Orthogeodesic Point Set Embeddings of Outerplanar Graphs

Manfred Scheucher
Graz, June 18, 2015
Contents

1. Motivation

2. An Introduction to Graphs and Embeddings

3. Embeddings in Diagonal Point Sets

4. Recursive Embedding Techniques

5. Further Results

6. Summary
Motivation

Figure: Point Set Embedding of a Tree
Motivation

Figure: Point Set Embedding of a Tree

Table: Upper bounds given by Giacomo et al.

<table>
<thead>
<tr>
<th></th>
<th>Planar L-Shaped</th>
<th>Nonplanar L-Shaped</th>
<th>Planar Orthogeodesic</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Cat.</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>3-Tree</td>
<td>$n^2 - 2n + 2$</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>4-Cat.</td>
<td>$3n - 2$</td>
<td>$n + 1$</td>
<td>$[1.5n]$</td>
</tr>
<tr>
<td>4-Tree</td>
<td>$n^2 - 2n + 2$</td>
<td>$4n - 3$</td>
<td>$4n$</td>
</tr>
</tbody>
</table>
Graph

- A graph is a tuple $G = (V, E)$ with

$$ E \subseteq \{\{u, v\} | u \neq v \in V\}.$$

- V is said to be the set of vertices and E the set of edges.
- An example:

$$K_3 = (\{v_1, v_2, v_3\}, \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}\})$$
Embedding of a Graph

- An **embedding** of a graph G is a tuple (ν, μ) where
 - ν is an injective mapping of the vertices into the plane
 - and μ maps every edge $e = \{u, v\}$ to a polygonal arc with endpoints $\nu(u)$ and $\nu(v)$

![Figure: Two embeddings of K_3.](image-url)
Embedding of a Graph

- An embedding is said to be **planar** if the interior of every edge neither intersects other edges nor contains vertices.

Figure: A nonplanar, a planar, and a straight-line planar embedding of K_4.
Point Set Embedding

- Let $P \subset \mathbb{R}^2$ be a set of points. We call an embedding with $\nu(V) \subseteq P$ an embedding in P (PSE).

- Planar PSE in every point set of size n with at most two bends per edge [Kaufmann and Wiese, 1999]

- Deciding whether a planar PSE with at most one bend per edge exists is NP-complete [Kaufmann and Wiese, 1999]
A PSE is said to be **orthogeodesic** if

- every edge (polygonal arc) has minimal L^1-length
- edges are drawn on the grid of horizontal and vertical lines induced by the points in P
- all edges incident to a vertex enter from distinct directions

Figure: Orthogeodesic embedding of K_3.
Orthogeodesic PSE

Figure: Edges in planar orthogeodesic embeddings.
An orthogeodesic PSE is said to be **L-shaped** if every edge has at most one bend.
Deciding whether an orthogeodesic PSE exists is NP-complete. [Katz et al., 2010]
Orthogeodesic PSE

- Restriction to general point sets
- Restriction to certain classes of graphs
General Point Set

- A point set $P \subseteq \mathbb{R}^2$ is said to be **general** if each two points have distinct x- and y-coordinates.
General Point Set

- A point set $P \subset \mathbb{R}^2$ is said to be **general** if each two points have distinct x- and y-coordinates.

- W.l.o.g.,

 \[x_1 < x_2 < \ldots < x_n \]

 and

 \[y_{\sigma_1} < y_{\sigma_2} < \ldots < y_{\sigma_n} \]

 hold for a permutation σ.

Manfred Scheucher
Graz, June 18, 2015
General Point Set

- A point set $P \subset \mathbb{R}^2$ is said to be **general** if each two points have distinct x- and y-coordinates.
- W.l.o.g.,
 $$x_1 < x_2 < \ldots < x_n$$
 and
 $$y_{\sigma_1} < y_{\sigma_2} < \ldots < y_{\sigma_n}$$
 hold for a permutation σ.
- W.l.o.g.,
 $$P = \{(1, \pi_1), (2, \pi_2), \ldots, (n, \pi_n)\}$$
 holds for a permutation π. (Actually, $\pi = \sigma^{-1}$)
General Point Set

Figure: General point sets up to size 4 (+symmetry).
Diagonal Point Sets

- Every point set of size $n^2 + 1$ admits a diagonal point set of size $n + 1$ [Erdős and Szekeres, 1935]

Figure: An illustration.
If G admits an embedding in a diagonal point set of size n, then it admits an embedding in every point set of size $(n - 1)^2 + 1$.

Otherwise, it can not be embedded in certain point sets (e.g., in diagonal point sets).
Classes of Graphs

- Planar graphs
- Outerplanar graphs
- Trees
- Caterpillars

Figure: An outerplanar graph, a tree, and a caterpillar.
Classes of Graphs

- $\Delta(G) \leq 4$ necessary, but not sufficient
Classes of Graphs

- $\Delta(G) \leq 4$ necessary, but not sufficient
- Planar with $\Delta \in \{3, 4\}$: NO
- Outerplanar with $\Delta = 4$: NO
- Outerplanar with $\Delta = 3$:
 - Planar L-shaped: NO
Classes of Graphs

- $\Delta(G) \leq 4$ necessary, but not sufficient
- Planar with $\Delta \in \{3, 4\}$: NO
- Outerplanar with $\Delta = 4$: NO
- Outerplanar with $\Delta = 3$:
 - Planar L-shaped: NO
 - L-shaped: YES
 - Planar orthogeodesic: YES
- Trees and caterpillars: YES [Giacomo et al., 2013]
What about Point Sets of Subquadratic Size?
What about Point Sets of Subquadratic Size?

- For caterpillars: $O(n)$ [Giacomo et al.]
What about Point Sets of Subquadratic Size?

- For caterpillars: $O(n)$ [Giacomo et al.]
- For trees: Recursive Embedding

![Diagram showing recursion layers 1, 2, and 3]
Embedding 3-Trees

- Start with root (e.g., a leaf) and continue recursively

Figure: Recursive embedding of a 3-tree.
Recursive Embedding Techniques

Embedding 3-Trees

- Start with root (e.g., a leaf) and continue recursively

Figure: Recursive embedding of a 3-tree.
Recursive Embedding Techniques

Embedding 3-Trees

- Start with root (e.g., a leaf) and continue recursively

Figure: Recursive embedding of a 3-tree.
Recursive Embedding Techniques

Embedding 3-Trees

- Start with root (e.g., a leaf) and continue recursively

Figure: Recursive embedding of a 3-tree.
Recursive Embedding Techniques

Embedding 3-Trees

- Start with root (e.g., a leaf) and continue recursively

\[f(n) \geq 1 + f(a) + 2f(b) \text{ for } a \geq b \text{ and } a + b = n - 1 \]

Figure: Recursive embedding of a 3-tree.
Recursive Embedding Techniques

Embedding 3-Trees

- Start with root (e.g., a leaf) and continue recursively

\[
f(n) \geq 1 + f(a) + 2f(b) \text{ for } a \geq b \text{ and } a + b = n - 1
\]

- Trivial solution: \(f(n) = n^2 \)

Figure: Recursive embedding of a 3-tree.
Consider f convex with $f(0) = 0$ and

$$f(n) \geq \max_{0 \leq b \leq \frac{n-1}{2}} 1 + f(n - 1 - b) + 2f(b)$$

$$=: \phi_n(b)$$
Embedding 3-Trees

- Consider f convex with $f(0) = 0$ and
 \[
 f(n) \geq \max_{0 \leq b \leq \frac{n-1}{2}} 1 + f(n - 1 - b) + 2f(b)
 \]
 \[= : \phi_n(b) \]

- sum of convex functions is convex
Recursive Embedding Techniques

Embedding 3-Trees

- Consider \(f \) convex with \(f(0) = 0 \) and

\[
f(n) \geq \max_{0 \leq b \leq \frac{n-1}{2}} \left(1 + f(n - 1 - b) + 2f(b) \right)
\]

= \(\phi_n(b) \)

- sum of convex functions is convex
- convex function on convex set (Maximum Principle)

Figure: An illustration of the \(\phi_n \) function.
Embedding 3-Trees

- \(f(n) \geq \max \{ \phi_n(0), \phi_n\left(\frac{n-1}{2}\right) \} = \phi_n\left(\frac{n-1}{2}\right) = 3f\left(\frac{n-1}{2}\right) + 1 \), since

\[
\phi_n(0) = f(n-1) + 1 \leq f(n) \leq f'(\xi)
\]
Recursive Embedding Techniques

Embedding 3-Trees

- \(f(n) \geq \max\{\phi_n(0), \phi_n\left(\frac{n-1}{2}\right)\} = \phi_n\left(\frac{n-1}{2}\right) = 3f\left(\frac{n-1}{2}\right) + 1 \), since
 \[
 \phi_n(0) = f(n - 1) + \underbrace{1}_{\leq f'(\xi)} \leq f(n)
 \]

- A solution: \(f(n) = n^{\log_2 3} \), where \(\log_2 3 = 1.5849 \ldots \)
 because \(3f\left(\frac{n-1}{2}\right) + 1 = \frac{3}{3}(n - 1)^{\log_2 3} = f(n - 1) + 1 \)
Recursive Embedding Techniques

Embedding 3-Trees

- $f(n) \geq \max\{\phi_n(0), \phi_n(\frac{n-1}{2})\} = \phi_n(\frac{n-1}{2}) = 3f(\frac{n-1}{2}) + 1$,
 since
 \[
 \phi_n(0) = f(n - 1) + 1 \leq f(n) \leq f'(\xi)
 \]
- A solution: $f(n) = n^{\log_2 3}$, where $\log_2 3 = 1.5849 \ldots$
 because $3f(\frac{n-1}{2}) + 1 = \frac{3}{3}(n - 1)^{\log_2 3} = f(n - 1) + 1$

Theorem

$f(n) = O(n^{\log_2 3})$
Embedding 4-Trees

- Analogous

\[
f(n) \geq 1 + f(a) + 2f(b) + 2f(c) \text{ with } a \geq b \geq c \ldots
\]

\[
f(n) = O(n^{\log_2 3})
\]
Recursive Embedding Techniques

Embedding 4-Trees

- Consider f convex with $f(0) = 0$ and

\[
f(n) \geq \max_{0 \leq c \leq b} \max_{b \leq n-1-b-c} 1 + f(n-1-b-c) + 2f(b) + 2f(c) =: \phi_n(b,c)
\]

- Maximum Principle: analyze the corners of the convex set

\[
C = \{(b, c) \mid 0 \leq c \leq b \leq n-1-b-c\}
\]
Recursive Embedding Techniques

Embedding 4-Trees

Figure: Maximum Principle illustration.
Embedding 4-Trees

Figure: Corners of the convex set C.

Recursive Embedding Techniques

Manfred Scheucher
Graz, June 18, 2015
Results for the General Case

<table>
<thead>
<tr>
<th></th>
<th>Planar L-Shaped</th>
<th>Nonplanar L-Shaped</th>
<th>Planar Orthogeodesic</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Cat.</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>3-Tree</td>
<td>$n^2 - 2n + 2$</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>4-Cat.</td>
<td>$3n - 2$</td>
<td>$n + 1$</td>
<td>$[1.5n]$</td>
</tr>
<tr>
<td>4-Tree</td>
<td>$n^2 - 2n + 2$</td>
<td>$4n - 3$</td>
<td>$4n$</td>
</tr>
</tbody>
</table>

Table : Upper bounds given by Giacomo et al.

<table>
<thead>
<tr>
<th></th>
<th>Planar L-Shaped</th>
<th>Nonplanar L-Shaped</th>
<th>Planar Orthogeodesic</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Tree</td>
<td>$0.334n^{1.585} + \mathcal{O}(n)$</td>
<td>n [Giacomo et al.]</td>
<td>n [Giacomo et al.]</td>
</tr>
<tr>
<td>4-Cat.</td>
<td>$1.334n + \mathcal{O}(1)$</td>
<td>n</td>
<td>$1.334n + \mathcal{O}(1)$</td>
</tr>
<tr>
<td>4-Tree</td>
<td>$0.339n^{1.585} + \mathcal{O}(n)$</td>
<td>$2.334n + \mathcal{O}(1)$</td>
<td>$1.5n + \mathcal{O}(1)$</td>
</tr>
</tbody>
</table>

Table : Best upper bounds currently known
What else can we do?

- Analyze Trees
- Analyze Point Sets
- Probabilistic Analysis
Saturation Property

\[\sigma_{T,r}(v) := \max\{0, \sigma_{T,r}(u_1), \sigma_{T,r}(u_2) + 1, \ldots, \sigma_{T,r}(u_k) + 1\} \]
Saturation Property

\[\sigma_{T,r}(v) := \max\{0, \sigma_{T,r}(u_1), \sigma_{T,r}(u_2) + 1, \ldots, \sigma_{T,r}(u_k) + 1\} \]
Further Results

Saturation Property

\[\sigma_{T, r}(v) := \max\{0, \sigma_{T, r}(u_1), \sigma_{T, r}(u_2) + 1, \ldots, \sigma_{T, r}(u_k) + 1\} \]
Saturation Property

\[\sigma_{T,r}(v) \coloneqq \max\{0, \sigma_{T,r}(u_1), \sigma_{T,r}(u_2) + 1, \ldots, \sigma_{T,r}(u_k) + 1\} \]
Saturation Property

\[\sigma_{T,r}(v) := \max\{0, \sigma_{T,r}(u_1), \sigma_{T,r}(u_2) + 1, \ldots, \sigma_{T,r}(u_k) + 1\} \]
Further Results

Saturation Property

- $\sigma(T) := \min_{r \in V} \sigma_{T,r}(r)$
- $f(T) = O(n \cdot 2^{\sigma(T)})$
- For caterpillars:
 \[
 \sigma(T) = O(1) \Rightarrow f(T) = O(n)
 \]
- For trees:
 \[
 \sigma(T) \leq \log_2(n + 1) \Rightarrow f(T) = O(n^2)
 \]
Orthogonal Convex Hull
Further Results

Orthogonal Convex Hull

- l . . . number of layers in onion peeling
- k_i . . . number of points in layer i
- P contains diag. PS of size

$$n := \max \left\{ 2l - 1, \left\lfloor \frac{k_1}{4} \right\rfloor, \ldots, \left\lfloor \frac{k_l}{4} \right\rfloor \right\}$$
Orthogonal Convex Hull

- $l \ldots$ number of layers in onion peeling
- $k_i \ldots$ number of points in layer i
- P contains diag. PS of size

\[n := \max \left\{ 2l - 1, \left\lfloor \frac{k_1}{4} \right\rfloor, \ldots, \left\lfloor \frac{k_l}{4} \right\rfloor \right\} \]

- Yet another proof of the $m = O(n^2)$ bound, because $n = \Omega(\sqrt{m})$
Further Results

Orthogonal Convex Hull

(a) l layers in onion peeling

(b) Layer i of size k_i
Probabilistic Results

- Point exists with probability at least $1 - \left(1 - \frac{|A|}{|P|}\right)^{|C|}$
Point exists with probability at least \(1 - \left(1 - \frac{|A|}{|P|} \right)^{|C|} \)

- For 3-Trees: \(O(n \log n (\log \log n)^2) \)
- For 4-Trees: \(O(n^{\gamma_0 + \varepsilon}) \) where \(\gamma_0 = 1.3319 \cdots \)
Summary

<table>
<thead>
<tr>
<th></th>
<th>Planar L-Shaped</th>
<th>Nonplanar L-Shaped</th>
<th>Planar Orthogeodesic</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Cat.</td>
<td>(n) [Giacomo et al.]</td>
<td>(n) [Giacomo et al.]</td>
<td>(n) [Giacomo et al.]</td>
</tr>
<tr>
<td>3-Tree</td>
<td>(0.334n^{1.585} + \mathcal{O}(n))</td>
<td>(n) [Giacomo et al.]</td>
<td>(n) [Giacomo et al.]</td>
</tr>
<tr>
<td>4-Cat.</td>
<td>(1.334n + \mathcal{O}(1))</td>
<td>(n)</td>
<td>(1.334n + \mathcal{O}(1))</td>
</tr>
<tr>
<td>4-Tree</td>
<td>(0.339n^{1.585} + \mathcal{O}(n))</td>
<td>(2.334n + \mathcal{O}(1))</td>
<td>(1.5n + \mathcal{O}(1))</td>
</tr>
</tbody>
</table>

- \(f_{LT4}(T) = O(n \cdot 2^{\sigma(T)}) \)
- \(n \geq \max \left\{ 2l - 1, \left[\frac{k_1}{4} \right], \ldots, \left[\frac{k_l}{4} \right] \right\} \)
- \(f_{LT3}^{1/2}(n) = O(n \log n (\log \log n)^2) \)
- \(f_{LT4}^{1/2}(n) = O(n^{\gamma_0 + \varepsilon}) \) where \(\gamma_0 = 1.3319 \cdots \)
Thank you for your attention!
(a) An outerplanar graph with $\Delta = 4$ that does not admit an embedding

(b) Sketch of the proof.
Classes of Graphs

(a) An outerplanar graph with $\Delta = 3$ that does not admit a planar L-shaped embedding

(b) A planar graph with $\Delta = 3$ that does not admit an embedding
Figure: Outerplanar Graphs $\Delta = 3$ (L-Shaped)
Figure: Outerplanar Graphs $\Delta = 3$ (Planar Orthog.)
Recursive Embeddings

- \(f_{OT4}(n) \leq 2n \)
- Actually, \(f_{OT4}(n) \leq \frac{3}{2}n - 1 \), because

\[
\left| \{ v \in V : \deg(v) \geq 3 \} \right| \leq \frac{n-2}{2}
\]
Recursive Embeddings

- With $U := \{v \in V : \deg(v) \geq k\}$

$$2n - 2 = 2|E| = \sum_{v \in V} \deg(v) \geq n + (k - 1)|U|,$$

- or equally,

$$|U| \leq \frac{n - 2}{k - 1}$$
Proof of $f_{NT4}(n) \leq \frac{7}{3}n + O(1)$

- Ring-partition
- Case 1: recycle points, $O(1)$ wasted points
- Case 2: At most 2 wasted point per vertex
- Case 3: At most 4 wasted points per vertex
Proof of $f_{NT4}(n) \leq \frac{7}{3} n + O(1)$

maximize $2x_3 + 4x_4$

subject to $\sum_{i=1}^{4} x_i = n$

$\sum_{i=1}^{4} (i - 2)x_i = -2$ // holds for every tree

$x_i \in \mathbb{N}_0$, $1 \leq i \leq 4$

- $x_2^* = 0$ must hold . . .
Proof of $f_{NT4}(n) \leq \frac{7}{3}n + O(1)$

maximize $2x_3 + 4x_4$

subject to $x_1 + x_3 + x_4 = n$

$x_1 = 2 + x_3 + 2x_4$

$x_1, x_3, x_4 \geq 0$
Proof of $f_{NT4}(n) \leq \frac{7}{3}n + O(1)$

maximize $2x_3 + 4x_4$

subject to $2x_3 + 3x_4 = n - 2$

$2 + x_3 + 2x_4 \geq 0$

$x_3, x_4 \geq 0$
Proof of $f_{NT4}(n) \leq \frac{7}{3}n + O(1)$

maximize $n - 2 + x_4$
subject to $3x_4 \leq n - 2$

$x_4 \geq 0$

- number of wasted points at most $\frac{4}{3}n + O(1)$
- $f_{NT4}(n) \leq \frac{7}{3}n + O(1)$
Results for the General Case

<table>
<thead>
<tr>
<th></th>
<th>Planar L-Shaped</th>
<th>Nonplanar L-Shaped</th>
<th>Planar Orthogeodesic</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Cat.</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>3-Tree</td>
<td>$n^2 - 2n + 2$</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>4-Cat.</td>
<td>$3n - 2$</td>
<td>$n + 1$</td>
<td>$[1.5n]$</td>
</tr>
<tr>
<td>4-Tree</td>
<td>$n^2 - 2n + 2$</td>
<td>$4n - 3$</td>
<td>$4n$</td>
</tr>
</tbody>
</table>

Table: Upper bounds given by Giacomo et al.

<table>
<thead>
<tr>
<th></th>
<th>Planar L-Shaped</th>
<th>Nonplanar L-Shaped</th>
<th>Planar Orthogeodesic</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Tree</td>
<td>$0.334n^{1.585} + \mathcal{O}(n)$</td>
<td>n [Giacomo et al.]</td>
<td>n [Giacomo et al.]</td>
</tr>
<tr>
<td>4-Cat.</td>
<td>$1.334n + \mathcal{O}(1)$</td>
<td>n</td>
<td>$1.334n + \mathcal{O}(1)$</td>
</tr>
<tr>
<td>4-Tree</td>
<td>$0.339n^{1.585} + \mathcal{O}(n)$</td>
<td>$2.334n + \mathcal{O}(1)$</td>
<td>$1.5n + \mathcal{O}(1)$</td>
</tr>
</tbody>
</table>

Table: Best upper bounds currently known
Point exists with probability at least

$$1 - \left(1 - \frac{|A|}{|P|}\right)^{|C|}$$
Probabilistic Results

- \(\mathbb{P}(\bigcup_{i=1}^{h} E_i) = 1 - \mathbb{P}(\bigcap_{i=1}^{h} \overline{E}_i) = 1 - \prod_{i=1}^{h} \mathbb{P}(\overline{E}_i) \cap \bigcap_{j=1}^{i-1} \overline{E}_j) \)

- \(\mathbb{P}(\overline{E}_1) = 1 - \frac{|A| + 1}{|A| + |B| + 1} \)

- \(\mathbb{P}(\overline{E}_i) \cap \bigcap_{j=1}^{i-1} \overline{E}_j) = \frac{|B| + (i - 1)}{|A| + |B| + (i - 1) + 1} = 1 - \frac{|A| + 1}{|A| + |B| + i} \)

- \(1 - \prod_{i=1}^{h} \left(1 - \frac{|A| + 1}{|A| + |B| + i} \right) \geq 1 - \left(1 - \frac{|A|}{|A| + |B| + |C|} \right)^{|C|} \)
Point exists with probability at least

$$1 - \left(1 - \frac{|A|}{|P|} \right)^{|C|}$$
Probabilistic Results

- $|P| = \alpha n \log_2 n$
- $|A| := |C| := \alpha \frac{n}{2}$ and $|B| := 2\alpha \frac{n}{2} \log_2 \frac{n}{2}$
- Point exists with probability at least

$$1 - \left(1 - \frac{1}{2 \log_2 n}\right)^{\alpha \frac{n}{2}} \geq 1 - \left(\frac{1}{e}\right)^{\alpha \frac{n}{4 \log_2 n}} \geq 1 - \left(\frac{1}{e}\right)^{\frac{\alpha \ln 2}{2}}$$

since $(1 - \frac{1}{x})^x \leq \frac{1}{e}$ on $[1, \infty)$ and $\frac{x}{\log x} \geq e$ on $(1, \infty)$

- ...
- $O(n \log^2 n)$, success with probability at least $\frac{1}{2}$
- Actually, $O(n \log n (\log \log n)^2)$
\[(x + 1)^\varepsilon - x^\varepsilon = \varepsilon x^{\varepsilon - 1} \geq \varepsilon x^{-1} \geq \varepsilon (x + 1)^{-1} \geq \varepsilon (2x)^{-1}\]

\[\alpha (2m) \log_2 \varepsilon (2m) + 8m - 4 \geq \alpha 2m \log_2 \varepsilon (2m) + 8m - 4\]

\[= \alpha 2m (\log_2 m + 1)^\varepsilon + 8m - 4\]

\[\geq \alpha 2m \left(\log_2 m + \frac{\varepsilon}{\log_2 m} \right) + 8m - 4\]

\[= \alpha 2m \log_2 m + \alpha 2 \frac{\varepsilon m}{\log_2 m} + 8m - 4\]

\[= 2 (\alpha m \log_2 m + 4m - 4) + 2 \left(\frac{\alpha \varepsilon m}{\log_2 m} \right) + 4\]

\[\geq 2 \left[\alpha m \log_2 m + 4m - 4 \right] + 2 \left[\frac{\alpha \varepsilon m}{\log_2 m} \right]\]
Probabilistic Results

- $\alpha := \frac{C \log_2 n}{\varepsilon^2}$ leads to
 \[
 \frac{C}{\varepsilon^2} n \log_2^{1+\varepsilon} n + O(n)
 \]

- $\varepsilon := \frac{1}{\log_2 \log_2 n}$ leads to
 \[
 Cn \log_2 n (\log_2 \log_2 n)^2 + O(n)
 \]

- where $C := \frac{80}{e^3 (\ln 2)^2} = 8.290 \cdots$
Probabilistic Results

Manfred Scheucher
Graz, June 18, 2015

Many cases ...
Figure: Tree in Case 3a
Probabilistic Results

Figure: Embedding in Case 3a

\[f(n'_1) + f(n'_2) + f(n'_3) + f(n_2) + f(n_3) + 2f(n_4) + 4\alpha n. \]
Probabilistic Results

- For 4-Trees: $O(n^{\gamma_0 + \varepsilon})$
- $\gamma_0 := 1.3319 \cdots$ unique solution of the equation
 \[
 \left(\frac{1}{2}\right)^\gamma + \left(\frac{1}{24}\right)^\gamma + 2 \left(\frac{1}{3}\right)^\gamma + 2 \left(\frac{1}{8}\right)^\gamma = 1
 \]
- Let $\gamma > \gamma_0$ and let $\delta_\gamma = \frac{1}{24\gamma_0} - \frac{1}{24\gamma}$. Then $f_\gamma(x) = x^\gamma$ fulfills

 1. $f_\gamma(x) \geq f_\gamma\left(\frac{1}{2}x\right) + f_\gamma\left(\frac{1}{2}x\right) + \delta_\gamma x$,
 2. $f_\gamma(x) \geq f_\gamma\left(\frac{1}{2}x\right) + f_\gamma\left(\frac{1}{6}x\right) + 2f_\gamma\left(\frac{1}{3}x\right) + \delta_\gamma x$,
 3. $f_\gamma(x) \geq f_\gamma\left(\frac{1}{2}x\right) + f_\gamma\left(\frac{3}{8}x\right) + 2f_\gamma\left(\frac{1}{8}x\right) + \delta_\gamma x$, and
 4. $f_\gamma(x) \geq f_\gamma\left(\frac{1}{2}x\right) + f_\gamma\left(\frac{1}{24}x\right) + 2f_\gamma\left(\frac{1}{3}x\right) + 2f_\gamma\left(\frac{1}{8}x\right) + \delta_\gamma x$
Embedding Caterpillars - Basic Idea

Embedding of (a_1, \ldots, a_i) in P_1

Embedding of (a_{l+1}, \ldots, a_k) in P_2

Embedding of (a_1, \ldots, a_k) in P
Proof of $f_{OC4}(n) \leq \frac{4}{3}n + O(1)$

- $(\rightarrow 2 \rightarrow)$ admits a planar orthogeodesic embedding in any point set P of size 3
Proof of $f_{OC4}(n) \leq \frac{4}{3}n + O(1)$

- $\rightarrow 3 \rightarrow$ admits a planar orthogeodesic embedding in any point set P of size 4
Proof of $f_{OC4}(n) \leq \frac{4}{3} n + O(1)$

- $(\rightarrow 4 \rightarrow)$ admits a planar orthogeodesic embedding in any point set P of size 6
Results for the General Case

<table>
<thead>
<tr>
<th></th>
<th>Planar L-Shaped</th>
<th>Nonplanar L-Shaped</th>
<th>Planar Orthogeodesic</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Cat.</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>3-Tree</td>
<td>$n^2 - 2n + 2$</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>4-Cat.</td>
<td>$3n - 2$</td>
<td>$n + 1$</td>
<td>$[1.5n]$</td>
</tr>
<tr>
<td>4-Tree</td>
<td>$n^2 - 2n + 2$</td>
<td>$4n - 3$</td>
<td>$4n$</td>
</tr>
</tbody>
</table>

Table: Upper bounds given by Giacomo et al.

<table>
<thead>
<tr>
<th></th>
<th>Planar L-Shaped</th>
<th>Nonplanar L-Shaped</th>
<th>Planar Orthogeodesic</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Tree</td>
<td>$0.334n^{1.585} + \mathcal{O}(n)$</td>
<td>n [Giacomo et al.]</td>
<td>n [Giacomo et al.]</td>
</tr>
<tr>
<td>4-Cat.</td>
<td>$1.334n + \mathcal{O}(1)$</td>
<td>n</td>
<td>$1.334n + \mathcal{O}(1)$</td>
</tr>
<tr>
<td>4-Tree</td>
<td>$0.339n^{1.585} + \mathcal{O}(n)$</td>
<td>$2.334n + \mathcal{O}(1)$</td>
<td>$1.5n + \mathcal{O}(1)$</td>
</tr>
</tbody>
</table>

Table: Best upper bounds currently known
Burnside’s Lemma

Notation:

- orbit \(\overline{x} := \{gx \mid g \in G\} \)
- fixed points \(X_g := \{x \mid gx = x\} \)
- stabilisers \(G_x := \{g \mid gx = x\} \)
Burnside’s Lemma

\[\sum_{g \in G} |X_g| = \sum_{g \in G, x \in X, gx = x} 1 = \sum_{x \in X} |G_x| \]

- \(\bar{x} \simeq G/G_x \), because \(\phi_g : x \mapsto gx \) has image \(\phi_g(\bar{x}) = \bar{x} \), \(\phi_g = \phi_{gh} \) only for \(h \in G_x \) . . .

- \(|\bar{x}| = \frac{|G|}{|G_x|} \) (Lagrange’s Theorem)

\[\# \text{orbits} = \sum_{x \in X} \frac{1}{|\bar{x}|} = \sum_{x \in X} \frac{|G_x|}{|G|} = \frac{1}{|G|} \sum_{g \in G} |X_g| \]
Burnside’s Lemma - An Example ($n = 4$)

- **Group actions:** Rotate + Mirror

 \[G = \{ r_0, r_{90}, r_{180}, r_{270}, m_0, m_{90}, m_{180}, m_{270} \} \]

- $r_0 = id$: all $4! = 24$ elements are left unchanged
- r_{90} and r_{270}: 2 each
- r_{180}: 8

![Fixed points for r_{90} (left) and r_{180} (right).](image-url)

Figure: Fixed points for r_{90} (left) and r_{180} (right).
Burnside’s Lemma - An Example ($n = 4$)

- m_0: 10
- m_{90} and m_{270}: 0 (not possible)
- m_{180}: 10 (analogous to m_0)

Figure: Fixed points for m_0 (left) and m_{90} (right).
Burnside's Lemma - An Example ($n = 4$)

- $\#orbits(4) = \frac{1}{|G|} \sum_{g \in G} |X_g| = \frac{24+2+8+2+10+0+10+0}{8} = 7$
- $\#orbits(n) \geq \frac{n!}{8}$
- $1, 1, 2, 7, 23, 115, 694, 5282, 46066, 456454, \ldots$
 https://oeis.org/A000903

Figure: General point sets of size 4 (+symmetry).
Thank you for your attention!