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e A k-hole in a point set S is a k-tuple of points from S in convex
position with no points of S in the interior of their convex hull.

e Every set of > 3 points contains a 3-hole. Also, > 5 points — 4-hole
and > 10 points — 5-hole (Harborth, 1978).
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e Every sufficiently large point set in general position contains a 6-hole
(Gerken, 2008 and Nicolas, 2007).
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e Let hi(n) be the minimum number of k-holes among all sets of n
points in the plane in general position.

e The following bounds are known:

hs3(n) and hs(n) are in ©(n?).

hs(n) is in Q(nlog*® n) and O(n?).

he(n) is in Q(n) and O(n?).

hi(n) = 0 for every k > 7 (Horton, 1983).

e Holes were also considered in higher dimensions.

e There are d-dimensional Horton sets not containing k-holes for
sufficiently large k = k(d) (Valtr, 1992).

e The minimum number of (d + 1)-holes (empty simplices) in an n-point
set in R¥ is in ©(n9) (Bardny, Firedi, 1987).
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Random point sets

e Let k € Nand let K C RY be a convex body of volume \y(K) = 1.

e Let EH[,(n) be the expected number of k-holes in sets of n points
chosen independently and uniformly at random from K.

e Barany and Furedi showed that

EH!S 1 (n) < (2d)>* - (Z)

e Valtr proved EHY;(n) < 4(3}). This is tight, as Reitzner and Temesvari
recently showed lim,_,oc n2EH;%(n) = 2.

e They also proved

) d K
d ot <2 < lim n9EHE,, (n) < — < g
dl = oo Gt (d +1) kg Kga-1)(ar1)

for d > 3, where ky4 is the volume of the d-dimensional unit ball. The
upper bound holds with equality if K is an ellipsoid.
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e We extend previous bounds to larger holes.
e We have an upper bound EHJ,(n) < O(n?) for any fixed k.

Theorem 1 (2020)

Let d > 2 and k > d + 1 be integers and let K C R be a convex body of
unit volume. If n > k, then the expected number EH)f,(n) is at most

o (a( )) T g SO

e We can also show that this is asymptotically tight.

Theorem 2 (2021)

For all fixed integers d > 2 and k > d + 1 and every convex body K C R
of unit volume, we have EHJ,(n) > Q(n9).
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e This is tight in the plane and also for simplices in R3.
Corollary (2021)

For every convex body K C R3 of unit volume, we have

3 < Cf, < 2° ~ 3.38. Moreover, the left inequality is tight if K is a

tetrahedron and the right inequality is tight if K is an ellipsoid.
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e Since we have asymptotically sharp estimates on EHf,(n), we started
studying the leading constants C/, = lim,_,oc n=7EHY (n).
e We improved Reitzner's and Temesvari's bound Cf,dﬂ > %.
e Let p/f be the probability that the convex hull of d + 2 points chosen
unif. and ind. at random from K is a d-simplex. Let p; = maxy p.
Theorem 3 (2021)
For every d > 2 and every convex body K C R? of unit volume, we have
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e This is tight in the plane and also for simplices in R3.

e We also believe that our lower bound on C,,; from Theorem 3 is
tight for simplices in any dimension d.
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e We can also prove new result about C/f for k > d +1.

e For 4-holes in the plane, Fabila-Monroy, Huemer, and Mitsche proved
an upper bound on C2’f4, which does not give better estimate than 72.

We improved it to C254 < 12in 2020. Now, we can determine C2*f4
exactly.

Theorem 4 (2021)

For every convex body K C IR? of unit area, we have
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e In general, we can show that CJ, does not depend on K.

Theorem 5 (2021)

For every integer k > 3, there is a constant C = C(k) such that, for every
convex body K C R? of unit area, we have ), = C.
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2 types of 4-holes:
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which becomes {(Y, Z) € R?: Y, Z > 0} for n going to infinity
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By the Monotone Convergence Theorem, we have
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type 2: 4 symmetric subcases
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type 2a:
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type 2a:
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Sketch of the proof of C2;54 = |ll] = %

in total:

2 n 4 n
4 +4-(4-— |- =(20-37")-
NG ( 3) <2) (0 37r) (2>
type 1 N e

type 2



BN
Sketch of the proof of ka = C(k)



Sketch of the proof of (Y, = C(k)
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Sketch of the proof of (Y, = C(k)

e finitely many types

N
N

e each type gives c(1 + o(1))n? where ¢ does not depent
on K







Thank you for your attention.
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Theorem 3 (2021)
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For every d > 2 and every convex K C R?, we have C§d+1 b 7 Ty

e By Theorem 3, any nontrivial upper bound on the probability py_1
translates into a stronger lower bound on Cfdﬂ. However, we are not
aware of any general bound on py_1. It is a major problem in convex
geometry to decide whether p/f is maximized if K is a simplex
(Sylvester’s convex hull problem).

e We have an estimate on p for bodies of K of small diameter though.

Proposition (2021)

Fore >0and d > 1, let K C RY be a convex body of unit volume. If K

. (1—e)d
has diameter at most d'~¢, then p/f < %-

e Kingman proved exact formula for p2°, which gives p8° = d=©(9).
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e We conjecture that this is the right growth rate of p/f for any K.

Conjecture
There is a constant ¢ > 0 such that, for every d > 2, we have py < d=<. J

e We also believe that our lower bound on CJ,, from Theorem 3 is
tight for simplices in any dimension d.
Conjecture
For every d > 2, if K is a d-dimensional simplex of unit volume, then
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Thank you for your attention.



