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A superlinear lower bound on the number of 5-holes∗
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Abstract

Let P be a finite set of points in the plane in general
position, that is, no three points of P are on a common
line. We say that a set H of five points from P is a
5-hole in P if H is the vertex set of a convex 5-gon
containing no other points of P . For a positive integer
n, let h5(n) be the minimum number of 5-holes among
all sets of n points in the plane in general position.

Despite many efforts in the last 30 years, the best
known asymptotic lower and upper bounds for h5(n)
have been of order Ω(n) and O(n2), respectively. We

show that h5(n) = Ω(n log4/5 n), obtaining the first
superlinear lower bound on h5(n).

The following structural result, which might be of
independent interest, is a crucial step in the proof of
this lower bound. If a finite set P of points in the
plane in general position is partitioned by a line `
into two subsets, each of size at least 5 and not in
convex position, then ` intersects the convex hull of
some 5-hole in P . The proof of this result is computer-
assisted.

1 Introduction

We say that a set of points in the plane is in general
position if it contains no three points on a common
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line. A point set is in convex position if it is the vertex
set of a convex polygon. Let P be a finite set of points
in general position in the plane. We say that a set H
of k points from P is a k-hole in P if H is the vertex
set of a convex polygon containing no other points
of P .

In the 1970s, Erdős [6] asked whether, for every
positive integer k, there is a k-hole in every sufficiently
large finite point set in general position in the plane.
Harborth [8] proved that there is a 5-hole in every set
of 10 points in general position in the plane and gave
a construction of 9 points in general position with no
5-hole. After unsuccessful attempts of researchers to
answer Erdős’ question affirmatively for any fixed in-
teger k ≥ 6, Horton [9] constructed, for every positive
integer n, a set of n points in general position in the
plane with no 7-hole. The question whether there is
a 6-hole in every sufficiently large finite planar point
set remained open until 2007 when Gerken [7] and
Nicolás [10] independently gave an affirmative answer.

For positive integers n and k, let hk(n) be the mini-
mum number of k-holes in a set of n points in general
position in the plane. Due to Horton’s construction [9],
hk(n) = 0 for every n and every k ≥ 7. The functions
h3(n) and h4(n) are both known to be asymptotically
quadratic [2, 4]. For h5(n) and h6(n), the best known
asympotic bounds are Ω(n) and O(n2) [4, 7, 8, 10].
See, e.g., [2] for more details.

As our main result, we give the first superlinear
lower bound on h5(n). This solves an open problem,
which was explicitly stated, for example, in a book by
Brass, Moser, and Pach [5, Chapter 8.4, Problem 5]
and in the survey [1].

Theorem 1 There is a fixed constant c > 0 such that
for every integer n ≥ 10 we have h5(n) ≥ cn log4/5 n.

Let P be a finite set of points in the plane in general
position and let ` be a line that contains no point of
P and that partitions P into two non-empty subsets
A and B. We then say that P = A ∪B is `-divided.

The following result, which might be of independent
interest, is a crucial step in the proof of Theorem 1.

Theorem 2 Let P = A ∪B be an `-divided set with
|A|, |B| ≥ 5 and with neither A nor B in convex posi-
tion. Then there is an `-divided 5-hole in P .
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The proof of Theorem 2 is computer-assisted. We
reduce the result to several statements about point
sets of size at most 11 and then verify each of these
statements by an exhaustive computer search. To
verify the computer-aided proofs we have implemented
two independent programs, which, in addition, are
based on different abstractions of point sets. Some of
the tools that we use originate from a bachelor’s thesis
of Scheucher [12].

In the rest of the paper, we assume that every point
set P is planar, finite, and in general position. We
also assume, without loss of generality, that all points
in P have distinct x-coordinates. We use conv(P ) to
denote the convex hull of P and ∂ conv(P ) to denote
the boundary of the convex hull of P .

A subset Q of P that satisfies P ∩ conv(Q) = Q is
called an island of P . Note that every k-hole in an
island of P is also a k-hole in P .

2 Proof of Theorem 1

We now show how to apply Theorem 2 to obtain a
superlinear lower bound on the number of 5-holes in a
given set of n points. Without loss of generality, we
assume that n = 2t for some integer t ≥ 55.

We prove by induction on t ≥ 55 that the number
of 5-holes in an arbitrary set P of n = 2t points is at

least f(t) := c · 2tt4/5 = c ·n log
4/5
2 n for some absolute

constant c > 0. For t = 55, we have n > 10 and,
by the result of Harborth [8], there is at least one
5-hole in P . If c is sufficiently small, then f(t) =

c · n log
4/5
2 n ≤ 1 and we have at least f(t) 5-holes

in P , which constitutes our base case.
For the inductive step we assume that t > 55. We

first partition P with a line ` into two sets A and B of
size n/2 each. Then we further partition A and B into
smaller sets using the following well-known lemma,
which is, for example, implied by a result of Steiger
and Zhao [13, Theorem 1].

Lemma 3 ([13]) Let P ′ = A′∪B′ be an `-divided set
and let r be a positive integer such that r ≤ |A′|, |B′|.
Then there is a line disjoint from P ′ that determines
an open halfplane h with |A′ ∩ h| = r = |B′ ∩ h|.

We set r := blog
1/5
2 nc, s := bn/(2r)c, and apply

Lemma 3 iteratively in the following way to partition
P into islands P1, . . . , Ps+1 of P so that the sizes of
Pi∩A and Pi∩B are exactly r for every i ∈ {1, . . . , s}.
Let P ′0 := P . For every i = 1, . . . , s, we consider a line
that is disjoint from P ′i−1 and that determines an open
halfplane h with |P ′i−1 ∩A ∩ h| = r = |P ′i−1 ∩B ∩ h|.
Such a line exists by Lemma 3 applied to the `-divided
set P ′i−1. We then set Pi := P ′i−1 ∩ h, P ′i := P ′i−1 \ Pi,
and continue with i + 1. Finally, we set Ps+1 := P ′s.

For every i ∈ {1, . . . , s}, if one of the sets Pi∩A and
Pi ∩ B is in convex position, then there are at least

(
r
5

)
5-holes in Pi and, since Pi is an island of P , we

have at least
(
r
5

)
5-holes in P . If this is the case for at

least s/2 islands Pi, then, given that s = bn/(2r)c and
thus s/2 ≥ bn/(4r)c, we obtain at least bn/(4r)c

(
r
5

)
≥

c · n log
4/5
2 n 5-holes in P for a sufficiently small c > 0.

We thus further assume that for more than s/2
islands Pi, neither of the sets Pi ∩A nor Pi ∩B is in

convex position. Since r = blog
1/5
2 nc ≥ 5, Theorem 2

implies that there is an `-divided 5-hole in each such Pi.
Thus there is an `-divided 5-hole in Pi for more than
s/2 islands Pi. Since each Pi is an island of P and
since s = bn/(2r)c, we have more than s/2 ≥ bn/(4r)c
`-divided 5-holes in P . As |A| = |B| = n/2 = 2t−1,
there are at least f(t − 1) 5-holes in A and at least
f(t − 1) 5-holes in B by the inductive assumption.
Since A and B are separated by `, we have at least

2f(t− 1) + n/(4r) = 2c(n/2) log
4/5
2 (n/2) + n/(4r)

≥ cn(t− 1)4/5 + n/(4t1/5)

5-holes in P . The right side of the above expres-
sion is at least f(t) = cnt4/5, because the inequality
cn(t− 1)4/5 + n/(4t1/5) ≥ cnt4/5 is equivalent to the
inequality (t− 1)4/5t1/5 + 1/(4c) ≥ t, which is true if
c is sufficiently small, as (t− 1)4/5t1/5 ≥ t− 1. This
completes the proof of Theorem 1.

3 Preliminaries

Before proceeding with the proof of Theorem 2, we
first introduce some notation and definitions, and state
some immediate observations.

Let a, b be two points in the plane. We denote the

ray starting at a and going through b as
−→
ab and the

line through a and b directed from a to b as ab.
Let P = A ∪ B be an `-divided set. In the rest of

the paper, we assume without loss of generality that `
is vertical and directed upwards, A is to the left of `,
and B is to the right of `.

`-critical sets An `-divided set C = A∪B is `-critical
if it fulfills the following two conditions.

(i) Neither A nor B is in convex position.

(ii) For every extremal point x of C, either (C \{x})∩
A or (C \ {x}) ∩B is in convex position.

a-wedges and a∗-wedges Let P = A ∪ B be an `-

divided set. For a point a in A, the rays
−→
aa′ for all

a′ ∈ A \ {a} partition the plane into |A| − 1 regions.
We call the closures of those regions a-wedges and label

them as W
(a)
1 , . . . ,W

(a)
|A|−1 in clockwise order around a,

where W
(a)
1 is the topmost a-wedge that intersects `.

Let t(a) be the number of a-wedges that intersect `.

Note that W
(a)
1 , . . . ,W

(a)

t(a) are the a-wedges that inter-
sect ` sorted in top-to-bottom order on `. Also note
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that all a-wedges are convex if a is an inner point of A,
and that there exists exactly one non-convex a-wedge
otherwise.

If A is not in convex position, we denote the right-
most inner point of A as a∗ and write t := t(a

∗) and

Wk := W
(a∗)
k for k = 1, . . . , |A| − 1. Recall that a∗

is unique, since all points have distinct x-coordinates.
We set wk := |B ∩Wk| and label the points of A so

that Wk is bounded by the rays
−−−−→
a∗ak−1 and

−−→
a∗ak for

k = 1, . . . , |A| − 1. Figure 1 gives an illustration.

a∗
a5

`

a1

a4

W1

W4

W2

W3

a2

W5

a3

(a)

a∗
a6

`

a1

a4

W1

W4

W2

W3

a2

W5

a3a5

W6

(b)

Figure 1: (a) An example of a∗-wedges with t = |A| − 1.
(b) An example of a∗-wedges with t < |A| − 1.

4 Proof of Theorem 2

In the rest of the paper, we state results that we use
to prove Theorem 2 and we then present the proof of
this theorem. Due to lack of space, we omit the proofs
of almost all auxiliary results.

4.1 a∗-wedges with at most two points of B

We first consider an `-divided set P = A ∪B with A
not in convex position. We show that, if there is a
sequence of consecutive a∗-wedges where the first and
the last a∗-wedge both contain two points of B and
every a∗-wedge in between them contains exactly one
point of B, then there is an `-divided 5-hole in P .

Lemma 4 Let P = A∪B be an `-divided set with A
not in convex position and with |A| ≥ 5 and |B| ≥ 6.
Let Wi, . . . ,Wj be consecutive a∗-wedges with 1 ≤ i <
j ≤ t, wi = 2 = wj , and wk = 1 for every k with
i < k < j. Then there is an `-divided 5-hole in P .

The proof of this lemma is carried out by a rather
elaborate case distinction, which we omit here.

4.2 Computer-assisted results

We now provide lemmas that are key ingredients in the
proof of Theorem 2. All these lemmas have computer-
aided proofs. Each result was verified by two inde-
pendent implementations, which are also based on
different abstractions of point sets. In particular, to
prove these lemmas, we employ an exhaustive com-
puter search through all combinatorially different sets
of |P | ≤ 11 points in the plane. Both programs and
detailed information are available online [3, 11].

Lemma 5 Let P = A ∪ B be an `-divided set with
|A| = 5, |B| = 6, and with A not in convex position.
Then there is an `-divided 5-hole in P .

Lemma 6 Let P = A∪B be an `-divided set with no
`-divided 5-hole in P , |A| = 5, 4 ≤ |B| ≤ 6, and with
A in convex position. Then for every point a of A,
every convex a-wedge contains at most two points of B.

Lemma 7 Let P = A ∪ B be an `-divided set with
no `-divided 5-hole in P , |A| = 6, and |B| = 5. Then
for each point a of A, every convex a-wedge contains
at most two points of B.

Lemma 8 Let P = A∪B be an `-divided set with no
`-divided 5-hole in P , 5 ≤ |A| ≤ 6, |B| = 4, and with
A in convex position. Then for every point a of A, if
the non-convex a-wedge contains no point of B, every
a-wedge contains at most two points of B.

4.3 Applications of the computer-assisted results

As a first application of the computer-assisted results
we prove the following statement, which restricts the
number of points of B in a∗-wedges. Its proof uses
Lemmas 6, 7, and 8 and also Lemma 4.

Lemma 9 Let P = A ∪ B be an `-divided set with
no `-divided 5-hole in P , with |A| ≥ 6, and with A not
in convex position. Then the following two conditions
are satisfied.

(i) Let Wi,Wi+1,Wi+2 be three consecutive a∗-
wedges whose union is convex and contains at
least four points of B. Then wi, wi+1, wi+2 ≤ 2.

(ii) Let Wi,Wi+1,Wi+2,Wi+3 be four consecutive a∗-
wedges whose union is convex and contains at least
four points of B. Then wi, wi+1, wi+2, wi+3 ≤ 2.

4.4 Extremal points of `-critical sets

The following statement, whose relatively easy proof
is omitted in this abstract, says that every `-critical
set has at most two extremal points on each side of `.

Lemma 10 Let C = A ∪B be an `-critical set with
|A∩C| ≥ 5. Then |A∩ ∂ conv(C)| ≤ 2. By symmetry,
an analogous statement holds for B.

Now we use Lemma 9 to restrict the parameters wi.
Then we state the last auxiliary result used in the
proof of Theorem 2.

Lemma 11 Let C = A∪B be an `-critical set with no
`-divided 5-hole in C and with |A| ≥ 6. Then wi ≤ 3
for every 1 < i < t. Moreover, if |A ∩ ∂ conv(C)| = 2,
then also w1, wt ≤ 3.
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Proof. Recall that, since C is `-critical, we have
|B| ≥ 4. Let i be an integer with 1 ≤ i ≤ t. We
assume that there is a point a in A∩∂ conv(C), which
lies outside of Wi, as otherwise there is nothing to
prove for Wi (either |A∩∂ conv(C)| = 1 and i ∈ {1, t}
or |A ∩ ∂ conv(C)| = 2 and Wi ∩B = ∅). We consider
C ′ := C \{a}. Since C is an `-critical set, A′ := C ′∩A
is in convex position. Thus, there is a non-convex
a∗-wedge W ′ of C ′. Since W ′ is non-convex, all other
a∗-wedges of C ′ are convex. Moreover, since W ′ is the
union of the two a∗-wedges of C that contain a, all
other a∗-wedges of C ′ are also a∗-wedges of C. Let
W be the union of all a∗-wedges of C that are not
contained in W ′. Note that W is convex and contains
at least |A|− 3 ≥ 3 a∗-wedges of C. Since |A| ≥ 6, the
lemma follows from Lemma 9(i). �

Proposition 12 Let C = A ∪ B be an `-critical set
with no `-divided 5-hole in C and with |A|, |B| ≥ 6.
Then the following two conditions are satisfied.

(i) If |A ∩ ∂ conv(C)| = 2 then |B| ≤ |A| − 1.

(ii) If |B ∩ ∂ conv(C)| = 2 then |B| ≤ |A|.

In the proof of this statement, we use the restrictions
from Lemmas 4 and 9 that bound the number of
points of B in a∗-wedges to derive the desired bound
|B| ≤ |A|. In the proof of part (i) we also apply
Lemma 11 to show strict inequality. The proof of
Proposition 12 is quite involved and we omit it here.

4.5 Finalizing the proof of Theorem 2

We are now ready to prove Theorem 2. Namely, we
show that for every `-divided set P = A ∪ B with
|A|, |B| ≥ 5 and with neither A nor B in convex posi-
tion there is an `-divided 5-hole in P .

Suppose for the sake of contradiction that there is
no `-divided 5-hole in P . We know by the result of
Harborth [8] that every set P of ten points contains
a 5-hole in P . In the case |A|, |B| = 5, the statement
then follows from the assumption that neither of A
and B is in convex position.

So assume that at least one of the sets A and B has
at least six points. We obtain an island Q of P by
iteratively removing extremal points so that neither
part is in convex position after the removal and until
one of the following conditions holds.

(i) One of the parts Q∩A and Q∩B has five points.

(ii) Q is an `-critical island of P with |Q∩A| ≥ 6 and
|Q ∩B| ≥ 6.

In case (i), we have |Q ∩ A| = 5 or |Q ∩ B| = 5.
If |Q ∩ A| = 5 and |Q ∩ B| ≥ 6, then we let Q′ be
the union of Q ∩ A with the six leftmost points of
Q∩B. Since Q∩A is not in convex position, Lemma 5
implies that there is an `-divided 5-hole in Q′, which

is also an `-divided 5-hole in Q, since Q′ is an island
of Q. However, this is impossible as then there is an
`-divided 5-hole in P because Q is an island of P . We
proceed analogously if |Q ∩A| ≥ 6 and |Q ∩B| = 5.

In case (ii), we have |Q ∩ A|, |Q ∩ B| ≥ 6. There
is no `-divided 5-hole in Q, since Q is an island of P .
By Lemma 10, we can assume without loss of gener-
ality that |A ∩ ∂ conv(Q)| = 2. Then it follows from
Proposition 12(i) that |Q∩B| < |Q∩A|. By exchang-
ing the roles of Q ∩ A and Q ∩ B and by applying
Proposition 12(ii), we obtain that |Q ∩A| ≤ |Q ∩B|,
a contradiction. This finishes the proof of Theorem 2.
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