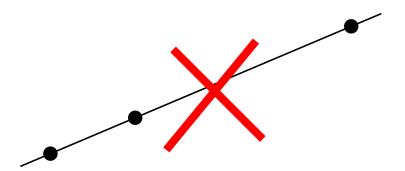


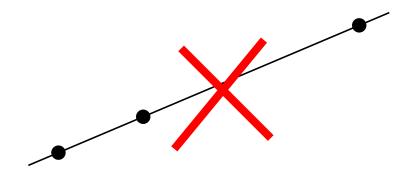
Holes and Islands in Random Point Sets

Martin Balko, Manfred Scheucher, Pavel Valtr

a finite point set S in the plane is in general position if \nexists collinear points in S



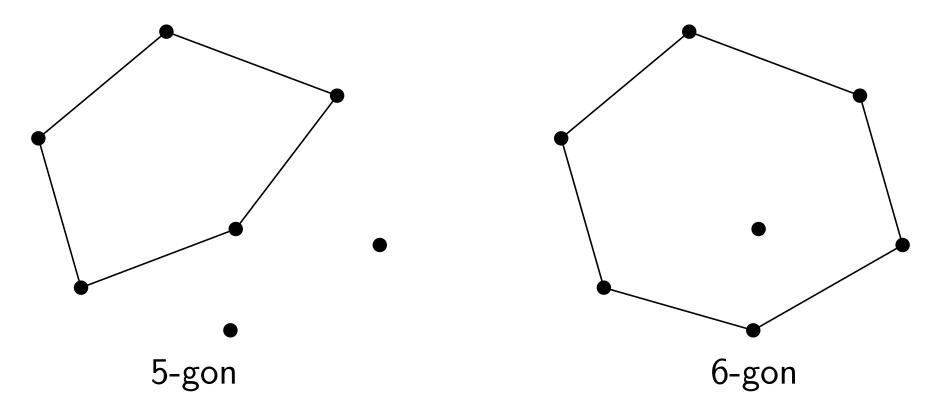
a finite point set S in the plane is in general position if \nexists collinear points in S



throughout this presentation, every set is in general position

a finite point set S in the plane is in general position if \nexists collinear points in S

a k-gon (in S) is the vertex set of a convex k-gon



a finite point set S in the plane is in general position if \nexists collinear points in S

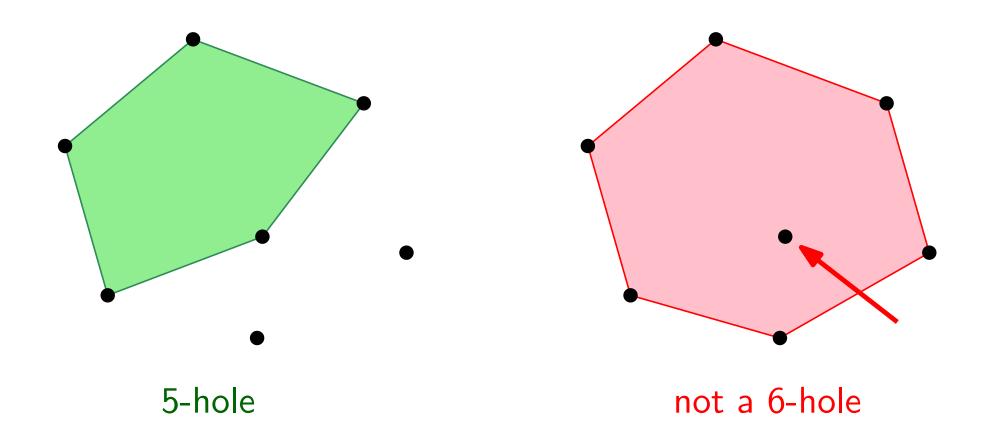
a k-gon (in S) is the vertex set of a convex k-gon

Theorem (Erdős and Szekeres 1935).

 $\forall k \in \mathbb{N}, \exists$ a smallest integer ES(k) such that every set of ES(k) points contains a k-gon.

k-Holes

a k-hole (in S) is the vertex set of a convex k-gon containing no other points of S



k-Holes

a k-hole (in S) is the vertex set of a convex k-gon containing no other points of S

Erdős, 1970's: For k fixed, does every sufficiently large point set contain k-holes?

k-Holes

a k-hole (in S) is the vertex set of a convex k-gon containing no other points of S

Erdős, 1970's: For k fixed, does every sufficiently large point set contain k-holes?

- 3 points $\Rightarrow \exists$ 3-hole
- 5 points $\Rightarrow \exists$ 4-hole
- 10 points $\Rightarrow \exists$ 5-hole [Harborth '78]
- ∃ arbitrarily large point sets with no 7-hole [Horton '83]
- Sufficiently large point sets ⇒ ∃ 6-hole
 [Gerken '08 and Nicolás '07, independently]

Counting *k*-Holes

 $h_k(n) := minimum \# of k-holes among all sets of n points$

[Bárány and Füredi '87, Bárány and Valtr '04]

- $h_3(n)$ and $h_4(n)$ both in $\Theta(n^2)$
- $h_5(n)$ in $\Omega(n\log^{4/5}n)$ and $O(n^2)$ [Aichholzer, Balko, Hackl, Kynčl, Parada, S., Valtr, and Vogtenhuber '17]
- $h_6(n)$ in $\Omega(n)$ and $O(n^2)$ [Gerken '08, Nicolás '07]
- $h_k(n) = 0$ for $k \ge 7$ [Horton '83]

Holes in Higher Dimensions

• \exists *d*-dimensional Horton sets not containing *k*-holes for sufficiently large k=k(d) [Valtr '92]

• minimum number of empty simplices (d+1)-holes) in n-point set in \mathbb{R}^d is in $\Theta(n^d)$ [Bárány and Füredi '92]

Random Point Sets

• Random point sets give the upper bound $O(n^d)$

Random Point Sets

- Random point sets give the upper bound $O(n^d)$
- $EH_{d,k}^K(n):=$ expected number of k-holes in sets of n points chosen independently and uniformly at random from convex shape $K\subset\mathbb{R}^d$

Random Point Sets

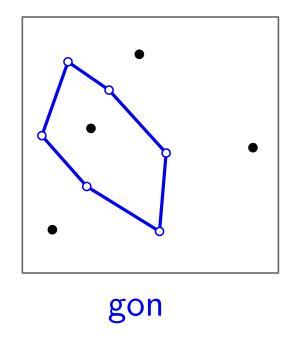
- ullet Random point sets give the upper bound $O(n^d)$
- $EH_{d,k}^K(n):=$ expected number of k-holes in sets of n points chosen independently and uniformly at random from convex shape $K\subset\mathbb{R}^d$
- Bárány and Füredi (1987) showed

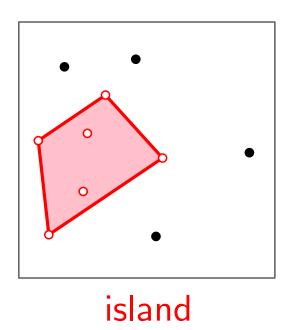
$$EH_{d,d+1}^{K}(n) \le (2d)^{2d^2} \cdot \binom{n}{d}$$

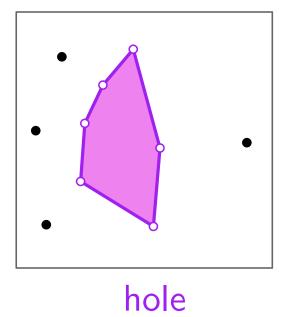
$$O(n^d)$$

Our Results I

- extend bound to larger holes, and even to islands
- $I \subseteq S$ is an island (in S) if $S \cap conv(I) = I$
- "hole = gon + island"







Our Results I

extend bound to larger holes, and even to islands

Theorem 1. Let $d \geq 2$ and $k \geq d+1$ be integers, and let K be a convex body in \mathbb{R}^d . If S is a set of n points chosen uniformly and independently at random from K, then the expected number of k-islands in S is at most

$$2^{d-1} \cdot \left(2d^{2d-1} \binom{k}{\lfloor d/2 \rfloor}\right)^{k-d-1} \cdot (k-d) \cdot \frac{n(n-1) \cdot \dots \cdot (n-k+2)}{(n-k+1)^{k-d-1}}$$

$$O(n^d)$$

Our Results I

extend bound to larger holes, and even to islands

Theorem 1. Let $d \geq 2$ and $k \geq d+1$ be integers, and let K be a convex body in \mathbb{R}^d . If S is a set of n points chosen uniformly and independently at random from K, then the expected number of k-islands in S is at most

$$2^{d-1} \cdot \left(2d^{2d-1} \binom{k}{\lfloor d/2 \rfloor}\right)^{k-d-1} \cdot (k-d) \cdot \frac{n(n-1) \cdot \dots \cdot (n-k+2)}{(n-k+1)^{k-d-1}}$$

• In particular:

 \exists sets of n points in \mathbb{R}^d with $O(n^d)$ k-islands

Our Results II

- the bound from Theorem 1 is asymptotically optimal, but the leading constant can be improved for k-holes
- for empty simplices in \mathbb{R}^d , we have a better bound

$$EH_{d,d+1}^K(n) \le 2^{d-1} \cdot d! \cdot \binom{n}{d}$$

• for 4-holes in \mathbb{R}^2 , we have $EH_{2,4}^K(n) \leq 12n^2 + o(n^2)$

Our Results II

- the bound from Theorem 1 is asymptotically optimal, but the leading constant can be improved for k-holes
- for empty simplices in \mathbb{R}^d , we have a better bound

$$EH_{d,d+1}^K(n) \le 2^{d-1} \cdot d! \cdot \binom{n}{d}$$

- for 4-holes in \mathbb{R}^2 , we have $EH_{2,4}^K(n) \leq 12n^2 + o(n^2)$
- very recently, Reitzner and Temesvari proved an asymptotically tight bound for $EH_{d,d+1}^K(n)$ if d=2 or if $d\geq 3$ and K is an ellipsoid

Our Results III

- Theorem 1 is the first nontrivial bound for k-islands in \mathbb{R}^d for d>2
- In the plane, the $O(n^2)$ bound is achieved by Horton sets [Fabila-Monroy and Huemer '12]
- however, d-dimensional Horton sets with d>2 do not give the $O(n^d)$ bound on k-islands

Our Results III

- Theorem 1 is the first nontrivial bound for k-islands in \mathbb{R}^d for d>2
- In the plane, the $O(n^2)$ bound is achieved by Horton sets [Fabila-Monroy and Huemer '12]
- however, d-dimensional Horton sets with d>2 do not give the $O(n^d)$ bound on k-islands

Theorem 3. Let $d \geq 2$ and let k be fixed positive integers. Then every d-dimensional Horton set H with n points contains at least $\Omega(n^{\min\{2^{d-1},k\}})$ k-islands. If $k \leq 3 \cdot 2^{d-1}$, then H even contains at least $\Omega(n^{\min\{2^{d-1},k\}})$ k-holes.

Our Results IV

• we cannot have $O(n^d)$ for k-islands if k is not fixed

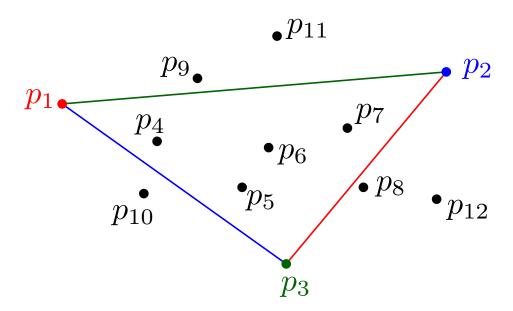
Theorem 3. Let $d \geq 2$ and let K be a convex body in \mathbb{R}^d . Then, for every set S of n points chosen uniformly and independently at random from K, the expected number of islands in S is $2^{\Theta(n^{(d-1)/(d+1)})}$.

Idea of the proof of Theorem 1

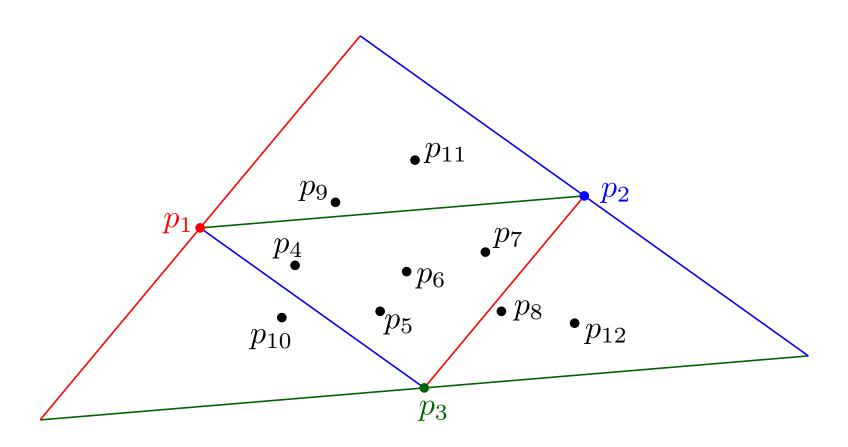
Rest of this presentation:

idea how to prove the bound $O(n^2)$ on the expected number of k-islands in a set S of n points chosen uniformly and independently at random from convex body $K \subset \mathbb{R}^2$ with area $\lambda(K)=1$

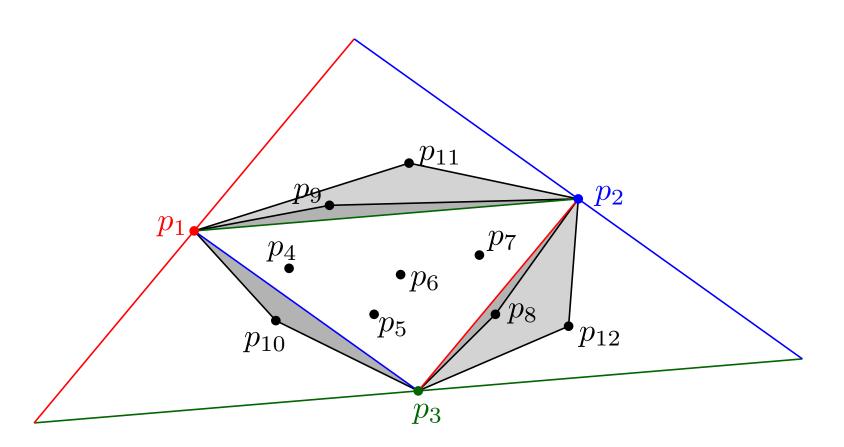
- We prove an $O(1/n^{k-2})$ bound on the probability that a k-tuple $I=(p_1,\ldots,p_k)$ determines k-island with 2 additional properties:
 - \circ (P1) p_1, p_2, p_3 form largest triangle \triangle in I
 - \circ (P2) p_4, \ldots, p_{3+a} inside \triangle ; rest outside & incr. dist. to \triangle



- We prove an $O(1/n^{k-2})$ bound on the probability that a k-tuple $I=(p_1,\ldots,p_k)$ determines k-island with 2 additional properties:
 - \circ (P1) p_1, p_2, p_3 form largest triangle \triangle in I
 - \circ (P2) p_4, \ldots, p_{3+a} inside \triangle ; rest outside & incr. dist. to \triangle

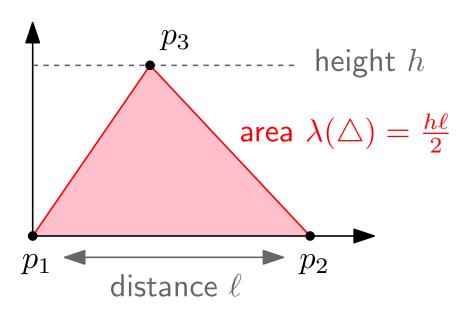


- We prove an $O(1/n^{k-2})$ bound on the probability that a k-tuple $I=(p_1,\ldots,p_k)$ determines k-island with 2 additional properties:
 - \circ (P1) p_1, p_2, p_3 form largest triangle \triangle in I
 - \circ (P2) p_4, \ldots, p_{3+a} inside \triangle ; rest outside & incr. dist. to \triangle

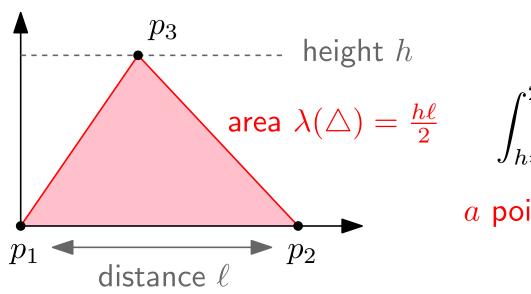


- We prove an $O(1/n^{k-2})$ bound on the probability that a k-tuple $I=(p_1,\ldots,p_k)$ determines k-island with 2 additional properties:
 - \circ (P1) p_1, p_2, p_3 form largest triangle \triangle in I
 - o (P2) p_4, \ldots, p_{3+a} inside \triangle ; rest outside & incr. dist. to \triangle
- First, \triangle contains precisely p_4, \ldots, p_{3+a} with prob. $O(1/n^{a+1})$
 - $\iff p_1, \dots, p_{3+a}$ form an island in S satisfying (P1) and (P2)

- We prove an $O(1/n^{k-2})$ bound on the probability that a k-tuple $I=(p_1,\ldots,p_k)$ determines k-island with 2 additional properties:
 - \circ (P1) p_1, p_2, p_3 form largest triangle \triangle in I
 - o (P2) p_4, \ldots, p_{3+a} inside \triangle ; rest outside & incr. dist. to \triangle
- First, \triangle contains precisely p_4, \ldots, p_{3+a} with prob. $O(1/n^{a+1})$



- We prove an $O(1/n^{k-2})$ bound on the probability that a k-tuple $I=(p_1,\ldots,p_k)$ determines k-island with 2 additional properties:
 - \circ (P1) p_1, p_2, p_3 form largest triangle \triangle in I
 - o (P2) p_4, \ldots, p_{3+a} inside \triangle ; rest outside & incr. dist. to \triangle
- First, \triangle contains precisely p_4, \ldots, p_{3+a} with prob. $O(1/n^{a+1})$



because
$$\lambda(\triangle) \leq \lambda(K) = 1$$
 area $\lambda(\triangle) = \frac{h\ell}{2}$
$$\int_{h=0}^{2/\ell} \left(\frac{h\ell}{2}\right)^a \left(1 - \frac{h\ell}{2}\right)^{n-3-a} dh$$

a points inside n-3-a outside

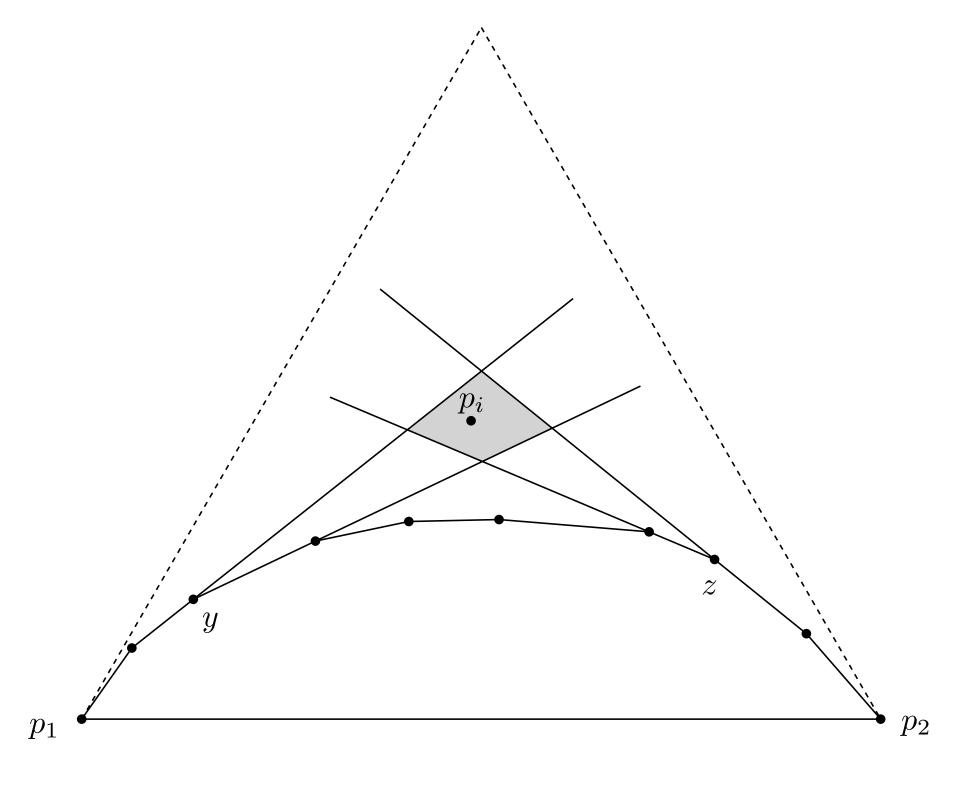
- We prove an $O(1/n^{k-2})$ bound on the probability that a k-tuple $I=(p_1,\ldots,p_k)$ determines k-island with 2 additional properties:
 - \circ (P1) p_1, p_2, p_3 form largest triangle \triangle in I
 - o (P2) p_4, \ldots, p_{3+a} inside \triangle ; rest outside & incr. dist. to \triangle
- First, \triangle contains precisely p_4, \ldots, p_{3+a} with prob. $O(1/n^{a+1})$

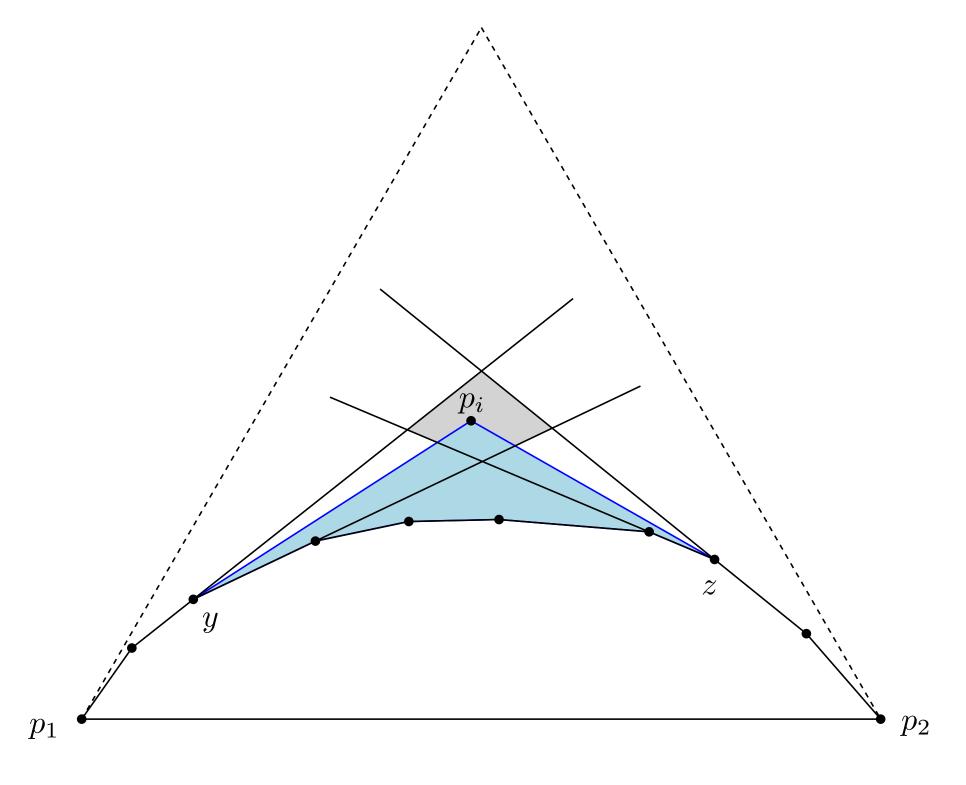
$$\int_{h=0}^{2/\ell} \left(\frac{h\ell}{2}\right)^{a} \left(1 - \frac{h\ell}{2}\right)^{n-3-a} dh$$

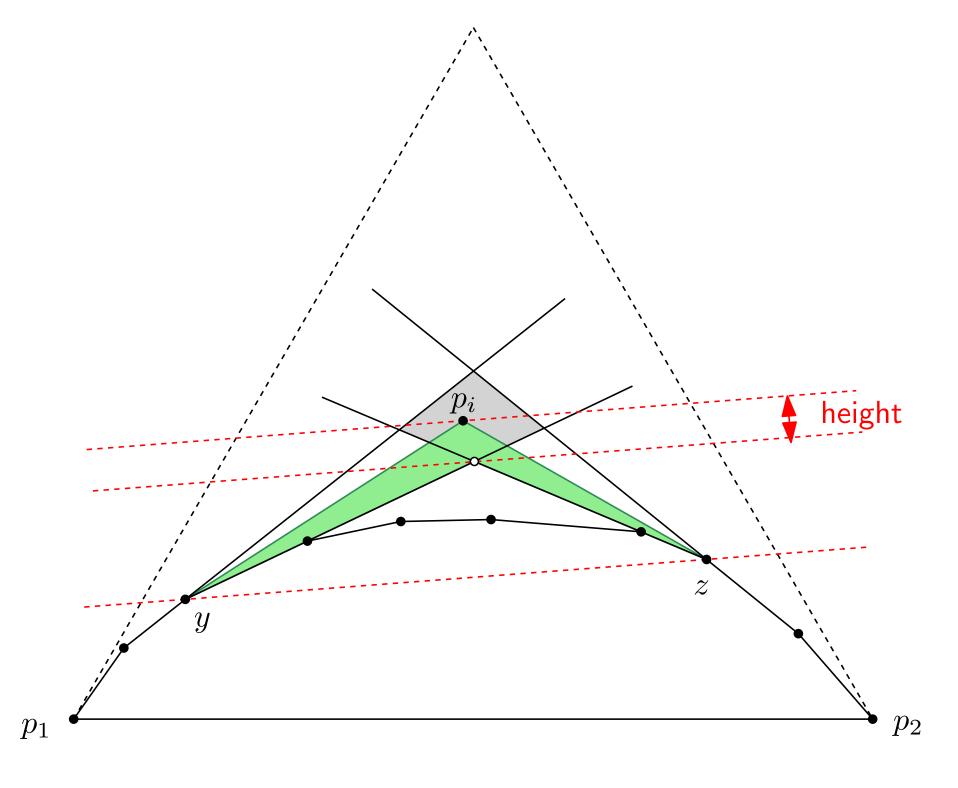
$$\int_{x=0}^{1} x^{a} (1-x)^{n-3-a} dx = \frac{a! \cdot (n-3-a)!}{(a+n-3-a+1)!} \approx a! \cdot n^{(n-3-a)-(n-2)}$$

(Beta-function)

- We prove an $O(1/n^{k-2})$ bound on the probability that a k-tuple $I=(p_1,\ldots,p_k)$ determines k-island with 2 additional properties:
 - \circ (P1) p_1, p_2, p_3 form largest triangle \triangle in I
 - o (P2) p_4, \ldots, p_{3+a} inside \triangle ; rest outside & incr. dist. to \triangle
- First, \triangle contains precisely p_4, \ldots, p_{3+a} with prob. $O(1/n^{a+1})$
- Next, conditioned on the fact that p_1, \ldots, p_{i-1} determines island satisfying (P1) and (P2), p_1, \ldots, p_i determines island sat. (P1) and (P2) with prob. O(1/n)







- We prove an $O(1/n^{k-2})$ bound on the probability that a k-tuple $I=(p_1,\ldots,p_k)$ determines k-island with 2 additional properties:
 - \circ (P1) p_1, p_2, p_3 form largest triangle \triangle in I
 - o (P2) p_4, \ldots, p_{3+a} inside \triangle ; rest outside & incr. dist. to \triangle
- First, \triangle contains precisely p_4, \ldots, p_{3+a} with prob. $O(1/n^{a+1})$
- Next, conditioned on the fact that p_1, \ldots, p_{i-1} determines island satisfying (P1) and (P2), p_1, \ldots, p_i determines island sat. (P1) and (P2) with prob. O(1/n)
- \Rightarrow I determines k-island with (P1) and (P2) prob. at most $O\left(1/n^{a+1}\cdot(1/n)^{k-(3+a)}\right)=O(1/n^{k-2})$

- We prove an $O(1/n^{k-2})$ bound on the probability that a k-tuple $I=(p_1,\ldots,p_k)$ determines k-island with 2 additional properties:
 - \circ (P1) p_1, p_2, p_3 form largest triangle \triangle in I
 - o (P2) p_4, \ldots, p_{3+a} inside \triangle ; rest outside & incr. dist. to \triangle
- First, \triangle contains precisely p_4, \ldots, p_{3+a} with prob. $O(1/n^{a+1})$
- Next, conditioned on the fact that p_1, \ldots, p_{i-1} determines island satisfying (P1) and (P2), p_1, \ldots, p_i determines island sat. (P1) and (P2) with prob. O(1/n)
- \Rightarrow I determines k-island with (P1) and (P2) prob. at most $O\left(1/n^{a+1}\cdot(1/n)^{k-(3+a)}\right)=O(1/n^{k-2})$
- Finally, since there are $n \cdot (n-1) \cdots (n-k+1)$ possibilities to select I, we obtain the desired bound $O(n^k \cdot n^{2-k}) = O(n^2)$ on the expected number of k-islands in S

