6] gave simpler proofs of Rosenfeld’s result. Our final result is an

asymptotic upper bound for the size of an almost-equidistant set, based on Deaett’s proof [6].

I Theorem 1.7. An almost-equidistant set of points in Rd has cardinality O(d3/2).

We note that Polyanskii [13] recently found an upper bound of O(d13/9) for the size of an
almost-equidistant set in Rd and Kupavskii, Mustafa, and Swanepoel [10] and Polyanskii [14]
improved this to O(d4/3). Both papers use ideas from our proof of Theorem 1.7.

In this paper, we use ‖v‖ to denote the Euclidean norm of a vector v from Rd. For a
subset S of Rd, we use span(S) to denote the linear hull of S.

In the rest of the paper we sketch the proof of Theorem 1.7. The proofs of the remaining
statements, as well as some auxiliary claims, can be found in the full version of this paper [3].
The full version also contains a computer program that enumerates all graphs that are
unit-distance graphs of almost-equidistant sets up to a certain size and dimension. The
source code of our programs and the files are available on a separate website [18].

2 Proof of Theorem 1.7

In this section, we sketch the proof of Theorem 1.7 by showing the upper bound f(d) ≤
O(d3/2). As a first step towards this proof, we state the following lemma that characterizes
sets of points lying at the unit distance from vertices of a regular simplex with unit-length
edges. For the statement of the lemma, we recall that a sphere of dimension d is a surface of
a (d+ 1)-dimensional ball.

EuroCG’18
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I Lemma 2.1. For d, k ∈ N, let C be a set of k points in Rd such that the distance between
any two of them is 1. Let c := 1

k

∑
p∈C p be the centroid of C and let A := span(C− c). Then

the set of points equidistant from all points of C is the affine space c+A⊥ orthogonal to A
and passing through c. Furthermore, the intersection of all unit spheres centred at the points
in C is the (d− k)-dimensional sphere of radius

√
(k + 1)/(2k) centred at c and contained

in c+A⊥.

I Corollary 2.2. For d ∈ N, every subset of Rd contains at most d+1 points that are pairwise
at unit distance.

The following lemma is a well-known result that bounds the rank of a square matrix from
below in terms of the entries of the matrix [2, 6, 15].

I Lemma 2.3. Let A = [ai,j ] be a non-zero symmetric m×m matrix with real entries. Then

rankA ≥
( m∑
i=1

ai,i

)2
/

m∑
i=1

m∑
j=1

a2
i,j .

The last lemma before the proof of Theorem 1.7 can be proved by a calculation, using
its assumption that the vectors vi have pairwise inner products ε, so they differ from an
orthogonal set by some skewing.

I Lemma 2.4. For n, t ∈ N with t ≤ n, let w1, . . . , wt be unit vectors in Rn such that
〈wi, wj〉 = ε for all i, j with 1 ≤ i < j ≤ t, where ε ∈ [0, 1). Then the set {w1, . . . , wt} can
be extended to {w1, . . . , wn} such that 〈wi, wj〉 = ε for all i, j with 1 ≤ i < j ≤ n, and such
that for some orthonormal basis e1, . . . , en we have wi = ei+λe

‖ei+λe‖ (i = 1, . . . , n), where

λ :=
−1 +

√
1 + εn/(1− ε)
n

and e :=
n∑
j=1

ej = 1√
1 + (n− 1)ε

n∑
j=1

wj .

Moreover, ‖ei + λe‖2 = (1− ε)−1 for each i ∈ {1, . . . , n} and for every x ∈ Rn we have

n∑
j=1

(〈x,wj〉 − ε)2 = (1− ε)(‖x‖2 − ε) + ε
(
〈x, e〉 −

√
1 + (n− 1)ε

)2
.

We are now ready to prove Theorem 1.7. For d ≥ 2, let V ⊂ Rd be an almost-equidistant
set. Let G = (V,E) be the unit-distance graph of V and let k := b2

√
dc. Note that 2 ≤ k ≤ d.

Let S ⊆ V be a set of k points such that the distance between any two of them is 1. If
such a set does not exist, then, since the complement of G does not contain a triangle, we
have |V | < R(k, 3), where R(k, 3) is the Ramsey number of Kk and K3. Using the bound
R(k, 3) ≤

(
k+3−2

3−1
)
obtained by Erdős and Szekeres [7], we derive |V | <

(2
√
d+1
2
)

= 2d+
√
d.

Thus we assume in the rest of the proof that S exists.
Let B be the set of common neighbours of S, that is, B := {x ∈ V | ‖x− s‖ = 1 ∀s ∈ S}.

Since V is almost-equidistant, the set of non-neighbours of any vertex of G is a clique and so
it has size at most d+ 1 by Corollary 2.2. Every vertex from V \B is a non-neighbour of
some vertex from S and thus it follows that |V \B| ≤ k(d+ 1).

We now estimate the size of B. By Lemma 2.1 applied to S, the set B lies on a sphere
of radius

√
(k + 1)/2k in an affine subspace of dimension d − k + 1. We may take the

centre of this sphere as the origin, and rescale by
√

2k/(k + 1) to obtain a set B′ of m unit
vectors v1, . . . , vm ∈ Rd−k+1 where m := |B|. For any three of the vectors from B′, the
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distance between some two of them is
√

2k/(k + 1). For two such vectors vi and vj with
‖vi − vj‖2 = 2k/(k+1), the facts ‖vi − vj‖2 = ‖vi‖2+‖vj‖2−2 〈vi, vj〉 and ‖vi‖2 = ‖vj‖2 = 1
imply 〈vi, vj〉 = ε, where ε := 1/(k + 1). Note that the opposite implication also holds. That
is, if 〈vi, vj〉 = ε, then vi and vj are at distance

√
2k/(k + 1).

Let A = [ai,j ] be the m × m matrix defined by ai,j := 〈vi, vj〉 − ε. Clearly, A is a
symmetric matrix with real entries. If m ≥ d− k + 2, then A is also non-zero, as G contains
no Kd+2 and every vertex from B is adjacent to every vertex from S in G. We recall that
rankXY ≤ min{rankX, rank Y } and rank(X + Y ) ≤ rankX + rank Y for two matrices X
and Y . Since B′ = {v1, . . . , vm} ⊂ Rd−k+1 and

A =
[
v1 v2 · · · vm

]> [
v1 v2 · · · vm

]
− εJ,

where J is the m×m matrix with each entry equal to 1, we have

rankA ≤ d− k + 2. (1)

By Lemma 2.3,

rankA ≥

(
m∑
i=1

ai,i

)2

m∑
i=1

m∑
j=1

a2
i,j

= m2(1− ε)2

m∑
i=1

m∑
j=1

(〈vi, vj〉 − ε)2
. (2)

For i ∈ {1, . . . ,m}, let Ni be the set of vectors from B′ that are at distance
√

2k/(k + 1)
from vi. That is, Ni := {vj ∈ B′ | 〈vi, vj〉 = ε}. Then for each fixed vi we have

m∑
j=1

(〈vi, vj〉 − ε)2 = (1− ε)2 +
∑
vj∈Ni

0 +
∑

vj∈B′\(Ni∪{vi})

(〈vi, vj〉 − ε)2. (3)

Note that the vectors from B′ \ (Ni ∪ {vi}) have pairwise inner products ε, as neither
of them is at distance

√
2k/(k + 1) from vi, and thus |B′ \ (Ni ∪ {vi})| ≤ d − k + 2. In

fact, we even have |B′ \ (Ni ∪ {vi})| ≤ d − k + 1, since B′ contains only unit vectors and
any subset of d− k + 2 points from B′ with pairwise distances

√
2k/(k + 1) would form the

vertex set of a regular (d − k + 1)-simplex with edge lengths
√

2k/(k + 1) centred at the
origin. However, then the distance from the centroid of such a simplex to its vertices would
be equal to

√
k(d− k + 1)/((k + 1)(d− k + 2)) 6= 1, which is impossible.

Thus setting n := d−k+1 and t := |B′ \(Ni∪{vi})|, we have t ≤ n. Applying Lemma 2.4
to the t vectors from B′ \ (Ni ∪ {vi}) ⊆ Rn with ε = (k + 1)−1 and x = vi, we see that the
last sum in (3) is at most

(1− ε)2 + ε
(
〈vi, e〉 −

√
1 + (d− k)ε

)2
,

where e =
∑d−k+1
j=1 ej for some orthonormal basis e1, . . . , ed−k+1 of Rd−k+1.

By the Cauchy–Schwarz inequality,(
〈vi, e〉 −

√
1 + (d− k)ε

)2
<
(√

d− k + 1 +
√

1 + (d− k)ε
)2

= d− k + 1 + 2
√
d− k + 1

√
1 + (d− k)ε+ 1 + (d− k)ε < 4(d− k + 1).

Recall that k ≥ 2. Using ε = (k + 1)−1, we obtain
m∑
j=1

(
〈vi, vj〉 − ε

)2
< 2(1− ε)2 + 4ε(d− k + 1) = 4εd+ 2(1 + ε)2 − 4 < 4εd.

EuroCG’18
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If we substitute this upper bound back into (2), then with (1) we obtain that d− k + 2 >
m2(1 − ε)2/(4mεd) and thus m < (4εd)(d − k + 2)/(1 − ε)2. Using the choice k = b2

√
dc

and the expression ε = (k + 1)−1, we obtain (d − k + 2)/(1 − ε)2 < d, if d ≥ 8, and thus
m < 4d2/(k + 1). Altogether, we have m ≤ max{d− k + 1, 4d2/(k + 1)} = 4d2/(k + 1). It
follows that |V | ≤ k(d+2)+4d2/(k+1). Again, using the choice k = b2

√
dc ∈ (2

√
d−1, 2

√
d],

we conclude that |V | < 2
√
d(d+ 2) + 4d2/(2

√
d) = 4d3/2 + 4

√
d. This finishes the proof of

Theorem 1.7.
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