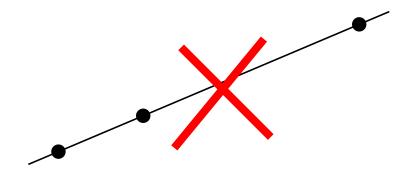


A SAT ATTACK ON HIGHER DIMENSIONAL ERDŐS-SZEKERES NUMBERS

Manfred Scheucher

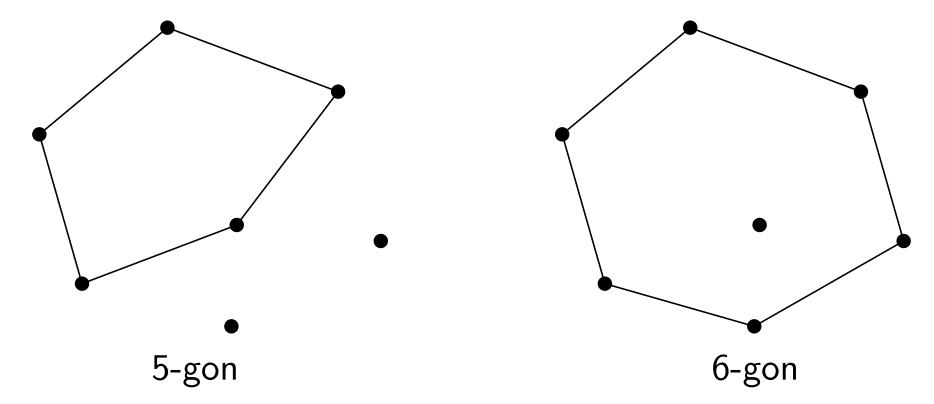
a finite point set P in the plane is in *general position* if \nexists collinear points in P



throughout this presentation, every set is in general position

a finite point set P in the plane is in *general position* if \nexists collinear points in P

a k-gon (in P) is the vertex set of a convex k-gon



a finite point set P in the plane is in *general position* if \nexists collinear points in P

a k-gon (in P) is the vertex set of a convex k-gon

Theorem (Erdős and Szekeres '35).

 $\forall k \geq 3$, \exists a smallest integer g(k) such that every set of g(k) points contains a k-gon.

Theorem.
$$2^{k-2}+1 \leq g(k) \leq {2k-4 \choose k-2}$$
. [Erdős–Szekeres '35]

equality conjectured by Szekeres, Erdős offered 500\$ for a proof

Theorem.
$$2^{k-2} + 1 \le g(k) \le {2k-4 \choose k-2}$$
. [Erdős–Szekeres '35]

several improvements of order $4^{k-o(k)}$

Theorem. $g(k) \le 2^{k+o(k)}$. [Suk '17]

3

Theorem.
$$2^{k-2} + 1 \le g(k) \le {2k-4 \choose k-2}$$
. [Erdős–Szekeres '35]

several improvements of order $4^{k-o(k)}$

Theorem.
$$g(k) \leq 2^{k+o(k)}$$
. [Suk '17]

Known:
$$g(4) = 5$$
, $g(5) = 9$, $g(6) = 17$

computer assisted proof, 1500 CPU hours [Szekeres-Peters '06]

Theorem.
$$2^{k-2} + 1 \le g(k) \le {2k-4 \choose k-2}$$
. [Erdős–Szekeres '35]

 \vdots several improvements of order $4^{k-o(k)}$

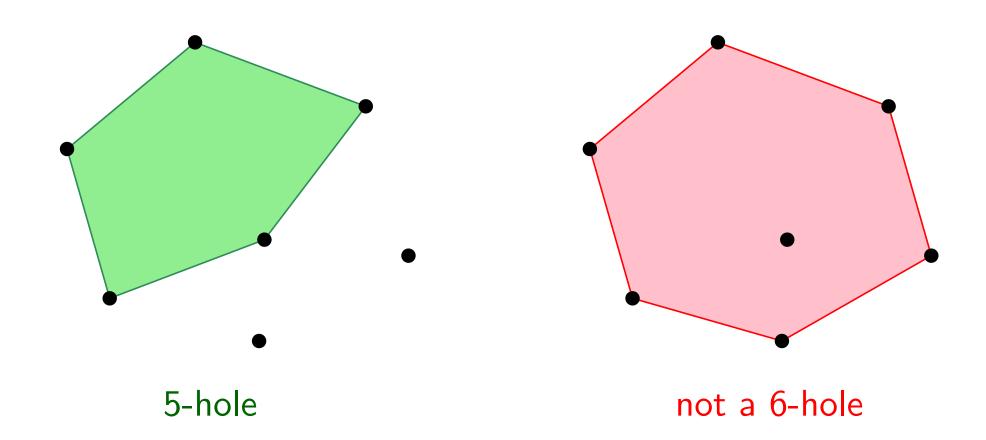
Theorem.
$$g(k) \leq 2^{k+o(k)}$$
. [Suk '17]

< 1 hour using SAT solvers [S.'18, Marić '19]

Known:
$$g(4) = 5$$
, $g(5) = 9$, $g(6) = 17$

computer assisted proof, 1500 CPU hours [Szekeres-Peters '06]

a k-hole (in P) is the vertex set of a convex k-gon containing no other points of P



a k-hole (in P) is the vertex set of a convex k-gon containing no other points of P

a k-hole (in P) is the vertex set of a convex k-gon containing no other points of P

- 3 points $\Rightarrow \exists$ 3-hole
- 5 points $\Rightarrow \exists$ 4-hole

a k-hole (in P) is the vertex set of a convex k-gon containing no other points of P

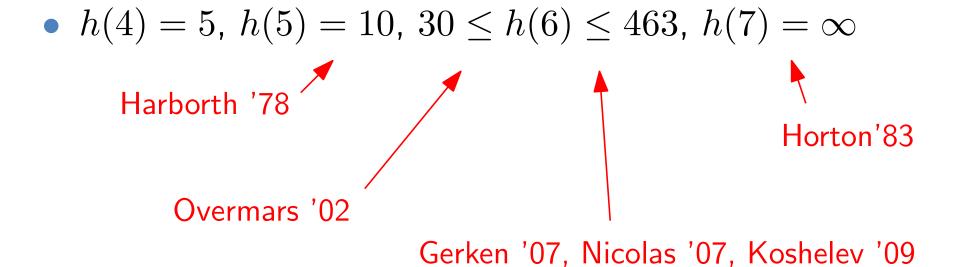
- 3 points $\Rightarrow \exists$ 3-hole
- 5 points $\Rightarrow \exists$ 4-hole
- 10 points $\Rightarrow \exists$ 5-hole [Harborth '78]

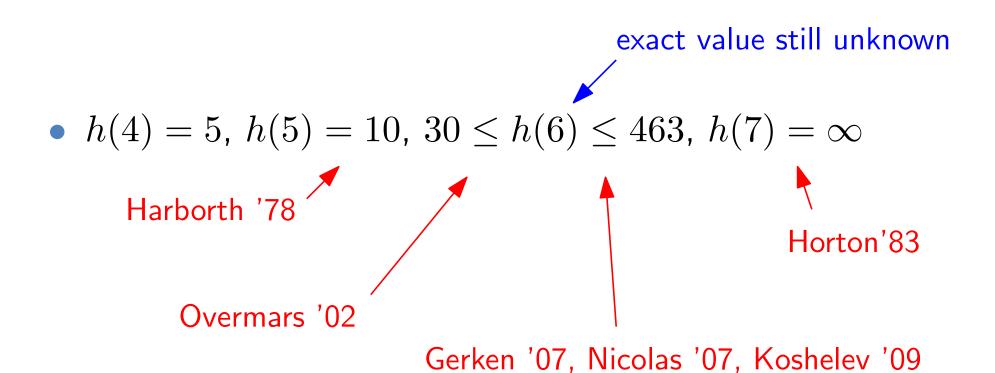
a k-hole (in P) is the vertex set of a convex k-gon containing no other points of P

- 3 points $\Rightarrow \exists$ 3-hole
- 5 points $\Rightarrow \exists$ 4-hole
- 10 points $\Rightarrow \exists$ 5-hole [Harborth '78]
- ∃ arbitrarily large point sets with no 7-hole [Horton '83]

a k-hole (in P) is the vertex set of a convex k-gon containing no other points of P

- 3 points $\Rightarrow \exists$ 3-hole
- 5 points $\Rightarrow \exists$ 4-hole
- 10 points $\Rightarrow \exists$ 5-hole [Harborth '78]
- ∃ arbitrarily large point sets with no 7-hole [Horton '83]
- Sufficiently large point sets ⇒ ∃ 6-hole
 [Gerken '08 and Nicolás '07, independently]





Higher Dimensions

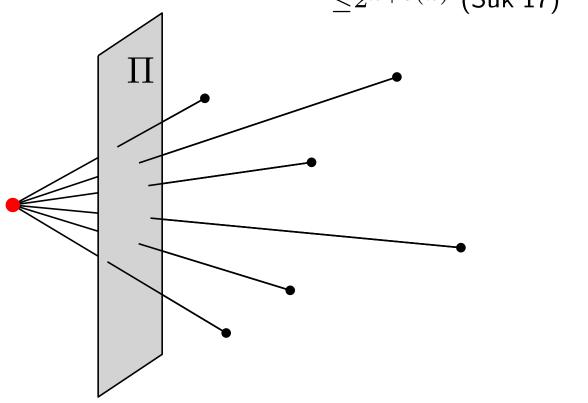
a finite point set P in \mathbb{R}^d is in *general position* if no d points lie in a common hyperplane

k-gon = k points in convex position

k-hole = k-gon with no other points of P in its convex hull

dimension reduction (Károlyi '01):

$$g^{(d)}(k) \le g^{(d-1)}(k-1) + 1 \le \dots \le \underbrace{g^{(2)}(k-d+1) + d - 2}_{\le 2^{k+o(k)} \text{ (Suk'17)}}$$



dimension reduction (Károlyi '01):

$$g^{(d)}(k) \le g^{(d-1)}(k-1) + 1 \le \dots \le \underbrace{g^{(2)}(k-d+1) + d - 2}_{\le 2^{k+o(k)} \text{ (Suk'17)}}$$

Károlyi and Valtr '03: $g^{(d)}(k) = \Omega(c^{d-\sqrt[4]{k}})$

dimension reduction (Károlyi '01):

$$g^{(d)}(k) \le g^{(d-1)}(k-1) + 1 \le \dots \le \underbrace{g^{(2)}(k-d+1) + d - 2}_{\le 2^{k+o(k)} \text{ (Suk'17)}}$$

Károlyi and Valtr '03: $g^{(d)}(k) = \Omega(c^{d-\sqrt[4]{k}})$

asymptotic behavior remains unknown for $d \geq 3$

central problem: determine the largest value k=H(d) such that every sufficiently large set in d-space contains a k-hole

central problem: determine the largest value k=H(d) such that every sufficiently large set in d-space contains a k-hole

• H(2)=6 because $h^{(2)}(6)<\infty$ and $h^{(2)}(7)=\infty$ [Horton '87]

central problem: determine the largest value k=H(d) such that every sufficiently large set in d-space contains a k-hole

- H(2)=6 because $h^{(2)}(6)<\infty$ and $h^{(2)}(7)=\infty$ [Horton '87]
- Valtr '92 (generalizing Horton's construction): $H(d) < d^{d+o(d)}$
- in particular, $7 \leq H(3) \leq 22$

central problem: determine the largest value k=H(d) such that every sufficiently large set in d-space contains a k-hole

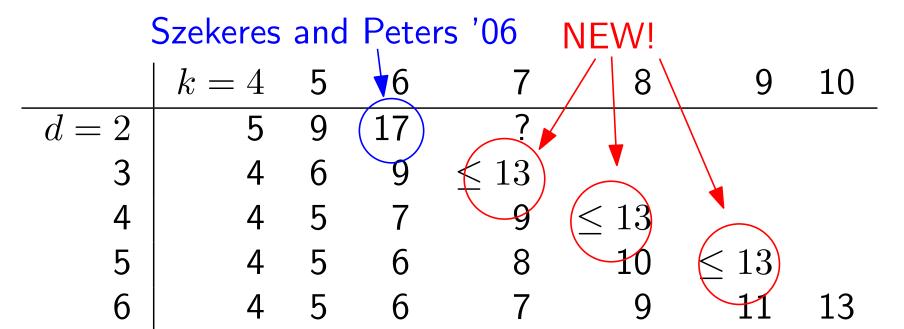
- H(2)=6 because $h^{(2)}(6)<\infty$ and $h^{(2)}(7)=\infty$ [Horton '87]
- Valtr '92 (generalizing Horton's construction): $H(d) < d^{d+o(d)}$
- in particular, $7 \leq H(3) \leq 22$
- Bukh, Chao, and Holzman '20: $H(d) < 2^{7d}$

Precise Values for Small Gons and Holes

Bisztriczky, Harborth, Soltan, Morris '90s:

• $g^{(d)}(k) = h^{(d)}(k) = 2k - d - 1$ for $d + 2 \le k \le \frac{3d}{2} + 1$ in particular values for (k,d) = (3,5), (4,6), (4,7), (5,7), (5,8)

• and $g^{(3)}(6) = h^{(3)}(6) = 9$



Known values and bounds for $g^{(d)}(k)$.

		NEW!					
	k=4	5	6	7	/ 8	9	10
d=2	5	10	30463	∞	∞	∞	∞
3	4	6	9	≤ 14	?	?	?
4	4	5	7	9	≤ 13	?	?
5	4	5	6	8	10	≤ 13	?
6	4	5	6	7	9	11	13

Known values and bounds for $h^{(d)}(k)$.

Our Results

Theorem: $g^{(3)}(7) \le 13$, that is, every set of 13 points from \mathbb{R}^3 contains a 7-gon.

Theorem: $h^{(3)}(7) \leq 14$, that is, every set of 14 points from \mathbb{R}^3 contains a 7-hole.

Our Results

Theorem: $g^{(3)}(7) \le 13$, that is, every set of 13 points from \mathbb{R}^3 contains a 7-gon.

Theorem: $h^{(3)}(7) \leq 14$, that is, every set of 14 points from \mathbb{R}^3 contains a 7-hole.

Theorem: $g^{(4)}(8) \le h^{(4)}(8) \le 13$, that is, every set of 13 points from \mathbb{R}^4 contains a 8-gon/hole.

Theorem: $g^{(5)}(9) \le h^{(5)}(9) \le 13$, that is, every set of 13 points from \mathbb{R}^5 contains a 9-gon/hole.

Our Results

Theorem: $g^{(3)}(7) \le 13$, that is, every set of 13 points from \mathbb{R}^3 contains a 7-gon.

Theorem: $h^{(3)}(7) \leq 14$, that is, every set of 14 points from \mathbb{R}^3 contains a 7-hole.

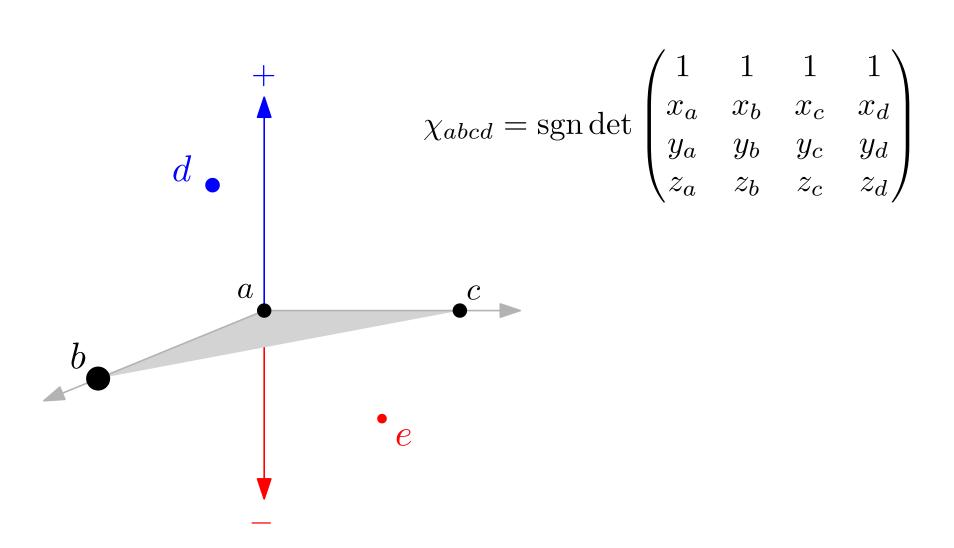
Theorem: $g^{(4)}(8) \le h^{(4)}(8) \le 13$, that is, every set of 13 points from \mathbb{R}^4 contains a 8-gon/hole.

Theorem: $g^{(5)}(9) \le h^{(5)}(9) \le 13$, that is, every set of 13 points from \mathbb{R}^5 contains a 9-gon/hole.

All statements hold for *chirotopes* of rank 4, 5, and 6, respectively, and the bounds are *tight for chirotopes*.

• use SAT solver to test $g^{(3)}(k) \stackrel{?}{>} n$: does there exist $\{p_1,\ldots,p_n\}$ from \mathbb{R}^3 without k-gon?

• variables for *quadruple-orientations*: $\chi_{abcd} \in \{+, -\}$



- variables for *quadruple-orientations*: $\chi_{abcd} \in \{+, -\}$
- chirotope axioms

Grassmann-Plücker relations for r-dim. vectors (we have rank r=4):

$$\det(a_1, \dots, a_r) \cdot \det(b_1, \dots, b_r) = \sum_{i=1}^r \det(b_i, a_2, \dots, a_r) \cdot \det(b_1, \dots, b_{i-1}, a_1, b_{i+1}, \dots, b_r)$$

- variables for *quadruple-orientations*: $\chi_{abcd} \in \{+, -\}$
- chirotope axioms

Grassmann-Plücker relations for r-dim. vectors (we have rank r=4):

$$\det(a_1, \dots, a_r) \cdot \det(b_1, \dots, b_r) = \sum_{i=1}^r \det(b_i, a_2, \dots, a_r) \cdot \det(b_1, \dots, b_{i-1}, a_1, b_{i+1}, \dots, b_r)$$

If
$$\chi_{b_i, a_2, ..., a_r} \cdot \chi_{b_1, ..., b_{i-1}, a_1, b_{i+1}, ..., b_r} \ge 0$$
 for every i , then $\chi_{a_1, ..., a_r} \cdot \chi_{b_1, ..., b_r} \ge 0$

- variables for *quadruple-orientations*: $\chi_{abcd} \in \{+, -\}$
- chirotope axioms

Grassmann-Plücker relations for r-dim. vectors (we have rank r=4):

$$\det(a_1, \dots, a_r) \cdot \det(b_1, \dots, b_r) =$$

$$\sum_{i=1}^r \det(b_i, a_2, \dots, a_r) \cdot \det(b_1, \dots, b_{i-1}, a_1, b_{i+1}, \dots, b_r)$$

necessary conditions but not sufficient (realizability!)

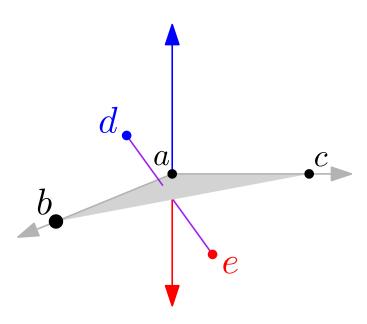
If
$$\chi_{b_i,a_2,...,a_r} \cdot \chi_{b_1,...,b_{i-1},a_1,b_{i+1},...,b_r} \ge 0$$
 for every i , then $\chi_{a_1,...,a_r} \cdot \chi_{b_1,...,b_r} \ge 0$

- variables for *quadruple-orientations*: $\chi_{abcd} \in \{+, -\}$
- chirotope axioms
 - Alternating axioms: $\Theta(n^r) \text{ constraints}$ $\chi_{i_{\pi(1)},i_{\pi(2)},i_{\pi(3)},i_{\pi(4)}} = \operatorname{sgn}(\pi) \cdot \chi_{i_1,i_2,i_3,i_4}$
 - Exchange axioms: For any $a_1,\ldots,a_r,b_1,\ldots,b_r$: $\begin{aligned} &\Theta(n^{2r}) \text{ constraints} \\ &\text{If } \chi_{b_i,a_2,\ldots,a_r} \cdot \chi_{b_1,\ldots,b_{i-1},a_1,b_{i+1},\ldots,b_r} \geq 0 \text{ for every } i, \\ &\text{then } \chi_{a_1,\ldots,a_r} \cdot \chi_{b_1,\ldots,b_r} \geq 0 \end{aligned}$

- variables for *quadruple-orientations*: $\chi_{abcd} \in \{+, -\}$
- chirotope axioms
 - Alternating axioms: $\Theta(n^r) \text{ constraints}$ $\chi_{i_{\pi(1)},i_{\pi(2)},i_{\pi(3)},i_{\pi(4)}} = \operatorname{sgn}(\pi) \cdot \chi_{i_1,i_2,i_3,i_4}$
 - Exchange axioms: For any $a_1,\ldots,a_r,b_1,\ldots,b_r$: If $\chi_{b_i,a_2,\ldots,a_r}\cdot\chi_{b_1,\ldots,b_{i-1},a_1,b_{i+1},\ldots,b_r}\geq 0$ for every i, then $\chi_{a_1,\ldots,a_r}\cdot\chi_{b_1,\ldots,b_r}\geq 0$
 - 3-term Grassmann Plücker relations $\rightarrow \Theta(n^{r+2})$ $(a_3 = b_3, \dots, a_r = b_r)$

- variables for *quadruple-orientations*: $\chi_{abcd} \in \{+, -\}$
- chirotope axioms
- auxiliary separation variables

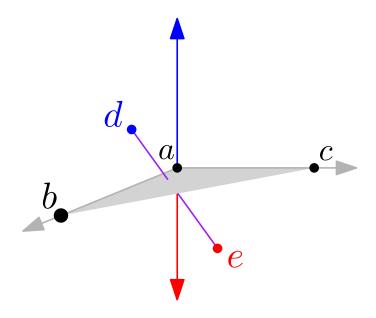
 $S_{abc;de} = \mathsf{plane} \ \mathrm{aff}\{a,b,c\} \ \mathsf{separates} \ d \ \mathsf{and} \ e$



- variables for *quadruple-orientations*: $\chi_{abcd} \in \{+, -\}$
- chirotope axioms
- auxiliary separation variables

 $S_{abc;de} = \mathsf{plane} \ \mathrm{aff}\{a,b,c\} \ \mathsf{separates} \ d \ \mathsf{and} \ e$

$$S_{abc;de} := \chi_{abcd} \neq \chi_{abce}$$



- variables for *quadruple-orientations*: $\chi_{abcd} \in \{+, -\}$
- chirotope axioms
- auxiliary separation variables
- auxiliary containment variables

$$C_{abcd;e} := "\operatorname{conv}\{a,b,c,d\} \text{ contains point } e"$$

- variables for *quadruple-orientations*: $\chi_{abcd} \in \{+, -\}$
- chirotope axioms
- auxiliary separation variables
- auxiliary containment variables

$$C_{abcd;e} := "\operatorname{conv}\{a,b,c,d\} \text{ contains point } e"$$

= "no hyperplane (abc, abd, acd, or bcd) separates e from the remaining point"

$$C_{abcd;e} \Leftrightarrow \neg S_{abc;de} \wedge \neg S_{abd;ce} \wedge \neg S_{acd;be} \wedge \neg S_{bcd;ae}$$

- variables for *quadruple-orientations*: $\chi_{abcd} \in \{+, -\}$
- chirotope axioms
- auxiliary separation variables
- auxiliary containment variables
- $I \subset S$ is $k\text{-gon} \Leftrightarrow \text{no 4-tuple contains a point of } I$ \Leftrightarrow every 5-tuple in convex position

(Carathéodory's theorem)

- variables for *quadruple-orientations*: $\chi_{abcd} \in \{+, -\}$
- chirotope axioms
- auxiliary separation variables
- auxiliary containment variables
- $I \subset S$ is k-gon \Leftrightarrow no 4-tuple contains a point of I
- $I \subset S$ is k-hole \Leftrightarrow no 4-tuple contains a point of S

- $g^{(3)}(7) \le 13$: CaDiCaL found chirotope n=12 without 7-gons, and disproved existence for n=13 (2 cpu days)
- 39GB unsat-certificate checked via DRAT-trim (1 additional cpu day)

- $g^{(3)}(7) \le 13$: CaDiCaL found chirotope n=12 without 7-gons, and disproved existence for n=13 (2 cpu days)
- 39GB unsat-certificate checked via DRAT-trim (1 additional cpu day)
- $h^{(3)}(7) \le 14$ (19+12 cpu days, 314GB certificate)

- $g^{(3)}(7) \le 13$: CaDiCaL found chirotope n=12 without 7-gons, and disproved existence for n=13 (2 cpu days)
- 39GB unsat-certificate checked via DRAT-trim (1 additional cpu day)
- $h^{(3)}(7) \le 14$ (19+12 cpu days, 314GB certificate)
- $h^{(4)}(8) \le 13$ (7+6 cpu days, 297GB certificate)
- $h^{(5)}(9) \le 13$ (3+3 cpu days, 117GB certificate)

- bounds tight for chirotopes
- problem: realizability as point set?

Further Results and Projects

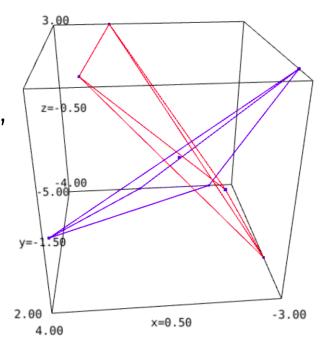
- \exists rank 4 chirotope on 18 elements with no 8-gon (100 cpu days)
- \exists rank 4 chirotope on 19 elements with no 8-hole (24 cpu days)

Further Results and Projects

- \exists rank 4 chirotope on 18 elements with no 8-gon (100 cpu days)
- \exists rank 4 chirotope on 19 elements with no 8-hole (24 cpu days)
- given two intersecting simplices in \mathbb{R}^d , \exists reassignment of the vertices such that the two new tetrahedra are linked?

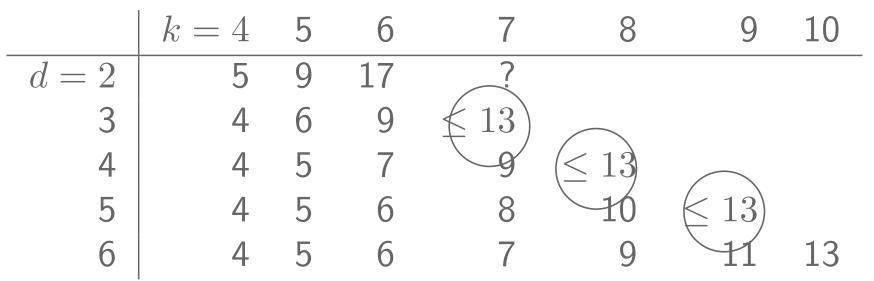
[Fulek, Gärtner, Kupavskii, Valtr, Wagner '18, "The Crossing Tverberg Theorem"]

true in the plane, false for $d \geq 3!$



Further Results and Projects

- \exists rank 4 chirotope on 18 elements with no 8-gon (100 cpu days)
- \exists rank 4 chirotope on 19 elements with no 8-hole (24 cpu days)
- given two intersecting simplices in ℝ^d,
 ∃ reassignment of the vertices such that the two new tetrahedra are linked?
 [Fulek, Gärtner, Kupavskii, Valtr, Wagner '18, "The Crossing Tverberg Theorem"]
- non-crossing triangle-representation of 3-uniform hypergraphs: $\forall \ S(2,3,n)$ with $n\geq 13\ \exists$ non-crossing drawing using triangles? [Evans, Rzazewski, Saeedi, Shin, Wolff '19]
 - \rightarrow chirotope representation for S(2,3,13)



Known values and bounds for $g^{(d)}(k)$.

THANK YOU!

	k=4	5	6	7	8	9	10
d=2	5	10	30463	\sim	∞	∞	∞
3	4	6	9	≤ 14	?	?	?
4	4	5	7	g	€ 13)	?	?
5	4	5	6	8	10	≤ 13	?
6	4	5	6	7	9	11	13

Known values and bounds for $h^{(d)}(k)$.