

A superlinear lower bound on the number of 5-holes

Oswin Aichholzer¹, Martin Balko^{2,3}, Thomas Hackl¹, Jan Kynčl², Irene Parada¹, Manfred Scheucher^{1,3}, Pavel Valtr^{2,3}, and Birgit Vogtenhuber¹

¹ Graz University of Technology

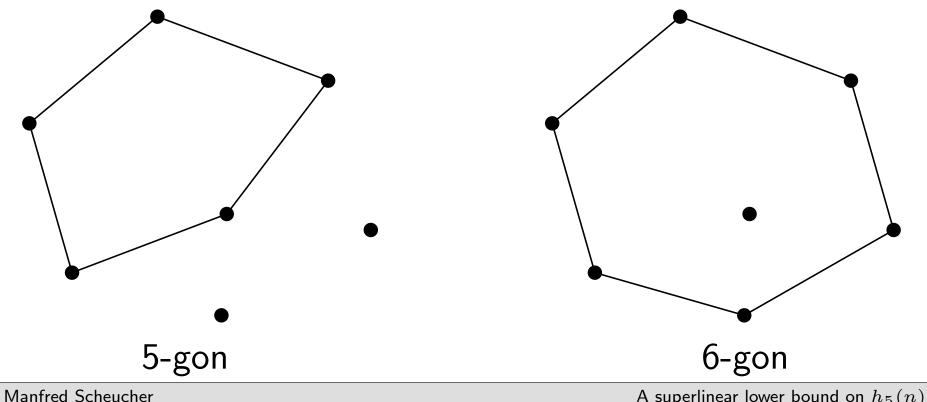
² Charles University, Prague

³ Alfréd Rényi Institute of Mathematics, Budapest

Introduction: k-gons

a finite point set P in the plane is in general position if \nexists collinear points in P

a k-gon (in P) is the vertex set of a convex k-gon



2

Introduction: *k*-gons

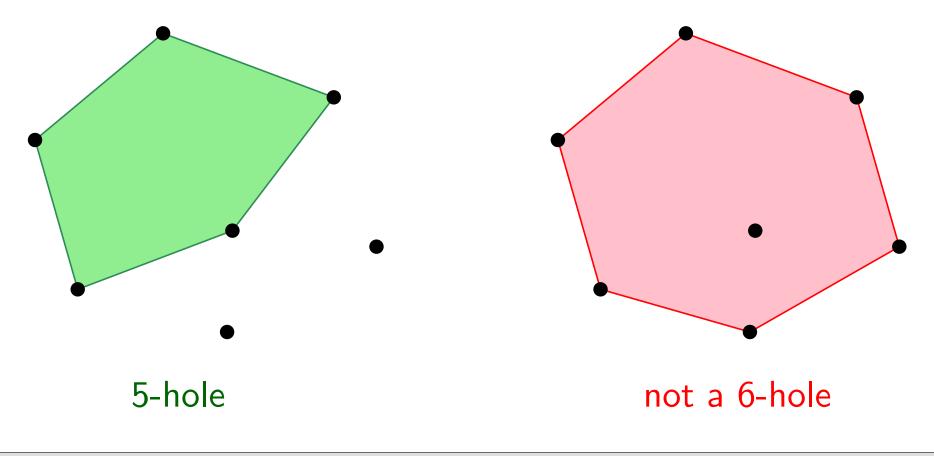
a finite point set P in the plane is in general position if \nexists collinear points in P

a k-gon (in P) is the vertex set of a convex k-gon

Theorem (Erdős and Szekeres '35).

For every $k \ge 3$, there is a smallest integer n = n(k) such that every set of at least n points in general position contains a k-gon.

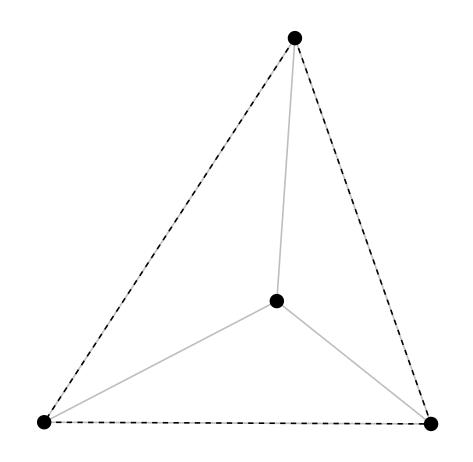
a *k*-hole (in P) is the vertex set of a convex *k*-gon containing no other points of P



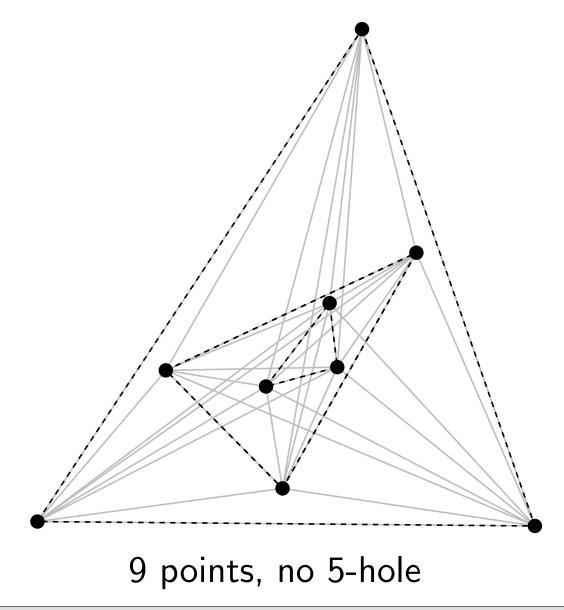
a *k*-hole (in P) is the vertex set of a convex *k*-gon containing no other points of P

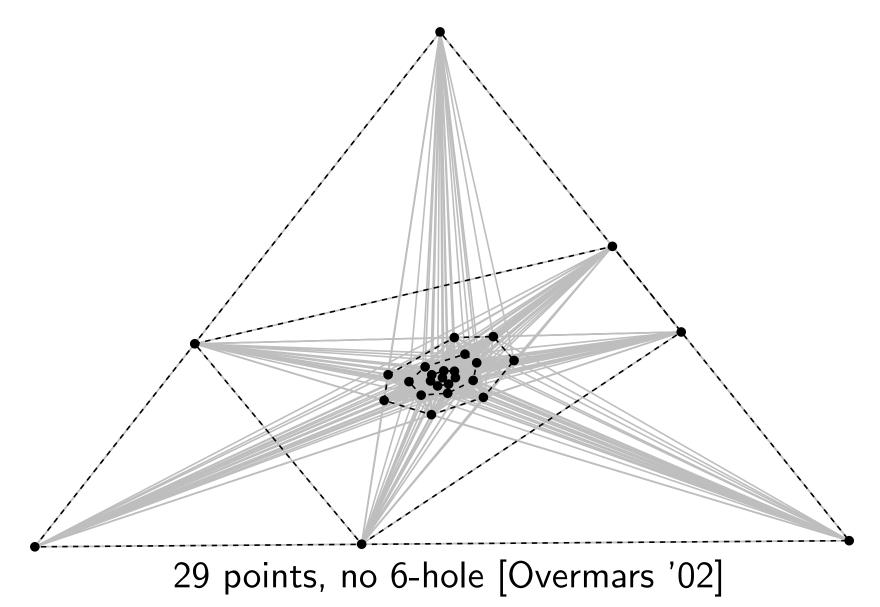
 $\forall k$, is there a k-hole in every sufficiently large point set? [Erdős, 1970's]

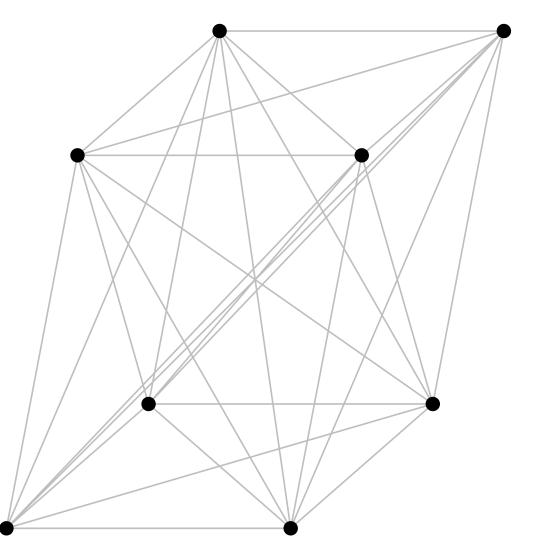
- 3 points $\Rightarrow \exists$ 3-hole
- 5 points $\Rightarrow \exists$ 4-hole
- 10 points $\Rightarrow \exists$ 5-hole [Harborth '78]
- ∃ arbitrarily large point sets with no 7-hole [Horton '83]
- Sufficiently large point sets ⇒ ∃ 6-hole
 [Gerken '08 and Nicolás '07, independently]



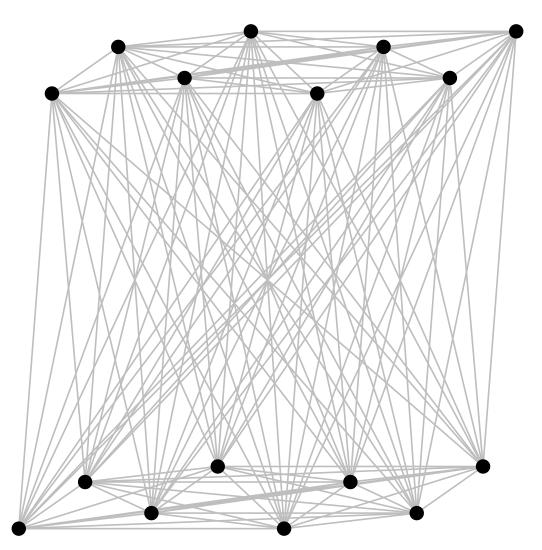
4 points, no 4-hole



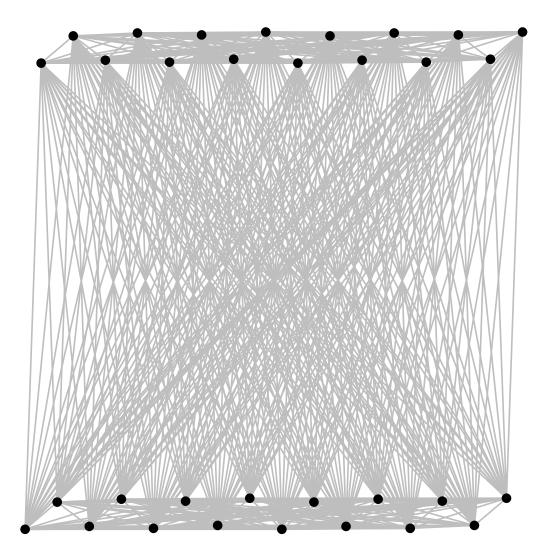




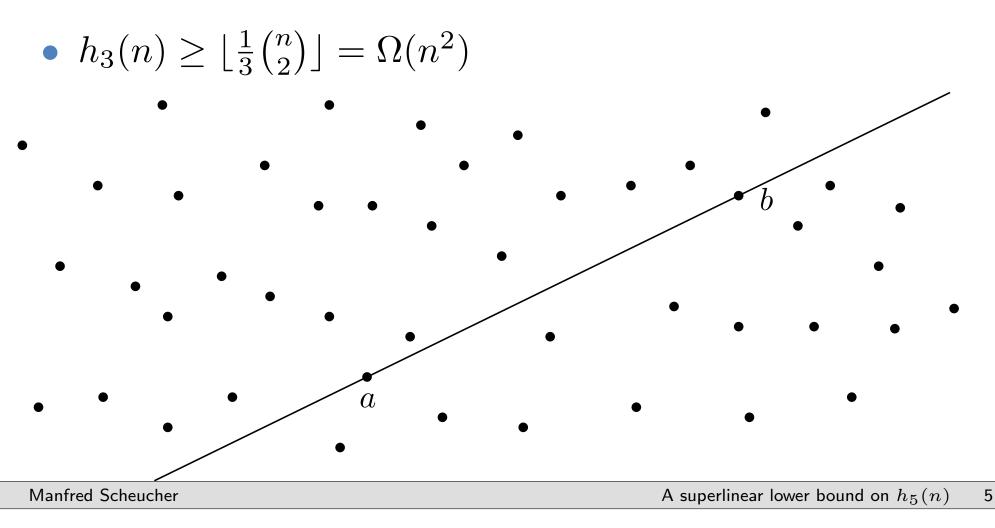
Horton's construction for $n = 2^3$ points, no 7-holes

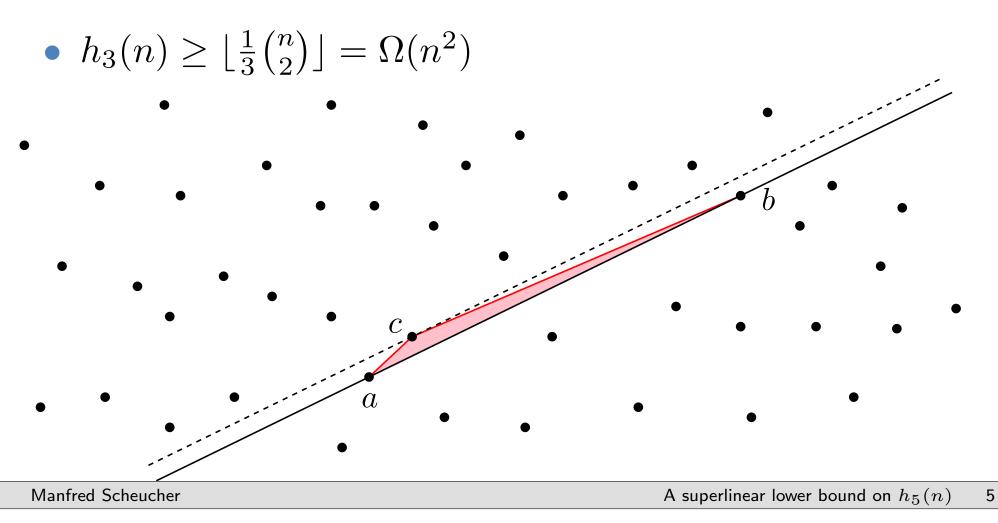


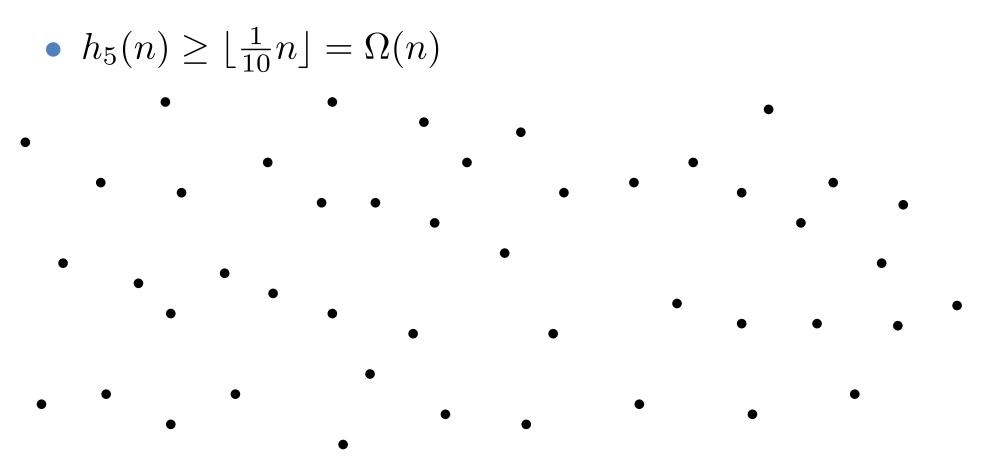
Horton's construction for $n = 2^4$ points, no 7-holes

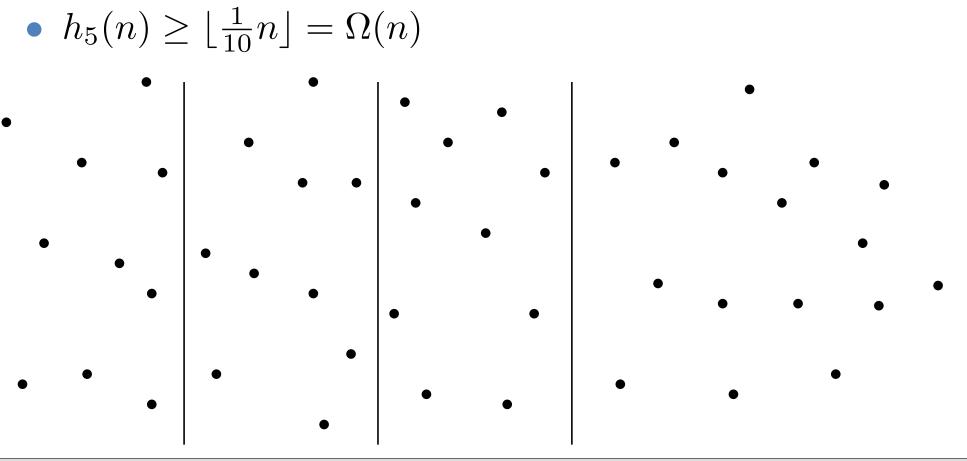


Horton's construction for $n = 2^5$ points, no 7-holes

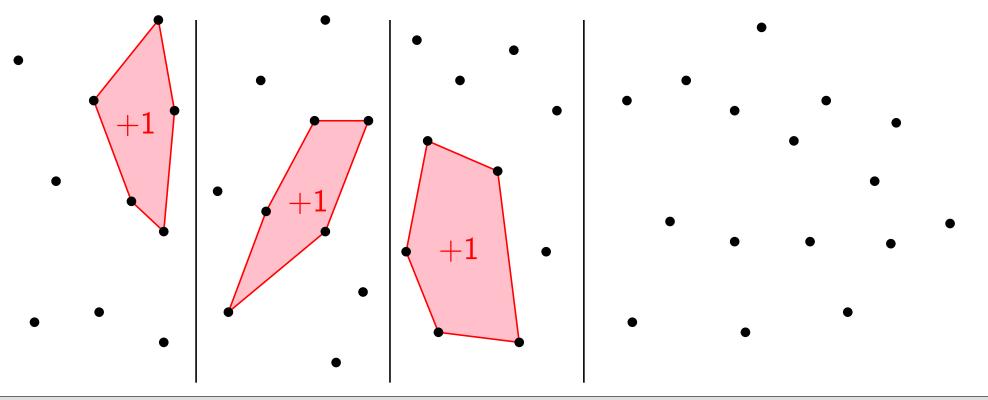








•
$$h_5(n) \ge \lfloor \frac{1}{10}n \rfloor = \Omega(n)$$



 $h_k(n) =$ minimum number of k-holes among all sets of n points in the plane in general position

[Bárány and Füredi '87, Bárány and Valtr '04]

•
$$h_3(n)$$
 and $h_4(n)$ both $\Theta(n^2)$

•
$$h_k(n) = 0$$
 for $k \ge 7$ [Horton '83]

•
$$h_5(n)$$
 and $h_6(n)$ both $\Omega(n)$ and $O(n^2)$
[Harborth '78] [Gerken '08, Nicolás '07]

 $h_k(n) =$ minimum number of k-holes among all sets of n points in the plane in general position

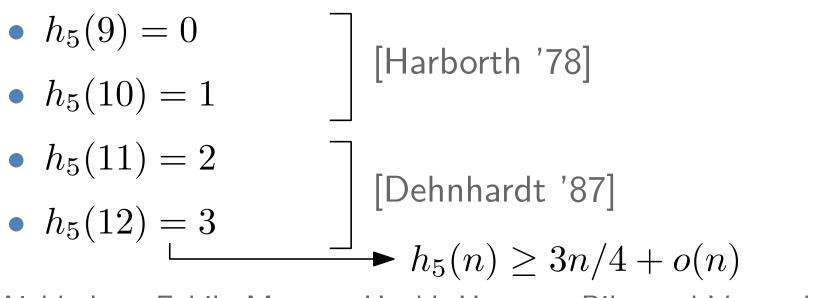
Conjecture 1: $h_5(n)$ is quadratic in n.

Conjecture 2: $h_5(n)$ is superlinear in n.

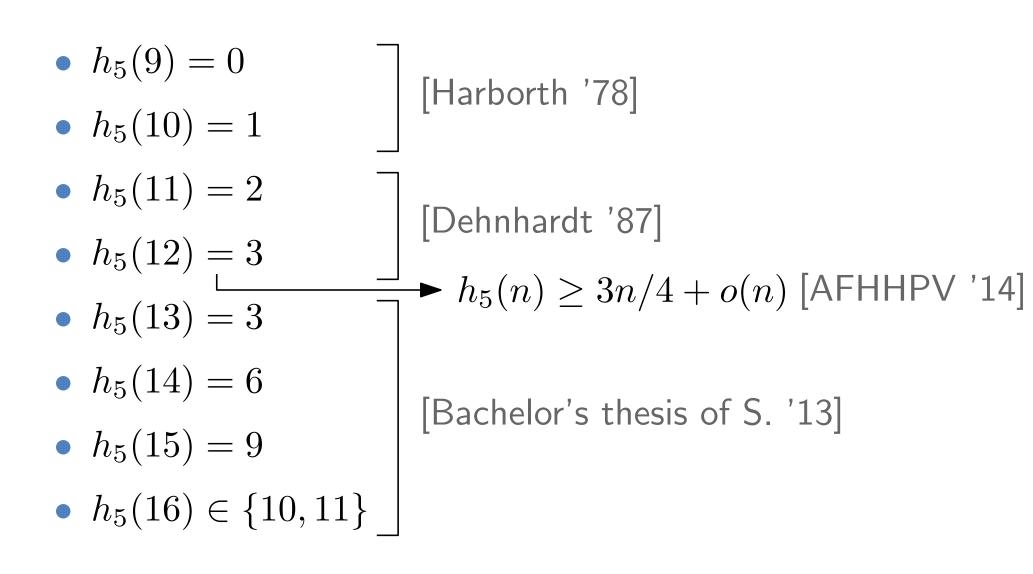
- $h_5(9) = 0$
- $h_5(10) = 1$
- $h_5(11) = 2$
- $h_5(12) = 3$

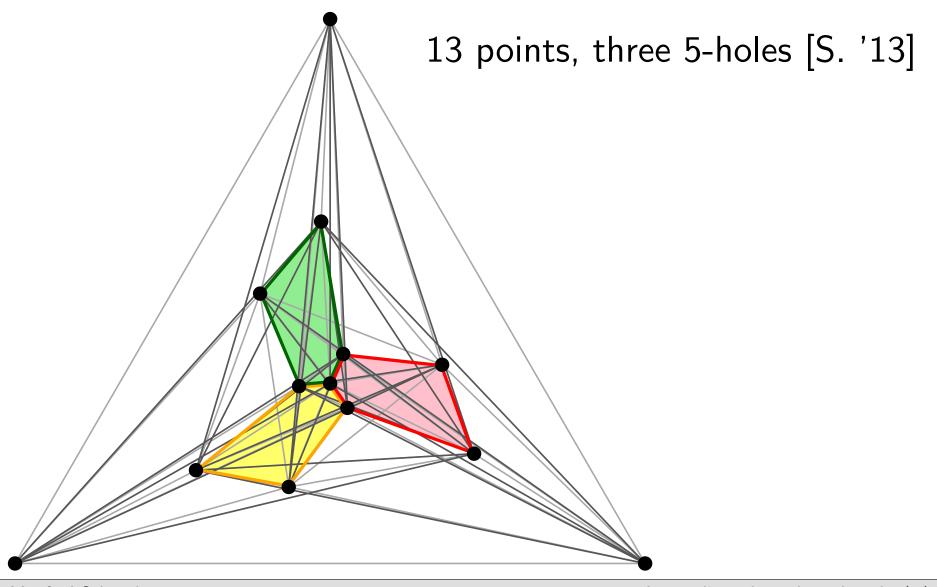
[Harborth '78]

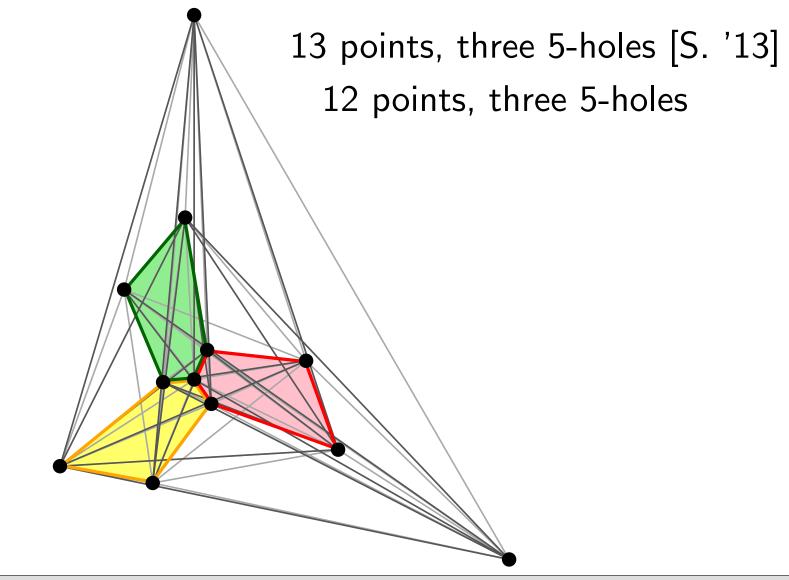
[Dehnhardt '87]

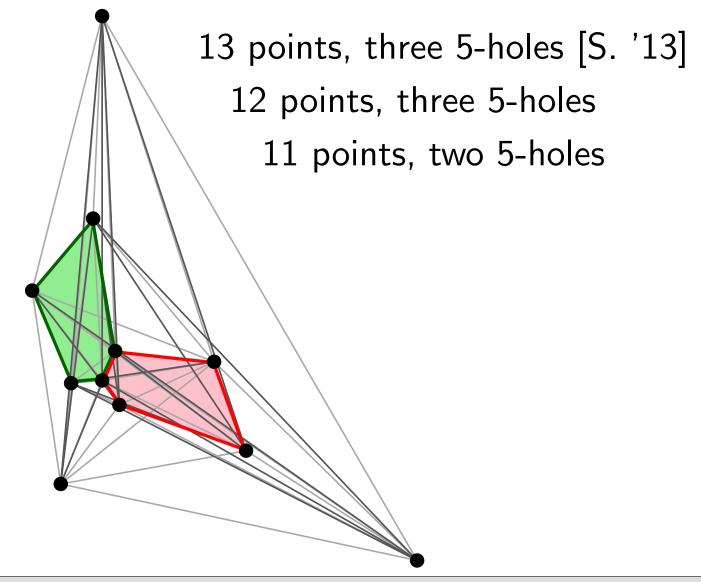


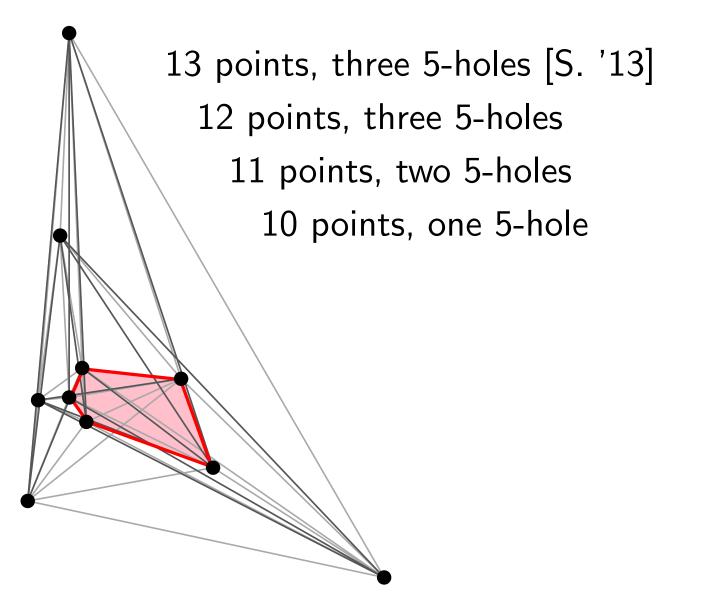
[Aichholzer, Fabila-Monroy, Hackl, Huemer, Pilz, and Vogtenhuber '14]

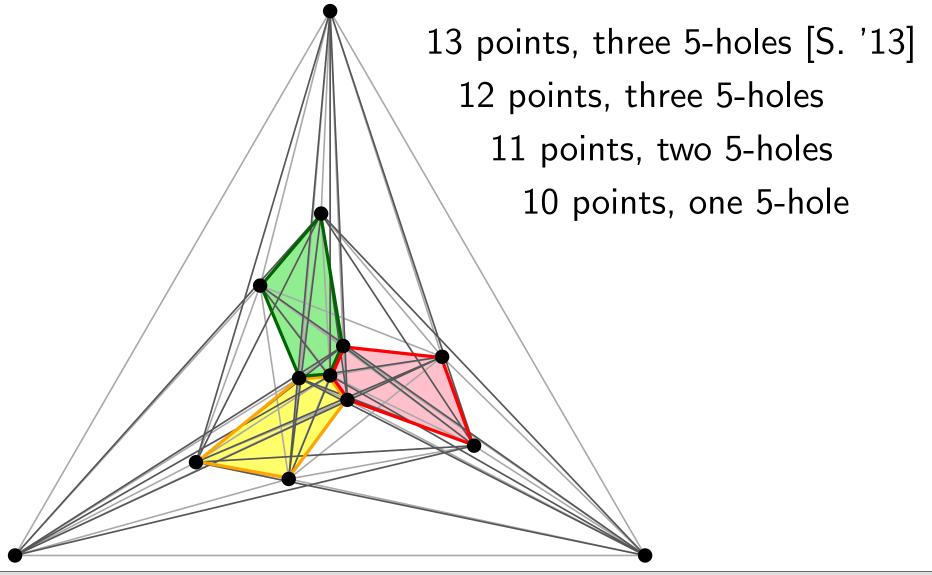












Our Contribution

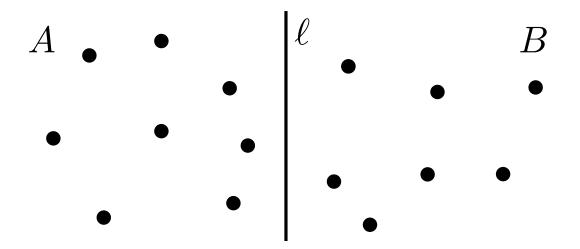
Theorem 1: There is a fixed constant c > 0 such that for every integer $n \ge 10$ we have $h_5(n) \ge cn \log^{4/5} n$.

This solves Conjecture 2.

Conjecture 1 is still open.

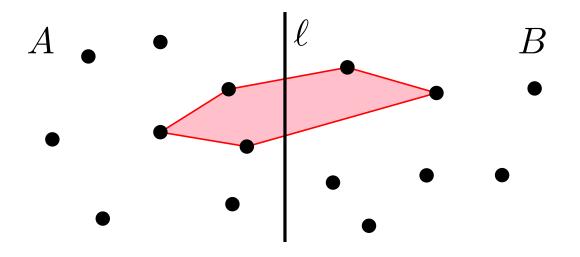
Our Contribution

 $P=A\cup B$ is $\ell\text{-divided}$ if the line ℓ contains no point of P and partitions P into two non-empty subsets A and B



Our Contribution

 $P=A\cup B$ is $\ell\text{-divided}$ if the line ℓ contains no point of P and partitions P into two non-empty subsets A and B

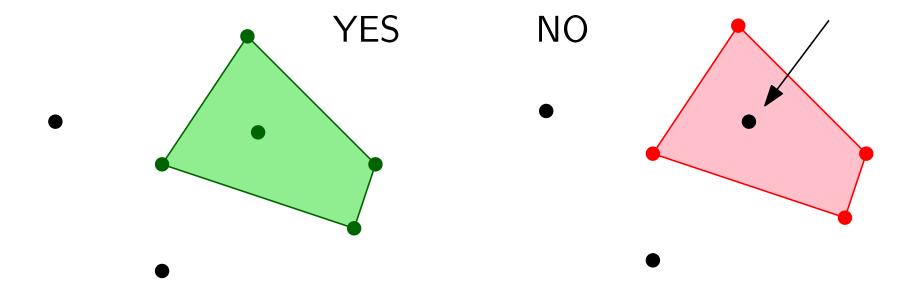


Theorem 2: Let $P = A \cup B$ be an ℓ -divided set with $|A|, |B| \ge 5$ and with neither A nor B in convex position. Then there is an ℓ -divided 5-hole in P.

The proof is computer-assisted.

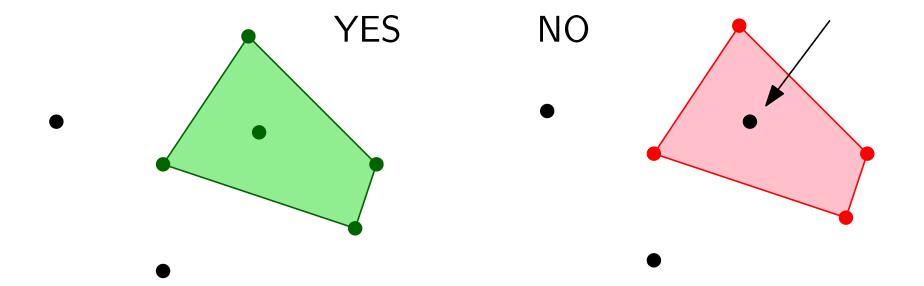
Islands

an *island* (of P) is a subset Q of P with $P \cap \operatorname{conv}(Q) = Q$



Islands

an *island* (of P) is a subset Q of P with $P \cap \operatorname{conv}(Q) = Q$



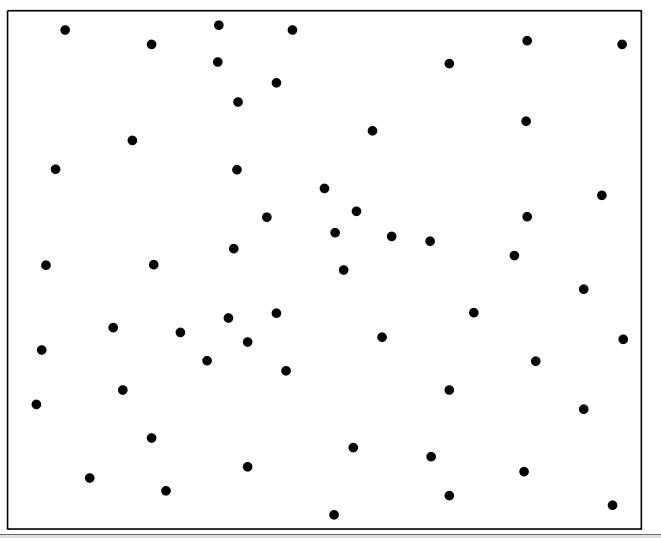
Observation: k-holes in an island of P are also k-holes in P

Theorem 1: $\exists c > 0$ s.t. $h_5(n) \ge cn \log^{4/5} n$ for $n \ge 10$.

Sketch of proof: We proceed by induction on $t = \log_2 n$.

Induction Base $(t = 5^5)$: We have $n = 2^t > 10$. Since $h_5(n) \ge h_5(10) = 1$, there are at least $c \cdot n \log_2^{4/5} n$ 5-holes in P for c small enough.

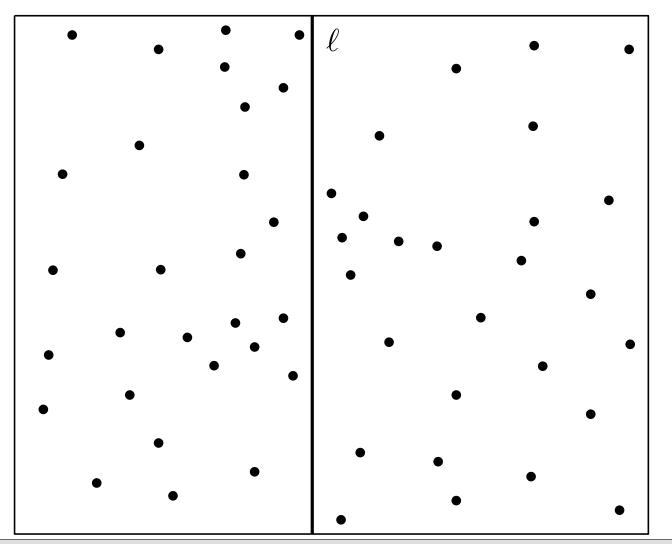
Induction Step ($t > 5^5$):



Manfred Scheucher

A superlinear lower bound on $h_5(n)$ 11

Induction Step ($t > 5^5$):

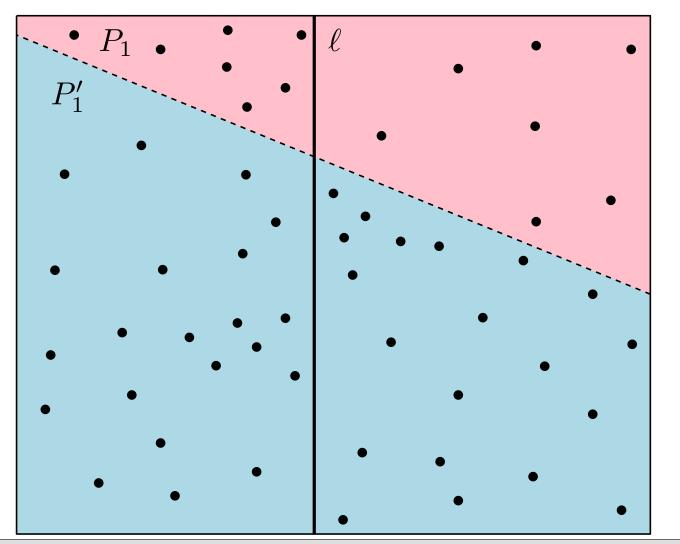


We partition

$$P = A \cup B$$

such that
 $|A| = \frac{n}{2} = |B|$

Induction Step $(t > 5^5)$:

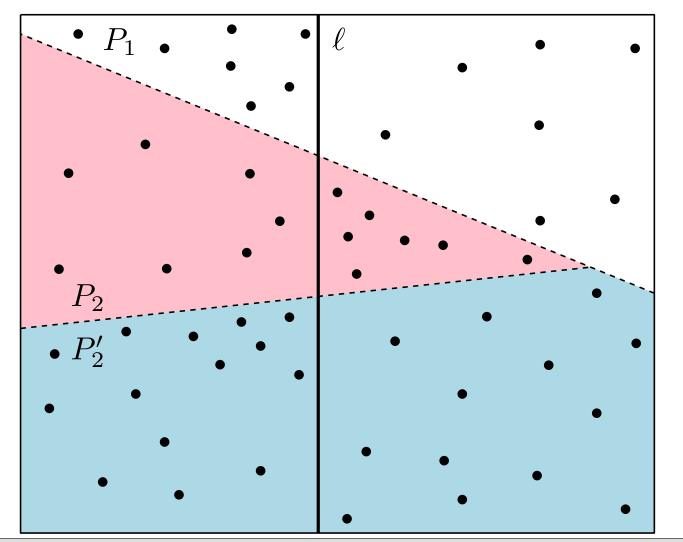


```
We partition

P = P_1 \cup P'_1
such that

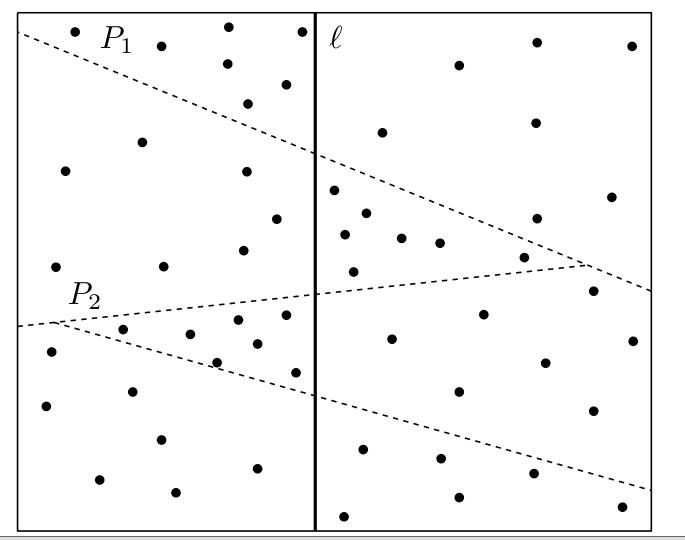
|A \cap P_1| = r
|B \cap P_1| = r
```


Induction Step $(t > 5^5)$:



We partition $P_1 = P_2 \cup P'_2$ such that $|A \cap P_2| = r$ $|B \cap P_2| = r$

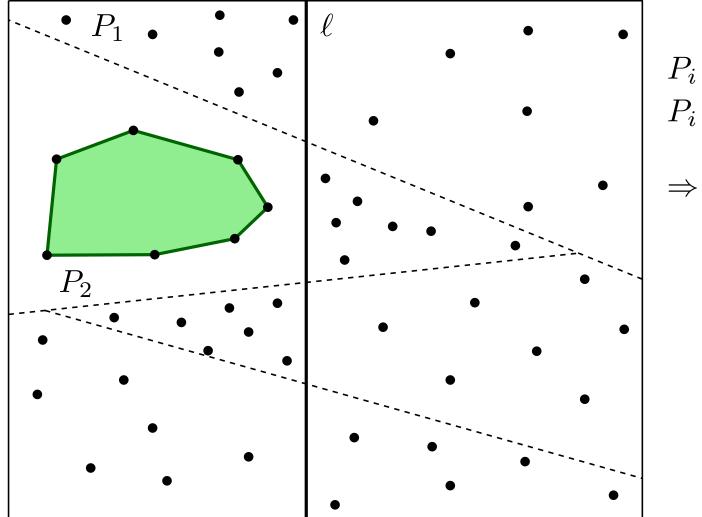
Induction Step ($t > 5^5$):



and so on...

$$\Rightarrow s = \frac{n}{2r}$$
 islands P_1, \dots, P_s

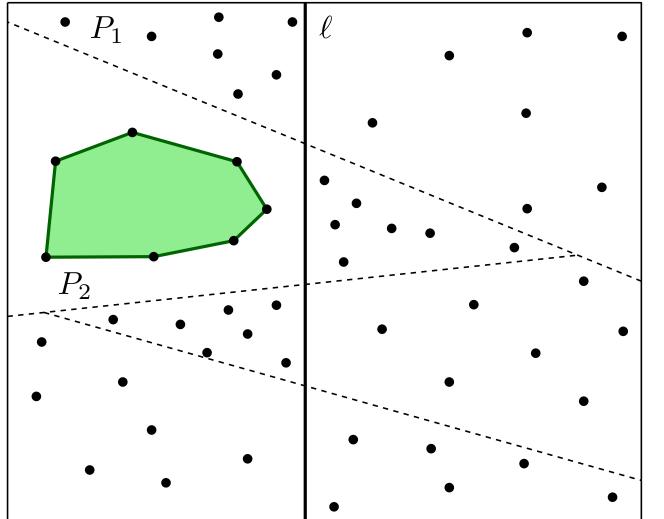
Induction Step $(t > 5^5)$:



 $P_i \cap A$ convex or $P_i \cap B$ convex

$$\Rightarrow \begin{pmatrix} r \\ 5 \end{pmatrix}$$
 5-holes

Induction Step $(t > 5^5)$:

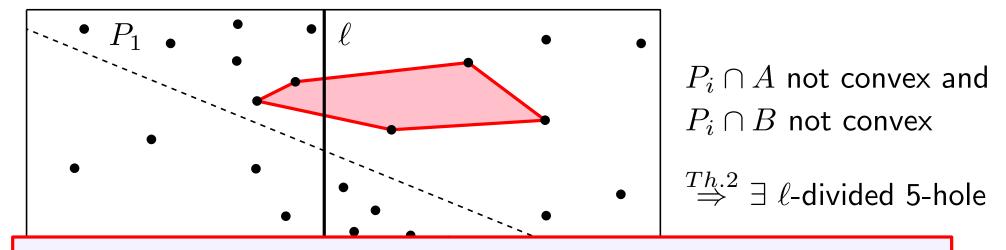


 $P_i \cap A$ convex or $P_i \cap B$ convex

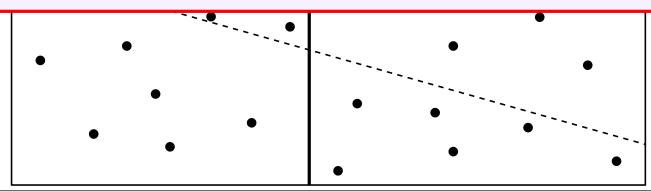
 $\Rightarrow \binom{r}{5}$ 5-holes

If this is the case for $\frac{s}{2}$ of the islands P_i , we count at least $\frac{s}{2} \binom{r}{5}$ 5-holes

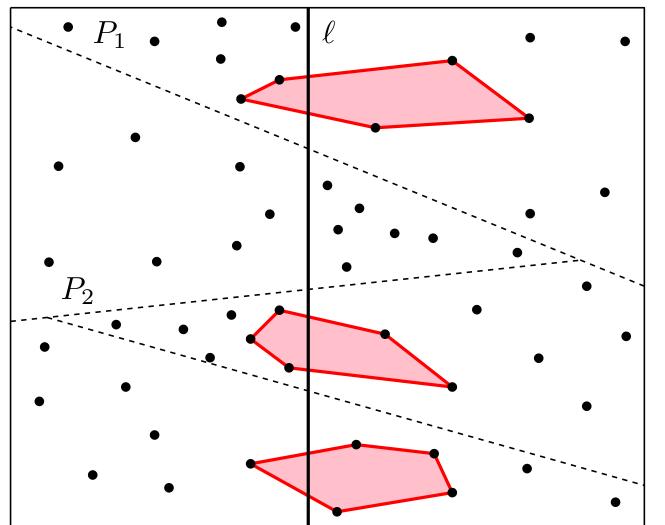
Induction Step $(t > 5^5)$:



Theorem 2: $P = A \cup B \ \ell$ -divided, $|A|, |B| \ge 5$, neither A nor B in convex position $\Rightarrow \exists \ \ell$ -divided 5-hole in P



Induction Step $(t > 5^5)$:



 $P_i \cap A$ not convex and $P_i \cap B$ not convex

 $\stackrel{Th.2}{\Rightarrow} \exists \ \ell \text{-divided 5-hole}$

If this is the case for $\frac{s}{2}$ of the islands P_i , we count at least $h_5(A) + h_5(B) + \frac{s}{2}$ 5-holes

We set $r = \log^{1/5} n$. Recall that $s = \frac{n}{2r}$.

In the first case

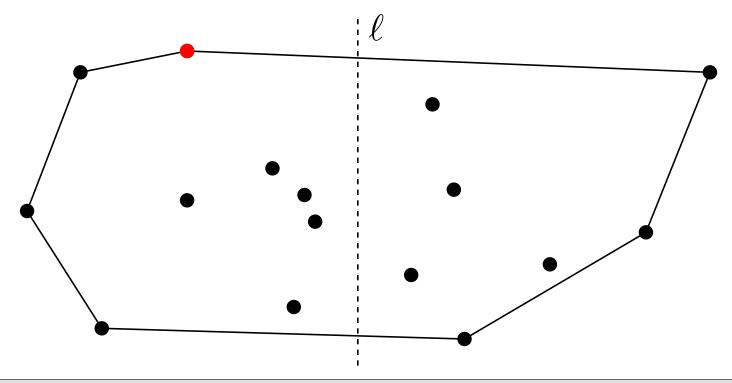
$$h_5(P) \ge \frac{s}{2} \binom{r}{5} \ge cn \log^{4/5} n$$

and in the second case

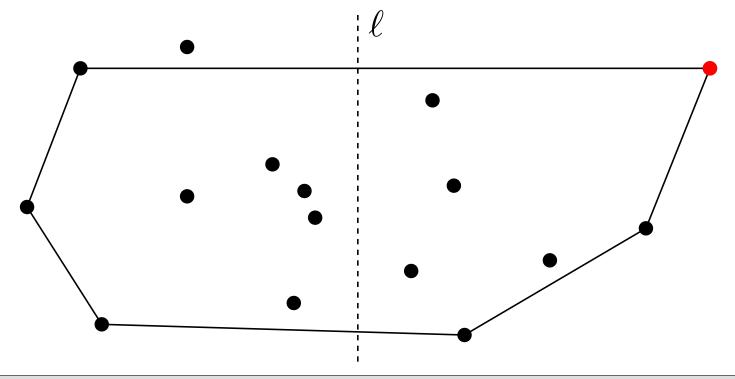
$$h_5(P) \ge h_5(A) + h_5(B) + \frac{s}{2} \stackrel{I.H.}{\ge} cn \log^{4/5} n.$$

This finishes the proof.

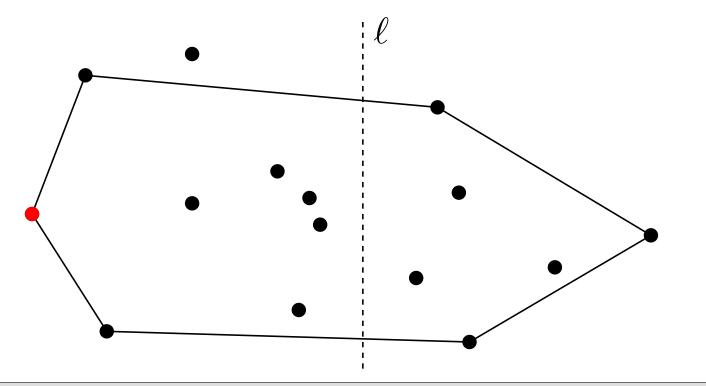
- neither A nor B is in convex position, and
- for every extremal point x of C, one of the sets $(C \setminus \{x\}) \cap A$ and $(C \setminus \{x\}) \cap B$ is in convex position.



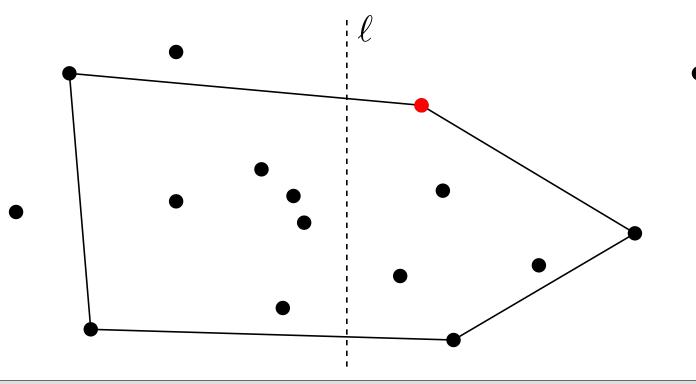
- neither A nor B is in convex position, and
- for every extremal point x of C, one of the sets $(C \setminus \{x\}) \cap A$ and $(C \setminus \{x\}) \cap B$ is in convex position.



- neither A nor B is in convex position, and
- for every extremal point x of C, one of the sets $(C \setminus \{x\}) \cap A$ and $(C \setminus \{x\}) \cap B$ is in convex position.

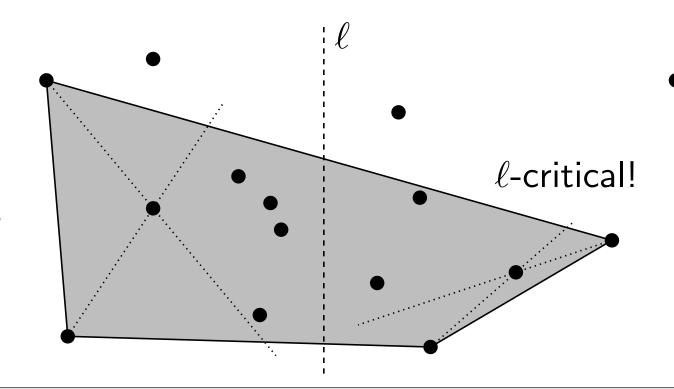


- neither A nor B is in convex position, and
- for every extremal point x of C, one of the sets $(C \setminus \{x\}) \cap A$ and $(C \setminus \{x\}) \cap B$ is in convex position.

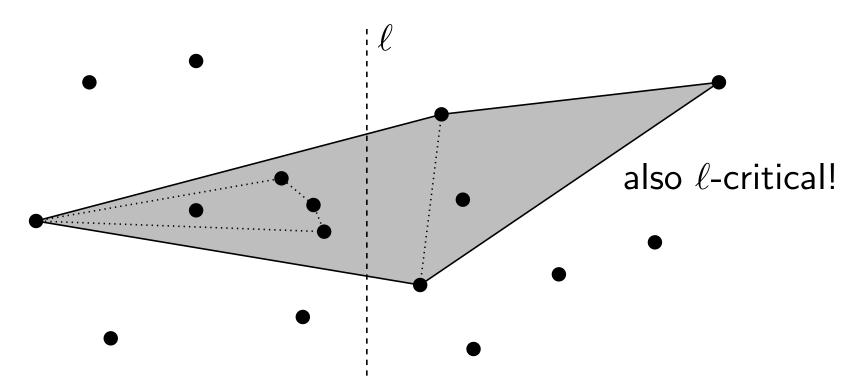


An ℓ -divided set $C = A \cup B$ is ℓ -critical if

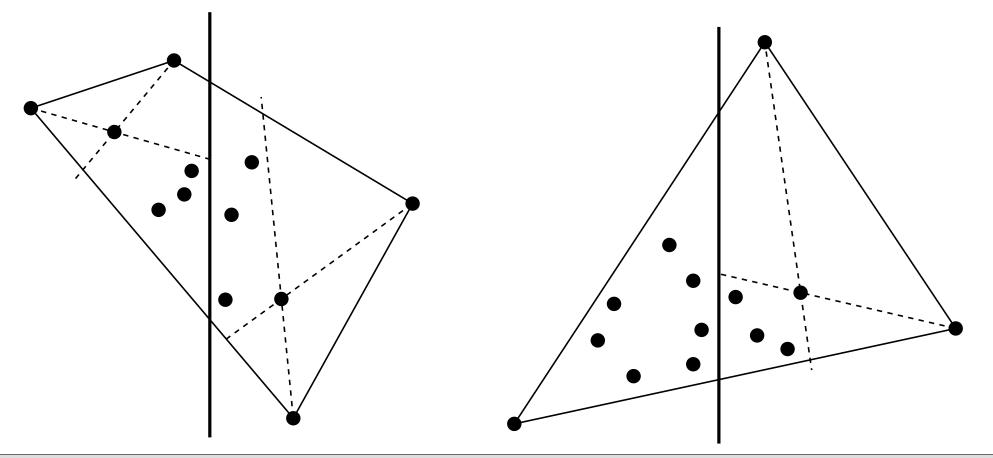
- neither A nor B is in convex position, and
- for every extremal point x of C, one of the sets $(C \setminus \{x\}) \cap A$ and $(C \setminus \{x\}) \cap B$ is in convex position.



- neither A nor B is in convex position, and
- for every extremal point x of C, one of the sets $(C \setminus \{x\}) \cap A$ and $(C \setminus \{x\}) \cap B$ is in convex position.

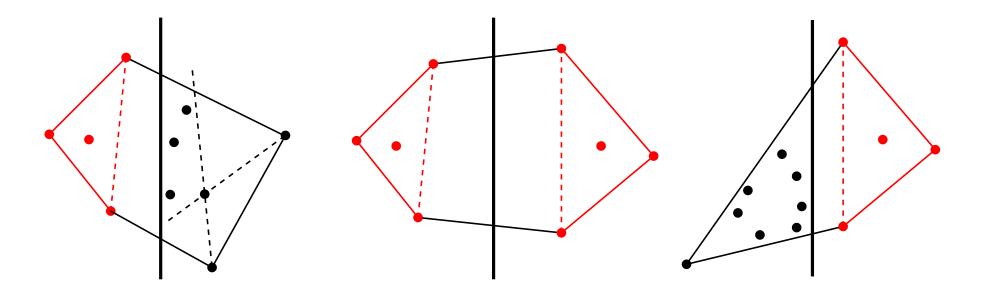


Lemma 18: Let $C = A \cup B$ be an ℓ -critical set. (i) If $|A| \ge 5$, then $|A \cap \partial \operatorname{conv}(C)| \le 2$ (similar for B). (ii) If $|A \cap \partial \operatorname{conv}(C)| = 2$, then C looks as follows:



Lemma 18: Let $C = A \cup B$ be an ℓ -critical set. (i) If $|A| \ge 5$, then $|A \cap \partial \operatorname{conv}(C)| \le 2$ (similar for B). (ii) If $|A \cap \partial \operatorname{conv}(C)| = 2$, then C looks as follows:

The assumption $|A| \ge 5$ is necessary:



Theorem 2: $P = A \cup B \ \ell$ -divided, $|A|, |B| \ge 5$, neither A nor B in convex position $\Rightarrow \exists \ell$ -divided 5-hole in P

Theorem 2: $P = A \cup B \ \ell$ -divided, $|A|, |B| \ge 5$, neither A nor B in convex position $\Rightarrow \exists \ell$ -divided 5-hole in P

Proof:

- Suppose ∄ ℓ-divided 5-hole.
- If |A| = 5 = |B|, the statement follows from Harborth's result (P contains a 5-hole).
- Hence we assume $|A| \ge 6$ or $|B| \ge 6$.

We reduce P (with $|A| \ge 6$ or $|B| \ge 6$) to an island Q by iteratively removing extremal points until either

- $Q \cap A$ or $Q \cap B$ contain exactly five points, or
- Q is ℓ -critical with $|Q \cap A|, |Q \cap B| \ge 6$.

We reduce P (with $|A| \ge 6$ or $|B| \ge 6$) to an island Q by iteratively removing extremal points until either

- $Q \cap A$ or $Q \cap B$ contain exactly five points, or
- Q is ℓ -critical with $|Q \cap A|, |Q \cap B| \ge 6$.

Case 1: If $|Q \cap A| = 5$ and $|Q \cap B| \ge 6$ (or vice versa), we consider $Q \cap A$ with the 6 leftmost points of $Q \cap B$ and apply

Lemma 12 (Computer-assisted): $P = A \cup B \ \ell$ -divided, |A| = 5, |B| = 6, A not in convex position $\Rightarrow \exists \ \ell$ -divided 5-hole.

Case 2: If Q is ℓ -critical with $|Q \cap A|, |Q \cap B| \ge 6$, then, by Lemma 18, $|A \cap \partial \operatorname{conv}(Q)| = 2$ (w.l.o.g.)

Case 2: If Q is ℓ -critical with $|Q \cap A|, |Q \cap B| \ge 6$, then, by Lemma 18, $|A \cap \partial \operatorname{conv}(Q)| = 2$ (w.l.o.g.)

We obtain $|Q \cap B| < |Q \cap A|$ by appling (i) from

Proposition 19+20: $C = A \cup B \ \ell$ -critical, no ℓ -divided 5-hole, $|A|, |B| \ge 6$ (i) $|A \cap \partial \operatorname{conv}(C)| = 2 \Rightarrow |B| \le |A| - 1$. (ii) $|B \cap \partial \operatorname{conv}(C)| = 2 \Rightarrow |B| \le |A|$.

Case 2: If Q is ℓ -critical with $|Q \cap A|, |Q \cap B| \ge 6$, then, by Lemma 18, $|A \cap \partial \operatorname{conv}(Q)| = 2$ (w.l.o.g.)

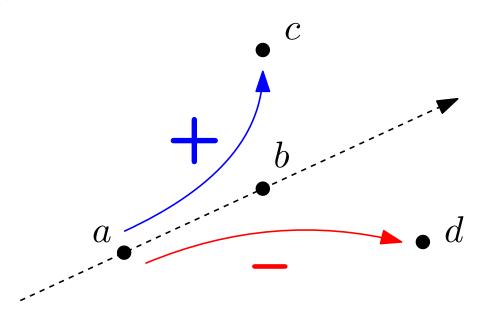
We obtain $|Q \cap B| < |Q \cap A|$ by appling (i) from

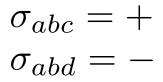
Proposition 19+20: $C = A \cup B \ \ell$ -critical, no ℓ -divided 5-hole, $|A|, |B| \ge 6$ (i) $|A \cap \partial \operatorname{conv}(C)| = 2 \Rightarrow |B| \le |A| - 1$. (ii) $|B \cap \partial \operatorname{conv}(C)| = 2 \Rightarrow |B| \le |A|$.

By exchanging the roles of A and B, we obtain $|Q \cap A| \leq |Q \cap B|$ – a contradiction

Order Types of Point Sets

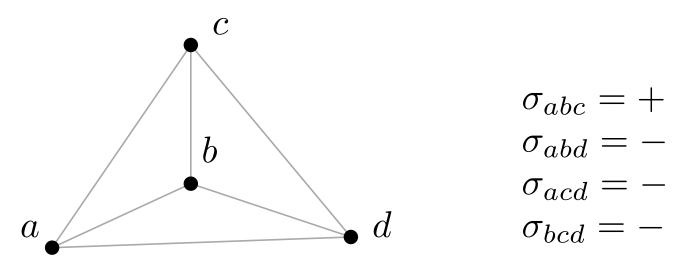
Three distinct points a, b, c in P either *positively oriented* or *negatively oriented*





Order Types of Point Sets

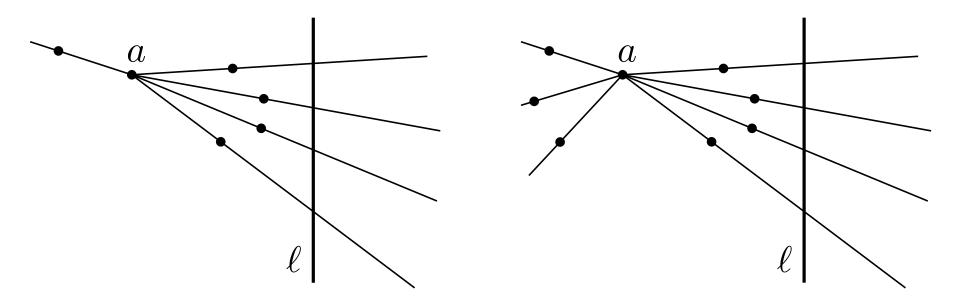
Three distinct points a, b, c in P either *positively oriented* or *negatively oriented*



Order types: distinguish point sets only by orientations of triples [Goodman and Pollack '83]

a-wedges

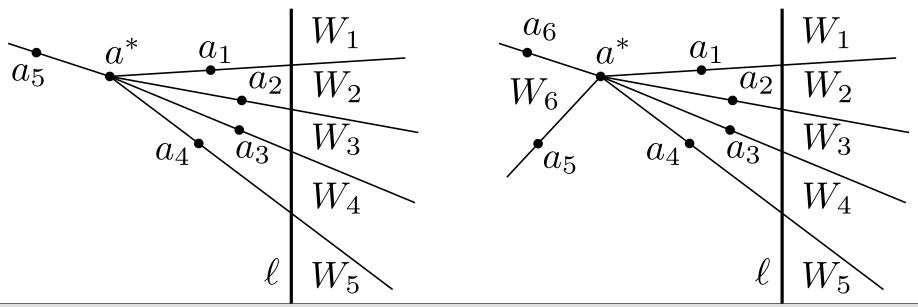
- For a in A, the rays $\overrightarrow{aa'}$ $(a' \in A \setminus \{a\})$ partition the plane into |A| 1 regions
- *a-wedges*: closures of those regions



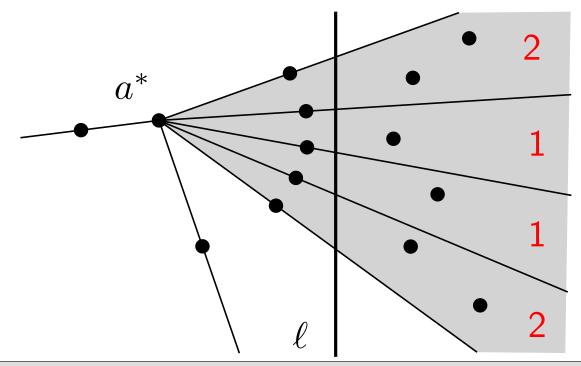
a-wedges are convex if *a* is inner point of *A* and ∃! non-convex *a*-wedge otherwise.

a^* -wedges

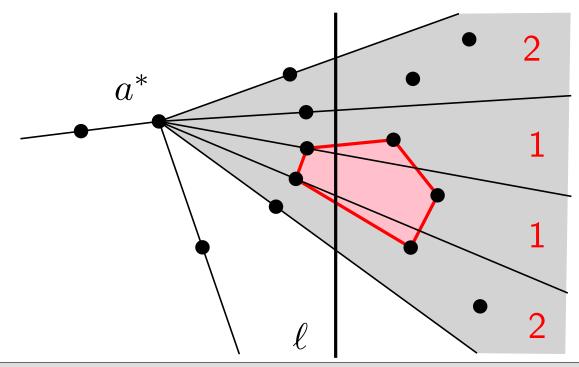
- If A not in convex position
 - a^* : rightmost inner point of A,
 - $W_1, \ldots, W_{|A|-1}$: a^* -wedges
 - $w_i = |B \cap W_i|$
 - t = # of a^* -wedges intersecting ℓ ,
 - $a_1, \ldots, a_{|A|-1}$: points in $A \setminus \{a^*\}$.

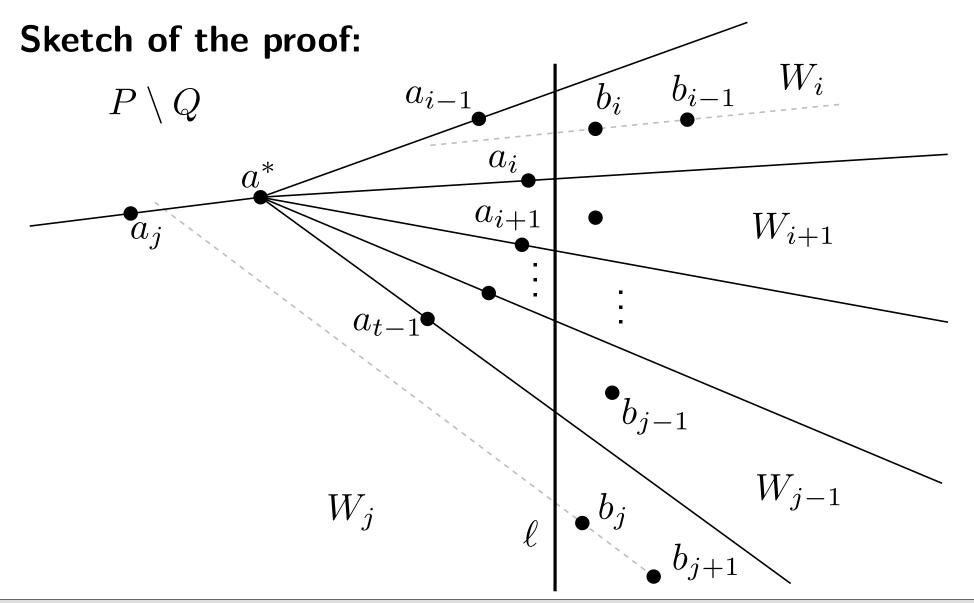


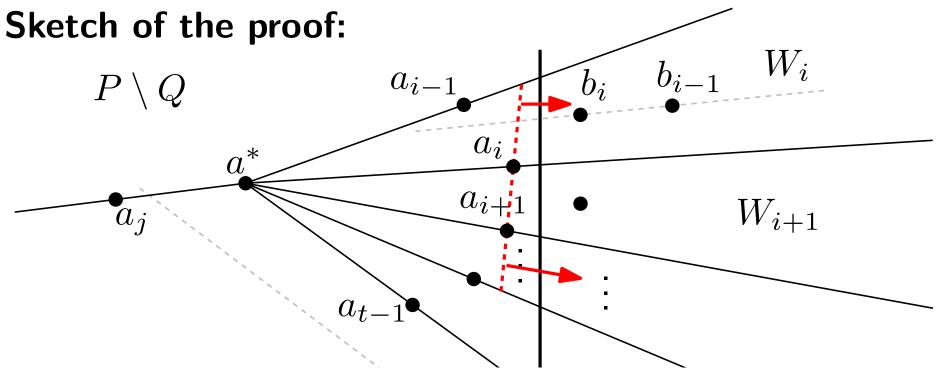
Lemma 10: $P = A \cup B \ \ell$ -divided, no ℓ -divided 5-hole, A not in convex position, $|A| \ge 5$, $|B| \ge 6$, $(w_i, \ldots, w_j) = (2, 1, \ldots, 1, 2) \Rightarrow \exists \ell$ -divided 5-hole.



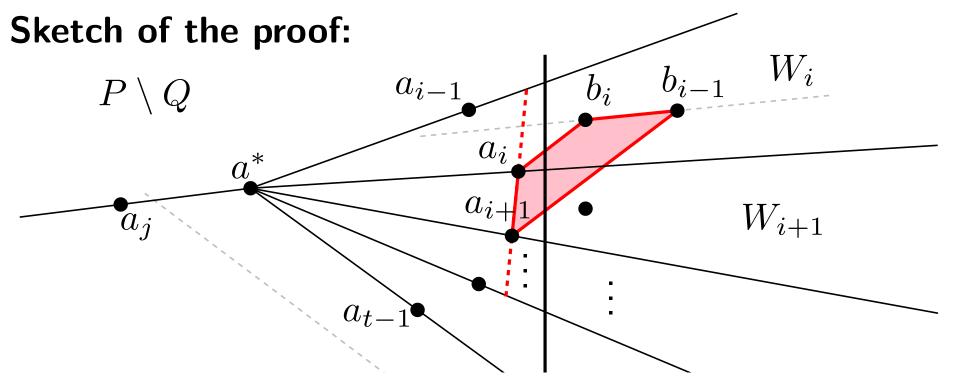
Lemma 10: $P = A \cup B \ \ell$ -divided, no ℓ -divided 5-hole, A not in convex position, $|A| \ge 5$, $|B| \ge 6$, $(w_i, \ldots, w_j) = (2, 1, \ldots, 1, 2) \Rightarrow \exists \ell$ -divided 5-hole.



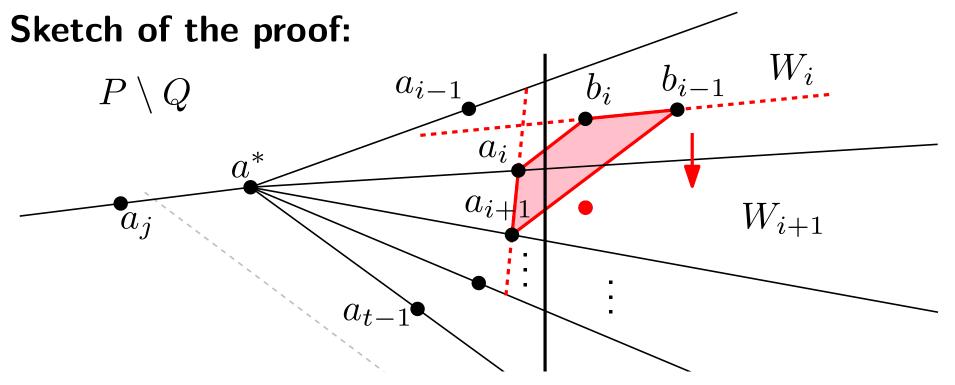




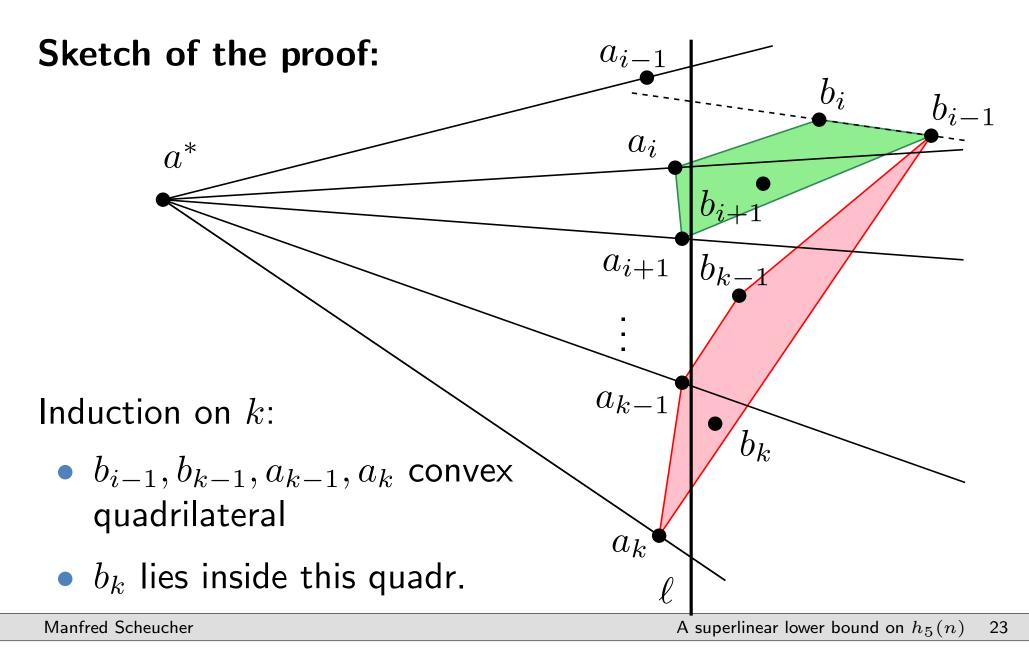
• $B \cap (W_{i-1} \cup W_i \cup W_{i+1})$ to the right of $\overline{a_i a_{i-1}}$

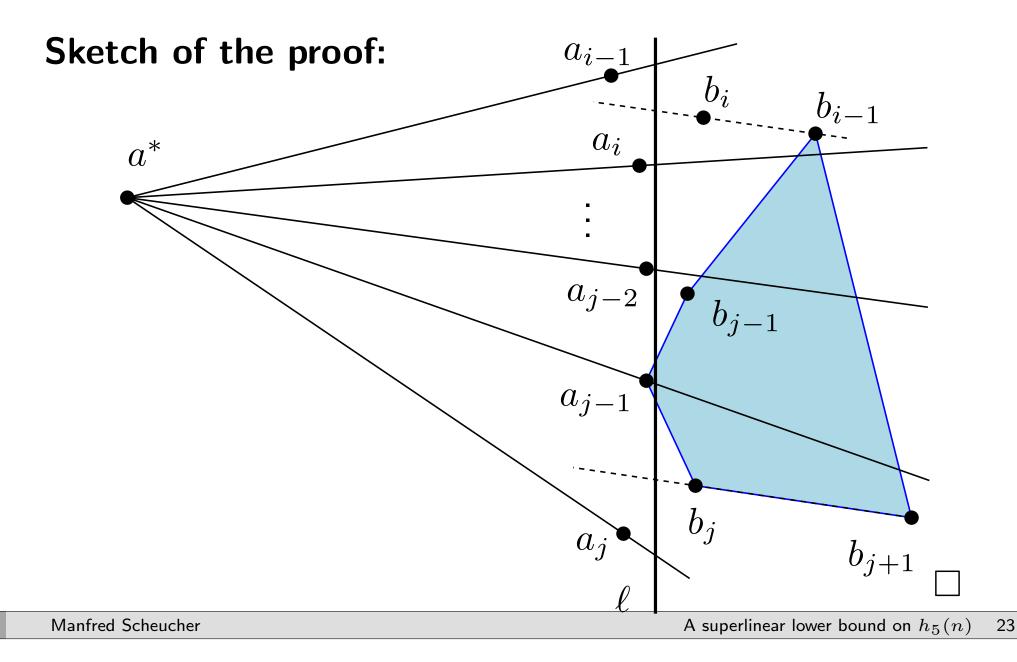


- $B \cap (W_{i-1} \cup W_i \cup W_{i+1})$ to the right of $\overline{a_i a_{i-1}}$
- $b_{i-1}, b_i, a_i, a_{i+1}$ form convex quadrilateral

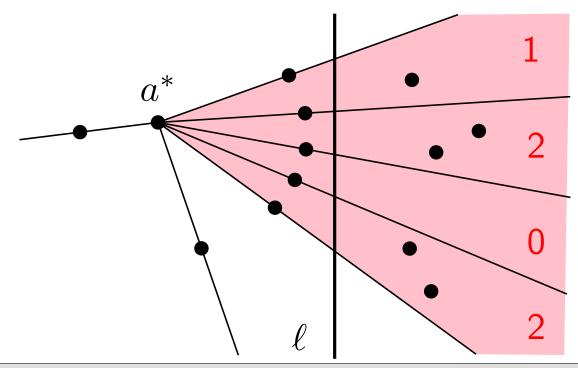


- $B \cap (W_{i-1} \cup W_i \cup W_{i+1})$ to the right of $\overline{a_i a_{i-1}}$
- $b_{i-1}, b_i, a_i, a_{i+1}$ form convex quadrilateral
- b_{i+1} to the right of $\overline{b_i b_{i-1}}$

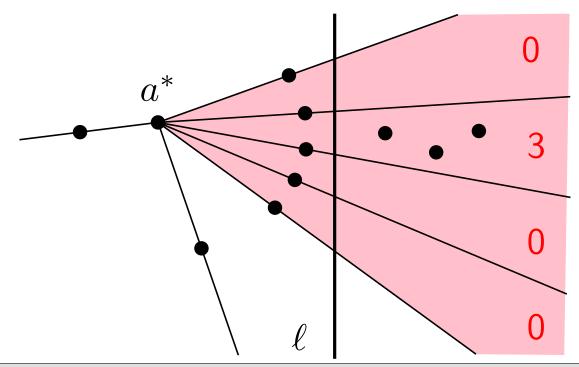




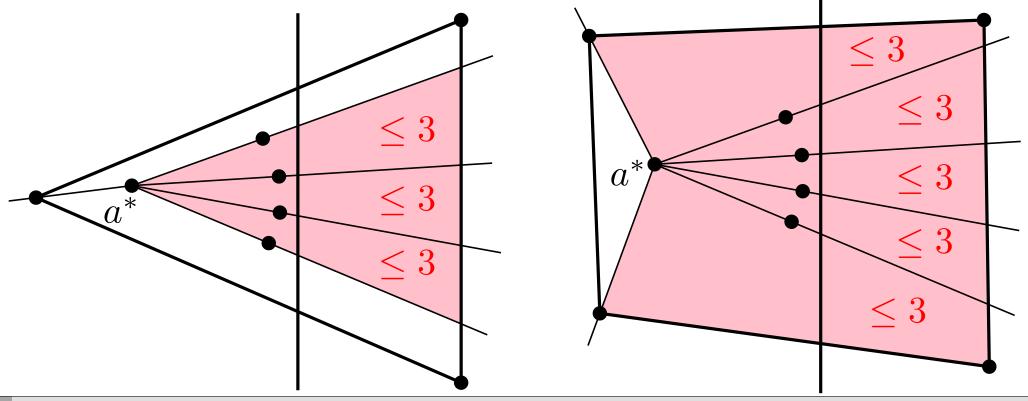
Proposition 11: $P = A \cup B \ \ell$ -divided, no ℓ -divided 5-hole, A not in convex position, $|A| \ge 5$, $|B| \ge 6$, $w_k \le 2$ for $i \le k \le j \Rightarrow \sum_{k=i}^{j} w_k \le j - i + 2$.



Lemma 16: $P = A \cup B \ \ell$ -divided, no ℓ -divided 5-hole, $|A| \ge 6$, A not in convex position (i) $w_i + w_{i+1} + w_{i+2} \ge 4 \Rightarrow w_i, w_{i+1}, w_{i+2} \le 2$. (ii) $w_i + \ldots + w_{i+3} \ge 4 \Rightarrow w_i, \ldots, w_{i+3} \le 2$.



Lemma 17: $C = A \cup B \ \ell$ -critical, no ℓ -divided 5-hole, $|A| \ge 6 \Rightarrow w_i \le 3$ for every 1 < i < t. Moreover, $|A \cap \partial \operatorname{conv}(C)| = 2 \Rightarrow w_1, w_t \le 3$.



Lemma 17: $C = A \cup B \ \ell$ -critical, no ℓ -divided 5-hole, $|A| \ge 6 \Rightarrow w_i \le 3$ for every 1 < i < t. Moreover, $|A \cap \partial \operatorname{conv}(C)| = 2 \Rightarrow w_1, w_t \le 3$.

Proposition 19: $C = A \cup B \ \ell$ -critical, no ℓ -divided 5-hole, $|A|, |B| \ge 6$, $|A \cap \partial \operatorname{conv}(C)| = 2 \Rightarrow |B| \le |A| - 1$.

Proposition 20: $C = A \cup B \ \ell$ -critical, no ℓ -divided 5-hole, $|A|, |B| \ge 6$, $|B \cap \partial \operatorname{conv}(C)| = 2 \Rightarrow |B| \le |A|$.

