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Abstract
A k-crossing family in a point set S in general position is a set of k segments spanned by points of S

such that all k segments mutually cross. In this short note we present two statements on crossing
families which are based on sets of small cardinality: (1) Any set of at least 15 points contains a
crossing family of size 4. (2) There are sets of n points which do not contain a crossing family of
size larger than 4d n

20e < n
5 + 4. Both results improve the previously best known bounds.

1 Introduction

Let S be a set of n points in the Euclidean plane in general position, that is, no three points
in S are collinear. A segment of S is a line segment with its two endpoints (which we will
also call vertices) being points of S.

I Definition 1.1. A k-crossing family in a point set S is a set of k segments spanned by
points of S such that all k segments mutually cross in their interior.

For a point set S, let cf(S) be the maximum size of a crossing family in S, and let cf(n)
be the minimum of cf(S) over all point sets S of cardinality n in general position.

It is easy to see that cf(n) is a monotone function. From the fact that the complete graph
with 5 vertices is not planar it follows that any set of n ≥ 5 points has a crossing family of
size at least 2. In [1] it is shown that every set with n ≥ 10 points admits a crossing family
of size 3. The result is based on analyzing the set of all order types of size 10. The bound on
n is tight, that is, there exist 12 order types of 9 points which do have a maximal crossing
family of size 2. One such set is shown in Figure 1.

Aronov et al. [3] proved in 1994 the existence of crossing families of size
√
n/12 for every

set of n points, which until recently was the best general lower bound. Their proof relies on
mutually avoiding sets, for which the given bound is asymptotically tight.
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Figure 1 A set S of 9 points which does not contain a 3-crossing family, that is, cf(S) = 2.

Only in 2019 Pach, Rubin, and Tardos [9] showed in a breakthrough result that any set
of n points in general position in the plane contains a crossing family of size n1−o(1). This
almost shows the generally accepted conjecture that cf(n) should be Θ(n).

The conjecture is also supported by the currently best upper bounds. Recently, Evans
and Saeedi [6] showed that cf(n) ≤ 5d n

24e. We will improve that bound to cf(n) ≤ 4d n
20e in

Section 3. In the next section we start by showing that cf(15) = 4.

2 Sets of 15 points always contain a 4-crossing family

From the mentioned result cf(10) = 3 [1] we know that also any set of 11 points contains
a 3-crossing family, and no such set can contain a crossing family of size more than 5 (as
at least 2k points are needed for a k-crossing family). The following table shows how the
maximal size of a crossing family is distributed among all combinatorially different point
sets of size 11 and was computed with the help of the database of all order types of size 11
obtained in [2].

k number of order types

3 63 978 178
4 1 783 117 647
5 487 417 082

total 2 334 512 907

Table 1 Number of realizable order types of size 11 containing at most a k-crossing family.

To obtain the largest point set containing no crossing family of size 4, we made a complete
abstract order type extension from n = 11 to n = 15. The database of all realizable order
types of cardinality 11 contains 2 334 512 907 sets [2], of which 63 978 178 (about 2.7 %)
contain no 4-crossing family; see Table 1. Since adding points to an existing set can never
decrease the size of the maximal crossing family, we need to consider only those sets.

The approach of extending order types in an abstract way as described in [2] has the
advantage that there is no need to realize the obtained sets, as we actually are interested in
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coordinates:

61 66
61 0
57 5
54 9
47 40
41 37
37 44
30 53
46 61
18 55
55 65
11 60
9 61
0 66

Figure 2 A set S of 14 points which does not contain a 4-crossing family, that is, cf(S) = 3.

the smallest cardinality where no such sets exist. This avoids dealing with the notoriously
hard problem of realizing abstract order types, which is know to be ∃R-hard [8]. The
extension is done iteratively by adding one more (abstract) point in each step. Afterwards
each obtained abstract order type is checked for the maximum size of a crossing family, and
if this is larger than 4 the abstract order type is discarded.

After the first three rounds we obtained 2 727 858 abstract order types of cardinality
14 which do not contain a 4-crossing family. All these sets were extended by one further
point (in the abstract setting), but all resulting sets contained a 4-crossing family. Thus,
the largest possible set with no 4-crossing family has size at most 14. The whole process of
abstract extension took about 100 hours, computed in parallel on 40 standard CPUs.

To show that the obtained bound is best possible it is sufficient to realize at least one
generated abstract order type of size 14, and such an example is given in Figure 2. Together
with the set of 20 points with no 5-crossing family depicted in Figure 5, we conclude the
following.

I Theorem 2.1. Every set of at least 15 points in the plane in general position contains a
4-crossing family. Moreover, we have

cf(n) = 3 for 10 ≤ n ≤ 14 and cf(n) = 4 for 15 ≤ n ≤ 20.

Besides the above described computer proof, we have also developed a SAT framework
which allowed us to verify cf(15) > 3 within less than 2 CPU days using the SAT solver
CaDiCaL [5]. We have also used this framework to verify cf(10) > 2 [1]. The python program
creating the instance is available on our supplemental website [11].

The idea behind the SAT model is very similar as in [12]: We assume towards a contra-
diction that cf(15) ≤ 3, that is, there is a set of 15 points with no 4-crossing family. We have
Boolean variables Xabc to indicate whether three points a, b, c are positively or negatively
oriented. As outlined in [12], these variable have to fulfill the signotope axioms [7, 4]. Based
on the variables for triple orientations, we then assign auxiliary variables Yab,cd to indicate
whether the two segments ab, cd cross. Finally we assert that for any set of four segments
with pairwise distinct endpoints, at least one pair of them does not cross. As the SAT solver
CaDiCaL terminates with “unsatisfiable”, no such point set exists, and hence cf(15) > 3.

EuroCG’21
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3 Small sets and an upper bound

The following theorem was already implicitly used by Aronov et al. [3, Section 6] in their
discussion, where they stated the upper bound cf(n) ≤ n

4 . It can also be found as Lemma 3
in [6]. Since in [3] no proof is given and the proof from [6] appears to be incomplete (see
Figure 3), we include a full proof here.

replacing each point
by two imperceptibly
perturbed copies

S S ′

Figure 3 Five points in convex position have at most a 2-crossing family (left). Replacing each
point by two imperceptibly perturbed copies with no prescribed structure as in [6] may result in
a set of 10 points with a crossing family of size larger than 4 (right). The process needs to avoid
generating odd cycles of pairwise crossing edges; see the proof of Theorem 3.1 for details.

I Theorem 3.1. Let S ⊂ R2 be a set of n points in general position with cf(S) = k. Then
for any N ≥ n there exists a set S′ ⊂ R2 of N points in general position with cf(S′) ≤ kdN

n e.

For our proof of Theorem 3.1, we will use a simple property of geometric thrackles.
A geometric thrackle is a geometric graph such that each pair of edges (drawn as line
segments) either meets at a common vertex or crosses properly. Woodall proved that a graph
can be drawn as a geometric thrackle if and only if it is a a subgraph of a graph obtained by
attaching leaves (vertices of degree 1) to the vertices of an odd cycle [13, Theorem 2]. We
will need only the following weaker characterization.

I Lemma 3.2. A geometric thrackle T contains no even cycles.

A strenghtening to monotone thrackles was proved by Pach and Sterling [10]. Since the
proof for geometric thrackles is substantially simpler, we include it here to keep this note
self-contained.

Proof of Lemma 3.2. Assume there exists an even cycle C = p0, p1, . . . , pn for some even
n ≥ 4 with p0 = pn and pi−1pi ∈ T for i = 1, . . . , n. We set pi = pj for i = j (mod n).
Consider a line segment ` = pipi+1 in C. The supporting line through ` divides the plane
into two half-planes. Since T is a thrackle, the previous segment pi−1pi and the next segment
pi+1pi+2 cross, and thus pi−1 and pi+2 lie in the same half-plane. Moreover, since all segments
in the path P = pi+2, pi+3, . . . , pi−1 cross the segment pipi+1, P is an alternating path with
respect to the side of the half-plane, and hence P has even length |P |, that is, an even
number of edges. Since the cycle C has length |C| = |P |+ 3 this is a contradiction, because
C was assumed to have even length. J

Proof of Theorem 3.1. Let S be a set of n points in general position in the plane and let
m = dN

n e. Without loss of generality we may assume that N = mn; in case N < mn we
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may later remove some points from the constructed point set. We can also assume that all
points of S have distinct x- and y-coordinates; otherwise we slightly rotate S. Our aim is to
construct a set S′ of mn points by creating m copies of each point from S, such that the
following two properties hold:

(S1) a line segment between two copies of p ∈ S only intersects line segments incident to
another copy of p,

(S2) all copies of a point are almost on a horizontal line; that is, if p ∈ S is above (below)
q ∈ S then any line through two different copies of p is above (below) any copy of q.

To this end, we place the m copies of a point p = (x, y) at pi = (x + iε, y + (iε)2) for
i = 0, . . . ,m − 1. For sufficiently small ε > 0, all points from S′ have distinct x- and
y-coordinates and the above conditions are fulfilled.

Let F ′ be a maximum crossing family in S′. We will show how to find a crossing family
F in S of size at least |F ′|/m. If |F ′| ≤ m, we are clearly done since any segment in S is a
crossing family of size 1. Hence assume that F ′ contains more than m segments. Then no
segment f ′ ∈ F ′ can be incident to two copies of the same point of S due to property (S1).
Thus every segment f ′ ∈ F ′ connects (copies of) two distinct points of S.

Let F be the set of segments (without multiplicity) on S induced by F ′ and by contracting
the m copies of pi to p, for each p ∈ S. Formally, F = {pq | ∃i, j : piqj ∈ F ′}; Figure 4 gives
an illustration. Let GF be the geometric graph induced by F , which has the set of end points
of F as (drawn) vertices and F as (drawn) edges. More formally, GF = (V,E, φ, ψ) with
V = {p ∈ S | ∃q : pq ∈ F}, E = {{p, q} | pq ∈ F}, φ : V → R2, p 7→ p, and ψ : {p, q} 7→ pq

for any {p, q} ∈ E. By construction GF is a geometric thrackle, and due to Lemma 3.2, GF

contains no even cycles. Observe that according to property (S2), the neighbors of a vertex
p in GF can either be all above p or all below p, as no segment of F connected from above
to a copy pi can cross a segment of F connected from below to a copy pj . As a consequence,
GF is bipartite and thus contains no odd cycles. Hence, GF is acyclic; equivalently, a forest.

As long as GF contains vertices of degree larger than 1, we continue as follows: Let
p ∈ V (GF ) be a leaf incident to a vertex q ∈ V (GF ) of degree larger than 1. We construct F ′′
by removing all segments in F ′ incident to copies of q, and by inserting segments connecting
all copies of q to copies of p in the way such that all those segments cross; Figure 4 gives an
illustration of this modification. By construction, |F ′′| ≥ |F ′| holds and thus F ′′ is another
maximal crossing family in S′. We can replace F ′ by F ′′.

We can iteratively repeat this process, and in every step the number of vertices of degree
larger than 1 strictly decreases. Therefore we can assume that GF contains no vertices of
degree greater than 1. As a consequence, F is a (not necessarily maximal) crossing family in
S with |F | ≥ |F ′|/m. Therefore, cf(S′) ≤ |F ′| ≤ m · |F | ≤ m · cf(S) = mk. J

From the point set depicted in Figure 1, it follows by Theorem 3.1 that there are sets
of n points with no crossing family larger than 2dn

9 e. Evans and Saeedi [6] constructed a
set of 24 points with no crossing family of size 6 or more, which yields the upper bound
cf(n) ≤ 5d n

24e presented there.

k 1 2 3 4 5 6 7 8 9 10
Currently best example 4 9 14 20 25 29 34 40 44 50

Table 2 Largest known point sets Sk containing at most a k-crossing family, that is, with
cf(Sk) = k. For k ≤ 3 the sets are best possible.
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S S′

S S′

modify F ′ to F ′′

q

p

q

p

contract F ′

contract F ′′

Figure 4 An illustration of the contracting process to attain F from F ′, and an illustration of
the modification of F ′ in which all copies of p and q are “connected” to each other.

To further improve this bound we searched for sets with small crossing families. For
k ≥ 5 we partially extended several smaller sets (for example by doubling the number of
points similarly to the process described in the proof of Theorem 3.1) and used heuristics
such as simulated annealing to optimize them. Table 2 summarizes the sizes of the currently
largest sets containing at most a k-crossing family for k up to 10.

Using Theorem 3.1 together with the sets of 20 points containing no 5-crossing family
(see Figure 5) we get the bound cf(n) ≤ 4d n

20e. Also we have a set of 25 points containing no
6-crossing family (see Figure 6), which implies cf(n) ≤ 5d n

25e and therefore gives a slightly
better upper bound for certain values of n.

I Corollary 3.3. We have cf(n) ≤ min{4d n
20e, 5d

n
25e} <

n
5 + 4.

4 Conclusion

Based on exhaustive abstract extension of order types we showed that cf(15) = 4. We
conjecture that every set of 21 or more points contains a crossing family of size 5. We plan
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coordinates:

595 113
0 0
2 7
8 21

49 179
473 131
465 139
96 225

198 205
115 280
235 242
103 321
242 266
584 118
135 339
150 393
104 531
105 537
56 595
55 598

Figure 5 A set S of 20 points with no 5-crossing family.

coordinates:

209 744
670 181
651 180
623 177
597 176
574 176
231 699
244 673
213 734
383 321
333 404
391 244
301 488
365 232
211 737
287 417
229 278
219 370
178 191
151 203
31 58
18 33
16 28
6 10
0 0

Figure 6 A set S of 25 points with no 6-crossing family.
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to use our SAT framework to either settle the conjecture or improve the upper bound on the
size of a crossing family to 4d n

21e.
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