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• point set {p1, . . . , pn} induces triple-orientations
χ : [n]3 → {+, 0,−}

χ(a, b, c) = sgn det

 1 1 1
xa xb xc
ya yb yc


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Order Types

• point set {p1, . . . , pn} induces triple-orientations
χ : [n]3 → {+, 0,−}

• mapping χ : [n]3 → {+, 0,−} fulfills chirotope axioms:

• alternating : χ(iπ(1), iπ(2), iπ(3)) = χ(i1, i2, i3) · sgn(π)

• exchange axioms:
if χ(yi, x2, . . . , xr) · χ(y1, . . . , yi−1, x1, yi+1, . . . , yr) ≥ 0
holds for all i, then χ(x1, . . . , xr) · χ(y1, . . . , yr) ≥ 0

• equiv. classes are called order types

• non-degenerated if no three points on a line, i.e.,
χ(a, b, c) 6= 0 for a, b, c distinct
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• point set {p1, . . . , pn} induces triple-orientations
χ : [n]3 → {+, 0,−}

• mapping χ : [n]3 → {+, 0,−} fulfills chirotope axioms:

• alternating : χ(iπ(1), iπ(2), iπ(3)) = χ(i1, i2, i3) · sgn(π)

• exchange axioms:
if χ(yi, x2, . . . , xr) · χ(y1, . . . , yi−1, x1, yi+1, . . . , yr) ≥ 0
holds for all i, then χ(x1, . . . , xr) · χ(y1, . . . , yr) ≥ 0

• equiv. classes are called order types

• equiv. classes are called abstract order types

• non-degenerated if no three points on a line, i.e.,
χ(a, b, c) 6= 0 for a, b, c distinct
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Number of Order Types

realizable order types

abstract order types

great-circle arr.

great-pseudocircle arr.

line arrangement

pseudoline arr.
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realizable order types
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and for non-degenerate setting!

3



Number of Order Types

realizable order types

abstract order types

exp(4n log n+O(n)) = n4n+o(n)

exp(Θ(n2))

• Generalization #1: In higher dimensions
exp(Θ(n log n)) realizable, exp(Θ(nd)) abstract OT

• realizability ETR-complete

bounds tight, for general setting
and for non-degenerate setting!

3



Number of Order Types

realizable order types

abstract order types

exp(4n log n+O(n)) = n4n+o(n)

exp(Θ(n2))

• Generalization #1: In higher dimensions
exp(Θ(n log n)) realizable, exp(Θ(nd)) abstract OT

• realizability ETR-complete

• Generalization #2: exp(Θ(n log n)) circle arr.,
exp(Θ(n2)) pseudocircle arr.

bounds tight, for general setting
and for non-degenerate setting!

3



Coordinate Sizes

• some deg. OT are only realizable with irrational
coordinates [Grünbaum and Perles ’03]
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Coordinate Sizes

[Goodman, Pollack, Sturmfels ’89]

• every non-deg. OT on n points is realizable with
integer coords of size ≤ exp(exp(c1 · n))

• some non-deg. OTs on n points require
integer coords of size ≥ exp(exp(c2 · n))

• some deg. OT are only realizable with irrational
coordinates [Grünbaum and Perles ’03]
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Coordinate Sizes

[Goodman, Pollack, Sturmfels ’89]

• every non-deg. OT on n points is realizable with
integer coords of size ≤ exp(exp(c1 · n))

• some non-deg. OTs on n points require
integer coords of size ≥ exp(exp(c2 · n))

[Caraballo, D́ıaz-Báñez, Fabila-Monroy, Hidalgo-Toscano,
Leaños, Montejano ’18]

• ≥ n2n+o(n) non-deg. OTs on n2 × n2 grid

• ≥ n3n+o(n) non-deg. OTs on n2.5 × n2.5 grid

• some deg. OT are only realizable with irrational
coordinates [Grünbaum and Perles ’03]
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Coordinate Sizes

• a significant proportion of all n-point order types can be
stored as point sets with Θ(log n) bits per point

• what about Θ(nc)×Θ(nc) grid for c < 4?

• exponent is essentially best possible up to a lower-order
error term

Theorem (S.’21):
n4n+o(n) non-deg. OTs on Θ(n4)×Θ(n4) grid
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Sketch of the n2n−o(n) bound by Caraballo et al.’18

• Let us first construct n2n−o(n) non-deg. order types
on n points
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Sketch of the n2n−o(n) bound by Caraballo et al.’18

• For p prime, let Qp = {(i, i2 mod p) : i = 1, . . . , p}

• Bertrand’s postulate: ∃ prime p ≈ n
logn
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Sketch of the n2n−o(n) bound by Caraballo et al.’18

• Qp is non-degenerate, via Vandermonde determinant:

χ(a, b, c) = det

 1 1 1
a b c
a2 b2 c2

 = (b− a)(c− a)(c− b) 6= 0

• For p prime, let Qp = {(i, i2 mod p) : i = 1, . . . , p}

• Bertrand’s postulate: ∃ prime p ≈ n
logn

• Let us first construct n2n−o(n) non-deg. order types
on n points
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D

• U,D,L,R scaled copies of Qp

• p ≈ n
logn prime , and let α be a suitable constant

U

RL

p points at
distance αn logn

α · n2

width p

α · n2

α · n2 (very flat)
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D

• U,D,L,R scaled copies of Qp

• p ≈ n
logn prime , and let α be a suitable constant

U

RL

• U high above L,D,R (etc.)
⇒ non-degenerate
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D

• U,D,L,R scaled copies of Qp

• p ≈ n
logn prime , and let α be a suitable constant

U

RL

p points at
distance αn logn

α · n2

width p

• U high above L,D,R (etc.)

• p2 blocks, each (αn log n)2 points
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• idea: iteratively place remaining n− 4p points in blocks,
each assignment gives different OT

(relative position to L,U,D,R)
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• each of the ≤
(
n
2

)
lines between two already-placed

points is either vertical (and kills at most αn2) or
kills at most 1 point per x-coordinate (kills at most αn2).
Hence at most αn4 points are killed in total
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• idea: iteratively place remaining n− 4p points in blocks,
each assignment gives different OT

• a block is dead if no further points can be placed
(we only want non-degenerate OTs)

• each of the ≤
(
n
2

)
lines between two already-placed

points is either vertical (and kills at most αn2) or
kills at most 1 point per x-coordinate (kills at most αn2).
Hence at most αn4 points are killed in total

• ≥ p2 − αn4

(αn logn)2 ≥ c ·
n2

(logn)2 blocks alive at any time

n2

(logn)2
n2

α(logn)2
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• idea: iteratively place remaining n− 4p points in blocks,
each assignment gives different OT

• a block is dead if no further points can be placed
(we only want non-degenerate OTs)

• each of the ≤
(
n
2

)
lines between two already-placed

points is either vertical (and kills at most αn2) or
kills at most 1 point per x-coordinate (kills at most αn2).
Hence at most αn4 points are killed in total

• ≥ p2 − αn4

(αn logn)2 ≥ c ·
n2

(logn)2 blocks alive at any time

• ⇒ # possibilities ≥
(
c · n2

(logn)2

)n−4p

= n2n−o(n)
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Construction for n4n−o(n)

• similar idea, but different placement of U,D,L,R and
more technical
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Construction for n4n−o(n)

αn2αn2 αn3
αn log n
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• some technical details (blocks behave ”nicely”) . . .

a

b

c

d

αn2αn2 αn3
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`1

`2 δ
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• (p2 − p)2 ≈ p4 ≈ n4

(logn)4 blocks
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• some technical details (blocks behave ”nicely”) . . .

• with α ≈ n,

# possibilities ≈
(
c · n4

(logn)4

)n−4p

= n4n−o(n)

Theorem (S.’21):
n4n+o(n) non-deg. OTs on Θ(n4)×Θ(n4) grid

• (p2 − p)2 ≈ p4 ≈ n4

(logn)4 blocks
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Thank you very much for your attention!
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