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Universal Sets

Definition: n-universal point set S:

∀ planar n-vertex graph G can be drawn straight-line on S.

n = 3: n = 4: n = 5:

(unique) (unique) (unique)(unique)
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Universal Sets

Definition: n-universal point set S:

∀ planar n-vertex graph G can be drawn straight-line on S.

n = 3: n = 4: n = 5:

w.l.o.g.: n-universal sets in general position
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Universal Sets

Definition: n-universal point set S:

∀ planar n-vertex graph G can be drawn straight-line on S.

degrees: 4-regular degrees: 3,3,4,4,5,5

n = 6:
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Universal Sets

Definition: n-universal point set S:

∀ planar n-vertex graph G can be drawn straight-line on S.

Problem: What is the smallest size f(n) of an n-universal

point set?
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Universal Sets

Definition: n-universal point set S:

∀ planar n-vertex graph G can be drawn straight-line on S.

Problem: What is the smallest size f(n) of an n-universal

point set?

Problem (Brass, Cenek, Duncan, Efrat, Erten,

Ismailescu, Kobourov, Lubiw, Mitchell):

What is the smallest size σ of a collection of planar graphs

without a simultaneous embedding (conflict collection)?
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Upper Bounds

• (2n− 4)× (n− 2) grid is n-universal, hence
f(n) = O(n2) [De Fraysseix, Pach, Pollack ’90]

• . . .

• f(n) ≤ n2

4 −O(n)
[Bannister, Cheng, Devanny, Eppstein ’14]
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Upper Bounds

• (2n− 4)× (n− 2) grid is n-universal, hence
f(n) = O(n2) [De Fraysseix, Pach, Pollack ’90]

• . . .

• f(n) ≤ n2

4 −O(n)
[Bannister, Cheng, Devanny, Eppstein ’14]

• fs(n) ≤ O(n3/2 log n) for stacked triangulations
[Fulek and Tóth ’15]
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Lower Bounds

• f(n) ≥ n+ Ω(
√
n) [De Fraysseix, Pach, Pollack ’90]

• . . .

• f(n) ≥ fs(n) ≥ 1.235n(1 + o(1)) [Kurowski ’04]

• Counting arguments
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Lower Bounds

• f(n) = n for n ≤ 10,

f(n) ≥ fs(n) ≥ n+ 1 for n ≥ 15, and

σ ≤ 7393 [Cardinal, Hoffmann, Kusters ’15]

• f(n) ≥ n+ Ω(
√
n) [De Fraysseix, Pach, Pollack ’90]

• . . .

• f(n) ≥ fs(n) ≥ 1.235n(1 + o(1)) [Kurowski ’04]

• Counting arguments
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Lower Bounds

• f(n) = n for n ≤ 10,

f(n) ≥ fs(n) ≥ n+ 1 for n ≥ 15, and

σ ≤ 7393 [Cardinal, Hoffmann, Kusters ’15]

• f(n) ≥ n+ Ω(
√
n) [De Fraysseix, Pach, Pollack ’90]

• . . .

• f(n) ≥ fs(n) ≥ 1.235n(1 + o(1)) [Kurowski ’04]

@ 11-universal set on 11 points|S| ≥ 1.293n(1 + o(1))

• Counting arguments

σ ≤ 49
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New Lower Bound

Theorem (S., Schrezenmaier, Steiner ’19).

fs(n) ≥ (1.293− o(1))n
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New Lower Bound

1 2

3

Starting from a triangle, a stacked triangulation is built up

by repeated insertions of degree-3-vertices into triangles.
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New Lower Bound
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Starting from a triangle, a stacked triangulation is built up

by repeated insertions of degree-3-vertices into triangles.
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New Lower Bound
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4

3

7
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Lemma (Cardinal, Hoffmann, Kusters ’15).

The induced labeling is unique.

Starting from a triangle, a stacked triangulation is built up

by repeated insertions of degree-3-vertices into triangles.
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New Lower Bound

Lemma (Cardinal, Hoffmann, Kusters ’15).

The induced labeling is unique.

Starting from a triangle, a stacked triangulation is built up

by repeated insertions of degree-3-vertices into triangles.

Obsv. # of labeled stacked triangulations: 2n−4(n− 3)!
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New Lower Bound

Lemma (Cardinal, Hoffmann, Kusters ’15).

The induced labeling is unique.

Starting from a triangle, a stacked triangulation is built up

by repeated insertions of degree-3-vertices into triangles.

Obsv. # of labeled stacked triangulations: 2n−4(n− 3)!

Corollary. Let m be the size of an n-universal set. Then

2n−4(n−3)! ≤ # labelings of n out of m points =
m!

(m− n)!
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New Lower Bound

Theorem (S., Schrezenmaier, Steiner ’19).

fs(n) ≥ (1.293− o(1))n

5



11-Universal Sets

Theorem (S., Schrezenmaier, Steiner ’19).

There is a set of 49 stacked triangulations on 11 vertices

without a simultaneous embedding, hence

f(11) = fs(11) = 12 and σ ≤ 49.
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SAT Model

• Mi,j . . . vertex vi is mapped to point pj

SAT model for a fixed set S and fixed graph G = (V,E):
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SAT Model

• Injective mapping V → S

every vertex vi has to be mapped:∨
j

Mi,j

no two vertices vi1 , vi2 mapped to the same point:

¬Mi1,j ∨ ¬Mi2,j

• Mi,j . . . vertex vi is mapped to point pj

SAT model for a fixed set S and fixed graph G = (V,E):
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SAT Model

• Injective mapping V → S

• No two edges cross

∀ pair of edges (v1, v2), (v3, v4)

∀ pair of crossing segments (p1, p2), (p3, p4)

¬Mv1,p1 ∨ ¬Mv2,p2 ∨ ¬Mv3,p3 ∨ ¬Mv4,p4

• Mi,j . . . vertex vi is mapped to point pj

SAT model for a fixed set S and fixed graph G = (V,E):
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SAT Model

• Injective mapping V → S

• No two edges cross

∀ pair of edges (v1, v2), (v3, v4)

∀ pair of crossing segments (p1, p2), (p3, p4)

¬Mv1,p1 ∨ ¬Mv2,p2 ∨ ¬Mv3,p3 ∨ ¬Mv4,p4

depends on S

depends on G

• Mi,j . . . vertex vi is mapped to point pj

SAT model for a fixed set S and fixed graph G = (V,E):
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SAT Model

• all graphs simultaneously

• point sets via signotope axioms

All in one SAT instance:
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SAT Model

• all graphs simultaneously

• point sets via signotope axioms

. . . but solvers do not terminate . . .

All in one SAT instance:
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Computer Proof

• Enumerate all triangulations on 11 vertices (1,249)

via plantri (planar graph generator by Brinkmann and McKay)
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Computer Proof

• Enumerate all triangulations on 11 vertices

• Enumerate all order types on 11 points

via signotope/chirotope axioms, 20 CPU hours, 100 GB storage

(2,343,203,071)

(1,249)
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Computer Proof

• Enumerate all triangulations on 11 vertices

• Enumerate all order types on 11 points

via SAT solver, priority queue

• Pick G as set of 11-vertex triangulations with maximum degree 10

and test each pair S and G

(2,343,203,071)

(1,249)

• Test necessary criterion on point sets
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Computer Proof

• Enumerate all triangulations on 11 vertices

• Enumerate all order types on 11 points

• Pick G as set of 11-vertex triangulations with maximum degree 10

and test each pair S and G

• For remaining G-universal sets, create 0-1-matrix and use IP to

find minimal set of triangulations which need to be added

(Minimum set cover)

(2,343,203,071)

(1,249)

• Test necessary criterion on point sets
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Computer Proof

• Enumerate all triangulations on 11 vertices

• Enumerate all order types on 11 points

• 500 CPU days later:

conflict collection of 49 stacked triang. on 11 vertices!

• Pick G as set of 11-vertex triangulations with maximum degree 10

and test each pair S and G

• For remaining G-universal sets, create 0-1-matrix and use IP to

find minimal set of triangulations which need to be added

(Minimum set cover)

previously: 7393 for larger n

(2,343,203,071)

(1,249)

• Test necessary criterion on point sets
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Verification

• run program on conflict graphs, only phase 1+2 (of 6)
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Verification

• run program on conflict graphs, only phase 1+2 (of 6)

• independent SAT model

axiomize point set S (chirotope/signotope)

mapping S → V for each conflict graph (as before)

10



Verification

• run program on conflict graphs, only phase 1+2 (of 6)

• independent SAT model

axiomize point set S (chirotope/signotope)

mapping S → V for each conflict graph (as before)

• picosat traced a bug in GD version, see full version
(23 ”conflict” graphs) (49 conflict graphs)
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Verification

• picosat traced a bug in GD version, see full version

i

10

n− 1

(23 ”conflict” graphs) (49 conflict graphs)

other
vertices
here
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Verification

• picosat traced a bug in GD version, see full version

i

10

n− 1

(23 ”conflict” graphs) (49 conflict graphs)

if( (sl->get( 0,i) == 1 && sl->get(i,n-1) == 1)

||(sl->get( 1,i) == 1 && sl->get(i, 0) == 1)

||(sl->get(n-1,i) == 1 && sl->get(i, 1) == 1))

...

other
vertices
here
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Verification

• picosat traced a bug in GD version, see full version

i

10

n− 1

(23 ”conflict” graphs) (49 conflict graphs)

if( (sl->get( 0,i) == 1 && sl->get(i,n-1) == 1)

||(sl->get( 1,i) == 1 && sl->get(i, 0) == 1)

||(sl->get(n-1,i) == 1 && sl->get(i, 1) == 1))

...

if( (sl->get( 0,i) == 1 && sl->get(i, 1) == 1)

||(sl->get( 1,i) == 1 && sl->get(i,n-1) == 1)

||(sl->get(n-1,i) == 1 && sl->get(i, 0) == 1))

...
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Thank you for your attention!
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