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Preliminaries

Theorem (Erdős, Szekeres, 1935)

For each k ∈ N, every sufficiently large point set in general position (no 3
points are collinear) in the plane contains k points in convex position.

• A k-hole in a point set S is a k-tuple of points from S in convex
position with no points of S in the interior of their convex hull.

• Every set of ≥ 3 points contains a 3-hole. Also, ≥ 5 points → 4-hole
and ≥ 10 points → 5-hole (Harborth, 1978).
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Sets with no large holes

• Erdős, 1978: For every k ∈ N, does every large enough point set in
general position contain a k-hole?

• No. There are arbitrarily large point sets with no 7-hole (Horton, 1983).

• Every sufficiently large point set in general position contains a 6-hole
(Gerken, 2008 and Nicolás, 2007).
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Counting k-holes

• Every sufficiently large set of points in general position contains a
k-hole for k ∈ {3, 4, 5, 6}.
• How many k-holes do we always have?

• Let hk(n) be the minimum number of k-holes among all sets of n
points in the plane in general position.

• The following bounds are known:

• h3(n) and h4(n) are in Θ(n2).
• h5(n) is in Ω(n log4/5 n) and O(n2).
• h6(n) is in Ω(n) and O(n2).
• hk(n) = 0 for every k ≥ 7 (Horton, 1983).

• Holes were also considered in higher dimensions.

• There are d-dimensional Horton sets not containing k-holes for
sufficiently large k = k(d) (Valtr, 1992).

• The minimum number of (d + 1)-holes (empty simplices) in an n-point
set in Rd is in Θ(nd) (Bárány, Füredi, 1987).
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Random point sets

• Let k ∈ N and let K ⊆ Rd be a convex body of volume λd(K ) = 1.

• Let EHK
d ,k(n) be the expected number of k-holes in sets of n points

chosen independently and uniformly at random from K .

• Bárány and Füredi showed that

EHK
d ,d+1(n) ≤ (2d)2d2 ·

(
n

d

)
.

• Valtr proved EHK
2,3(n) ≤ 4

(
n
2

)
. This is tight, as Reitzner and Temesvari

recently showed limn→∞ n−2EHK
2,3(n) = 2.

• They also proved

2

d !
≤ lim

n→∞
n−dEHK

d ,d+1(n) ≤ d

(d + 1)

κd+1
d−1κd2

κd−1
d κ(d−1)(d+1)

for d ≥ 3, where κd is the volume of the d-dimensional unit ball. The
upper bound holds with equality if K is an ellipsoid.
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Our results: asymptotic growth rate of EHK
d ,k(n)

• We extend previous bounds to larger holes.

• We have an upper bound EHK
d ,k(n) ≤ O(nd) for any fixed k .

Theorem 1 (2020)

Let d ≥ 2 and k ≥ d + 1 be integers and let K ⊆ Rd be a convex body of
unit volume. If n ≥ k , then the expected number EHK

d ,k(n) is at most

2d−1 ·
(

2d2d−1

(
k

bd/2c

))k−d−1

· n(n − 1) · · · (n − k + 2)

(k − d − 1)! · (n − k + 1)k−d−1
∈ O(nd).

• We can also show that this is asymptotically tight.

Theorem 2 (2021)

For all fixed integers d ≥ 2 and k ≥ d + 1 and every convex body K ⊆ Rd

of unit volume, we have EHK
d ,k(n) ≥ Ω(nd).
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Our results: leading constants in EHK
d ,d+1(n)

• Since we have asymptotically sharp estimates on EHK
d ,k(n), we started

studying the leading constants CK
d ,k = limn→∞ n−dEHK

d ,k(n).

• We improved Reitzner’s and Temesvari’s bound CK
d ,d+1 ≥ 2

d!
.

• Let pKd be the probability that the convex hull of d + 2 points chosen
unif. and ind. at random from K is a d-simplex. Let pd = maxK pKd .

Theorem 3 (2021)

For every d ≥ 2 and every convex body K ⊆ Rd of unit volume, we have
CK
d ,d+1 ≥ 2

(d−1)!pd−1
.

• This is tight in the plane and also for simplices in R3.

• We also believe that our lower bound on CK
d ,d+1 from Theorem 3 is

tight for simplices in any dimension d .
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Our results: leading constants in EHK
d ,k(n)

• We can also prove new result about CK
d ,k for k > d + 1.

• For 4-holes in the plane, Fabila-Monroy, Huemer, and Mitsche proved
an upper bound on CK

2,4, which does not give better estimate than 72.
We improved it to CK

2,4 ≤ 12 in 2020. Now, we can determine CK
2,4

exactly.

Theorem 4 (2021)

For every convex body K ⊆ R2 of unit area, we have

CK
2,4 = 10− 2π2

3
≈ 3.420.

• In general, we can show that CK
2,k does not depend on K .

Theorem 5 (2021)

For every integer k ≥ 3, there is a constant C = C (k) such that, for every
convex body K ⊆ R2 of unit area, we have CK

2,k = C .
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Sketch of the proof of CK
2,3 = 2

• We show that the expected number of 3-holes in a set S of n points
selected unif. and indep. at random from K ⊆ R2 is 2n2 + o(n2).

• For pi and pj from S , we count the expected number of 3-holes in S
with the longest edge pipj . We assume pi = (0, 0) and pj = (`, 0).

• The third point pk ∈ S of the 3-hole lies in the set R of points from
K ∩ [0, `]× [−2

`
, 2
`
] that are at distance at most ` from pi and pj .
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Sketch of the proof of CK
2,3 = 2

• Thus the expected number of 3-holes with longest edge pipj equals

(n − 2) ·
∫ 2/`

−2/`

|Iy | · Pr[pipjpk is empty in S ] dy .

pi

2
`

K
R

[0, `]× [− `
2 ,

`
2 ]

pj

pk

I0

Iy

`

• The probability Pr[pipjpk is empty in S ] equals
(

1− |y |·`
2

)n−3

.

• Therefore the expected number is

(n−2)

∫ 2
`

−2
`

|Iy |
(

1− |y | · `
2

)n−3

dy =
n − 2

n

∫ 2n
`

−2n
`

∣∣∣IY
n

∣∣∣ (1− |Y |`
2n

)n−3

dY .

• By the Monotone Convergence Theorem, we get for n→∞

2 ·
∫ ∞

0

|I0| · e−Y ·`/2dY = 2 ·
∫ ∞

0

` · e−Y ·`/2dY = 4.

• Since there are
(
n
2

)
pairs {pi , pj}, the expected number of 3-holes in S

is 4(1 + o(1)) ·
(
n
2

)
= 2n2 + o(n2).
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∫ ∞
Y=0

∫ ∞
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`2e−`·(Y+Z)/2 dZdY = 4.

|IY/n| and |IZ/n| both become |I0| = `

By the Monotone Convergence Theorem, we have
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0
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l(y)

∫ y

0

∫ xy′/y

l(y′)
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1−

(`− x′)y + xy′
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)n−4

dx′ dy′ dxdy = . . . = 4−
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in total: 4︸︷︷︸
type 1

+4 ·
(
4− π2

3

)
︸ ︷︷ ︸

type 2

 ·
(
n

2

)
=

(
20− 4

3
π2

)
·
(
n

2

)
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• finitely many types

. . .

• each type gives c(1 + o(1))n2 where c does not depent
on K
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Open problems I

• By Theorem 3, any nontrivial upper bound on the probability pd−1

translates into a stronger lower bound on CK
d ,d+1. However, we are not

aware of any general bound on pd−1. It is a major problem in convex
geometry to decide whether pKd is maximized if K is a simplex
(Sylvester’s convex hull problem).

• We have an estimate on pKd for bodies of K of small diameter though.

Proposition (2021)

For ε > 0 and d ≥ 1, let K ⊆ Rd be a convex body of unit volume. If K

has diameter at most d1−ε, then pKd ≤
(d+2)d (1−ε)d

d!
.

• Kingman proved exact formula for pB
d

d , which gives pB
d

d = d−Θ(d).
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Open problems II

• We conjecture that this is the right growth rate of pKd for any K .

Conjecture

There is a constant c > 0 such that, for every d ≥ 2, we have pd ≤ d−cd .

• We also believe that our lower bound on CK
d ,d+1 from Theorem 3 is

tight for simplices in any dimension d .

Conjecture

For every d ≥ 2, if K is a d-dimensional simplex of unit volume, then

CK
d ,d+1 =

2

(d − 1)!pd−1
.

Thank you for your attention.



Open problems II

• We conjecture that this is the right growth rate of pKd for any K .

Conjecture

There is a constant c > 0 such that, for every d ≥ 2, we have pd ≤ d−cd .

• We also believe that our lower bound on CK
d ,d+1 from Theorem 3 is

tight for simplices in any dimension d .

Conjecture

For every d ≥ 2, if K is a d-dimensional simplex of unit volume, then

CK
d ,d+1 =

2

(d − 1)!pd−1
.

Thank you for your attention.



Open problems II

• We conjecture that this is the right growth rate of pKd for any K .

Conjecture

There is a constant c > 0 such that, for every d ≥ 2, we have pd ≤ d−cd .

• We also believe that our lower bound on CK
d ,d+1 from Theorem 3 is

tight for simplices in any dimension d .

Conjecture

For every d ≥ 2, if K is a d-dimensional simplex of unit volume, then

CK
d ,d+1 =

2

(d − 1)!pd−1
.

Thank you for your attention.



Open problems II

• We conjecture that this is the right growth rate of pKd for any K .

Conjecture

There is a constant c > 0 such that, for every d ≥ 2, we have pd ≤ d−cd .

• We also believe that our lower bound on CK
d ,d+1 from Theorem 3 is

tight for simplices in any dimension d .

Conjecture

For every d ≥ 2, if K is a d-dimensional simplex of unit volume, then

CK
d ,d+1 =

2

(d − 1)!pd−1
.

Thank you for your attention.



Open problems II

• We conjecture that this is the right growth rate of pKd for any K .

Conjecture

There is a constant c > 0 such that, for every d ≥ 2, we have pd ≤ d−cd .

• We also believe that our lower bound on CK
d ,d+1 from Theorem 3 is

tight for simplices in any dimension d .

Conjecture

For every d ≥ 2, if K is a d-dimensional simplex of unit volume, then

CK
d ,d+1 =

2

(d − 1)!pd−1
.

Thank you for your attention.



Open problems II

• We conjecture that this is the right growth rate of pKd for any K .

Conjecture

There is a constant c > 0 such that, for every d ≥ 2, we have pd ≤ d−cd .

• We also believe that our lower bound on CK
d ,d+1 from Theorem 3 is

tight for simplices in any dimension d .

Conjecture

For every d ≥ 2, if K is a d-dimensional simplex of unit volume, then

CK
d ,d+1 =

2

(d − 1)!pd−1
.

Thank you for your attention.


