
Erdős–Szekeres-type problems

in the real projective plane

Martin Balko, Manfred Scheucher, Pavel Valtr

1



General Position

a finite point set P in the plane is

in general position if @ collinear points in P
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General Position

a finite point set P in the plane is

in general position if @ collinear points in P

throughout this presentation, every set is in general position
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The Affine World
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k-Gons

a k-gon (in S) is a convex polygon spanned by k points

of S

5-gon 6-gon
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k-Gons

a k-gon (in S) is a convex polygon spanned by k points

of S

Theorem (Erdős & Szekeres 1935).

∀ k ∈ N, ∃ a smallest integer g(k) such that

every set of g(k) points determines a k-gon.

5-gon 6-gon
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k-Gons

Theorem (Erdős & Szekeres ’35)

2k−2 + 1 ≤ g(k) ≤
(
2k−4
k−2

)
+ 1

equality conjectured by Szekeres, Erdős offered 500$ for a proof

5



k-Gons

Theorem (Erdős & Szekeres ’35)

2k−2 + 1 ≤ g(k) ≤
(
2k−4
k−2

)
+ 1

Theorem. g(k) ≤ 2k+o(k). [Suk ’16]

... several improvements of order 4k−o(k)
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k-Gons

Theorem (Erdős & Szekeres ’35)

2k−2 + 1 ≤ g(k) ≤
(
2k−4
k−2

)
+ 1

Theorem. g(k) ≤ 2k+o(k). [Suk ’16]

... several improvements of order 4k−o(k)

• g(k) ≤ 2k+O(k2/3 log k) [Suk ’16]

• g(k) ≤ 2k+O(
√
k log k),

also for pseudo-configurations of points

[Holmsen, Mojarrad, Pach and Tardos ’17]
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k-Gons

Theorem (Erdős & Szekeres ’35)

2k−2 + 1 ≤ g(k) ≤
(
2k−4
k−2

)
+ 1

Theorem. g(k) ≤ 2k+o(k). [Suk ’16]

Known: g(4) = 5, g(5) = 9, g(6) = 17

computer assisted proof, 1500 CPU hours [Szekeres–Peters ’06]

... several improvements of order 4k−o(k)
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k-Gons

Theorem (Erdős & Szekeres ’35)

2k−2 + 1 ≤ g(k) ≤
(
2k−4
k−2

)
+ 1

Theorem. g(k) ≤ 2k+o(k). [Suk ’16]

Known: g(4) = 5, g(5) = 9, g(6) = 17

computer assisted proof, 1500 CPU hours [Szekeres–Peters ’06]

< 1 hour using SAT solvers [S.’18, Marić ’19]

... several improvements of order 4k−o(k)
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k-Holes

a k-hole (in S) is a k-gon which contains no other points

of S

5-hole
not a 6-hole
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k-Holes

Erdős, 1970’s: For k fixed, does every sufficiently large

point set determine a k-hole?

a k-hole (in S) is a k-gon which contains no other points

of S

5-hole
not a 6-hole
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k-Holes

Erdős, 1970’s: For k fixed, does every sufficiently large

point set determine a k-hole?

• 10 points ⇒ ∃ 5-hole [Harborth ’78]

a k-hole (in S) is a k-gon which contains no other points

of S

• 3 points ⇒ ∃ 3-hole

• 5 points ⇒ ∃ 4-hole
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k-Holes

Erdős, 1970’s: For k fixed, does every sufficiently large

point set determine a k-hole?

• 10 points ⇒ ∃ 5-hole [Harborth ’78]

• ∃ arbitrarily large point sets with no 7-hole [Horton ’83]

a k-hole (in S) is a k-gon which contains no other points

of S

• 3 points ⇒ ∃ 3-hole

• 5 points ⇒ ∃ 4-hole
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k-Holes

Erdős, 1970’s: For k fixed, does every sufficiently large

point set determine a k-hole?

• 10 points ⇒ ∃ 5-hole [Harborth ’78]

• ∃ arbitrarily large point sets with no 7-hole [Horton ’83]

• Sufficiently large point sets ⇒ ∃ 6-hole

[Gerken ’08 and Nicolás ’07, independently]

a k-hole (in S) is a k-gon which contains no other points

of S

• 3 points ⇒ ∃ 3-hole

• 5 points ⇒ ∃ 4-hole

about 30 pages
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k-Holes

Erdős, 1970’s: For k fixed, does every sufficiently large

point set determine a k-hole?

• 10 points ⇒ ∃ 5-hole [Harborth ’78]

• ∃ arbitrarily large point sets with no 7-hole [Horton ’83]

• Sufficiently large point sets ⇒ ∃ 6-hole

[Gerken ’08 and Nicolás ’07, independently]

a k-hole (in S) is a k-gon which contains no other points

of S

• 3 points ⇒ ∃ 3-hole

• 5 points ⇒ ∃ 4-hole

about 30 pages < 1 cpu hour using SAT (S. ’22+)
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k-Holes

• h(4) = 5, h(5) = 10, 30 ≤ h(6) ≤ g(9), h(7) =∞

Harborth ’78

Overmars ’02
Gerken ’08

Horton’83
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k-Holes

• h(4) = 5, h(5) = 10, 30 ≤ h(6) ≤ g(9), h(7) =∞

Harborth ’78

Overmars ’02
Gerken ’08

Horton’83

exact value remains unknown
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Quantity of k-Gons

maximum # of k-gons among all sets of n points?
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Quantity of k-Gons

maximum # of k-gons among all sets of n points?

n points in convex position

any k-subset is k-gon

⇒ max =
(
n
k

)
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Quantity of k-Gons

gk(n) := minimum # of k-gons among all sets of n points
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Quantity of k-Gons

gk(n) := minimum # of k-gons among all sets of n points

• gk(n) = Θ(nk)

• k = 4 : rectilinear crossing number of Kn:

g4(n) = cr(Kn) ∼ c4 ·
(
n
4

)
with 0.3799 < c4 < 0.3805

[Ábrego et al. ’08, Aichholzer et al. ’20]
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Quantity of k-Gons

gk(n) := minimum # of k-gons among all sets of n points

• gk(n) = Θ(nk)

• k = 4 : rectilinear crossing number of Kn:

g4(n) = cr(Kn) ∼ c4 ·
(
n
4

)
with 0.3799 < c4 < 0.3805

[Ábrego et al. ’08, Aichholzer et al. ’20]

• various notions of crossing numbers have been studied

intensively (not necessarily straight-line drawings, not

necessarily complete graphs)
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Quantity of k-Holes

hk(n) := minimum # of k-holes among all sets of n points

9



Quantity of k-Holes

• h3, h4 both in Θ(n2)

[Bárány and Füredi ’87]

hk(n) := minimum # of k-holes among all sets of n points
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Quantity of k-Holes

• h3, h4 both in Θ(n2)

[Bárány and Füredi ’87]

hk(n) := minimum # of k-holes among all sets of n points

• h5 in Ω(n log4/5 n) and O(n2)

[Aichholzer, Balko, Hackl, Kynčl,

Parada, S., Valtr, and Vogtenhuber ’17]
(computer assisted proof, 20 pages)
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Quantity of k-Holes

• h3, h4 both in Θ(n2)

• h6 in Ω(n) and O(n2)
[Gerken ’08, Nicolás ’07]

[Bárány and Füredi ’87]

hk(n) := minimum # of k-holes among all sets of n points

• h5 in Ω(n log4/5 n) and O(n2)

[Aichholzer, Balko, Hackl, Kynčl,

Parada, S., Valtr, and Vogtenhuber ’17]
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Quantity of k-Holes

• h3, h4 both in Θ(n2)

• h6 in Ω(n) and O(n2)

• hk(n) = 0 for k ≥ 7

[Gerken ’08, Nicolás ’07]

[Bárány and Füredi ’87]

hk(n) := minimum # of k-holes among all sets of n points

[Horton ’83]

• h5 in Ω(n log4/5 n) and O(n2)

[Aichholzer, Balko, Hackl, Kynčl,

Parada, S., Valtr, and Vogtenhuber ’17]
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Quantity of k-Holes

• h3, h4 both in Θ(n2)

• h6 in Ω(n) and O(n2)

• hk(n) = 0 for k ≥ 7

[Gerken ’08, Nicolás ’07]

[Bárány and Füredi ’87]

hk(n) := minimum # of k-holes among all sets of n points

[Horton ’83]

• h5 in Ω(n log4/5 n) and O(n2)

[Aichholzer, Balko, Hackl, Kynčl,

Parada, S., Valtr, and Vogtenhuber ’17]

Conjecture:

h5, h6 are both in Θ(n2)
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The Projective World
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Convex Sets in Projective Plane (Steinitz 1913)
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Convex Sets in Projective Plane (Steinitz 1913)

every pair of points p, q spans two projective segments:

an affine line segment pq and (its complement) pq \ pq
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Convex Sets in Projective Plane (Steinitz 1913)

every pair of points p, q spans two projective segments:

an affine line segment pq and (its complement) pq \ pq

p q
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Convex Sets in Projective Plane (Steinitz 1913)

every pair of points p, q spans two projective segments:

an affine line segment pq and (its complement) pq \ pq

C ⊆ RP2 is projectively convex if, for every pair p, q ∈ C,

one of its projective segments is fully contained in C

p

q
p

q
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Projective Convex Hull, Gons and Holes

projective convex hull: a inclusion-wise minimal convex

set containing a given set P (not unique)

|P | = 2 ⇒ 2 p.c.h.s
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Projective Convex Hull, Gons and Holes

projective convex hull: a inclusion-wise minimal convex

set containing a given set P (not unique)

|P | = 2 ⇒ 2 p.c.h.s

|P | = 3 ⇒ 4 p.c.h.s
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Projective Convex Hull, Gons and Holes

projective convex hull: a inclusion-wise minimal convex

set containing a given set P (not unique)

|P | = 2 ⇒ 2 p.c.h.s

|P | = 3 ⇒ 4 p.c.h.s

|P | = 4 ⇒ 3 p.c.h.s (with all points on boundary) 12



Projective Convex Hull, Gons and Holes

projective convex hull: a inclusion-wise minimal convex

set containing a given set P (not unique)
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Projective Convex Hull, Gons and Holes

projective k-gon: projective convex set spanned by k pnts

projective convex hull: a inclusion-wise minimal convex

set containing a given set P (not unique)

(first introduced by Harborth & Möller ’93)
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Projective Convex Hull, Gons and Holes

projective k-gon: projective convex set spanned by k pnts

projective k-hole: k-gon containing no other point of P

projective convex hull: a inclusion-wise minimal convex

set containing a given set P (not unique)
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Projective Gons and Holes

affine 6-gon (non-empty)

a projective k-gon is either an affine k-gon
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Projective Gons and Holes

projective 9-hole

a projective k-gon is either an affine k-gon

or a double chain k-wedge
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Erdős–Szekeres Numbers

Thm (affine k-gons; Erdős & Szekeres ’35; Suk ’16;

Holmsen, Mojarrad, Pach & Tardos ’17):

2k−2 + 1 ≤ g(k) ≤ 2k+O(
√
k log k)

Thm (projective k-gons, BSV ’22):

2k−O(log k) ≤ gp(k) ≤ 2k+O(
√
k log k)
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Erdős–Szekeres Numbers

Thm (affine k-gons; Erdős & Szekeres ’35; Suk ’16;

Holmsen, Mojarrad, Pach & Tardos ’17):

2k−2 + 1 ≤ g(k) ≤ 2k+O(
√
k log k)

Thm (projective k-gons, BSV ’22):

2k−O(log k) ≤ gp(k) ≤ 2k+O(
√
k log k)

15



16



k-Holes in Horton Sets

Thm (affine holes, Horton ’83, Bárány & Füredi ’87):

Let S be a Horton set of size n = 2t. Then

hk(S) ≤ O(n2) for k ≤ 6 and h7(S) = 0.

Thm (projective holes, BSV ’22):

Let S be a Horton set of size n = 2t. Then

hp
k(S) ≤ O(n2) for k ≤ 7 and hp

8(S) = 0.

(hk . . . # of affine k-holes)

(hp
k . . . # of projective k-holes)
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k-Holes Summarized

k = 3: always exist

k = 4: h4(≥ 5) ≥ 1 −→ hp
4(≥ 4) ≥ 1
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k-Holes Summarized

h5(≥ 10) ≥ 1 −→ hp
5(5) = 1, hp

5(6) = 0, hp
5(≥ 7) ≥ 1

k = 3: always exist

k = 5:

k = 4: h4(≥ 5) ≥ 1 −→ hp
4(≥ 4) ≥ 1

Harborth ’78
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k-Holes Summarized

h5(≥ 10) ≥ 1 −→ hp
5(5) = 1, hp

5(6) = 0, hp
5(≥ 7) ≥ 1

k = 3: always exist

k = 5:

k = 4: h4(≥ 5) ≥ 1 −→ hp
4(≥ 4) ≥ 1

weird behavior
Harborth ’78
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k-Holes Summarized

h5(≥ 10) ≥ 1 −→ hp
5(5) = 1, hp

5(6) = 0, hp
5(≥ 7) ≥ 1

k = 3: always exist

k = 5:

k = 4: h4(≥ 5) ≥ 1 −→ hp
4(≥ 4) ≥ 1

k = 6:
h6(≥ g(9)) ≥ 1

−→ hp
6(≥ gp(9)) ≥ 1

Gerken ’08
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k-Holes Summarized

h5(≥ 10) ≥ 1 −→ hp
5(5) = 1, hp

5(6) = 0, hp
5(≥ 7) ≥ 1

k = 3: always exist

k = 5:

k = 4: h4(≥ 5) ≥ 1 −→ hp
4(≥ 4) ≥ 1

k = 6:

k ≥ 8: not exist (Horton sets)

h6(≥ g(9)) ≥ 1

−→ hp
6(≥ gp(9)) ≥ 1

k = 7: no affine, but projective 7-holes in Horton sets.

existence of projective 7-holes remains open!
18



Any significant difference?
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Substantially more Projective Holes

c

Sc

H(
√
n×
√
n) ∩ convCH

3
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Substantially more Projective Holes

c

Sc

H(
√
n×
√
n) ∩ convCH

3

Thm (BSV ’22). ∀ k ∈ {3, . . . , 6} and n, ∃ n-point set

with O(n2) affine k-holes and Ω(n3− 5
3k ) projective k-holes.
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Substantially more Projective Holes

c

Sc

H(
√
n×
√
n) ∩ convCH

3

Thm (BSV ’22) ∀ n and x ≤ 2n/2 ∃ n-point set with

O(x + n2) affine holes and Ω(x2) projective holes.

Thm (BSV ’22). ∀ k ∈ {3, . . . , 6} and n, ∃ n-point set

with O(n2) affine k-holes and Ω(n3− 5
3k ) projective k-holes.
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Further Results
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Holes in Random Point Sets

Affine:

EHk = Θ(n2) [BSV ’19+’21]

EH3 ∼ 2n2 [Valtr ’95, Reitzner & Temesvari ’19]

EHp
3 = Θ(n2) with larger multiplicative constant

Projective [BSV ’22]:
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Holes in Random Point Sets

Affine:

EHk = Θ(n2) [BSV ’19+’21]

EH3 ∼ 2n2 [Valtr ’95, Reitzner & Temesvari ’19]

EHp
3 = Θ(n2) with larger multiplicative constant

Projective [BSV ’22]:

no proof for larger holes, but Θ(n2) conjectured!
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Algorithmic Aspects

Thm (Mitchell, Rote, Sundaram & Woeginger ’95).

The number of affine k-gons and k-holes in an n-point set

can be computed in O(kn3) time and O(kn2) space.

Thm (BSV ’22).

The number of projective k-gons and k-holes in an n-point

set can be computed in O(kn4) time and O(kn2) space.
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