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point set {p1,...,p,} induces triple-orientations
X - [n]S — {—I_)Ov _}
equiv. classes are called order types
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x(a, b, c) # 0 for a, b, c distinct
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point set {p1,...,p,} induces triple-orientations
X - [n]S — {—I_)Ov _}
equiv. classes are called order types
non-degenerated if no three points on a line, i.e.,
x(a, b, c) # 0 for a, b, c distinct
mapping x : [n]° — {+,0, =} fulfills chirotope axioms:

e alternating: X(iﬂ(l)viﬂ(Q)aiw(B)) = x(i1,12,13) - sgn(m)

e exchange axioms:

if X(yivaj27 - 7337“) | X<y17 ey Yi—1, L1 Yit1, - - 7y7“) >0
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equiv. classes are called abstract order types
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line arrangement

realizable order types .
great-circle arr.
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Number of Order Types

realizable order types exp(4nlogn + O(n)) = nanto(n)

bounds tight, for general setting
and for non-degenerate setting!

abstract order types exp(@(n2))

e realizability ETR-complete

e Generalization #1: In higher dimensions
exp(©(nlogn)) realizable, exp(©(n)) abstract OT

o Generalization #2: exp(©(nlogn)) circle arr.,
exp(©(n?)) pseudocircle arr.
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Coordinate Sizes

e some deg. OT are only realizable with irrational
coordinates [Grinbaum and Perles '03]

[Goodman, Pollack, Sturmfels "89]

e every non-deg. OT on n points is realizable with
integer coords of size < exp(exp(cy - n))

e some non-deg. OTs on n points require
integer coords of size > exp(exp(cy - n))

[Caraballo, Diaz-Banez, Fabila-Monroy, Hidalgo-Toscano,
Leafos, Montejano 18]
o > 127" non-deg. OTs on n? x n? grid

o > 1?72 non-deg. OTs on n?° x n??° grid



Coordinate Sizes

Theorem (S.’21):
n4"+om) non-deg. OTs on O(n*) x O(n*) grid

e exponent is essentially best possible up to a lower-order
error term

e a significant proportion of all n-point order types can be
stored as point sets with ©(logn) bits per point

e what about O(n¢) x ©(n¢) grid for ¢ < 47
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Sketch of the n?"~°(") bound by Caraballo et al.’18

o Let us first construct n>"~°("™) non-deg. order types
on n points

n
logn

e Bertrand’s postulate: 3 prime p ~

o For p prime, let Q, = {(¢,7* mod p):i=1,...,p}

e (), is non-degenerate, via Vandermonde determinant:

I 1 1
x(a, b, c) = det (a b c) =(b—-—a)(c—a)(c—b) #0

a® b2 2
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* p~ —— prime, and let o be a suitable constant
ogn

o U, D, L,R scaled copies of (),
e U high above L,DWK
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DR % prime , and let o be a suitable constant

U,D, L, R scaled copies of (),

"N
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U high above L, D, R (etc.) ¢
p? blocks, each (anlogmn)? points
L R
A p points at t : -
distance an logn
2 o o
@ ®
Y —@ 4
<>
width p
s 1 T ¢D
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idea: iteratively place remaining n — 4p points in blocks,
each assignment gives different OT

a block is dead if no further points can be placed
(we only want non-degenerate OTs)

each of the < (g) lines between two already-placed
points is either vertical (and kills at most an?) or

kills at most 1 point per z-coordinate (kills at most an?).
Hence at most an® points are killed in total

4 2 . .
> p? — anloem? = € Tognyz blocks alive at any time

2

n—4p
= # possibilities > (c- <1o§n>2) = p2n—on)




Construction for n4nr——o(®)

e similar idea, but different placement of U, D, L, R and
more technical
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o (pP —p)P~ptx (lngLiLn,)‘l blocks

e some technical details (blocks behave "nicely”) ...

an an amn



o (p° —p)=ptx (logi)él blocks

e some technical details (blocks behave "nicely”) ...

o with a =~ n,
4

n—4p
# possibilities =~ (c- (1o§n)4) — pdn—o(n)

Theorem (S.’21):
n4"+om) non-deg. OTs on O(n*) x O(n*) grid




Thank you very much for your attention!
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