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Abstract
In 1926, Levi showed that, for any pseudoline arrangement A and two points in the plane, A
can be extended by a pseudoline which contains the two prescribed points. Later extendability
was studied for arrangements of pseudohyperplanes in higher dimensions. While the extendability
with d prescribed points in an arrangement of proper hyperplanes in Rd is trivial, Richter-Gebert
(1993) found an arrangement of pseudoplanes in R3 which cannot be extended with two particular
prescribed points.

In this article, we investigate the extendability of signotopes, which are a rich subclass of oriented
matroids. Our main result is that signotopes of odd rank are extendable with two prescribed crossing
points. Moreover, we conjecture that for all even ranks r ≥ 4 there exist signotopes which are not
extendable for two prescribed points. Our conjecture is supported by examples for rank 4, 6, and 8.

1 Introduction

Given a family of hyperplanes H in Rd, any d points in Rd, not all on a common hyperplane
of H, define a hyperplane which is distinct from the hyperplanes in H. For dimension d = 2,
Levi [12] proved in his pioneering article on pseudoline arrangements that the fundamental
extendability of line arrangements also applies to the more general setting of pseudoline
arrangements. A pseudoline is a Jordan curve in the Euclidean plane such that its removal
from the plane results in two unbounded components, and a pseudoline arrangement is a
family of pseudolines such that each pair of pseudolines intersects in exactly one point, where
the two curves cross.

▶ Theorem 1.1 (Levi’s extension lemma for pseudoline arrangements [12]). Given an arrange-
ment A of pseudolines and two points in R2, not lying on a common pseudoline of A. Then A
can be extended by an additional pseudoline which passes through the two prescribed points.

Several proofs for Levi’s extension lemma are known today (besides [12], see also [1, 8, 16])
and generalizations to higher dimensions have been studied in the context of oriented
matroids, which are by the representation theorem of Folkman and Lawrence [9] projective
pseudohyperplane arrangements. For more about oriented matroids, see [4].

Goodman and Pollack [11] showed that there is an arrangement of 8 pseudoplanes
in R3 such that three particular prescribed points do not determine a pseudoplane which is
compatible with the arrangement. Richter-Gebert [15] then investigated a weaker version
with only two prescribed points such that the extending pseudohyperplane contains these
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two points. More specifically, he gave an example of a rank 4 oriented matroid on 8 elements
such that even the weaker version does not hold. However, the existence of an extension
lemma or counterexamples remains open in higher dimensions/ranks.

In this article, we present a proof of Levi’s extension lemma in a purely combinatorial
setting which generalizes to higher dimensions. Our proof uses the notion of r-signotopes
and applies to even dimensions d, that is, when the rank r = d + 1 is odd; see Theorem 1.2.
However, there are non-extendable examples for the ranks 4, 6, and 8, and we conjecture
that there is no extension lemma for any even rank r ≥ 4; see Conjecture 1.3.

Before we can formulate our extension lemma for r-signotopes, we have to introduce
some notation, discuss the relation between pseudoline arrangements and signotopes (in
Section 1.1), and find an appropriate reformulation of Levi’s extension lemma which can be
investigated in the context of signotopes (in Section 1.2).

1.1 Signotopes

Signotopes are a combinatorial structure generalizing permutations and simple pseudoline
arrangements (i.e., no three pseudolines cross in a common point). An r-signotope (r ≥ 1)
on n elements is a mapping σ from r-element subsets (r-subsets) of [n] to + or −, i.e.,
σ :

([n]
r

)
→ {+, −} such that for every (r + 1)-subset X = {x1, . . . , xr+1} of [n] with

x1 < x2 < . . . < xr+1 there is at most one sign change in the sequence

σ(X\{x1}), σ(X\{x2}), . . . , σ(X\{xr+1}).

Note that this sequence lists the signs of all induced r-subsets of X in reverse lexicographic
order. For 3-signotopes, the following 8 sign patterns on 4-subsets are allowed:

+ + ++, + + +−, + + −−, + − −−, − − −−, − − −+, − − ++, − + + + .

It is well-known that every arrangement of pseudolines is isomorphic to an arrangement
of x-monotone pseudolines [10]. If we label the pseudolines from top to bottom on the left
by 1, . . . , n, we can read its corresponding 3-signotope σ. The sign of σ(a, b, c) for a < b < c

indicates the orientation of the triangle formed by the pseudolines a, b, c (see Figure 1). If
σ(a, b, c) = + the crossing of a and c is below b and if σ(a, b, c) = − the crossing of a and c

is above b. Furthermore, σ gives information about the ordering of the crossings from left to
right along each pseudoline. If σ(a, b, c) = + it holds bc ≻ ac ≻ ab and if σ(a, b, c) = − it is
bc ≺ ac ≺ ab.

a

b

c

+
a

b

c
−

Figure 1 Connection between pseudoline arrangements and 3-signotopes.

Felsner and Weil [8] showed that rank 3 signotopes are in correspondence with simple
pseudoline arrangements in R2 with a special top cell related to the cyclic arrangement. For
r ≥ 4, r-signotopes correspond to special pseudohyperplane arrangements in Rr−1, i.e., they
are a subclass of oriented matroids of rank r. A geometric representation of r-signotopes in
the plane is presented in [13] (see also [3] for the rank 3 case).
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1.2 An extension lemma for signotopes
In Levi’s extension lemma for pseudoline arrangements, each of the two prescribed points
can either lie in a cell of the arrangement, on a pseudoline, or be the crossing point of
two pseudolines. To formulate an extension lemma in terms of 3-signotopes, which only
captures the combinatorics of an arrangement, we restrict ourselves to simple pseudoline
arrangements and to prescribed points, which are crossing points. Crossing points in a
pseudoline arrangement are subsets of cardinality 2 given by the two crossed elements. Since
the extending pseudoline passes through the two prescribed crossing points, the extension
yields a non-simple arrangement. However, by perturbing the extending pseudoline at the
non-simple crossing points, we end up with a simple arrangement, see Figure 2.
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Figure 2 Perturbing an extending pseudoline at the two non-simple crossing points.

A perturbation at a prescribed crossing yields a triangular cell incident to the crossing.
This cell is bounded by the two pseudolines defining the crossing and the extending pseudoline.
Triangular cells play an important role in the study of pseudoline arrangements, since it is
possible to change the orientation of a triangle by moving one of its bounding pseudolines
over the crossing of the two others. Such a local perturbation is called triangle flip and
does not change the orientation of any other triangle in the arrangement. For 3-signotopes
triangular cells correspond to a 3-subset for which we can exchange the corresponding sign
and it remains a signotope. We call such a 3-subset a fliple. The notion of fliples generalizes
to higher ranks. In an r-signotope σ on [n], an r-subset X ⊆ [n] is a fliple if both assignments
+ and − to σ(X) result in a signotope.

When we apply Levi’s extension lemma to extend an arrangement of pseudolines, which
are ordered from top to bottom on the left, we do not know at which place of the order the
new pseudoline will be inserted. In particular, the label of all pseudolines which start below
the new one increases by one. To cope with this relabeling-issue in terms of signotopes, we
introduce the following notion. For k ∈ [n] and a subset X of [n], we define

X↓k = {x | x ∈ X, x < k} ∪ {x − 1 | x ∈ X, x > k}.

For an r-signotope σ on the elements [n], we define the k deletion σ↓k on [n − 1] by
σ↓k(X↓k) = σ(X) for all r-sets X ⊆ [n] with k /∈ X. This is an r-signotope on [n − 1].

An r-signotope σ on n elements is 2-extendable if for each pair of disjoint (r − 1)-subsets
I, J , there is an r-signotope σ∗ on [n + 1] with fliples I∗, J∗ and an extending element
k ∈ [n + 1] such that σ∗↓k = σ, I∗↓k = I, and J∗↓k = J .

Using this notion we are now ready to formulate an extension lemma for r-signotopes.

▶ Theorem 1.2 (Extension lemma for signotopes of odd rank). For every odd rank r ≥ 3,
every r-signotope is 2-extendable.

EuroCG’22
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The statement of Theorem 1.2 only applies to signotopes of odd rank. In fact, for ranks
4, 6, and 8, we found signotopes on 8, 12, and 16 elements, respectively, which are not
2-extendable1. Based on these examples, we dare the following conjecture:

▶ Conjecture 1.3. For every even r ≥ 4, there are r-signotopes which are not 2-extendable.

Despite the restrictions to simple arrangements and crossing points as prescribed points,
Theorem 1.2 implies Levi’s extension lemma (Theorem 1.1). Details are deferred to the full
version; see Appendix D for a preliminary version.

1.3 Signotopes as a rich subclass of oriented matroids
It is well known that the number of oriented matroids on n elements of rank r is 2Θ(nr−1) [4,
Corollary 7.4.3]. As shown by Balko [2], r-signotopes are a rich subclass of oriented matroids
of rank r.

▶ Proposition 1.4. For r ≥ 3, the number of r-signotopes on n elements is 2Θ(nr−1).

In ranks 1 and 2 there are 2n and n! signotopes on [n], respectively. For rank r ≥ 3, the
precise number of r-signotopes on [n] has been computed for small values of r and n; see
A6245 (rank 3) and A60595 to A60601 (rank 4 to rank 10) on the OEIS [14].

2 Preliminaries

We now prepare for the proof of Theorem 1.2. In rank 3 the left to right order on each
pseudoline yields a partial order of the crossing points of the arrangement. We now define
the corresponding partial order on the (r − 1)-subsets associated with a r-signotope σ. For
every r-subset X = {x1, . . . , xr} define:

X\{x1} ≻ X\{x2} ≻ · · · ≻ X\{xr} if σ(x1, . . . , xr) = +, and
X\{x1} ≺ X\{x2} ≺ · · · ≺ X\{xr} if σ(x1, . . . , xr) = −.

By taking the transitive closure of all relations obtained from r-subsets, we obtain a partial
order on the (r − 1)-subsets corresponding to σ [8, Lemma 10].

If we rotate an arrangement of pseudolines, i.e., we choose another unbounded cell as
the top cell, we get an pseudoline arrangement with the same cell structure. If we only
rotate a single pseudoline, then the orientation of the triangle spanned by 3 pseudolines stays
the same if and only if the rotated pseudoline is not involved (see for example the triangle
spanned by 2,3,4 in the left, resp. 1,2,3 in the right arrangement in Figure 3). In terms of the
3-signotope σ the signs of the rotated signotope σrot are: σrot(a, b, c) = σ(a + 1, b + 1, c + 1)
if c ̸= n and σrot(a, b, n) = −σ(1, a + 1, b + 1).

In general, we define the clockwise rotated signotope σrot of a given r-signotope σ as:

σrot(x1, . . . , xr) =
{

−σ(1, x1 + 1, . . . , xr−1 + 1) if x1 < x2 < · · · < xr = n,

σ(x1 + 1, . . . , xr + 1) if x1 < x2 < · · · < xr < n.

Indeed, σrot is an r-signotope on n elements (see Lemma 3.1 in Appendix C). To keep track
of the index shift caused by a clockwise rotation, we define

Xrot =
{

{x1 − 1, x2 − 1, . . . , xk − 1} if x1 ̸= 1;
{x2 − 1, . . . , xk − 1, n} if x1 = 1

1 The examples and the source code to verify their correctness are available on demand.

https://oeis.org/A006245
https://oeis.org/A060595
https://oeis.org/A060601
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Figure 3 An illustration of a clockwise rotation. The rotated pseudoline is highlighted red.

for any subset X = {x1, . . . , xk} of [n] with x1 < . . . < xk.

3 Proof of Theorem 1.2

Using these properties we can give a proof for Levi’s extension lemma using only the notation
of signotopes and the corresponding partial order as introduced in Section 2.

If incomparable elements in the corresponding order are chosen as prescribed points, an
arrangement is extendable by an element which we put in the last position, i.e., the (n + 1)st
element, see Figure 2. More abstractly we can extend the arrangement when the prescribed
points are maximal elements of a down-set of the partial order. A down-set of a partial order
(P, ≺) is a subset D ⊂ P such that for all p ∈ P and d ∈ D with p ⪯ d it holds p ∈ D.

▶ Proposition 3.1. Let (P, ≺) be the partial order on (r − 1)-sets corresponding to an
r-signotope σ on [n]. For every down-set D ⊆ P there is a signotope σ∗ on [n + 1] such that
all r-subsets of the form m ∪ {n + 1} for a maximal element m of D are fliples.

Proof. Define the extended r-signotope σ∗ on [n + 1] as follows:

σ∗(x1 . . . , xr) =


σ(x1, . . . , xr) if x1, . . . , xr ∈ [n];
+ if xr = n + 1 and {x1, . . . , xr−1} ∈ D;
− if xr = n + 1 and {x1, . . . , xr−1} ̸∈ D.

This is indeed an r-signotope and fulfills the conditions mentioned in the statement. Details
are deferred to the full version; see Appendix B for a preliminary version. ◀

Note that Proposition 3.1 holds for general rank. For odd rank we can always find a
rotation of the corresponding signotope such that the two prescribed (r − 1)-subsets are
incomparable and we can use Proposition 3.1 to define an extension.

▶ Lemma 3.2. Let r be an odd integer, let σ be an r-signotope on [n] and let X, Y be two
disjoint (r − 1)-subsets. After at most n clockwise rotations, σ, X, and Y are transformed
into σ′, X ′, and Y ′, resp., such that X ′ and Y ′ are incomparable in the partial order ≺′

corresponding to σ′.

Proof. Assume X and Y are comparable in the partial order ≺ corresponding to the r-
signotope σ with X ≺ Y . We show that after n clockwise rotations, all signs of σ are reversed.
Hence the partial order ≺rot is the reversed relation to ≺.

The sign of an r-subset {z1, . . . , zr} changes from + to − or vice versa if and only if the
rotated element is contained in {z1, . . . , zr}, i.e., if we rotate z1. Hence after rotating n times

EuroCG’22
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in general every zi was rotated and thus the sign of an r-subset changes exactly r times.
Since r is odd, the sign after rotating n times is opposite. The obtained signotope is the
reverse of the original signotope σ and the corresponding partial order is also reversed.

Since we cannot reverse the order of two disjoint (r − 1)-sets in one rotation (see
Corollary 3.8 in Appendix C), there will be a moment where the two disjoint sets are
incomparable. ◀

Proposition 3.1 and Lemma 3.2 together imply Theorem 1.2, which completes the proof.
The outline is as follows. Using Lemma 3.2, we rotate until the required disjoint (r−1)-subsets
are incomparable. To extend the signotope we then use the down-set, which consists of all
elements smaller than one of the two incomparable (r − 1)-subsets. In this down-set the two
prescribed (r − 1)-subsets are the maximal elements. Hence we can apply Proposition 3.1
in order to add a new elements as required. Finally, we rotate back so that the original
signotope is contained in the new extended signotope. Details are deferred to the full version.

4 Conclusion

Using complete enumeration of small signotopes and a SAT based test of extendability, we
found a 4-signotope on 8 elements which is not 2-extendable. Since the number of signotopes
explodes as the ranks increases, the complete enumeration was impossible in higher ranks.
To still cope with higher ranks, we instead used a SAT based search for signotopes which
share structural properties with the rank 4 example. This allowed us to find the examples in
rank 6 and 8 which are not 2-extendable.
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A Proof of Proposition 1.4

A.1 Proof of the upper bound
The upper bound follows from the fact, that r-signotopes on n elements are rank r oriented
matroids and their number is 2Θ(nr−1) [4, Chapter 7.4]. The outline of the proof is as
following.

For rank 3, there exists a constant c > 0 such that for every n there are at most 2cn2

signotopes on n elements [5]. The currently best bound is provided in [7]; see also the
Handbook article [6].

For rank r ≥ 4, we proceed by induction. Given an r-signotope σ on [n], we compute its
projections. For each i ∈ [n], we project σ to i and obtain an (r − 1)-signotope σ/i on n − 1
elements. Formally, σ/i is defined by σ/i(J ↓i) := σ(J) for every r-subset J containing i.
Since two distinct r-signotopes yield different sequences (σ/i)i∈[n] of projections, we can
bound the number of r-signotopes as

fr(n) ≤ (fr−1(n − 1))n ≤
(

2c(n−1)r−2
)n

≤ 2cnr−1
,

where fr−1(n − 1) denotes the number of (r − 1)-signotopes on n − 1 elements.

A.2 Proof of the lower bound
Suppose n = rm for some m ∈ N. We partition [n] =

⋃r
k=1 Nk with the intervals Nk =

[(k − 1)m + 1, km]. We construct an r-signotope σ on the elements [n] with

σ(x1, . . . , xr)

=


− if xr−1 ̸∈ Nr, xr ∈ Nr, and

∑r−1
k=1 (xk − (k − 1)m − 1) > xr − (r − 1)m − 1

⋆ if xr−1 ̸∈ Nr, xr ∈ Nr, and
∑r−1

k=1 (xk − (k − 1)m − 1) = xr − (r − 1)m − 1
+ else,

where all entries marked with a star (⋆) can be chosen arbitrarily from {+, −}, i.e., they
are fliples.

Let us now count the entries {x1, . . . , xr} ∈
([n]

r

)
that fulfill

r−1∑
k=1

(xk − (k − 1)m − 1) = xr − (r − 1)m − 1 (1)

If we further restrict our considerations to entries with xk ∈ Nk for all k, then we have a
bijection to integer partitions

r−1∑
k=1

yk = yr

with y1, . . . , yr ∈ [0, m − 1]. For fixed yr = ℓ, we have
(

ℓ+r−2
r−2

)
solutions to

∑r−1
k=1 yk = ℓ, and

therefore there are
m−1∑
ℓ=0

(
ℓ + r − 2

r − 2

)
=

(
m + r − 2

r − 1

)
= Θ(nr−1)

entries x1, . . . , xr ∈
([n]

r

)
with xk ∈ Nk for all k that fulfill equation (1). Since each of them

can be assigned to both, + or −, there are at least 2Ω(nr−1) different possibilities to construct
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an r-signotope on n elements. It remains to show that each so-constructed mapping σ is an
r-signotope by checking the signature of all its induced (r + 1)-subsets.

Before we do so, note that equation (1) can be reformulated as

r−1∑
k=1

xk − xr = m
(r − 4)(r − 1)

2 + (r − 2), (2)

where the right-hand side is only depending on r and m. Also note that the left-hand side
L(x1, . . . , xr) :=

∑r−1
k=1 xk − xr fulfills the following properties:

▶ Observation 1.1. Let X = (x1, . . . , xr+1) ∈
( [n]

r+1
)

and 1 ≤ i < j < r + 1. Then

L(X\{xi}) =
∑
k∈[r]
k ̸=i

xk − xr+1 >
∑
k∈[r]
k ̸=j

xk − xr+1 = L(X\{xj})

and
L(X\{xr}) =

∑
k∈[r−1]

xk − xr+1 <
∑

k∈[r−1]

xk − xr = L(X\{xr+1}).

Let us now check the signature of all (r + 1)-subsets X = {x1, . . . , xr+1} ∈
( [n]

r+1
)
, that is,

there is at most one sign-change in the sequence

σ(X\{x1}), . . . , σ(X\{xr}), σ(X\{xr+1}).

and the assigned (⋆)-entries are indeed fliples.
If xr+1 ̸∈ Nr, we only have plus signs in the signature and therefore there is no sign change.

Otherwise, there is some k ∈ [r + 1] such that x1, . . . , xk−1 ̸∈ Nr and xk, . . . , xr+1 ∈ Nr.
If k < r, then we have xr−1, xr, xr+1 ∈ Nr and hence each set X\{xr+1}, . . . , X\{x1}

contains at least two elements from Nr. It follows again that there are only plus signs in the
signature and therefore there is no sign change.

If k = r, then each set X\{xr−1}, . . . , X\{x1} contains two elements from Nr and thus
maps to plus. Moreover, by Observation 1.1, we have L(X\{xr+1}) > L(X\{xr}) and hence
X\{xr+1} and X\{xr} cannot map to plus and minus, respectively. Consequently, there is
at most one sign change.

If k = r + 1, then X\{xr+1} maps to plus. By Observation 1.1, L is increasing on
X\{xr}, . . . , X\{x1}. Consequently, there is at most one sign change.

This completes the proof of the lower bound.

B Proof of Proposition 3.1

We show that σ∗ as defined in Proposition 3.1 is indeed an r-signotope on [n + 1] with the
claimed fliples.

First we show that σ∗ is a signotope. Consider an (r + 1)-subset X = {x1, . . . xr+1} with
x1 < . . . < xr < xr+1 of [n + 1]. We need to show that the sequence

σ∗(X\{x1}), σ∗(X\{x2}), . . . , σ∗(X\{xr+1})

has at most one sign change.
If xr+1 ≤ n, then all signs on the considered r-subsets are the same as for σ. Since σ is

an r-signotope, there is at most one sign change in the considered sequence.

EuroCG’22
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In the other case, we have xr+1 = n + 1. All r-subsets X\{xi} for i ∈ {1, . . . , xr} do
contain the element xr+1 = n. Furthermore, since X\{xr+1} does not contain n = xr+1, it
is σ∗(X\{xr+1}) = σ(X\{xr+1}). We consider the two cases. First, if σ(X\{xr+1}) = + we
have by definition of the partial order

X\{xr+1, xi} ≻ X\{xr+1, xj} for i < j.

By the property of a down-set this means whenever X\{xr+1, xi} ∈ D we also have
X\{xr+1, xj} ∈ D for i < j. Let i∗ be the smallest integer such that X\{xr+1, xi∗} ∈ D.
Then it holds σ∗(X\{xj}) = + for all j ≥ i∗. And hence there is at most one sign change
between σ∗(X\{xi∗−1}) = − and σ∗(X\{xi∗}) = +.

Similar arguments apply if σ(X\{xr+1}) = −. Then we have

X\{xr+1, xi} ≺ X\{xr+1, xj} for i < j.

Again we have at most one sign change at between σ∗(X\{xj∗}) = + and σ∗(X\{xj∗+1}) = −,
where j∗ is the largest index such that X\{xr+1, xj∗} ∈ D.

Let m be a maximal element of the down-set. By the analysis above it follows that
m ∪ {n + 1} is a fliple.

C Properties of the clockwise rotation of an r-signotope

▶ Lemma 3.1. Let σ be an r-signotope on [n]. Then the clockwise rotation σrot as defined
in Section 2 is also an r-signotope on [n].

Proof. Consider an (r + 1)-subset X ′ = {x′
1, . . . , x′

r+1} with x′
1 < . . . < x′

r+1. Then there
exists X = {x1, . . . , xr+1} of [n] with x1 < . . . < xr+1 such that X ′ = Xrot since the cyclic
rotation gives a bijection on the (r + 1)-subsets of [n].

If the rotated element is not in X, that is, x′
r+1 < n, then we have xi = x′

i + 1 and the
reversed lexicographic ordered sequence of signs given by X ′ is

σrot(X ′\{x′
1}), σrot(X ′\{x′

2}), . . . , σrot(X ′\{x′
r}), σrot(X ′\{x′

r+1})
= σ(X\{x1}), σ(X\{x2}), . . . , σ(X\{xr}), σ(X\{xr+1}),

and therefore has at most one sign change.
If the rotated element is in X, that is, x′

r+1 = n, then we have x1 = 1 and x2 = x′
1 + 1,

x3 = x′
2 + 1, . . . , xr+1 = x′

r + 1. The reversed lexicographic ordered sequence of signs given
by X ′ is

σrot(X ′\{x′
1}), σrot(X ′\{x′

2}), . . . , σrot(X ′\{x′
r}), σrot(X ′\{x′

r+1})
= σrot(X ′\{x2 − 1}), σrot(X ′\{x3 − 1}), . . . , σrot(X ′\{xr+1 − 1}), σrot(X ′\{n})
= − σ(X\{x2}), − σ(X\{x3}), . . . , − σ(X\{xr+1}), σ(X\{1})
= − σ(X\{x2}), − σ(X\{x3}), . . . , − σ(X\{xr+1}), σ(X\{x1})

and has at most one sign change if and only if the sequence

σ(X\{x1}), σ(X\{x2}), . . . , σ(X\{xr}) σ(X\{xr+1})

has at most one sign change. Finally this sequence has at most one sign change because σ is
a signotope and this is a sequence on the (r + 1)-subset X. ◀
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▶ Lemma 3.2. Let σ be an r-signotope and let F be a fliple of σ. Then Frot is a fliple in
the clockwise rotated signotope σrot.

Proof. To prove whether an r-subset Frot is a fliple, we need to check all (r + 1)-subsets X

containing the r elements of Frot. If X does not contain the rotating element 1, the sequence
stays the same and the flipable elements in this sequence are also the same. By a flipable
element in a sequence we denote an r-subset which is a fliple if restricting to the considered
(r + 1)-elements involved in this sequence. To check the (r + 1)-subsets containing the rotated
element, we look at the proof of Lemma 3.1 in more detail. If the sign change of the sequence

σ(X\{1}), σ(X\{x2}), . . . , σ(X\{xr+1})

is between σ(X\{1}) and σ(X\{x2}), that is, σ(X\{x2}) = σ(X\{xr+1}), then it holds
σrot(Xrot\{x2 − 1}) = σrot(Xrot\{xr+1 − 1}) and hence

σrot(Xrot\{n}) = σ(X\{1}) = −σ(X\{x2})
= −σrot(Xrot\{x2 − 1}) = σrot(Xrot\{xr+1 − 1}).

This shows that the sequence

σrot(Xrot\{x2 − 1}), σrot(Xrot\{x3 − 1}), . . . , σrot(Xrot\{xr+1 − 1}), σrot(Xrot\{n})

consist only of the same signs (only + or only −). Hence the first Xrot\{x2 − 1} and the last
element σrot(Xrot\{n}) are flipable.

In the other case the sign change is between two elements σ(X\{xi}) and σ(X\{xi+1}) for
i ∈ {2, . . . , r}. This just reverse to a sign change between the two elements σrot(Xrot\{xi −1})
and σrot(Xrot\{xi+1 − 1}). Hence the flipable elements stay the same. ◀

▶ Lemma 3.3. Let σ be an r-signotope with partial order ≺ and σrot the rotated signotope
as defined above with corresponding partial order ≺rot. For two (r − 1)-subsets X, Y with an
intersection |X ∩ Y | = r − 2 and X ≺ Y it holds

Xrot ≻rot Yrot if 1 ∈ X ∩ Y

Xrot ≺rot Yrot if 1 /∈ X ∩ Y

Proof. If 1 /∈ X, Y this follows since the sign on those r-subsets not containing 1 do not
change.

If 1 ∈ X but 1 /∈ Y the sign of the set X is after the sign of Y in the reversed lexicographic
ordered sequence corresponding to σ of the (r − 1)-subsets of X ∪ Y . By assumption X ≺ Y

thus σ(X ∪ Y ) = +. After rotating, the sign of Xrot is before the sign of Yrot in the reversed
lexicographic ordered sequence corresponding to σrot since they overlap in r − 2 elements.
Furthermore the sign of the r-subset changes, i.e., σ(X ∪ Y ) = −σrot(Xrot ∪ Yrot) = −. This
means the relation stays the same, i.e., Xrot ≺rot Yrot. The case 1 ∈ Y but 1 /∈ X works
analogously.

If 1 ∈ X, Y the order of the appearance of X and Y in the reversed lexicographic sequences
stays the same but the sign of the signotope is reversed, i.e., σ(X ∪ Y ) = −σrot(Xrot ∪ Yrot).
Thus the ordering between rot and rot is reversed as claimed. ◀

Furthermore for two arbitrary (r − 1)-subsets it holds

▶ Proposition 3.4. Let σ be an r-signotope on [n]. For two (r − 1)-subsets X, Y with X ≺ Y

and 1 /∈ X ∩ Y , it holds Xrot and Yrot are incomparable in ≺rot or Xrot ≺rot Yrot.
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For the proof, we introduce the following two partitions. With respect to the first
element 1, we partition the (r − 1)-subsets

( [n]
r−1

)
into the following three sets:

Hσ
1 = { X ⊂ [n] : |X| = r − 1, 1 ∈ X }

Uσ
1 = { X ⊂ [n] : |X| = r − 1, 1 /∈ X, σ(X ∪ {1}) = + }

Dσ
1 = { X ⊂ [n] : |X| = r − 1, 1 /∈ X, σ(X ∪ {1}) = − }.

Similarly, with respect to the last element n, we partition
( [n]

r−1
)

into the following three sets:

Hσ
n = { X ⊂ [n] : |X| = r − 1, n ∈ X }

Uσ
n = { X ⊂ [n] : |X| = r − 1, n /∈ X, σ(X ∪ {n}) = − }

Dσ
n = { X ⊂ [n] : |X| = r − 1, n /∈ X, σ(X ∪ {n}) = + }.

Note the sign change in the definition, that is, every X ∈ Uσ
1 fulfills σ(X ∪ {1}) = + while

every X ∈ Uσ
n fulfills σ(X ∪ {n}) = −.

▶ Claim 3.5. Uσ
1 and Uσ

n are up-sets and Dσ
1 and Dσ

n are down-sets of the partial order ≺
corresponding to the r-signotope σ.

Proof of Claim 3.5. In the following we show that Uσ
1 is an up-set. Analogous arguments

show that Uσ
n is an up-set and that Dσ

1 and Dσ
n are down-sets. Let X be an element of Uσ

1
and let Y be an (r − 1)-subset with Y ≻ X. By definition, we have σ(X ∪ {1}) = +.

If the intersection X ∩ Y contains r − 2 elements, we cannot have 1 ∈ Y , as otherwise Y

was lexicographic smaller than X and thus − = σ(X ∪ Y ) = σ(X ∪ {1}) = +, a contradiction.
Therefore, 1 /∈ Y and we have (r + 1) elements in X ∪ Y ∪ {1}. If X is lexicographic smaller
than Y , we have the lexicographical order X ∪ {1} ≺lex Y ∪ {1} ≺lex X ∪ Y . Since we have
σ(X ∪ {1}) = + and σ(X ∪ Y ) = +, it follows σ(Y ∪ {1}) = + and hence Y ∈ Uσ

1 . In
the other case, if Y is lexicographical smaller than X, we have the lexicographical order
Y ∪ {1} ≺lex X ∪ {1} ≺lex X ∪ Y . Since we have σ(X ∪ {1}) = + and σ(X ∪ Y ) = −, it
follows σ(Y ∪ {1}) = + and hence again Y ∈ Uσ

1 .
If the intersection X ∩ Y contains less than r − 2 elements, we proceed by induction.

There is a chain X = Z1 ≺ Z2 ≺ · · · ≺ Zk = Y such that any two consecutive Zi have an
intersection of r − 2 elements. For i = 2, . . . , k, since Zi−1 ∈ Uσ

1 , we conclude that Zi ∈ Uσ
1 ,

and in particular, Y ∈ Uσ
1 . This completes the proof that Uσ

1 is an upset. △

We store the following observation derived in the proof of Claim 3.5 for later usage.

▶ Claim 3.6. Let Z1 ≺ . . . ≺ Zk be a chain of the partial order ≺ corresponding to σ.
If Z1 ∈ Uσ

1 , then Zi ∈ Uσ
1 for all i. If Zk ∈ Dσ

1 , then Zi ∈ Dσ
1 for all i.

We now study the effect of a clockwise rotation to the partial order. In the partial order
≺rot corresponding to the rotated signotope σrot, the sets (Uσ

1 )rot and (Dσ
1 )rot remain up-set

and down-set, respectively. Here Xrot = {Xrot : X ∈ X } denotes the clockwise rotated sets
of a set-system X .

▶ Claim 3.7. It holds (Hσ
1 )rot = Hσrot

n , (Uσ
1 )rot = Uσrot

n , and (Dσ
1 )rot = Dσrot

n .

Proof of Claim 3.7. An (r − 1)-subset X contains the first element 1 if and only if its
clockwise rotation Xrot contains the last element n. Therefore, we have (Hσ

1 )rot = Hσrot
n and

(Uσ
1 ∪ Dσ

1 )rot = Uσrot
n ∪ Dσrot

n . To show (Uσ
1 )rot = Uσrot

n and (Dσ
1 )rot = Dσrot

n , it suffices to
prove (Uσ

1 )rot ⊆ Uσrot
n and (Dσ

1 )rot ⊆ Dσrot
n .
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To show (Uσ
1 )rot ⊆ Uσrot

n , let X ∈ Uσ
1 , i.e., σ(X ∪ {1}) = +. After rotating the element 1,

we obtain

σrot((X ∪ {1})rot) = −σ(X ∪ {1}) = −.

Since (X ∪ {1})rot = Xrot ∪ {n}, we have σrot(Xrot ∪ {n}) = − and thus Xrot ∈ Uσrot
n . An

analogous argument shows (Dσ
1 )rot ⊆ Dσrot

n . This completes the proof of Claim 3.7. △

Proof of Proposition 3.4. Let X, Y be two (r − 1)-subsets with X ≺ Y and Xrot ≻rot Yrot.
If X ∈ Uσ

1 , then by Claim 3.6, Y ∈ Uσ
1 . If X ∈ Dσ

1 , then by Claim 3.7, Xrot ∈ Dσrot
n . By

Claim 3.6, Yrot ∈ Dσrot
n and again, by Claim 3.7, Y ∈ Dσ

1 . Analogous arguments show that,
if Y ∈ Dσ

1 (resp. Y ∈ Uσ
1 ), then X ∈ Dσ

1 (resp. X ∈ Uσ
1 ).

If X and Y both lie in Dσ
1 (resp. Uσ

1 ), then, by Claim 3.6, there is a chain X = Z1 ≺
. . . ≺ Zk = Y with Z1, . . . , Zk ∈ Dσ

1 (resp. Uσ
1 ). After a clockwise rotation, we have

Xrot = (Z1)rot ≺rot . . . ≺rot (Zk)rot = Yrot, which is a contradiction to Xrot ≻rot Yrot.
Therefore, X and Y both have to lie in Hσ

1 , i.e., 1 ∈ X ∩ Y . ◀

It is worth noting that, for r-subsets X, Y with 1 ∈ X ∩ Y , we have X ≺ Y if and only
if Xrot ≻rot Yrot. For X, Y ∈ Hσ

1 (i.e., 1 ∈ X ∩ Y ) with X ≺ Y Claim 3.6 implies that
any chain X = Z1 ≺ . . . ≺ Zk = Y lies entirely in Hσ

1 (i.e., Z1, . . . , Zk ∈ Hσ
1 ). Since a

clockwise rotation converts comparability of elements containing the element 1, we have
Xrot = (Z1)rot ≻rot . . . ≻rot (Zk)rot = Yrot,

▶ Corollary 3.8. One clockwise rotation does not reverse the ordering between two disjoint
(r − 1)-subsets.

D Theorem 1.2 implies Levi’s extension lemma (Theorem 1.1)

It is sufficient to prove Levi’s extension lemma for simple arrangements of pseudolines and
for crossing points as prescribed points. Given a non-simple arrangement, we can slightly
perturb the multiple crossing points (as depicted in Figure 2) to obtain a simple arrangement.
This simple arrangement can then be extended, and each of the multiple crossing points of
the original arrangement can again be obtained by contraction. Also, whenever a prescribed
point lies on a pseudosegment or inside a cell, we can extend the arrangement through an
adjacent crossing. By perturbing the extending pseudoline, we can ensure that the pseudoline
passes through the originally prescribed point.

E The extended signotope contains the original signotope

Although the following lemma is trivial in the geometrical setting of pseudoline arrangements,
we need to prove it in the context of general r-signotopes.

▶ Lemma 5.1. Let σ be an r signotope on [n] and x ∈ [n]. Then it is σrot ↓xrot= (σ ↓x)rot.

Proof. Both mappings are r-signotopes on [n]. We need to check whether they map to the
same signs. Let X be an r-subset of [n] and let X∗ be an r-subset of [n + 1] with xrot /∈ X∗

and X∗ ↓xrot= X. We obtain

σrot ↓xrot (X) = σrot(X∗).
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We will now rewrite the term to get the statement. Recall that rotating an r-signotope
on n elements exactly 2n times results in the original signotope. Hence rotating 2n − 1
times corresponds to a backwards rotation, i.e., the inverse operation of a clockwise rotation.
We denote this backwards rotation by rot−1. Since xrot /∈ X∗, we have x /∈ (X∗)rot−1 . By
definition it is

σrot(X∗) = ε · σ((X∗)rot−1) = ε · σ ↓x (((X∗)rot−1) ↓x) = ε · σ ↓x (Xrot−1) = (σ ↓x)rot(X),

where the sign ε = + (resp. ε = −) if n ∈ X∗ (resp. n ̸∈ X∗). Note that n ∈ X∗ is equivalent
to 1 ∈ Xrot−1 . This completes the proof of the lemma. ◀

This lemma implies that after extending the signotope and rotating back, the signotope on
[n + 1] elements contains the original, i.e., deleting the extending element, which is n + 1 − k

if we rotate k times backwards, results in the original signotope.
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