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Planar k-Gons

a finite point set / in the plane is
in general position if # collinear points in P

a k-gon (in PP) is the vertex set of a convex k-gon

Theorem (Erdés and Szekeres '35).
V k > 3, d a smallest integer ¢(/k) such that
every set of g(k) points contains a k-gon.



Planar k-Gons

Theorem. 2872 +1 < g(k) < (**7). [Erd8s—Szekeres '35]

T k—2

equality conjectured by Szekeres, Erdos offered 500% for a proof
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Planar k-Gons

Theorem. 2=2 +1 < g(k) < (°7}). [Erd8s—Szekeres '35]

several improvements of order 4%—°(k)
Theorem. g(k) < 2k+°(F) [Suk '17]
< 1 hour using SAT solvers [S."18, Mari¢ '19]

Known: ¢g(4) =5, g(b) =9, g(6) = 17

*

computer assisted proof, 1500 CPU hours [Szekeres—Peters '06]



Planar k-Holes

a k-hole (in PP) is the vertex set of a convex k-gon
containing no other points of P

5-hole not a 6-hole
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Planar k-Holes

a k-hole (in PP) is the vertex set of a convex k-gon
containing no other points of P

Erdds, 1970': Is there a smallest integer /(L)
s.t. every set of h(k) points contains k-hole?

e 3 points = d 3-hole

e 5 points = d 4-hole

e 10 points = d 5-hole [Harborth '78]

e T arbitrarily large point sets with no 7-hole [Horton '83]

o Sufficiently large point sets = 3 6-hole
[Gerken '08 and Nicolds '07, independently]



Planar k-Holes

Harborth '78 / \
Horton'83

Overmars '02
Gerken '07, Nicolas '07, Koshelev '09



Planar k-Holes

exact value still unknown

\

o h(4) =5, h(5) = 10, 30 < h(6)

Harborth '78 /

Overmars '02

463, h(7) = o

\

Horton'83

I—— i AN

Gerken '07, Nicolas '07, Koshelev '09



Higher Dimensions

a finite point set P in R? is in general position
if no d points lie in a common hyperplane

k-gon = k points in convex position

k-hole = k-gon with no other points of P in its convex hull



Higher Dimensional £-Gons

dimension reduction (Karolyi '01):

gDy <g¥ VEk-1)+1<...<gP(k—-d+1)+d-2

<2k+o(k) (Suk'17)
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Higher Dimensional £-Gons

dimension reduction (Karolyi '01):

g VR <g¥ VEk-1D4+1<...<¢gP(k—d+1)+d—2

<2k+o(k) (Suk'17)
Karolyi and Valtr '03: ¢ (k) = Q(c " VF)

asymptotic behavior remains unknown for d > 3
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Higher Dimensional k-Holes

central problem: determine the largest value k = H(d) such
that every sufficiently large set in d-space contains a k-hole

o H(2) =6 because h'?(6) < oo and h(?)(7) = 0
|Gerken '07, Nicolds '07] [Horton '87]

e Valtr '92 (generalizing Horton's construction):
H(d) < d¥tod)

e in particular, 7 < H(3) < 22

e Bukh, Chao, and Holzman '20: H(d) < 2™



Precise Values for Small Gons and Holes

Bisztriczky, Harborth, Soltan, Morris '90s:
o g Dk)=hW(k)=2k—d—1ford+2<k<3¢+1

in particular values for

(k,d) =(3,5),(4,6),(4,7),(5,7),(5,8)

o and ¢ (6) = K3 (6) =9



Szekeres and Peters '06 NEW!

k=4 5 w6 7 /|8\ 9 10
5 5 ¢ @ T4 \
3 4 6 @
sl 45 7 @
5| 45 6 8 @
6 4 5 6 I 9 13
Known values and bounds for ¢(? (k).
NEW!
k=4 5 6 7 /18 9 10
=2 5 10 30..463 oy ‘oo \ 00 00
3 4 06 9 ! ? ?
4 4 5 7 C @ ? ?
5! 4 5 6 8 @ ?
6 4 5 6 7 13

Known values and bounds for h(®(

9
k).

10



Our Results

Theorem: ¢ (7) < 13, that is,
every set of 13 points from R® contains a 7-gon.

Theorem: h(3)(7) < 14, that is,
every set of 14 points from R® contains a 7-hole.
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Theorem: ¢ (7) < 13, that is,
every set of 13 points from R® contains a 7-gon.

Theorem: h(3)(7) < 14, that is,
every set of 14 points from R® contains a 7-hole.

Theorem: ¢*)(8) < A (8) < 13, that is,
every set of 13 points from R* contains a 8-gon/hole.

Theorem: ¢ (9) < R (9) < 13, that is,
every set of 13 points from R contains a 9-gon/hole.
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Our Results

Theorem: ¢ (7) < 13, that is,
every set of 13 points from R® contains a 7-gon.

Theorem: h(3)(7) < 14, that is,
every set of 14 points from R® contains a 7-hole.

Theorem: ¢*)(8) < A (8) < 13, that is,
every set of 13 points from R* contains a 8-gon/hole.

Theorem: ¢ (9) < R (9) < 13, that is,
every set of 13 points from R contains a 9-gon/hole.

All statements hold for chirotopes of rank 4, 5, and 6,

respectively, and the bounds are tight for chirotopes.
11



SAT Model for R3

?
o use SAT solver to test ¢® (k) > n:
does there exist {p1,...,p,} from R without k-gon?

12



SAT Model for R3

e variables for quadruple-orientations: Xapeq € {+, —}

n ( 1 1 1 1\
4 Xabcd — S8 det oo b e M
y Yo Ub Ye Yd
() \Za Zb Zc <d

12



SAT Model for R3

e variables for quadruple-orientations: Xapeq € {+, —}

e chirotope axioms

Grassmann-Pliicker relations for r-dim. vectors (we have rank r = 4):

det(al, .. .,CLT) . det(bl, ce 7br) =

Zdet(bi,ag, ce ,CLT) y det(bl, c e ey bi_l,al, bi_|_1, PN br>
1=1

f f

12



SAT Model for R3

e variables for quadruple-orientations: Xapeq € {+, —}

e chirotope axioms

Grassmann-Pliicker relations for r-dim. vectors (we have rank r = 4):

det(ay,...,a,) - det(by,...,b.) =

Zdet(bi,ag, ce ,CLT) y det(bl, c e ey bi_l,al, bi_|_1, PN br)
1=1

f f

It Xbi.a0,...an * Xbi,obi_1,a1,bis1,....b,. = 0 for every 1,
then Xat,...,a,r " Xbi,...,b, > 0

12



SAT Model for R3

e variables for quadruple-orientations: Xapeq € {+, —}

e chirotope axioms

Grassmann-Pliicker relations for r-dim. vectors (we have rank r = 4):

det(ay,...,a,) - det(by,...,b.) =

y‘/det(bi,ag, ce ,CLT) y det(bl, .. .,bi_l,al,bi_|_1, .. .,br)

necessary conditions but not sufficient (realizability!)

IT Xbi,G,Q,...,a,r y Xbl7"'7b’i—17a17bi—|—17--°7b7~ Z U mr éVﬁy Z,
then Xat,...,a,r " Xbi,...,b, > 0

12



SAT Model for R3

e variables for quadruple-orientations: Xapea € {+, —}
e chirotope axioms

o Alternating axioms: ©(n") constraints
Xir(1) b (2)s8m(3) b () Sgn(ﬂ) " Xi1,i2,i3,14

e Exchange axioms:
For any al,...,ar,bl,...,br:
If Xbi,a0,..a0 = Xb1,oobs1,a1,bi01,....b, = 0 for every 4,
then Xai,...,ar * Xbi,...,b, > 0

©(n?*") constraints
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SAT Model for R3

e variables for quadruple-orientations: Xapea € {+, —}
e chirotope axioms

o Alternating axioms: ©(n") constraints
Xir(1) b (2)s8m(3) b () Sgn(ﬂ) " Xit,i2,13,14

e Exchange axioms:
For any al,...,ar,bl,...,br:
If Xbi,a0,..a0 = Xb1,oobs1,a1,bi01,....b, = 0 for every 4,
then Xai,...,a, " Xbi,...,b, > 0

e ts

e 3-term Grassmann Plicker relations — O(n"*?)
(a3 =b3,...,a, =b;)

12



SAT Model for R3

e variables for quadruple-orientations: Xapeq € {+, —}

e chirotope axioms

e auxiliary separation variables

Sabe:de = plane aff{a, b, c} separates d and e
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SAT Model for R3

e variables for quadruple-orientations: Xapeq € {+, —}

e chirotope axioms

e auxiliary separation variables

Sabe:de = plane aff{a, b, c} separates d and e

Sabc;de -— Xabed 7& Xabce

12



e variables for quadruple-orientations: Xapeq € {+, —}

SAT Model for R3

e chirotope axioms

auxiliary separation variables

auxiliary containment variables

Cabcd;e :

"conv{a,b,c,d} contains point e"

12



SAT Model for R3

e variables for quadruple-orientations: Xapeq € {+, —}

chirotope axioms

auxiliary separation variables

auxiliary containment variables
Cabed:e == "conv{a,b, c,d} contains point €"

= "no hyperplane (abc, abd, acd, or bed)
separates e from the remaining point”

Cabcd;e < _'Sabc;de A _'Sabd;ce A _‘Sacd;be A _'Sbcd;ae

12



SAT Model for R3

e variables for quadruple-orientations: Xapeq € {+, —}

e chirotope axioms

e auxiliary separation variables

e auxiliary containment variables

e I C S is k-gon < no 4-tuple contains a point of [

& every b-tuple in convex position

(Carathéodory's theorem)



SAT Model for R3

variables for quadruple-orientations: Xaped € {+, —}

chirotope axioms

auxiliary separation variables

auxiliary containment variables
I C S is k-gon < no 4-tuple contains a point of [

I C S is k-hole < no 4-tuple contains a point of S

12



Performance of SAT Solver

o ¢®)(7) < 13: CaDiCal found chirotope n = 12 without
7-gons, and disproved existence for n = 13 (2 cpu days)

e 39GB unsat-certificate checked via DRAT-trim
(1 additional cpu day)
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Performance of SAT Solver

o ¢®)(7) < 13: CaDiCal found chirotope n = 12 without
7-gons, and disproved existence for n = 13 (2 cpu days)

e 39GB unsat-certificate checked via DRAT-trim
(1 additional cpu day)

o h3(7) < 14 (19412 cpu days, 314GB certificate)

o h*)(8) < 13 (746 cpu days, 297GB certificate)

o h®)(9) <13 (343 cpu days, 117GB certificate)

13



Performance of SAT Solver

e bounds tight for chirotopes

e problem: realizability as point set?

13



Further Results and Projects

e drank 4 chirotope on 18 elements with no 8-gon (100 cpu days)

e drank 4 chirotope on 19 elements with no 8-hole (24 cpu days)
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Further Results and Projects

e drank 4 chirotope on 18 elements with no 8-gon (100 cpu days)

e drank 4 chirotope on 19 elements with no 8-hole (24 cpu days)

o given two intersecting simplices in R?,
3 reassignment of the vertices such that
the two new tetrahedra are linked?

[Fulek, Gartner, Kupavskii, Valtr, Wagner '18,
"The Crossing Tverberg Theorem"]

true in the plane, false for d > 3!

14



Further Results and Projects

e drank 4 chirotope on 18 elements with no 8-gon (100 cpu days)

e drank 4 chirotope on 19 elements with no 8-hole (24 cpu days)

o given two intersecting simplices in R?,
3 reassignment of the vertices such that
the two new tetrahedra are linked?

[Fulek, Gartner, Kupavskii, Valtr, Wagner '18,
"The Crossing Tverberg Theorem”|

e non-crossing triangle-representation of 3-uniform hypergraphs:
vV S(2,3,n) with n > 13 9 non-crossing drawing using triangles?
|[Evans, Rzazewski, Saeedi, Shin, Wolff "19]

— chirotope representation for S(2, 3, 13)

14
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