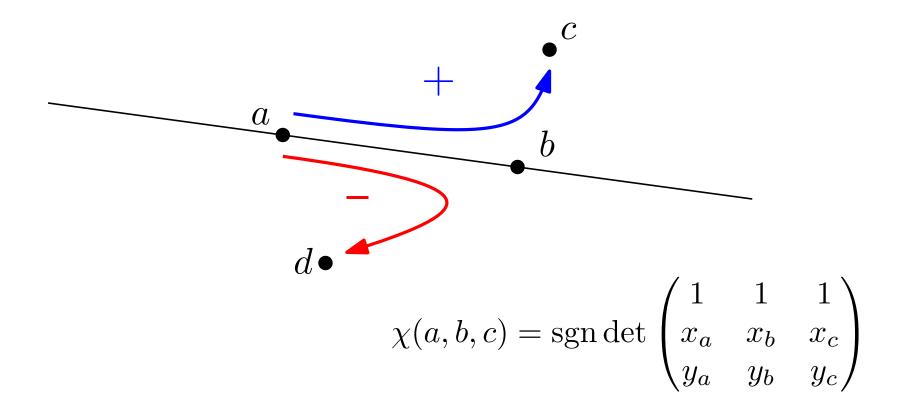


Many Order Types on Integer Grids of Polynomial Size

Manfred Scheucher

• point set $\{p_1,\ldots,p_n\}$ induces triple-orientations $\chi:[n]^3 \to \{+,0,-\}$



- point set $\{p_1,\ldots,p_n\}$ induces triple-orientations $\chi:[n]^3 \to \{+,0,-\}$
- equiv. classes are called order types

- point set $\{p_1,\ldots,p_n\}$ induces triple-orientations $\chi:[n]^3 \to \{+,0,-\}$
- equiv. classes are called order types
- non-degenerated if no three points on a line, i.e., $\chi(a,b,c) \neq 0$ for a,b,c distinct

- point set $\{p_1,\ldots,p_n\}$ induces triple-orientations $\chi:[n]^3 \to \{+,0,-\}$
- equiv. classes are called order types
- non-degenerated if no three points on a line, i.e., $\chi(a,b,c) \neq 0$ for a,b,c distinct
- mapping $\chi:[n]^3 \to \{+,0,-\}$ fulfills *chirotope axioms*:
 - alternating: $\chi(i_{\pi(1)}, i_{\pi(2)}, i_{\pi(3)}) = \chi(i_1, i_2, i_3) \cdot \operatorname{sgn}(\pi)$
 - exchange axioms: if $\chi(y_i, x_2, \dots, x_r) \cdot \chi(y_1, \dots, y_{i-1}, x_1, y_{i+1}, \dots, y_r) \geq 0$ holds for all i, then $\chi(x_1, \dots, x_r) \cdot \chi(y_1, \dots, y_r) \geq 0$

- point set $\{p_1,\ldots,p_n\}$ induces triple-orientations $\chi:[n]^3 \to \{+,0,-\}$
- equiv. classes are called order types
- non-degenerated if no three points on a line, i.e., $\chi(a,b,c) \neq 0$ for a,b,c distinct
- mapping $\chi:[n]^3 \to \{+,0,-\}$ fulfills *chirotope axioms*:
 - alternating: $\chi(i_{\pi(1)}, i_{\pi(2)}, i_{\pi(3)}) = \chi(i_1, i_2, i_3) \cdot \operatorname{sgn}(\pi)$
 - exchange axioms: if $\chi(y_i, x_2, \dots, x_r) \cdot \chi(y_1, \dots, y_{i-1}, x_1, y_{i+1}, \dots, y_r) \geq 0$ holds for all i, then $\chi(x_1, \dots, x_r) \cdot \chi(y_1, \dots, y_r) \geq 0$
- equiv. classes are called abstract order types

realizable order types

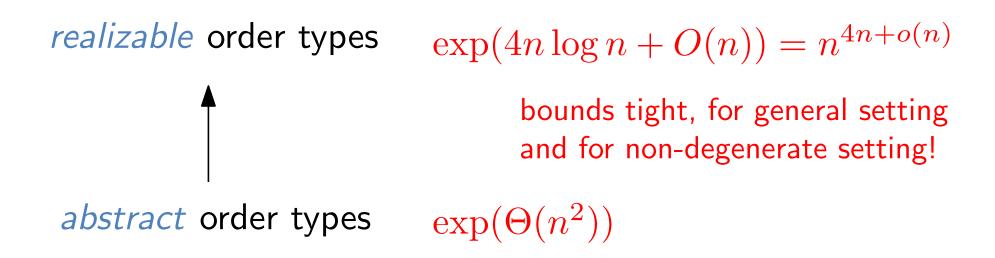
abstract order types

line arrangement great-circle arr.

*pseudo*line arr. great-*pseudo*circle arr.

realizable order types $\exp(4n\log n + O(n)) = n^{4n+o(n)}$ $abstract \text{ order types} \qquad \exp(\Theta(n^2))$

realizable order types $\exp(4n\log n + O(n)) = n^{4n+o(n)}$ bounds tight, for general setting and for non-degenerate setting! $\exp(\Theta(n^2))$



realizability ETR-complete

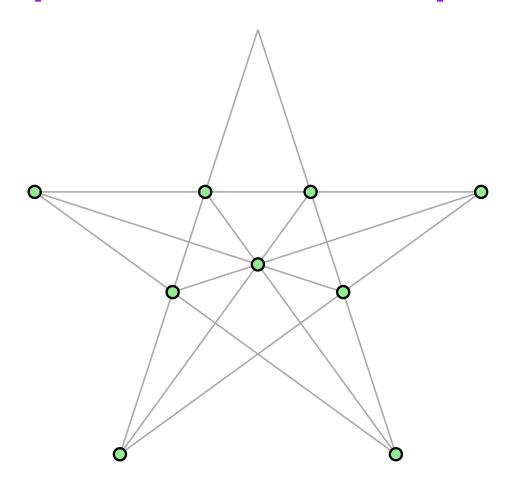
```
realizable order types \exp(4n\log n + O(n)) = n^{4n+o(n)} bounds tight, for general setting and for non-degenerate setting! \exp(\Theta(n^2))
```

- realizability ETR-complete
- Generalization #1: In higher dimensions $\exp(\Theta(n \log n))$ realizable, $\exp(\Theta(n^d))$ abstract OT

realizable order types $\exp(4n\log n + O(n)) = n^{4n+o(n)}$ bounds tight, for general setting and for non-degenerate setting! $\exp(\Theta(n^2))$

- realizability ETR-complete
- Generalization #1: In higher dimensions $\exp(\Theta(n \log n))$ realizable, $\exp(\Theta(n^d))$ abstract OT
- Generalization #2: $\exp(\Theta(n \log n))$ circle arr., $\exp(\Theta(n^2))$ pseudocircle arr.

 some deg. OT are only realizable with irrational coordinates [Grünbaum and Perles '03]



 some deg. OT are only realizable with irrational coordinates [Grünbaum and Perles '03]

[Goodman, Pollack, Sturmfels '89]

- every non-deg. OT on n points is realizable with integer coords of size $\leq \exp(\exp(c_1 \cdot n))$
- some non-deg. OTs on n points require integer coords of size $\geq \exp(\exp(c_2 \cdot n))$

 some deg. OT are only realizable with irrational coordinates [Grünbaum and Perles '03]

[Goodman, Pollack, Sturmfels '89]

- every non-deg. OT on n points is realizable with integer coords of size $\leq \exp(\exp(c_1 \cdot n))$
- some non-deg. OTs on n points require integer coords of size $\geq \exp(\exp(c_2 \cdot n))$

[Caraballo, Díaz-Báñez, Fabila-Monroy, Hidalgo-Toscano, Leaños, Montejano '18]

- $\geq n^{2n+o(n)}$ non-deg. OTs on $n^2 \times n^2$ grid
- $\geq n^{3n+o(n)}$ non-deg. OTs on $n^{2.5} \times n^{2.5}$ grid

Theorem (S.'21): $n^{4n+o(n)} \text{ non-deg. OTs on } \Theta(n^4) \times \Theta(n^4) \text{ grid}$

- exponent is essentially best possible up to a lower-order error term
- ullet a significant proportion of all n-point order types can be stored as point sets with $\Theta(\log n)$ bits per point
- what about $\Theta(n^c) \times \Theta(n^c)$ grid for c < 4?

• Let us first construct $n^{2n-o(n)}$ non-deg. order types on n points

• Let us first construct $n^{2n-o(n)}$ non-deg. order types on n points

• Bertrand's postulate: \exists prime $p \approx \frac{n}{\log n}$

• Let us first construct $n^{2n-o(n)}$ non-deg. order types on n points

- Bertrand's postulate: \exists prime $p \approx \frac{n}{\log n}$
- For p prime, let $Q_p = \{(i, i^2 \mod p) : i = 1, \dots, p\}$

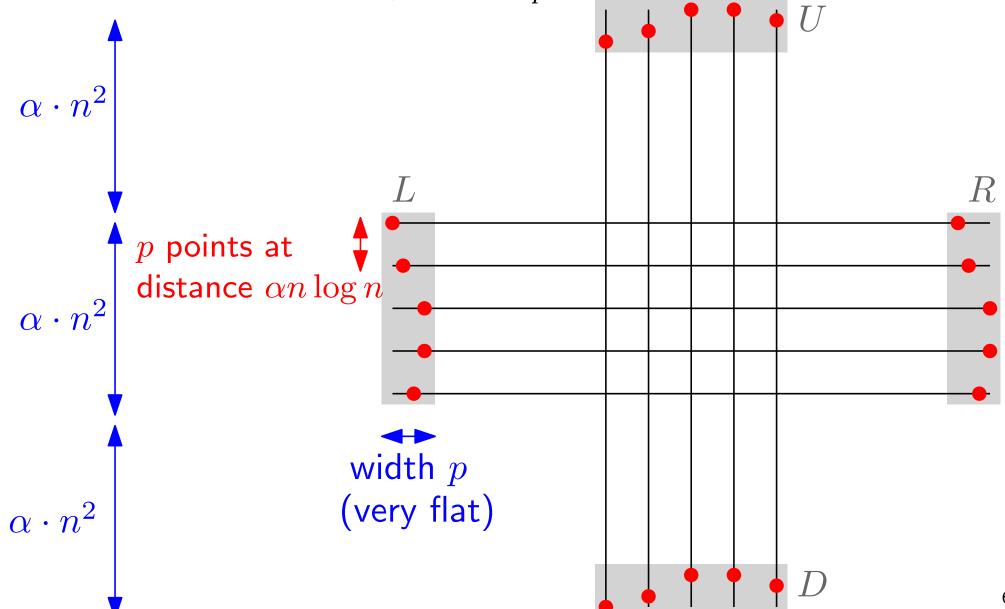
• Let us first construct $n^{2n-o(n)}$ non-deg. order types on n points

- Bertrand's postulate: \exists prime $p \approx \frac{n}{\log n}$
- For p prime, let $Q_p = \{(i, i^2 \mod p) : i = 1, \dots, p\}$
- Q_p is non-degenerate, via Vandermonde determinant:

$$\chi(a,b,c) = \det \begin{pmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{pmatrix} = (b-a)(c-a)(c-b) \neq 0$$

ullet $ppprox rac{n}{\log n}$ prime , and let lpha be a suitable constant

• U, D, L, R scaled copies of Q_p

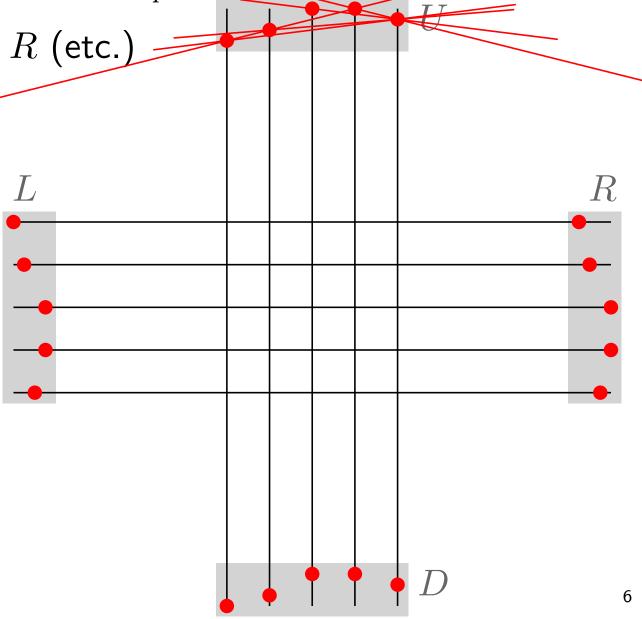


• $p pprox rac{n}{\log n}$ prime , and let ${\color{blue} lpha}$ be a suitable constant

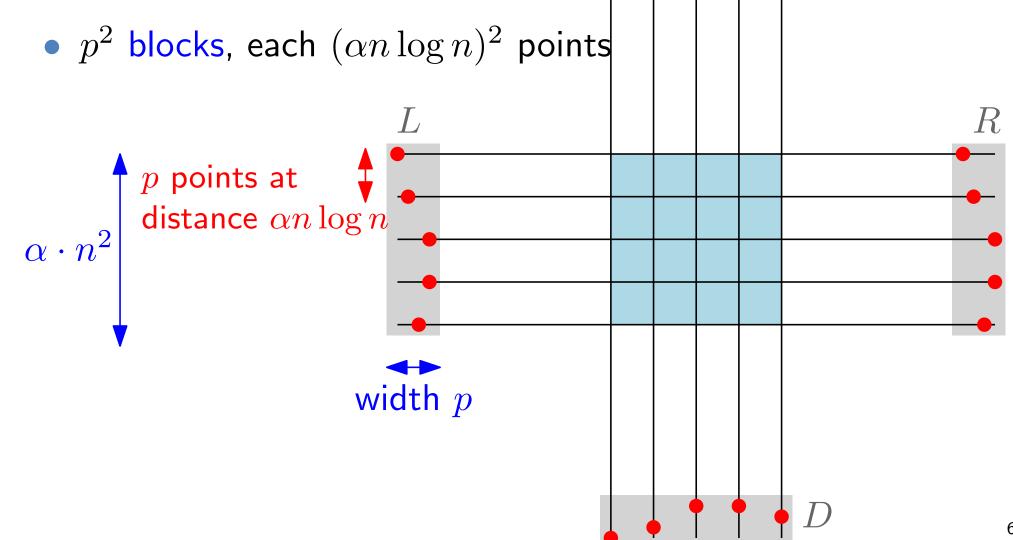
• U, D, L, R scaled copies of Q_p

• U high above L, D, R (etc.)

⇒ non-degenerate



- ullet $ppprox rac{n}{\log n}$ prime , and let lpha be a suitable constant
- U, D, L, R scaled copies of Q_p
- U high above L, D, R (etc.)



• idea: iteratively place remaining n-4p points in blocks, each assignment gives different OT

(relative position to L, U, D, R)

- idea: iteratively place remaining n-4p points in blocks, each assignment gives different OT
- a block is dead if no further points can be placed (we only want non-degenerate OTs)

- idea: iteratively place remaining n-4p points in blocks, each assignment gives different OT
- a block is dead if no further points can be placed (we only want non-degenerate OTs)
- each of the $\leq \binom{n}{2}$ lines between two already-placed points is either vertical (and kills at most αn^2) or kills at most 1 point per x-coordinate (kills at most αn^2). Hence at most αn^4 points are killed in total

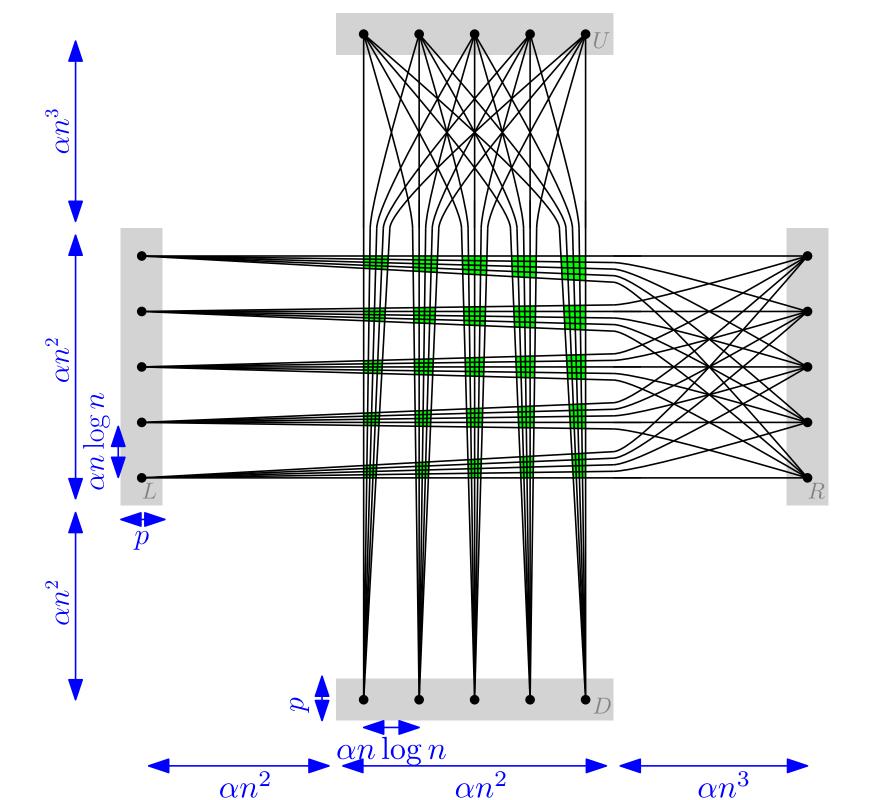
- idea: iteratively place remaining n-4p points in blocks, each assignment gives different OT
- a block is dead if no further points can be placed (we only want non-degenerate OTs)
- each of the $\leq \binom{n}{2}$ lines between two already-placed points is either vertical (and kills at most αn^2) or kills at most 1 point per x-coordinate (kills at most αn^2). Hence at most αn^4 points are killed in total

•
$$\geq p^2 - \frac{\alpha n^4}{(\alpha n \log n)^2} \geq c \cdot \frac{n^2}{(\log n)^2}$$
 blocks alive at any time
$$\frac{n^2}{(\log n)^2} = \frac{n^2}{\alpha (\log n)^2}$$

- idea: iteratively place remaining n-4p points in blocks, each assignment gives different OT
- a block is dead if no further points can be placed (we only want non-degenerate OTs)
- each of the $\leq \binom{n}{2}$ lines between two already-placed points is either vertical (and kills at most αn^2) or kills at most 1 point per x-coordinate (kills at most αn^2). Hence at most αn^4 points are killed in total
- $\geq p^2 \frac{\alpha n^4}{(\alpha n \log n)^2} \geq c \cdot \frac{n^2}{(\log n)^2}$ blocks alive at any time
- \Rightarrow # possibilities $\geq \left(c \cdot \frac{n^2}{(\log n)^2}\right)^{n-4p} = n^{2n-o(n)}$

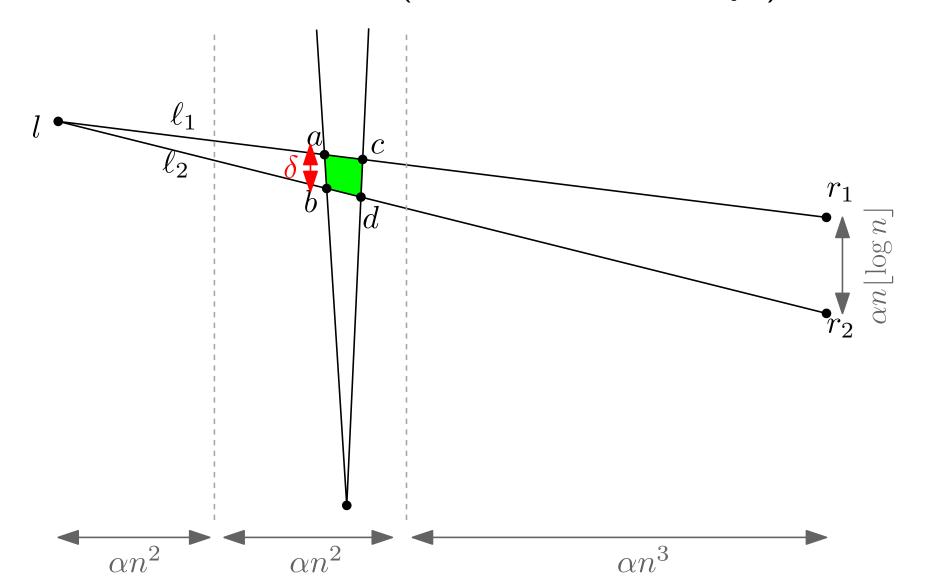
Construction for $n^{4n-o(n)}$

ullet similar idea, but different placement of U,D,L,R and more technical



•
$$(p^2-p)^2 \approx p^4 \approx \frac{n^4}{(\log n)^4}$$
 blocks

some technical details (blocks behave "nicely") . . .



- $(p^2-p)^2 \approx p^4 \approx \frac{n^4}{(\log n)^4}$ blocks
- some technical details (blocks behave "nicely") . . .
- with $\alpha \approx n$, # possibilities $pprox \left(c \cdot \frac{n^4}{(\log n)^4}\right)^{n-4p} = n^{4n-o(n)}$

Theorem (S.'21): $n^{4n+o(n)}$ non-deg. OTs on $\Theta(n^4) \times \Theta(n^4)$ grid

Thank you very much for your attention!

