

Erdős–Szekeres-type problems in the real projective plane

Martin Balko, Manfred Scheucher, Pavel Valtr

General Position

a finite point set P in the plane is in general position if \nexists collinear points in P

General Position

a finite point set P in the plane is in general position if \nexists collinear points in P

throughout this presentation, every set is in general position

The Affine World

a *k*-gon (in *S*) is a convex polygon spanned by *k* points of *S* 5-gon 6-gon 6-gon

a k-gon (in S) is a convex polygon spanned by k points of S5-gon 6-gon 6-gon

Theorem (Erdős & Szekeres 1935). $\forall k \in \mathbb{N}, \exists a \text{ smallest integer } g(k) \text{ such that}$ every set of g(k) points determines a k-gon.

Theorem (Erdős & Szekeres '35) $2^{k-2} + 1 \le g(k) \le \binom{2k-4}{k-2} + 1$

equality conjectured by Szekeres, Erdős offered 500\$ for a proof

Theorem (Erdős & Szekeres '35) $2^{k-2} + 1 \le g(k) \le \binom{2k-4}{k-2} + 1$

several improvements of order $4^{k-o(k)}$

Theorem. $g(k) \le 2^{k+o(k)}$. [Suk '16]

Theorem (Erdős & Szekeres '35) $2^{k-2} + 1 \le g(k) \le \binom{2k-4}{k-2} + 1$

several improvements of order $4^{k-o(k)}$

Theorem. $g(k) \le 2^{k+o(k)}$. [Suk '16]

•
$$g(k) \le 2^{k + O(k^{2/3} \log k)}$$
 [Suk '16]

Theorem (Erdős & Szekeres '35) $2^{k-2} + 1 \le g(k) \le \binom{2k-4}{k-2} + 1$

several improvements of order $4^{k-o(k)}$

Theorem. $g(k) \le 2^{k+o(k)}$. [Suk '16]

Known:
$$g(4) = 5$$
, $g(5) = 9$, $g(6) = 17$
computer assisted proof, 1500 CPU hours [Szekeres–Peters '06]

Theorem (Erdős & Szekeres '35) $2^{k-2} + 1 \le g(k) \le \binom{2k-4}{k-2} + 1$

several improvements of order $4^{k-o(k)}$

Theorem. $g(k) \le 2^{k+o(k)}$. [Suk '16] < 1 hour using SAT solvers [S.'18, Marić '19] Known: g(4) = 5, g(5) = 9, $g(6) \stackrel{\checkmark}{=} 17$

computer assisted proof, 1500 CPU hours [Szekeres-Peters '06]

a k-hole (in S) is a k-gon which contains no other points of S

a k-hole (in S) is a k-gon which contains no other points of S

a k-hole (in S) is a k-gon which contains no other points of S

- 3 points $\Rightarrow \exists$ 3-hole
- 5 points $\Rightarrow \exists$ 4-hole
- 10 points $\Rightarrow \exists$ 5-hole [Harborth '78]

a k-hole (in S) is a k-gon which contains no other points of S

- 3 points $\Rightarrow \exists$ 3-hole
- 5 points $\Rightarrow \exists$ 4-hole
- 10 points $\Rightarrow \exists$ 5-hole [Harborth '78]
- ∃ arbitrarily large point sets with no 7-hole [Horton '83]

a k-hole (in S) is a k-gon which contains no other points of S

- 3 points $\Rightarrow \exists$ 3-hole
- 5 points $\Rightarrow \exists$ 4-hole
- 10 points $\Rightarrow \exists$ 5-hole [Harborth '78]
- ∃ arbitrarily large point sets with no 7-hole [Horton '83]
- Sufficiently large point sets ⇒ ∃ 6-hole
 [Gerken '08 and Nicolás '07, independently] about 30 pages

a k-hole (in S) is a k-gon which contains no other points of S

- 3 points $\Rightarrow \exists$ 3-hole
- 5 points $\Rightarrow \exists$ 4-hole
- 10 points $\Rightarrow \exists$ 5-hole [Harborth '78]
- ∃ arbitrarily large point sets with no 7-hole [Horton '83]
- Sufficiently large point sets ⇒ ∃ 6-hole
 [Gerken '08 and Nicolás '07, independently] about 30 pages < 1 cpu hour using SAT (S. '22+)

maximum # of k-gons among all sets of n points?

maximum # of k-gons among all sets of n points?

n points in convex position

any
$$k$$
-subset is k -gon

$$\Rightarrow \max = \binom{n}{k}$$

 $g_k(n) :=$ minimum # of k-gons among all sets of n points

 $g_k(n) :=$ minimum # of k-gons among all sets of n points

•
$$g_k(n) = \Theta(n^k)$$

• k = 4: rectilinear crossing number of K_n : $g_4(n) = \overline{cr}(K_n) \sim c_4 \cdot {n \choose 4}$ with $0.3799 < c_4 < 0.3805$ [Ábrego et al. '08, Aichholzer et al. '20]

 $g_k(n) :=$ minimum # of k-gons among all sets of n points

•
$$g_k(n) = \Theta(n^k)$$

- k = 4: rectilinear crossing number of K_n : $g_4(n) = \overline{cr}(K_n) \sim c_4 \cdot {n \choose 4}$ with $0.3799 < c_4 < 0.3805$ [Ábrego et al. '08, Aichholzer et al. '20]
- various notions of crossing numbers have been studied intensively (not necessarily straight-line drawings, not necessarily complete graphs)

 $h_k(n) :=$ minimum # of k-holes among all sets of n points

 $h_k(n) :=$ minimum # of k-holes among all sets of n points

[Bárány and Füredi '87]

• h_3, h_4 both in $\Theta(n^2)$

 $h_k(n) :=$ minimum # of k-holes among all sets of n points

[Bárány and Füredi '87]

• h_3, h_4 both in $\Theta(n^2)$

•
$$h_5$$
 in $\Omega(n \log^{4/5} n)$ and $O(n^2)$

[Aichholzer, Balko, Hackl, Kynčl, Parada, S., Valtr, and Vogtenhuber '17] (computer assisted proof, 20 pages)

 $h_k(n) :=$ minimum # of k-holes among all sets of n points

Bárány and Füredi '87]
h₃, h₄ both in Θ(n²)
h₅ in Ω(n log^{4/5} n) and O(n²)
[Aichholzer, Balko, Hackl, Kynčl, Parada, S., Valtr, and Vogtenhuber '17]
h₆ in Ω(n) and O(n²)
[Gerken '08, Nicolás '07]

 $h_k(n) :=$ minimum # of k-holes among all sets of n points

[Bárány and Füredi '87] • h_3, h_4 both in $\Theta(n^2)$ • h_5 in $\Omega(n \log^{4/5} n)$ and $O(n^2)$ [Aichholzer, Balko, Hackl, Kynčl, Parada, S., Valtr, and Vogtenhuber '17] • h_6 in $\Omega(n)$ and $O(n^2)$ [Gerken '08, Nicolás '07]

• $h_k(n) = 0$ for $k \ge 7$ [Horton '83]

 $h_k(n) :=$ minimum # of k-holes among all sets of n points

The Projective World

every pair of points p, q spans two *projective segments*: an affine line segment pq and (its complement) $\overline{pq} \setminus pq$

every pair of points p, q spans two *projective segments*: an affine line segment pq and (its complement) $\overline{pq} \setminus pq$

every pair of points p, q spans two *projective segments*: an affine line segment pq and (its complement) $\overline{pq} \setminus pq$

 $C \subseteq \mathbb{RP}^2$ is projectively convex if, for every pair $p, q \in C$, one of its projective segments is fully contained in C

projective convex hull: a inclusion-wise minimal convex set containing a given set P (not unique)

 $|P| = 2 \Rightarrow 2 \text{ p.c.h.s}$

projective convex hull: a inclusion-wise minimal convex set containing a given set P (not unique)

projective convex hull: a inclusion-wise minimal convex set containing a given set P (not unique)

projective convex hull: a inclusion-wise minimal convex set containing a given set P (not unique)

projective convex hull: a inclusion-wise minimal convex set containing a given set P (not unique)

projective k-gon: projective convex set spanned by k pnts (first introduced by Harborth & Möller '93)

projective convex hull: a inclusion-wise minimal convex set containing a given set P (not unique)

projective k-gon: projective convex set spanned by k pnts projective k-hole: k-gon containing no other point of P **Projective Gons and Holes**

a projective k-gon is either an affine k-gon

Projective Gons and Holes

a projective k-gon is either an affine k-gon or a double chain k-wedge

Erdős–Szekeres Numbers

Thm (affine *k*-gons; Erdős & Szekeres '35; Suk '16; Holmsen, Mojarrad, Pach & Tardos '17):

$$2^{k-2} + 1 \le g(k) \le 2^{k+O(\sqrt{k\log k})}$$

Thm (projective k-gons, BSV '22):

$$2^{k-O(\log k)} \le g^p(k) \le 2^{k+O(\sqrt{k\log k})}$$

Erdős–Szekeres Numbers

Thm (affine *k*-gons; Erdős & Szekeres '35; Suk '16; Holmsen, Mojarrad, Pach & Tardos '17):

$$2^{k-2} + 1 \le g(k) \le 2^{k+O(\sqrt{k\log k})}$$

Thm (projective k-gons, BSV '22):

$$2^{k-O(\log k)} \leq g^p(k) \leq 2^{k+O(\sqrt{k\log k})}$$

k-Holes in Horton Sets

Thm (affine holes, Horton '83, Bárány & Füredi '87): Let S be a Horton set of size $n = 2^t$. Then $h_k(S) \le O(n^2)$ for $k \le 6$ and $h_7(S) = 0$. $(h_k \dots \# \text{ of affine } k\text{-holes})$

Thm (projective holes, BSV '22): Let S be a Horton set of size $n = 2^t$. Then $h_k^p(S) \le O(n^2)$ for $k \le 7$ and $h_8^p(S) = 0$. $(h_k^p \dots \# \text{ of projective } k\text{-holes})$

k = 3: always exist

k = 4: $h_4(\geq 5) \geq 1 \longrightarrow h_4^p(\geq 4) \geq 1$

 $\begin{array}{l} k=3: \text{ always exist} \\ k=4: \ h_4(\geq 5) \geq 1 \longrightarrow h_4^p(\geq 4) \geq 1 \\ k=5: \\ h_5(\geq 10) \geq 1 \longrightarrow h_5^p(5) = 1, \ h_5^p(6) = 0, \ h_5^p(\geq 7) \geq 1 \\ \end{array}$

 $\begin{array}{l} k=3: \text{ always exist} \\ k=4: \ h_4(\geq 5) \geq 1 \longrightarrow h_4^p(\geq 4) \geq 1 \\ k=5: \\ h_5(\geq 10) \geq 1 \longrightarrow h_5^p(5) = 1, \ h_5^p(6) = 0, \ h_5^p(\geq 7) \geq 1 \\ \end{array}$ Harborth '78 weird behavior

k = 3: always exist

 $k = 4: h_4(\geq 5) \geq 1 \longrightarrow h_4^p(\geq 4) \geq 1$ k = 5: $h_5(\geq 10) \geq 1 \longrightarrow h_5^p(5) = 1, h_5^p(6) = 0, h_5^p(\geq 7) \geq 1$ k = 6: $h_6(\geq g(9)) \geq 1$ Gerken '08

 $h_6(\geq g(9)) \geq 1$ $\longrightarrow h_6^p(\geq g^p(9)) \geq 1$

k = 3: always exist

 $k = 4: \ h_4(\geq 5) \geq 1 \longrightarrow h_4^p(\geq 4) \geq 1$ k = 5: $h_5(\geq 10) \geq 1 \longrightarrow h_5^p(5) = 1, \ h_5^p(6) = 0, \ h_5^p(\geq 7) \geq 1$

$$k = 6:$$

$$h_6(\geq g(9)) \geq 1$$

$$\longrightarrow h_6^p(\geq g^p(9)) \geq 1$$

 $k \geq 8$: not exist (Horton sets)

k = 7: no affine, but projective 7-holes in Horton sets. existence of projective 7-holes remains open!

Any significant difference?

Substantially more Projective Holes

Substantially more Projective Holes

Thm (BSV '22). $\forall k \in \{3, \dots, 6\}$ and $n, \exists n$ -point set with $O(n^2)$ affine k-holes and $\Omega(n^{3-\frac{5}{3k}})$ projective k-holes.

Thm (BSV '22) $\forall n \text{ and } x \leq 2^{n/2} \exists n \text{-point set with} O(x+n^2)$ affine holes and $\Omega(x^2)$ projective holes.

Thm (BSV '22). $\forall k \in \{3, \dots, 6\}$ and $n, \exists n$ -point set with $O(n^2)$ affine k-holes and $\Omega(n^{3-\frac{5}{3k}})$ projective k-holes.

Further Results

Holes in Random Point Sets

Affine:

 $EH_3 \sim 2n^2$ [Valtr '95, Reitzner & Temesvari '19] $EH_k = \Theta(n^2)$ [BSV '19+'21]

Projective [BSV '22]:

 $EH_3^p = \Theta(n^2)$ with larger multiplicative constant

Holes in Random Point Sets

Affine:

 $EH_3 \sim 2n^2$ [Valtr '95, Reitzner & Temesvari '19] $EH_k = \Theta(n^2)$ [BSV '19+'21]

Projective [BSV '22]:

 $EH_3^p = \Theta(n^2)$ with larger multiplicative constant

no proof for larger holes, but $\Theta(n^2)$ conjectured!

Algorithmic Aspects

Thm (Mitchell, Rote, Sundaram & Woeginger '95). The number of affine k-gons and k-holes in an n-point set can be computed in $O(kn^3)$ time and $O(kn^2)$ space.

Thm (BSV '22).

The number of projective k-gons and k-holes in an n-point set can be computed in $O(kn^4)$ time and $O(kn^2)$ space.

