π

Erdős-Szekeres-type problems in the real projective plane

Martin Balko, Manfred Scheucher, Pavel Valtr

General Position

a finite point set P in the plane is in general position if \nexists collinear points in P

General Position

a finite point set P in the plane is in general position if \nexists collinear points in P

throughout this presentation, every set is in general position

The Affine World

k-Gons

k-Gons

Theorem (Erdős \& Szekeres 1935).
$\forall k \in \mathbb{N}, \exists$ a smallest integer $g(k)$ such that every set of $g(k)$ points determines a k-gon.

k-Gons

Theorem (Erdős \& Szekeres '35)
$2^{k-2}+1 \leq g(k) \leq\binom{ 2 k-4}{k-2}+1$
equality conjectured by Szekeres, Erdős offered $500 \$$ for a proof

k-Gons

Theorem (Erdős \& Szekeres '35)
$2^{k-2}+1 \leq g(k) \leq\binom{ 2 k-4}{k-2}+1$
\vdots several improvements of order $4^{k-o(k)}$
Theorem. $g(k) \leq 2^{k+o(k)}$. [Suk '16]

k-Gons

Theorem (Erdős \& Szekeres '35)
$2^{k-2}+1 \leq g(k) \leq\binom{ 2 k-4}{k-2}+1$
\vdots several improvements of order $4^{k-o(k)}$
Theorem. $g(k) \leq 2^{k+o(k)}$. [Suk '16]

- $g(k) \leq 2^{k+O\left(k^{2 / 3} \log k\right)}$ [Suk '16]
- $g(k) \leq 2^{k+O(\sqrt{k \log k})}$, also for pseudo-configurations of points [Holmsen, Mojarrad, Pach and Tardos '17]

k-Gons

Theorem (Erdős \& Szekeres '35)
$2^{k-2}+1 \leq g(k) \leq\binom{ 2 k-4}{k-2}+1$
\vdots several improvements of order $4^{k-o(k)}$
Theorem. $g(k) \leq 2^{k+o(k)}$. [Suk '16]

Known: $g(4)=5, g(5)=9, g(6)=17$ \uparrow computer assisted proof, 1500 CPU hours [Szekeres-Peters '06]

k-Gons

Theorem (Erdős \& Szekeres '35)
$2^{k-2}+1 \leq g(k) \leq\binom{ 2 k-4}{k-2}+1$
\vdots several improvements of order $4^{k-o(k)}$
Theorem. $g(k) \leq 2^{k+o(k)}$. [Suk '16]
<1 hour using SAT solvers [S.' 18 , Marić '19]
Known: $g(4)=5, g(5)=9, g(6) \stackrel{ }{=} 17$ \uparrow computer assisted proof, 1500 CPU hours [Szekeres-Peters '06]

k-Holes

a k-hole (in S) is a k-gon which contains no other points of S

k-Holes

a k-hole (in S) is a k-gon which contains no other points of S

Erdős, 1970's: For k fixed, does every sufficiently large point set determine a k-hole?

k-Holes

a k-hole (in S) is a k-gon which contains no other points of S

Erdős, 1970's: For k fixed, does every sufficiently large point set determine a k-hole?

- 3 points $\Rightarrow \exists$ 3-hole
- 5 points $\Rightarrow \exists$ 4-hole
- 10 points $\Rightarrow \exists$ 5-hole [Harborth '78]

k-Holes

a k-hole (in S) is a k-gon which contains no other points of S
Erdős, 1970's: For k fixed, does every sufficiently large point set determine a k-hole?

- 3 points $\Rightarrow \exists 3$-hole
- 5 points $\Rightarrow \exists$ 4-hole
- 10 points $\Rightarrow \exists$ 5-hole [Harborth '78]
- \exists arbitrarily large point sets with no 7 -hole [Horton '83]

k-Holes

a k-hole (in S) is a k-gon which contains no other points of S
Erdős, 1970's: For k fixed, does every sufficiently large point set determine a k-hole?

- 3 points $\Rightarrow \exists 3$-hole
- 5 points $\Rightarrow \exists$ 4-hole
- 10 points $\Rightarrow \exists$ 5-hole [Harborth '78]
- \exists arbitrarily large point sets with no 7 -hole [Horton '83]
- Sufficiently large point sets $\Rightarrow \exists 6$-hole [Gerken '08 and Nicolás '07, independently] about 30 pages

k-Holes

a k-hole (in S) is a k-gon which contains no other points of S
Erdős, 1970's: For k fixed, does every sufficiently large point set determine a k-hole?

- 3 points $\Rightarrow \exists 3$-hole
- 5 points $\Rightarrow \exists$ 4-hole
- 10 points $\Rightarrow \exists$ 5-hole [Harborth '78]
- \exists arbitrarily large point sets with no 7 -hole [Horton '83]
- Sufficiently large point sets $\Rightarrow \exists 6$-hole [Gerken '08 and Nicolás '07, independently] about 30 pages $<1 \mathrm{cpu}$ hour using SAT (S. '22+)

k-Holes

- $h(4)=5, h(5)=10,30 \leq h(6) \leq g(9), h(7)=\infty$

Overmars '02

\uparrow Horton'83

Gerken '08

k-Holes

exact value remains unknown

- $h(4)=5, h(5)=10,30 \leq h(6) \leq g(9), h(7)=\infty$

Overmars '02

\uparrow
Horton'83

Gerken '08

Quantity of k-Gons

maximum \# of k-gons among all sets of n points?

Quantity of k-Gons

maximum \# of k-gons among all sets of n points?

n points in convex position

$$
\begin{aligned}
& \text { any } k \text {-subset is } k \text {-gon } \\
& \qquad \Rightarrow \max =\binom{n}{k}
\end{aligned}
$$

Quantity of k-Gons

$g_{k}(n):=$ minimum \# of k-gons among all sets of n points

Quantity of k-Gons

$g_{k}(n):=$ minimum \# of k-gons among all sets of n points

- $g_{k}(n)=\Theta\left(n^{k}\right)$
- $k=4$: rectilinear crossing number of K_{n} : $g_{4}(n)=\overline{c r}\left(K_{n}\right) \sim c_{4} \cdot\binom{n}{4}$ with $0.3799<c_{4}<0.3805$
[Ábrego et al. '08, Aichholzer et al. '20]

Quantity of k-Gons

$g_{k}(n):=$ minimum \# of k-gons among all sets of n points

- $g_{k}(n)=\Theta\left(n^{k}\right)$
- $k=4$: rectilinear crossing number of K_{n} : $g_{4}(n)=\overline{c r}\left(K_{n}\right) \sim c_{4} \cdot\binom{n}{4}$ with $0.3799<c_{4}<0.3805$ [Ábrego et al. '08, Aichholzer et al. '20]
- various notions of crossing numbers have been studied intensively (not necessarily straight-line drawings, not necessarily complete graphs)

Quantity of k-Holes

$h_{k}(n):=$ minimum $\#$ of k-holes among all sets of n points

Quantity of k-Holes

$h_{k}(n):=$ minimum \# of k-holes among all sets of n points
[Bárány and Füredi '87]

- h_{3}, h_{4} both in $\Theta\left(n^{2}\right)$

Quantity of k-Holes

$h_{k}(n):=$ minimum \# of k-holes among all sets of n points
[Bárány and Füredi '87]

- h_{3}, h_{4} both in $\Theta\left(n^{2}\right)$
- h_{5} in $\Omega\left(n \log ^{4 / 5} n\right)$ and $O\left(n^{2}\right)$
[Aichholzer, Balko, Hackl, Kynčl,
Parada, S., Valtr, and Vogtenhuber '17] (computer assisted proof, 20 pages)

Quantity of k-Holes

$h_{k}(n):=$ minimum \# of k-holes among all sets of n points
[Bárány and Füredi '87]

- h_{3}, h_{4} both in $\Theta\left(n^{2}\right)$
- h_{5} in $\Omega\left(n \log ^{4 / 5} n\right)$ and $O\left(n^{2}\right)$
[Aichholzer, Balko, Hackl, Kynčl,
Parada, S., Valtr, and Vogtenhuber '17]
- h_{6} in $\Omega(n)$ and $O\left(n^{2}\right)$
[Gerken '08, Nicolás '07]

Quantity of k-Holes

$h_{k}(n):=$ minimum \# of k-holes among all sets of n points [Bárány and Füredi '87]

- h_{3}, h_{4} both in $\Theta\left(n^{2}\right)$
- h_{5} in $\Omega\left(n \log ^{4 / 5} n\right)$ and $O\left(n^{2}\right)$
[Aichholzer, Balko, Hackl, Kynčl,
Parada, S., Valtr, and Vogtenhuber '17]
- h_{6} in $\Omega(n)$ and $O\left(n^{2}\right)$
[Gerken '08, Nicolás '07]
- $h_{k}(n)=0$ for $k \geq 7$ [Horton '83]

Quantity of k-Holes

$h_{k}(n):=$ minimum \# of k-holes among all sets of n points [Bárány and Füredi '87]

- h_{3}, h_{4} both in $\Theta\left(n^{2}\right)$
- h_{5} in $\Omega\left(n \log ^{4 / 5} n\right)$ and $O\left(n^{2}\right)$
[Aichholzer, Balko, Hackl, Kynčl,
Parada, S., Valtr, and Vogtenhuber '17]
- h_{6} in $\Omega(n)$ and $O\left(n^{2}\right)$
[Gerken '08, Nicolás '07]

Conjecture:

h_{5}, h_{6} are both in $\Theta\left(n^{2}\right)$

- $h_{k}(n)=0$ for $k \geq 7$ [Horton '83]

The Projective World

Convex Sets in Projective Plane (Steinitz 1913)

Convex Sets in Projective Plane (Steinitz 1913)

every pair of points p, q spans two projective segments: an affine line segment $p q$ and (its complement) $\overline{p q} \backslash p q$

Convex Sets in Projective Plane (Steinitz 1913)

every pair of points p, q spans two projective segments: an affine line segment $p q$ and (its complement) $\overline{p q} \backslash p q$

Convex Sets in Projective Plane (Steinitz 1913)

every pair of points p, q spans two projective segments: an affine line segment $p q$ and (its complement) $\overline{p q} \backslash p q$
$C \subseteq \mathbb{R} \mathbb{P}^{2}$ is projectively convex if, for every pair $p, q \in C$, one of its projective segments is fully contained in C

Projective Convex Hull, Gons and Holes

projective convex hull: a inclusion-wise minimal convex set containing a given set P (not unique)

$$
|P|=2 \Rightarrow 2 \text { p.c.h.s }
$$

Projective Convex Hull, Gons and Holes

projective convex hull: a inclusion-wise minimal convex set containing a given set P (not unique)

$$
\begin{aligned}
& |P|=2 \Rightarrow 2 \text { p.c.h.s } \\
& |P|=3 \Rightarrow 4 \text { p.c.h.s }
\end{aligned}
$$

Projective Convex Hull, Gons and Holes

projective convex hull: a inclusion-wise minimal convex set containing a given set P (not unique)

Projective Convex Hull, Gons and Holes

projective convex hull: a inclusion-wise minimal convex set containing a given set P (not unique)

Projective Convex Hull, Gons and Holes

projective convex hull: a inclusion-wise minimal convex set containing a given set P (not unique)

projective k-gon: projective convex set spanned by k pnts (first introduced by Harborth \& Möller '93)

Projective Convex Hull, Gons and Holes

projective convex hull: a inclusion-wise minimal convex set containing a given set P (not unique)

projective k-gon: projective convex set spanned by k pnts projective k-hole: k-gon containing no other point of P

Projective Gons and Holes

a projective k-gon is either an affine k-gon

Projective Gons and Holes

a projective k-gon is either an affine k-gon

$$
\text { or a double chain } k \text {-wedge }
$$

Erdős-Szekeres Numbers

Thm (affine k-gons; Erdős \& Szekeres '35; Suk '16; Holmsen, Mojarrad, Pach \& Tardos '17):

$$
2^{k-2}+1 \leq g(k) \leq 2^{k+O(\sqrt{k \log k})}
$$

Thm (projective k-gons, BSV '22):

$$
2^{k-O(\log k)} \leq g^{p}(k) \leq 2^{k+O(\sqrt{k \log k})}
$$

Erdős-Szekeres Numbers

Thm (affine k-gons; Erdős \& Szekeres '35; Suk '16; Holmsen, Mojarrad, Pach \& Tardos '17):

$$
2^{k-2}+1 \leq g(k) \leq 2^{k+O(\sqrt{k \log k})}
$$

Thm (projective k-gons, BSV '22):

$$
2^{k-O(\log k)} \triangleq g^{p}(k) \leq 2^{k+O(\sqrt{k \log k})}
$$

k-Holes in Horton Sets

Thm (affine holes, Horton '83, Bárány \& Füredi '87): Let S be a Horton set of size $n=2^{t}$. Then $h_{k}(S) \leq O\left(n^{2}\right)$ for $k \leq 6$ and $h_{7}(S)=0$.

$$
\left(h_{k} \ldots \# \text { of affine } k\right. \text {-holes) }
$$

Thm (projective holes, BSV '22):
Let S be a Horton set of size $n=2^{t}$. Then $h_{k}^{p}(S) \leq O\left(n^{2}\right)$ for $k \leq 7$ and $h_{8}^{p}(S)=0$.
($h_{k}^{p} \ldots \#$ of projective k-holes)

k-Holes Summarized

$k=3$: always exist
$k=4: h_{4}(\geq 5) \geq 1 \longrightarrow h_{4}^{p}(\geq 4) \geq 1$

k-Holes Summarized

$k=3$: always exist

$$
\begin{aligned}
& k=4: h_{4}(\geq 5) \geq 1 \longrightarrow h_{4}^{p}(\geq 4) \geq 1 \\
& k=5: \\
& h_{5}(\geq 10) \geq 1 \longrightarrow h_{5}^{p}(5)=1, h_{5}^{p}(6)=0, h_{5}^{p}(\geq 7) \geq 1
\end{aligned}
$$

Harborth '78

k-Holes Summarized

$k=3$: always exist

$$
\begin{aligned}
& k=4: h_{4}(\geq 5) \geq 1 \longrightarrow h_{4}^{p}(\geq 4) \geq 1 \\
& k=5: \\
& h_{5}(\geq 10) \geq 1 \longrightarrow h_{5}^{p}(5)=1, h_{5}^{p}(6)=0, h_{5}^{p}(\geq 7) \geq 1 \\
& \quad \text { Harborth '78 }
\end{aligned}
$$

k-Holes Summarized

$k=3$: always exist

$$
\begin{aligned}
& k=4: h_{4}(\geq 5) \geq 1 \longrightarrow h_{4}^{p}(\geq 4) \geq 1 \\
& k=5: \\
& h_{5}(\geq 10) \geq 1 \longrightarrow h_{5}^{p}(5)=1, h_{5}^{p}(6)=0, h_{5}^{p}(\geq 7) \geq 1
\end{aligned}
$$

$k=6:$ Gerken '08
$h_{6}(\geq g(9)) \geq 1$
$\longrightarrow h_{6}^{p}\left(\geq g^{p}(9)\right) \geq 1$

k-Holes Summarized

$k=3$: always exist

$$
\begin{aligned}
& k=4: h_{4}(\geq 5) \geq 1 \longrightarrow h_{4}^{p}(\geq 4) \geq 1 \\
& k=5: \\
& \quad h_{5}(\geq 10) \geq 1 \longrightarrow h_{5}^{p}(5)=1, h_{5}^{p}(6)=0, h_{5}^{p}(\geq 7) \geq 1
\end{aligned}
$$

$k=6:$

$$
\begin{aligned}
& h_{6}(\geq g(9)) \geq 1 \\
& \longrightarrow h_{6}^{p}\left(\geq g^{p}(9)\right) \geq 1
\end{aligned}
$$

$k \geq 8$: not exist (Horton sets)
$k=7$: no affine, but projective 7-holes in Horton sets. existence of projective 7-holes remains open!

Any significant difference?

Substantially more Projective Holes

Substantially more Projective Holes

Thm (BSV '22). $\forall k \in\{3, \ldots, 6\}$ and $n, \exists n$-point set with $O\left(n^{2}\right)$ affine k-holes and $\Omega\left(n^{3-\frac{5}{3 k}}\right)$ projective k-holes.

Substantially more Projective Holes

Thm (BSV '22) $\forall n$ and $x \leq 2^{n / 2} \exists n$-point set with $O\left(x+n^{2}\right)$ affine holes and $\Omega\left(x^{2}\right)$ projective holes.

Thm (BSV '22). $\forall k \in\{3, \ldots, 6\}$ and $n, \exists n$-point set with $O\left(n^{2}\right)$ affine k-holes and $\Omega\left(n^{3-\frac{5}{3 k}}\right)$ projective k-holes.

Further Results

Holes in Random Point Sets

Affine:

$$
\begin{aligned}
& E H_{3} \sim 2 n^{2}[\text { Valtr '95, Reitzner \& Temesvari '19] } \\
& E H_{k}=\Theta\left(n^{2}\right)[\text { BSV '19+'21] }
\end{aligned}
$$

Projective [BSV '22]:

$$
E H_{3}^{p}=\Theta\left(n^{2}\right) \text { with larger multiplicative constant }
$$

Holes in Random Point Sets

Affine:

$$
\begin{aligned}
& E H_{3} \sim 2 n^{2}[\text { Valtr '95, Reitzner \& Temesvari '19] } \\
& E H_{k}=\Theta\left(n^{2}\right)[\text { BSV '19+'21] }
\end{aligned}
$$

Projective [BSV '22]:
$E H_{3}^{p}=\Theta\left(n^{2}\right)$ with larger multiplicative constant no proof for larger holes, but $\Theta\left(n^{2}\right)$ conjectured!

Algorithmic Aspects

Thm (Mitchell, Rote, Sundaram \& Woeginger '95).
The number of affine k-gons and k-holes in an n-point set can be computed in $O\left(k n^{3}\right)$ time and $O\left(k n^{2}\right)$ space.

Thm (BSV '22).
The number of projective k-gons and k-holes in an n-point set can be computed in $O\left(k n^{4}\right)$ time and $O\left(k n^{2}\right)$ space.

