On the expected number of holes in random point sets

Martin Balko, Manfred Scheucher, and Pavel Valtr

Theorem (Erdős, Szekeres, 1935)

For each $k \in \mathbb{N}$, every sufficiently large point set in general position (no 3 points are collinear) in the plane contains k points in convex position.

Theorem (Erdős, Szekeres, 1935)

For each $k \in \mathbb{N}$, every sufficiently large point set in general position (no 3 points are collinear) in the plane contains k points in convex position.

Theorem (Erdős, Szekeres, 1935)

For each $k \in \mathbb{N}$, every sufficiently large point set in general position (no 3 points are collinear) in the plane contains k points in convex position.

• A k-hole in a point set S is a k-tuple of points from S in convex position with no points of S in the interior of their convex hull.

Theorem (Erdős, Szekeres, 1935)

For each $k \in \mathbb{N}$, every sufficiently large point set in general position (no 3 points are collinear) in the plane contains k points in convex position.

- A *k*-hole in a point set *S* is a *k*-tuple of points from *S* in convex position with no points of *S* in the interior of their convex hull.
- Every set of \geq 3 points contains a 3-hole. Also, \geq 5 points \rightarrow 4-hole and \geq 10 points \rightarrow 5-hole (Harborth, 1978).

• Erdős, 1978: For every $k \in \mathbb{N}$, does every large enough point set in general position contain a k-hole?

- Erdős, 1978: For every $k \in \mathbb{N}$, does every large enough point set in general position contain a k-hole?
- No. There are arbitrarily large point sets with no 7-hole (Horton, 1983).

- Erdős, 1978: For every $k \in \mathbb{N}$, does every large enough point set in general position contain a k-hole?
- No. There are arbitrarily large point sets with no 7-hole (Horton, 1983).

- Erdős, 1978: For every $k \in \mathbb{N}$, does every large enough point set in general position contain a k-hole?
- No. There are arbitrarily large point sets with no 7-hole (Horton, 1983).

• Every sufficiently large point set in general position contains a 6-hole (Gerken, 2008 and Nicolás, 2007).

Every sufficiently large set of points in general position contains a k-hole for k ∈ {3, 4, 5, 6}.

- Every sufficiently large set of points in general position contains a k-hole for k ∈ {3, 4, 5, 6}.
- How many *k*-holes do we always have?

- Every sufficiently large set of points in general position contains a k-hole for k ∈ {3, 4, 5, 6}.
- How many k-holes do we always have?
- Let $h_k(n)$ be the minimum number of k-holes among all sets of n points in the plane in general position.

- Every sufficiently large set of points in general position contains a k-hole for k ∈ {3, 4, 5, 6}.
- How many k-holes do we always have?
- Let $h_k(n)$ be the minimum number of k-holes among all sets of n points in the plane in general position.
- The following bounds are known:
 - $h_3(n)$ and $h_4(n)$ are in $\Theta(n^2)$.
 - $h_5(n)$ is in $\Omega(n \log^{4/5} n)$ and $O(n^2)$.
 - $h_6(n)$ is in $\Omega(n)$ and $O(n^2)$.
 - $h_k(n) = 0$ for every $k \ge 7$ (Horton, 1983).

- Every sufficiently large set of points in general position contains a k-hole for k ∈ {3, 4, 5, 6}.
- How many k-holes do we always have?
- Let $h_k(n)$ be the minimum number of k-holes among all sets of n points in the plane in general position.
- The following bounds are known:
 - $h_3(n)$ and $h_4(n)$ are in $\Theta(n^2)$.
 - $h_5(n)$ is in $\Omega(n \log^{4/5} n)$ and $O(n^2)$.
 - $h_6(n)$ is in $\Omega(n)$ and $O(n^2)$.
 - $h_k(n) = 0$ for every $k \ge 7$ (Horton, 1983).
- Holes were also considered in higher dimensions.

- Every sufficiently large set of points in general position contains a k-hole for k ∈ {3, 4, 5, 6}.
- How many k-holes do we always have?
- Let $h_k(n)$ be the minimum number of k-holes among all sets of n points in the plane in general position.
- The following bounds are known:
 - $h_3(n)$ and $h_4(n)$ are in $\Theta(n^2)$.
 - $h_5(n)$ is in $\Omega(n \log^{4/5} n)$ and $O(n^2)$.
 - $h_6(n)$ is in $\Omega(n)$ and $O(n^2)$.
 - $h_k(n) = 0$ for every $k \ge 7$ (Horton, 1983).
- Holes were also considered in higher dimensions.
- There are *d*-dimensional Horton sets not containing *k*-holes for sufficiently large k = k(d) (Valtr, 1992).

- Every sufficiently large set of points in general position contains a k-hole for k ∈ {3, 4, 5, 6}.
- How many k-holes do we always have?
- Let $h_k(n)$ be the minimum number of k-holes among all sets of n points in the plane in general position.
- The following bounds are known:
 - $h_3(n)$ and $h_4(n)$ are in $\Theta(n^2)$.
 - $h_5(n)$ is in $\Omega(n \log^{4/5} n)$ and $O(n^2)$.
 - $h_6(n)$ is in $\Omega(n)$ and $O(n^2)$.
 - $h_k(n) = 0$ for every $k \ge 7$ (Horton, 1983).
- Holes were also considered in higher dimensions.
- There are *d*-dimensional Horton sets not containing *k*-holes for sufficiently large k = k(d) (Valtr, 1992).
- The minimum number of (d+1)-holes (empty simplices) in an n-point set in \mathbb{R}^d is in $\Theta(n^d)$ (Bárány, Füredi, 1987).

• Let $k \in \mathbb{N}$ and let $K \subseteq \mathbb{R}^d$ be a convex body of volume $\lambda_d(K) = 1$.

- Let $k \in \mathbb{N}$ and let $K \subseteq \mathbb{R}^d$ be a convex body of volume $\lambda_d(K) = 1$.
- Let $EH_{d,k}^K(n)$ be the expected number of k-holes in sets of n points chosen independently and uniformly at random from K.

- Let $k \in \mathbb{N}$ and let $K \subseteq \mathbb{R}^d$ be a convex body of volume $\lambda_d(K) = 1$.
- Let $EH_{d,k}^K(n)$ be the expected number of k-holes in sets of n points chosen independently and uniformly at random from K.
- Bárány and Füredi showed that

$$EH_{d,d+1}^K(n) \leq (2d)^{2d^2} \cdot \binom{n}{d}.$$

- Let $k \in \mathbb{N}$ and let $K \subseteq \mathbb{R}^d$ be a convex body of volume $\lambda_d(K) = 1$.
- Let $EH_{d,k}^K(n)$ be the expected number of k-holes in sets of n points chosen independently and uniformly at random from K.
- Bárány and Füredi showed that

$$EH_{d,d+1}^K(n) \leq (2d)^{2d^2} \cdot \binom{n}{d}.$$

• Valtr proved $EH_{2,3}^K(n) \leq 4\binom{n}{2}$.

- Let $k \in \mathbb{N}$ and let $K \subseteq \mathbb{R}^d$ be a convex body of volume $\lambda_d(K) = 1$.
- Let $EH_{d,k}^K(n)$ be the expected number of k-holes in sets of n points chosen independently and uniformly at random from K.
- Bárány and Füredi showed that

$$EH_{d,d+1}^K(n) \leq (2d)^{2d^2} \cdot \binom{n}{d}.$$

• Valtr proved $EH_{2,3}^K(n) \leq 4\binom{n}{2}$. This is tight, as Reitzner and Temesvari recently showed $\lim_{n\to\infty} n^{-2}EH_{2,3}^K(n)=2$.

- Let $k \in \mathbb{N}$ and let $K \subseteq \mathbb{R}^d$ be a convex body of volume $\lambda_d(K) = 1$.
- Let $EH_{d,k}^K(n)$ be the expected number of k-holes in sets of n points chosen independently and uniformly at random from K.
- Bárány and Füredi showed that

$$EH_{d,d+1}^K(n) \leq (2d)^{2d^2} \cdot \binom{n}{d}.$$

- Valtr proved $EH_{2,3}^K(n) \le 4\binom{n}{2}$. This is tight, as Reitzner and Temesvari recently showed $\lim_{n\to\infty} n^{-2}EH_{2,3}^K(n) = 2$.
- They also proved

$$\frac{2}{d!} \leq \lim_{n \to \infty} n^{-d} E H_{d,d+1}^K(n) \leq \frac{d}{(d+1)} \frac{\kappa_{d-1}^{d+1} \kappa_{d^2}}{\kappa_d^{d-1} \kappa_{(d-1)(d+1)}}$$

for $d \geq 3$, where κ_d is the volume of the d-dimensional unit ball.

- Let $k \in \mathbb{N}$ and let $K \subseteq \mathbb{R}^d$ be a convex body of volume $\lambda_d(K) = 1$.
- Let $EH_{d,k}^K(n)$ be the expected number of k-holes in sets of n points chosen independently and uniformly at random from K.
- Bárány and Füredi showed that

$$EH_{d,d+1}^K(n) \leq (2d)^{2d^2} \cdot \binom{n}{d}.$$

- Valtr proved $EH_{2,3}^K(n) \le 4\binom{n}{2}$. This is tight, as Reitzner and Temesvari recently showed $\lim_{n\to\infty} n^{-2}EH_{2,3}^K(n) = 2$.
- They also proved

$$d^{-c_1 \cdot d} \leq \frac{2}{d!} \leq \lim_{n \to \infty} n^{-d} EH_{d,d+1}^K(n) \leq \frac{d}{(d+1)} \frac{\kappa_{d-1}^{d+1} \kappa_{d^2}}{\kappa_d^{d-1} \kappa_{(d-1)(d+1)}} \leq d^{-c_2 \cdot d}$$

for $d \geq 3$, where κ_d is the volume of the d-dimensional unit ball.

- Let $k \in \mathbb{N}$ and let $K \subseteq \mathbb{R}^d$ be a convex body of volume $\lambda_d(K) = 1$.
- Let $EH_{d,k}^K(n)$ be the expected number of k-holes in sets of n points chosen independently and uniformly at random from K.
- Bárány and Füredi showed that

$$EH_{d,d+1}^K(n) \leq (2d)^{2d^2} \cdot \binom{n}{d}.$$

- Valtr proved $EH_{2,3}^K(n) \leq 4\binom{n}{2}$. This is tight, as Reitzner and Temesvari recently showed $\lim_{n\to\infty} n^{-2}EH_{2,3}^K(n)=2$.
- They also proved

$$d^{-c_1 \cdot d} \leq \frac{2}{d!} \leq \lim_{n \to \infty} n^{-d} EH_{d,d+1}^K(n) \leq \frac{d}{(d+1)} \frac{\kappa_{d-1}^{d+1} \kappa_{d^2}}{\kappa_d^{d-1} \kappa_{(d-1)(d+1)}} \leq d^{-c_2 \cdot d}$$

for $d \geq 3$, where κ_d is the volume of the d-dimensional unit ball. The upper bound holds with equality if K is an ellipsoid.

• We extend previous bounds to larger holes.

- We extend previous bounds to larger holes.
- We have an upper bound $EH_{d,k}^K(n) \leq O(n^d)$ for any fixed k.

- We extend previous bounds to larger holes.
- We have an upper bound $EH_{d,k}^K(n) \leq O(n^d)$ for any fixed k.

Theorem 1 (2020)

Let $d \geq 2$ and $k \geq d+1$ be integers and let $K \subseteq \mathbb{R}^d$ be a convex body of unit volume. If $n \geq k$, then the expected number $EH_{d,k}^K(n)$ is at most

$$2^{d-1}\cdot \left(2d^{2d-1}\binom{k}{\lfloor d/2\rfloor}\right)^{k-d-1}\cdot \frac{n(n-1)\cdots(n-k+2)}{(k-d-1)!\cdot (n-k+1)^{k-d-1}}\in O(n^d).$$

- We extend previous bounds to larger holes.
- We have an upper bound $EH_{d,k}^K(n) \leq O(n^d)$ for any fixed k.

Theorem 1 (2020)

Let $d \ge 2$ and $k \ge d+1$ be integers and let $K \subseteq \mathbb{R}^d$ be a convex body of unit volume. If $n \ge k$, then the expected number $EH_{d,k}^K(n)$ is at most

$$2^{d-1}\cdot \left(2d^{2d-1}\binom{k}{\lfloor d/2\rfloor}\right)^{k-d-1}\cdot \frac{n(n-1)\cdots(n-k+2)}{(k-d-1)!\cdot (n-k+1)^{k-d-1}}\in \frac{O(n^d)}{(n^d)}.$$

We can also show that this is asymptotically tight.

- We extend previous bounds to larger holes.
- We have an upper bound $EH_{d,k}^K(n) \leq O(n^d)$ for any fixed k.

Theorem 1 (2020)

Let $d \ge 2$ and $k \ge d+1$ be integers and let $K \subseteq \mathbb{R}^d$ be a convex body of unit volume. If $n \ge k$, then the expected number $EH_{d,k}^K(n)$ is at most

$$2^{d-1}\cdot \left(2d^{2d-1}\binom{k}{\lfloor d/2\rfloor}\right)^{k-d-1}\cdot \frac{n(n-1)\cdots(n-k+2)}{(k-d-1)!\cdot (n-k+1)^{k-d-1}}\in \textcolor{red}{O(n^d)}.$$

• We can also show that this is asymptotically tight.

Theorem 2 (2021)

For all fixed integers $d \geq 2$ and $k \geq d+1$ and every convex body $K \subseteq \mathbb{R}^d$ of unit volume, we have $EH_{d,k}^K(n) \geq \Omega(n^d)$.

Our results: leading constants in $EH_{d,d+1}^K(n)$

Our results: leading constants in $EH_{d,d+1}^K(n)$

• Since we have asymptotically sharp estimates on $EH_{d,k}^K(n)$, we started studying the leading constants $C_{d,k}^K = \lim_{n \to \infty} n^{-d} EH_{d,k}^K(n)$.

- Since we have asymptotically sharp estimates on $EH_{d,k}^K(n)$, we started studying the leading constants $C_{d,k}^K = \lim_{n \to \infty} n^{-d} EH_{d,k}^K(n)$.
- We improved Reitzner's and Temesvari's bound $C_{d,d+1}^K \geq \frac{2}{d!}$.

- Since we have asymptotically sharp estimates on $EH_{d,k}^K(n)$, we started studying the leading constants $C_{d,k}^K = \lim_{n \to \infty} n^{-d} EH_{d,k}^K(n)$.
- We improved Reitzner's and Temesvari's bound $C_{d,d+1}^K \geq \frac{2}{d!}$.
- Let p_d^K be the probability that the convex hull of d+2 points chosen unif. and ind. at random from K is a d-simplex.

- Since we have asymptotically sharp estimates on $EH_{d,k}^K(n)$, we started studying the leading constants $C_{d,k}^K = \lim_{n \to \infty} n^{-d} EH_{d,k}^K(n)$.
- We improved Reitzner's and Temesvari's bound $C_{d,d+1}^K \geq \frac{2}{d!}$.
- Let p_d^K be the probability that the convex hull of d+2 points chosen unif. and ind. at random from K is a d-simplex. Let $p_d = \max_K p_d^K$.

- Since we have asymptotically sharp estimates on $EH_{d,k}^K(n)$, we started studying the leading constants $C_{d,k}^K = \lim_{n \to \infty} n^{-d} EH_{d,k}^K(n)$.
- We improved Reitzner's and Temesvari's bound $C_{d,d+1}^K \geq \frac{2}{d!}$.
- Let p_d^K be the probability that the convex hull of d+2 points chosen unif. and ind. at random from K is a d-simplex. Let $p_d = \max_K p_d^K$.

Theorem 3 (2021)

For every $d \geq 2$ and every convex body $K \subseteq \mathbb{R}^d$ of unit volume, we have $C_{d,d+1}^K \geq \frac{2}{(d-1)!p_{d-1}}$.

- Since we have asymptotically sharp estimates on $EH_{d,k}^K(n)$, we started studying the leading constants $C_{d,k}^K = \lim_{n \to \infty} n^{-d} EH_{d,k}^K(n)$.
- We improved Reitzner's and Temesvari's bound $C_{d,d+1}^K \geq \frac{2}{d!}$.
- Let p_d^K be the probability that the convex hull of d+2 points chosen unif. and ind. at random from K is a d-simplex. Let $p_d = \max_K p_d^K$.

Theorem 3 (2021)

For every $d \geq 2$ and every convex body $K \subseteq \mathbb{R}^d$ of unit volume, we have $C_{d,d+1}^K \geq \frac{2}{(d-1)!p_{d-1}}$.

Proof uses heavy machinery from stochastic geometry (Blaschke–Petkantschin formula & a result by Reitzner and Temesvari)

- Since we have asymptotically sharp estimates on $EH_{d,k}^K(n)$, we started studying the leading constants $C_{d,k}^K = \lim_{n \to \infty} n^{-d} EH_{d,k}^K(n)$.
- We improved Reitzner's and Temesvari's bound $C_{d,d+1}^K \geq \frac{2}{d!}$.
- Let p_d^K be the probability that the convex hull of d+2 points chosen unif. and ind. at random from K is a d-simplex. Let $p_d = \max_K p_d^K$.

Theorem 3 (2021)

For every $d \geq 2$ and every convex body $K \subseteq \mathbb{R}^d$ of unit volume, we have $C_{d,d+1}^K \geq \frac{2}{(d-1)!p_{d-1}}$.

• This is tight in the plane and also for simplices in \mathbb{R}^3 .

Corollary (2021)

For every convex body $K \subseteq \mathbb{R}^3$ of unit volume, we have $3 \le C_{3,4}^K \le \frac{12\pi^2}{35} \approx 3.38$. Moreover, the left inequality is tight if K is a tetrahedron and the right inequality is tight if K is an ellipsoid.

- Since we have asymptotically sharp estimates on $EH_{d,k}^K(n)$, we started studying the leading constants $C_{d,k}^K = \lim_{n \to \infty} n^{-d} EH_{d,k}^K(n)$.
- We improved Reitzner's and Temesvari's bound $C_{d,d+1}^K \geq \frac{2}{d!}$.
- Let p_d^K be the probability that the convex hull of d+2 points chosen unif. and ind. at random from K is a d-simplex. Let $p_d = \max_K p_d^K$.

Theorem 3 (2021)

For every $d \geq 2$ and every convex body $K \subseteq \mathbb{R}^d$ of unit volume, we have $C_{d,d+1}^K \geq \frac{2}{(d-1)!p_{d-1}}$.

- This is tight in the plane and also for simplices in \mathbb{R}^3 .
- We also believe that our lower bound on $C_{d,d+1}^K$ from Theorem 3 is tight for simplices in any dimension d.

• We can also prove new result about $C_{d,k}^K$ for k > d + 1.

- We can also prove new result about $C_{d,k}^K$ for k > d + 1.
- For 4-holes in the plane, Fabila-Monroy, Huemer, and Mitsche proved an upper bound on $C_{2,4}^K$, which does not give better estimate than 72.

- We can also prove new result about $C_{d,k}^K$ for k > d + 1.
- For 4-holes in the plane, Fabila-Monroy, Huemer, and Mitsche proved an upper bound on $C_{2,4}^K$, which does not give better estimate than 72. We improved it to $C_{2,4}^K \le 12$ in 2020.

- We can also prove new result about $C_{d,k}^K$ for k > d + 1.
- For 4-holes in the plane, Fabila-Monroy, Huemer, and Mitsche proved an upper bound on $C_{2,4}^K$, which does not give better estimate than 72. We improved it to $C_{2,4}^K \le 12$ in 2020. Now, we can determine $C_{2,4}^K$ exactly.

- We can also prove new result about $C_{d,k}^{K}$ for k > d + 1.
- For 4-holes in the plane, Fabila-Monroy, Huemer, and Mitsche proved an upper bound on $C_{2,4}^K$, which does not give better estimate than 72. We improved it to $C_{2,4}^K \leq 12$ in 2020. Now, we can determine $C_{2,4}^K$ exactly.

Theorem 4 (2021)

For every convex body $K \subseteq \mathbb{R}^2$ of unit area, we have

$$C_{2,4}^K =$$

- We can also prove new result about $C_{d,k}^{K}$ for k > d + 1.
- For 4-holes in the plane, Fabila-Monroy, Huemer, and Mitsche proved an upper bound on $C_{2,4}^K$, which does not give better estimate than 72. We improved it to $C_{2,4}^K \leq 12$ in 2020. Now, we can determine $C_{2,4}^K$ exactly.

Theorem 4 (2021)

For every convex body $K \subseteq \mathbb{R}^2$ of unit area, we have

$$C_{2,4}^K = 10 - \frac{2\pi^2}{3} \approx 3.420.$$

- We can also prove new result about $C_{d,k}^K$ for k > d + 1.
- For 4-holes in the plane, Fabila-Monroy, Huemer, and Mitsche proved an upper bound on $C_{2,4}^K$, which does not give better estimate than 72. We improved it to $C_{2,4}^K \leq 12$ in 2020. Now, we can determine $C_{2,4}^K$ exactly.

Theorem 4 (2021)

For every convex body $K \subseteq \mathbb{R}^2$ of unit area, we have

$$C_{2,4}^K = 10 - \frac{2\pi^2}{3} \approx 3.420.$$

• In general, we can show that $C_{2,k}^K$ does not depend on K.

- We can also prove new result about $C_{d,k}^{K}$ for k > d+1.
- For 4-holes in the plane, Fabila-Monroy, Huemer, and Mitsche proved an upper bound on $C_{2,4}^K$, which does not give better estimate than 72. We improved it to $C_{2,4}^K \leq 12$ in 2020. Now, we can determine $C_{2,4}^K$ exactly.

Theorem 4 (2021)

For every convex body $K \subseteq \mathbb{R}^2$ of unit area, we have

$$C_{2,4}^K = 10 - \frac{2\pi^2}{3} \approx 3.420.$$

• In general, we can show that $C_{2,k}^K$ does not depend on K.

Theorem 5 (2021)

For every integer $k \geq 3$, there is a constant C = C(k) such that, for every convex body $K \subseteq \mathbb{R}^2$ of unit area, we have $C_{2,k}^K = C$.

• We show that the expected number of 3-holes in a set S of n points selected unif. and indep. at random from $K \subseteq \mathbb{R}^2$ is $2n^2 + o(n^2)$.

- We show that the expected number of 3-holes in a set S of n points selected unif. and indep. at random from $K \subseteq \mathbb{R}^2$ is $2n^2 + o(n^2)$.
- For p_i and p_j from S, we count the expected number of 3-holes in S with the longest edge $p_i p_i$.

- We show that the expected number of 3-holes in a set S of n points selected unif. and indep. at random from $K \subseteq \mathbb{R}^2$ is $2n^2 + o(n^2)$.
- For p_i and p_j from S, we count the expected number of 3-holes in S with the longest edge $p_i p_j$. We assume $p_i = (0,0)$ and $p_j = (\ell,0)$.

- We show that the expected number of 3-holes in a set S of n points selected unif. and indep. at random from $K \subseteq \mathbb{R}^2$ is $2n^2 + o(n^2)$.
- For p_i and p_j from S, we count the expected number of 3-holes in S with the longest edge $p_i p_j$. We assume $p_i = (0,0)$ and $p_j = (\ell,0)$.
- The third point $p_k \in S$ of the 3-hole lies in the set R of points from $K \cap [0, \ell] \times [\frac{-2}{\ell}, \frac{2}{\ell}]$ that are at distance at most ℓ from p_i and p_j .

- We show that the expected number of 3-holes in a set S of n points selected unif. and indep. at random from $K \subseteq \mathbb{R}^2$ is $2n^2 + o(n^2)$.
- For p_i and p_j from S, we count the expected number of 3-holes in S with the longest edge $p_i p_j$. We assume $p_i = (0,0)$ and $p_j = (\ell,0)$.
- The third point $p_k \in S$ of the 3-hole lies in the set R of points from $K \cap [0, \ell] \times [\frac{-2}{\ell}, \frac{2}{\ell}]$ that are at distance at most ℓ from p_i and p_j .

- We show that the expected number of 3-holes in a set S of n points selected unif. and indep. at random from $K \subseteq \mathbb{R}^2$ is $2n^2 + o(n^2)$.
- For p_i and p_j from S, we count the expected number of 3-holes in S with the longest edge $p_i p_j$. We assume $p_i = (0,0)$ and $p_j = (\ell,0)$.
- The third point $p_k \in S$ of the 3-hole lies in the set R of points from $K \cap [0, \ell] \times [\frac{-2}{\ell}, \frac{2}{\ell}]$ that are at distance at most ℓ from p_i and p_j .

- We show that the expected number of 3-holes in a set S of n points selected unif. and indep. at random from $K \subseteq \mathbb{R}^2$ is $2n^2 + o(n^2)$.
- For p_i and p_j from S, we count the expected number of 3-holes in S with the longest edge $p_i p_j$. We assume $p_i = (0,0)$ and $p_j = (\ell,0)$.
- The third point $p_k \in S$ of the 3-hole lies in the set R of points from $K \cap [0, \ell] \times [\frac{-2}{\ell}, \frac{2}{\ell}]$ that are at distance at most ℓ from p_i and p_j .

- We show that the expected number of 3-holes in a set S of n points selected unif. and indep. at random from $K \subseteq \mathbb{R}^2$ is $2n^2 + o(n^2)$.
- For p_i and p_j from S, we count the expected number of 3-holes in S with the longest edge $p_i p_j$. We assume $p_i = (0,0)$ and $p_j = (\ell,0)$.
- The third point $p_k \in S$ of the 3-hole lies in the set R of points from $K \cap [0, \ell] \times [\frac{-2}{\ell}, \frac{2}{\ell}]$ that are at distance at most ℓ from p_i and p_j .

- We show that the expected number of 3-holes in a set S of n points selected unif. and indep. at random from $K \subseteq \mathbb{R}^2$ is $2n^2 + o(n^2)$.
- For p_i and p_j from S, we count the expected number of 3-holes in S with the longest edge $p_i p_j$. We assume $p_i = (0,0)$ and $p_j = (\ell,0)$.
- The third point $p_k \in S$ of the 3-hole lies in the set R of points from $K \cap [0, \ell] \times [\frac{-2}{\ell}, \frac{2}{\ell}]$ that are at distance at most ℓ from p_i and p_j .

- We show that the expected number of 3-holes in a set S of n points selected unif. and indep. at random from $K \subseteq \mathbb{R}^2$ is $2n^2 + o(n^2)$.
- For p_i and p_j from S, we count the expected number of 3-holes in S with the longest edge $p_i p_j$. We assume $p_i = (0,0)$ and $p_j = (\ell,0)$.
- The third point $p_k \in S$ of the 3-hole lies in the set R of points from $K \cap [0, \ell] \times [\frac{-2}{\ell}, \frac{2}{\ell}]$ that are at distance at most ℓ from p_i and p_j .

- We show that the expected number of 3-holes in a set S of n points selected unif. and indep. at random from $K \subseteq \mathbb{R}^2$ is $2n^2 + o(n^2)$.
- For p_i and p_j from S, we count the expected number of 3-holes in S with the longest edge $p_i p_j$. We assume $p_i = (0,0)$ and $p_j = (\ell,0)$.
- The third point $p_k \in S$ of the 3-hole lies in the set R of points from $K \cap [0, \ell] \times [\frac{-2}{\ell}, \frac{2}{\ell}]$ that are at distance at most ℓ from p_i and p_j .

- We show that the expected number of 3-holes in a set S of n points selected unif. and indep. at random from $K \subseteq \mathbb{R}^2$ is $2n^2 + o(n^2)$.
- For p_i and p_j from S, we count the expected number of 3-holes in S with the longest edge $p_i p_j$. We assume $p_i = (0,0)$ and $p_j = (\ell,0)$.
- The third point $p_k \in S$ of the 3-hole lies in the set R of points from $K \cap [0, \ell] \times [\frac{-2}{\ell}, \frac{2}{\ell}]$ that are at distance at most ℓ from p_i and p_j .

- We show that the expected number of 3-holes in a set S of n points selected unif. and indep. at random from $K \subseteq \mathbb{R}^2$ is $2n^2 + o(n^2)$.
- For p_i and p_j from S, we count the expected number of 3-holes in S with the longest edge $p_i p_j$. We assume $p_i = (0,0)$ and $p_j = (\ell,0)$.
- The third point $p_k \in S$ of the 3-hole lies in the set R of points from $K \cap [0, \ell] \times [\frac{-2}{\ell}, \frac{2}{\ell}]$ that are at distance at most ℓ from p_i and p_j .

• Thus the expected number of 3-holes with longest edge $p_i p_j$ equals

$$(n-2)\cdot\int_{-2/\ell}^{2/\ell}|I_y|\cdot \Pr[p_ip_jp_k \text{ is empty in } S]\,\mathrm{d}y.$$

• Thus the expected number of 3-holes with longest edge $p_i p_j$ equals

$$(n-2)\cdot\int_{-2/\ell}^{2/\ell}|I_y|\cdot \Pr[p_ip_jp_k \text{ is empty in }S]\;\mathrm{d}y.$$

• The probability $\Pr[p_i p_j p_k \text{ is empty in } S]$ equals $\left(1 - \frac{|y| \cdot \ell}{2}\right)^{n-3}$.

• Thus the expected number of 3-holes with longest edge $p_i p_j$ equals

$$(n-2)\cdot\int_{-2/\ell}^{2/\ell}|I_y|\cdot \Pr[p_ip_jp_k \text{ is empty in } S]\,\mathrm{d}y.$$

- The probability $\Pr[p_i p_j p_k \text{ is empty in } S]$ equals $\left(1 \frac{|y| \cdot \ell}{2}\right)^{n-3}$.
- Therefore the expected number is

$$(n-2)\int_{\frac{-2}{\ell}}^{\frac{2}{\ell}}|I_y|\left(1-\frac{|y|\cdot\ell}{2}\right)^{n-3}\mathrm{d}y$$

• Thus the expected number of 3-holes with longest edge $p_i p_j$ equals

$$(n-2)\cdot\int_{-2/\ell}^{2/\ell}|I_y|\cdot \Pr[p_ip_jp_k \text{ is empty in } S]\,\mathrm{d}y.$$

- The probability $\Pr[p_i p_j p_k \text{ is empty in } S]$ equals $\left(1 \frac{|y| \cdot \ell}{2}\right)^{n-3}$.
- Therefore the expected number is

$$(n-2)\int_{\frac{-2}{\ell}}^{\frac{2}{\ell}} |I_y| \left(1 - \frac{|y| \cdot \ell}{2}\right)^{n-3} dy = \frac{n-2}{n} \int_{\frac{-2n}{\ell}}^{\frac{2n}{\ell}} \left|I_{\frac{y}{n}}\right| \left(1 - \frac{|Y|\ell}{2n}\right)^{n-3} dY.$$

• Thus the expected number of 3-holes with longest edge $p_i p_j$ equals

$$(n-2)\cdot\int_{-2/\ell}^{2/\ell}|I_y|\cdot \Pr[p_ip_jp_k \text{ is empty in }S]\,\mathrm{d}y.$$

- The probability $\Pr[p_i p_j p_k \text{ is empty in } S]$ equals $\left(1 \frac{|y| \cdot \ell}{2}\right)^{n-3}$.
- Therefore the expected number is

$$(n-2)\int_{\frac{-2}{\ell}}^{\frac{2}{\ell}}|I_{y}|\left(1-\frac{|y|\cdot\ell}{2}\right)^{n-3}dy = \frac{n-2}{n}\int_{\frac{-2n}{\ell}}^{\frac{2n}{\ell}}\left|I_{\frac{y}{n}}\right|\left(1-\frac{|Y|\ell}{2n}\right)^{n-3}dY.$$

• By the Monotone Convergence Theorem, we get for $n \to \infty$

$$2 \cdot \int_0^\infty |I_0| \cdot e^{-Y \cdot \ell/2} dY =$$

• Thus the expected number of 3-holes with longest edge $p_i p_j$ equals

$$(n-2)\cdot\int_{-2/\ell}^{2/\ell}|I_y|\cdot \Pr[p_ip_jp_k \text{ is empty in }S]\,\mathrm{d}y.$$

- The probability $\Pr[p_i p_j p_k \text{ is empty in } S]$ equals $\left(1 \frac{|y| \cdot \ell}{2}\right)^{n-3}$.
- Therefore the expected number is

$$(n-2)\int_{\frac{-2}{\ell}}^{\frac{2}{\ell}} |I_y| \left(1 - \frac{|y| \cdot \ell}{2}\right)^{n-3} dy = \frac{n-2}{n} \int_{\frac{-2n}{\ell}}^{\frac{2n}{\ell}} \left|I_{\frac{y}{n}}\right| \left(1 - \frac{|Y|\ell}{2n}\right)^{n-3} dY.$$

• By the Monotone Convergence Theorem, we get for $n \to \infty$

$$2 \cdot \int_0^\infty |I_0| \cdot e^{-Y \cdot \ell/2} dY = 2 \cdot \int_0^\infty \ell \cdot e^{-Y \cdot \ell/2} dY$$

Sketch of the proof of $C_{2,3}^K = 2$

• Thus the expected number of 3-holes with longest edge $p_i p_j$ equals

$$(n-2)\cdot\int_{-2/\ell}^{2/\ell}|I_y|\cdot \Pr[p_ip_jp_k \text{ is empty in }S]\,\mathrm{d}y.$$

- The probability $\Pr[p_i p_j p_k \text{ is empty in } S]$ equals $\left(1 \frac{|y| \cdot \ell}{2}\right)^{n-3}$.
- Therefore the expected number is

$$(n-2)\int_{\frac{-2}{\ell}}^{\frac{2}{\ell}} |I_y| \left(1 - \frac{|y| \cdot \ell}{2}\right)^{n-3} dy = \frac{n-2}{n} \int_{\frac{-2n}{\ell}}^{\frac{2n}{\ell}} \left|I_{\frac{y}{n}}\right| \left(1 - \frac{|Y|\ell}{2n}\right)^{n-3} dY.$$

• By the Monotone Convergence Theorem, we get for $n \to \infty$

$$2 \cdot \int_0^\infty |I_0| \cdot e^{-Y \cdot \ell/2} \mathrm{d}Y = 2 \cdot \int_0^\infty \ell \cdot e^{-Y \cdot \ell/2} \mathrm{d}Y = 4.$$

Sketch of the proof of $C_{2,3}^K = 2$

• Thus the expected number of 3-holes with longest edge p_ip_j equals

$$(n-2)\cdot\int_{-2/\ell}^{2/\ell}|I_y|\cdot \Pr[p_ip_jp_k \text{ is empty in }S]\,\mathrm{d}y.$$

- The probability $\Pr[p_i p_j p_k \text{ is empty in } S]$ equals $\left(1 \frac{|y| \cdot \ell}{2}\right)^{n-3}$.
- Therefore the expected number is

$$(n-2)\int_{\frac{-2}{\ell}}^{\frac{\ell}{\ell}}|I_{y}|\left(1-\frac{|y|\cdot\ell}{2}\right)^{n-3}\mathrm{d}y=\frac{n-2}{n}\int_{\frac{-2n}{\ell}}^{\frac{2n}{\ell}}\left|I_{\frac{y}{n}}\right|\left(1-\frac{|Y|\ell}{2n}\right)^{n-3}\mathrm{d}Y.$$

ullet By the Monotone Convergence Theorem, we get for $n o \infty$

$$2 \cdot \int_0^\infty |I_0| \cdot e^{-Y \cdot \ell/2} \mathrm{d}Y = 2 \cdot \int_0^\infty \ell \cdot e^{-Y \cdot \ell/2} \mathrm{d}Y = \mathbf{4}.$$

• Since there are $\binom{n}{2}$ pairs $\{p_i, p_j\}$, the expected number of 3-holes in S is $4(1+o(1)) \cdot \binom{n}{2} = 2n^2 + o(n^2)$.

Sketch of the proof of $C_{2,3}^K = 2$

• Thus the expected number of 3-holes with longest edge $p_i p_j$ equals

$$(n-2)\cdot\int_{-2/\ell}^{2/\ell}|I_y|\cdot\Pr[p_ip_jp_k \text{ is empty in }S]\,\mathrm{d}y.$$

- The probability $\Pr[p_i p_j p_k \text{ is empty in } S]$ equals $\left(1 \frac{|y| \cdot \ell}{2}\right)^{n-3}$.
- Therefore the expected number is

$$(n-2)\int_{\frac{-2}{\ell}}^{\frac{2}{\ell}}|I_y|\left(1-\frac{|y|\cdot\ell}{2}\right)^{n-3}\mathrm{d}y=\frac{n-2}{n}\int_{\frac{-2n}{\ell}}^{\frac{2n}{\ell}}\left|I_{\frac{\boldsymbol{Y}}{n}}\right|\left(1-\frac{|\boldsymbol{Y}|\ell}{2n}\right)^{n-3}\mathrm{d}\boldsymbol{Y}.$$

ullet By the Monotone Convergence Theorem, we get for $n o \infty$

$$2 \cdot \int_0^\infty |J_0| \cdot e^{-Y \cdot \ell/2} dY = 2 \cdot \int_0^\infty \ell \cdot e^{-Y \cdot \ell/2} dY = 4.$$

• Since there are $\binom{n}{2}$ pairs $\{p_i, p_j\}$, the expected number of 3-holes in S is $4(1+o(1)) \cdot \binom{n}{2} = 2n^2 + o(n^2)$.

2 types of 4-holes:

type 1:

$$\int_{y=0}^{2/\ell} \int_{z=0}^{2/\ell-y} |I_y| \cdot |I_{-z}| \cdot \left(1 - \frac{\ell \cdot (y+z)}{2}\right)^{n-4} dz dy$$

type 1:
$$\int_{y=0}^{2/\ell} \int_{z=0}^{2/\ell-y} |I_y| \cdot |I_{-z}| \cdot \left(1 - \frac{\ell \cdot (y+z)}{2}\right)^{n-4} dz dy$$

substitude Y = yn and Z = zn

$$\frac{1}{n^2} \int_{Y=0}^{2n/\ell} \int_{Z=0}^{2n/\ell-Y} |I_{Y/n}| \cdot |I_{-Z/n}| \cdot \left(1 - \frac{\ell \cdot (Y+Z)}{2n}\right)^{n-4} dZ dY.$$

type 1:
$$\int_{y=0}^{2/\ell} \int_{z=0}^{2/\ell-y} |I_y| \cdot |I_{-z}| \cdot \left(1 - \frac{\ell \cdot (y+z)}{2}\right)^{n-4} \, \mathrm{d}z \mathrm{d}y$$

substitude Y = yn and Z = zn

$$\frac{1}{n^2} \int_{Y=0}^{2n/\ell} \int_{Z=0}^{2n/\ell-Y} |I_{Y/n}| \cdot |I_{-Z/n}| \cdot \left(1 - \frac{\ell \cdot (Y+Z)}{2n}\right)^{n-4} dZdY.$$

we integrate over the set $\{(Y,Z)\in\mathbb{R}^2\colon Y+Z\leq 2n/\ell, Y,Z\geq 0\}$, which becomes $\{(Y,Z)\in\mathbb{R}^2\colon Y,Z\geq 0\}$ for n going to infinity

$$|I_{Y/n}|$$
 and $|I_{Z/n}|$ both become $|I_0|=\ell$

type 1:
$$\int_{y=0}^{2/\ell} \int_{z=0}^{2/\ell-y} |I_y| \cdot |I_{-z}| \cdot \left(1 - \frac{\ell \cdot (y+z)}{2}\right)^{n-4} dz dy$$

substitude Y = yn and Z = zn

$$\frac{1}{n^2} \int_{Y=0}^{2n/\ell} \int_{Z=0}^{2n/\ell-Y} |I_{Y/n}| \cdot |I_{-Z/n}| \cdot \left(1 - \frac{\ell \cdot (Y+Z)}{2n}\right)^{n-4} dZdY.$$

we integrate over the set $\{(Y,Z)\in\mathbb{R}^2\colon Y+Z\leq 2n/\ell, Y,Z\geq 0\}$, which becomes $\{(Y,Z)\in\mathbb{R}^2\colon Y,Z\geq 0\}$ for n going to infinity

$$|I_{Y/n}|$$
 and $|I_{Z/n}|$ both become $|I_0|=\ell$

By the Monotone Convergence Theorem, we have

$$\int_{Y=0}^{\infty} \int_{Z=0}^{\infty} \ell^2 e^{-\ell \cdot (Y+Z)/2} \, dZ dY = 4.$$

type 2: 4 symmetric subcases

$${\rm area} = \frac{x'y'}{2} + (x-x')y' + \frac{(\ell-x)y}{2} + \frac{(x-x')(y-y')}{2} = \frac{(\ell-x')y + xy'}{2}.$$

$${\rm area} = \frac{x'y'}{2} + (x-x')y' + \frac{(\ell-x)y}{2} + \frac{(x-x')(y-y')}{2} = \frac{(\ell-x')y + xy'}{2}.$$

$$\int_0^{2/\ell} \int_{l(y)}^{r(y)} \int_0^y \int_{l(y')}^{xy'/y} \left(1 - \frac{(\ell - x')y + xy'}{2} \right)^{n-4} dx' dy' dx dy = \dots = 4 - \frac{\pi^2}{3}$$

in total:

$$\left(\underbrace{\frac{4}{\text{type 1}}} + \underbrace{4 \cdot \left(4 - \frac{\pi^2}{3}\right)}_{\text{type 2}}\right) \cdot \binom{n}{2} = \left(20 - \frac{4}{3}\pi^2\right) \cdot \binom{n}{2}$$

Sketch of the proof of $C_{2,k}^K = C(k)$

Sketch of the proof of $C_{2,k}^K = C(k)$

finitely many types

Sketch of the proof of $C_{2,k}^K = C(k)$

finitely many types

• each type gives $c(1+o(1))n^2$ where c does not depent on K

Thank you for your attention.

Theorem 3 (2021)

For every $d \geq 2$ and every convex $K \subseteq \mathbb{R}^d$, we have $C_{d,d+1}^K \geq \frac{2}{(d-1)!p_{d-1}}$.

• By Theorem 3, any nontrivial upper bound on the probability p_{d-1} translates into a stronger lower bound on $C_{d,d+1}^K$.

Theorem 3 (2021)

For every $d \geq 2$ and every convex $K \subseteq \mathbb{R}^d$, we have $C_{d,d+1}^K \geq \frac{2}{(d-1)!p_{d-1}}$.

• By Theorem 3, any nontrivial upper bound on the probability p_{d-1} translates into a stronger lower bound on $C_{d,d+1}^K$. However, we are not aware of any general bound on p_{d-1} .

Theorem 3 (2021)

For every $d \geq 2$ and every convex $K \subseteq \mathbb{R}^d$, we have $C_{d,d+1}^K \geq \frac{2}{(d-1)!p_{d-1}}$.

• By Theorem 3, any nontrivial upper bound on the probability p_{d-1} translates into a stronger lower bound on $C_{d,d+1}^K$. However, we are not aware of any general bound on p_{d-1} . It is a major problem in convex geometry to decide whether p_d^K is maximized if K is a simplex (Sylvester's convex hull problem).

Theorem 3 (2021)

For every $d \geq 2$ and every convex $K \subseteq \mathbb{R}^d$, we have $C_{d,d+1}^K \geq \frac{2}{(d-1)!p_{d-1}}$.

- By Theorem 3, any nontrivial upper bound on the probability p_{d-1} translates into a stronger lower bound on C^K_{d,d+1}. However, we are not aware of any general bound on p_{d-1}. It is a major problem in convex geometry to decide whether p^K_d is maximized if K is a simplex (Sylvester's convex hull problem).
- We have an estimate on p_d^K for bodies of K of small diameter though.

Theorem 3 (2021)

For every $d \geq 2$ and every convex $K \subseteq \mathbb{R}^d$, we have $C_{d,d+1}^K \geq \frac{2}{(d-1)!p_{d-1}}$.

- By Theorem 3, any nontrivial upper bound on the probability p_{d-1} translates into a stronger lower bound on $C_{d,d+1}^K$. However, we are not aware of any general bound on p_{d-1} . It is a major problem in convex geometry to decide whether p_d^K is maximized if K is a simplex (Sylvester's convex hull problem).
- We have an estimate on p_d^K for bodies of K of small diameter though.

Proposition (2021)

For $\varepsilon > 0$ and $d \ge 1$, let $K \subseteq \mathbb{R}^d$ be a convex body of unit volume. If K has diameter at most $d^{1-\varepsilon}$, then $p_d^K \le \frac{(d+2)d^{(1-\varepsilon)d}}{d!}$.

Theorem 3 (2021)

For every $d \geq 2$ and every convex $K \subseteq \mathbb{R}^d$, we have $C_{d,d+1}^K \geq \frac{2}{(d-1)!p_{d-1}}$.

- By Theorem 3, any nontrivial upper bound on the probability p_{d-1} translates into a stronger lower bound on $C_{d,d+1}^K$. However, we are not aware of any general bound on p_{d-1} . It is a major problem in convex geometry to decide whether p_d^K is maximized if K is a simplex (Sylvester's convex hull problem).
- We have an estimate on p_d^K for bodies of K of small diameter though.

Proposition (2021)

For $\varepsilon > 0$ and $d \ge 1$, let $K \subseteq \mathbb{R}^d$ be a convex body of unit volume. If K has diameter at most $d^{1-\varepsilon}$, then $p_d^K \le \frac{(d+2)d^{(1-\varepsilon)d}}{d!}$.

• Kingman proved exact formula for $p_d^{B^d}$, which gives $p_d^{B^d} = d^{-\Theta(d)}$.

• We conjecture that this is the right growth rate of p_d^K for any K.

• We conjecture that this is the right growth rate of p_d^K for any K.

Conjecture

There is a constant c > 0 such that, for every $d \ge 2$, we have $p_d \le d^{-cd}$.

• We conjecture that this is the right growth rate of p_d^K for any K.

Conjecture

There is a constant c > 0 such that, for every $d \ge 2$, we have $p_d \le d^{-cd}$.

• We also believe that our lower bound on $C_{d,d+1}^{K}$ from Theorem 3 is tight for simplices in any dimension d.

• We conjecture that this is the right growth rate of p_d^K for any K.

Conjecture

There is a constant c > 0 such that, for every $d \ge 2$, we have $p_d \le d^{-cd}$.

• We also believe that our lower bound on $C_{d,d+1}^K$ from Theorem 3 is tight for simplices in any dimension d.

Conjecture

For every $d \ge 2$, if K is a d-dimensional simplex of unit volume, then

$$C_{d,d+1}^{K} = \frac{2}{(d-1)!p_{d-1}}.$$

• We conjecture that this is the right growth rate of p_d^K for any K.

Conjecture

There is a constant c > 0 such that, for every $d \ge 2$, we have $p_d \le d^{-cd}$.

• We also believe that our lower bound on $C_{d,d+1}^K$ from Theorem 3 is tight for simplices in any dimension d.

Conjecture

For every $d \geq 2$, if K is a d-dimensional simplex of unit volume, then

$$C_{d,d+1}^K = \frac{2}{(d-1)!p_{d-1}}.$$

Thank you for your attention.