

k-Gons

a k-gon in a point set S is a convex polygon spanned by k points of S

Theorem (Erdős \& Szekeres 1935).
$\forall k \in \mathbb{N}, \exists$ a smallest integer $g(k)$ such that every set of $g(k)$ points determines a k-gon.

k-Gons

a k-gon in a geometric drawing K_{n} is a crossing-maximal subdrawing of K_{k} (every K_{4} has crossing)

Theorem (Erdős \& Szekeres 1935).
$\forall k \in \mathbb{N}, \exists$ a smallest integer $g(k)$ such that every geom. drawing of $K_{g(k)}$ determines a cross.max. K_{k}

k-Gons

a k-gon in a geometric drawing K_{n} is a crossing-maximal subdrawing of K_{k} (every K_{4} has crossing)

Theorem (Erdős \& Szekeres 1935).
$\forall k \in \mathbb{N}, \exists$ a smallest integer $g(k)$ such that every geom. drawing of $K_{g(k)}$ determines a cross.max. K_{k}

- $g(k)=2^{k+o(k)}$ [Suk '16]
- applies to pseudolinear drawings
[Holmsen, Mojarrad, Pach and Tardos '17]
- $g(k)=2^{k-2}+1$ conjectured

Simple Drawings

- edges are Jordan arcs (no self-intersections)
- any two edges intersect in at most one point (common vertex or proper crossing)

Simple Drawings

- edges are Jordan arcs (no self-intersections)
- any two edges intersect in at most one point (common vertex or proper crossing)

- generalize crossing-minimal drawings

Simple Drawings

- edges are Jordan arcs (no self-intersections)
- any two edges intersect in at most one point (common vertex or proper crossing)

- generalize crossing-minimal drawings
- and geometric drawings

k-Gons in Simple Drawings

[Pach, Solymosi \& Tóth '03]: \forall simple drawing of $K_{\widetilde{R}(k, \ell)}$
\exists convex C_{k} (k-gon) or twisted T_{ℓ} subdrawing

k-Gons in Simple Drawings

[Pach, Solymosi \& Tóth '03]: \forall simple drawing of $K_{\widetilde{R}(k, \ell)}$ \exists convex C_{k} (k-gon) or twisted T_{ℓ} subdrawing

- $\widetilde{R}(k, \ell) \leq c^{(k \ell)^{4}}$ [Pach, Solymosi \& Tóth '03]
- $\widetilde{R}(k, \ell) \leq c^{(k \ell)^{2} \log (k) \log (\ell)}$ [Suk \& Zeng '22]

Variant: k-Holes

Variant: k-Holes

```
W K-hole - Wikipedia
```

$\times \quad+$

:= K-hole

Article Talk

More \checkmark

From Wikipedia, the free encyclopedia
This article is about the effect of keta mine. For the trend forecasting group, see K-HOLE (trend foresting_group).

K-hole is the feeling of getinsa high enough dose of ketamine to experience a state afdissociation. This intense detachment from reality is often a consequence of accidental overconsumption of ketamine; however, some users consciously seek out the k-hole as they find the powerful dissociative effects to be quite pleasurable and enlightening. Regardless of the subjective experiences of k-holing, there are many psychological and physical risks associated with such high levels of ketamine consumption. ${ }^{[1]}$

Variant: k-Holes

Erdős, 1970's: For k fixed, does every sufficiently large point set determine a k-hole?
a k-hole in a point set S is a k-gon which contains no other points of S

Variant: k-Holes

Erdős, 1970's: For k fixed, does every sufficiently large point set determine a k-hole?
a k-hole in a point set S is a k-gon which contains no other points of $S \Leftrightarrow$ every triangle is empty

Variant: k-Holes

Erdős, 1970's: For k fixed, does every sufficiently large point set determine a k-hole?
a k-hole in a point set S is a k-gon which contains no other points of S

- Sufficiently large point sets $\Rightarrow \exists$ 6-hole [Gerken '06; Nicolás '07]
- \exists arbitrarily large point sets with no 7 -hole [Horton '83]

k-Holes in Simple Drawings

a k-hole in a simple drawing of K_{n} is a C_{k} such that every triangle has an empty side

k-Holes in Simple Drawings

a k-hole in a simple drawing of K_{n} is a C_{k} such that every triangle has an empty side

k-Holes in Simple Drawings

a k-hole in a simple drawing of K_{n} is a C_{k} such that every triangle has an empty side

- min. \# 3-holes between n and $2 n-4$
[Harborth '78, Aichholzer et al. '15]
- no (≥ 5)-holes [Harborth '78]

k-Holes in Simple Drawings

a k-hole in a simple drawing of K_{n} is a C_{k} such that every triangle has an empty side

- min. \# 3-holes between n and $2 n-4$ [Harborth '78, Aichholzer et al. '15]
- no (≥ 5)-holes [Harborth '78]
- Theorem: no 4-holes

k-Holes in Simple Drawings

a k-hole in a simple drawing of K_{n} is a C_{k} such that every triangle has an empty side

- min. \# 3-holes between n and $2 n-4$ [Harborth '78, Aichholzer et al. '15]
- no (≥ 5)-holes [Harborth '78]
- Theorem: no 4-holes what now?

Intermediate: Convex Drawings

In a simple drawing of K_{n} any 3 vertices induce a triangle \triangle with a bounded side and an unbounded side

Intermediate: Convex Drawings

In a simple drawing of K_{n} any 3 vertices induce a triangle \triangle with a bounded side and an unbounded side

Definition (Arroyo et al. 2017).
A simple drawing is convex iff \forall triangle \exists convex side S, i.e., \forall vertices a, b from S the edge $a b$ is fully contained in S

Intermediate: Convex Drawings

In a simple drawing of K_{n} any 3 vertices induce a triangle \triangle with a bounded side and an unbounded side

Definition (Arroyo et al. 2017).
A simple drawing is convex iff \forall triangle \exists convex side S, i.e., \forall vertices a, b from S the edge $a b$ is fully contained in S

Intermediate: Convex Drawings

In a simple drawing of K_{n} any 3 vertices induce a triangle \triangle with a bounded side and an unbounded side

Definition (Arroyo et al. 2017).
A simple drawing is convex iff \forall triangle \exists convex side S, i.e., \forall vertices a, b from S the edge $a b$ is fully contained in S

Intermediate: Convex Drawings

In a simple drawing of K_{n} any 3 vertices induce a triangle \triangle with a bounded side and an unbounded side

Definition (Arroyo et al. 2017).
A simple drawing is convex iff \forall triangle \exists convex side S, i.e., \forall vertices a, b from S the edge $a b$ is fully contained in S

Convexity Hierarchy (Arroyo et al. '17)

- geometric
(order types, realizable acyclic rank 3 OM)
- pseudolinear / f-convex
(abstract order types, acyclic rank 3 OM, CC-system)
- h-convex
- convex
- simple

Holes Revised

$k \geq 4$: k-hole \Leftrightarrow convex side of C_{k} is empty
convex side of $C_{k}:=$ union of convex sides of triangles in induced subdrawing $\mathcal{D}\left[C_{k}\right]$

Holes in Convex Drawings

- $\min \# 3$-holes $=\Theta\left(n^{2}\right)$ [Arroyo et al. '18]

Holes in Convex Drawings

- $\min \# 3$-holes $=\Theta\left(n^{2}\right)$ [Arroyo et al. '18]
- Theorem: $\min \# 4$-holes $=\Theta\left(n^{2}\right)$

Holes in Convex Drawings

- $\min \# 3$-holes $=\Theta\left(n^{2}\right)$ [Arroyo et al. '18]
- Theorem: $\min \# 4$-holes $=\Theta\left(n^{2}\right)$
- Theorem: n sufficiently large $\Rightarrow 6$-holes exist

Holes in Convex Drawings

- $\min \# 3$-holes $=\Theta\left(n^{2}\right)$ [Arroyo et al. '18]
- Theorem: $\min \# 4$-holes $=\Theta\left(n^{2}\right)$
- Theorem: n sufficiently large $\Rightarrow 6$-holes exist proof: 1. find large pseudolinear drawing

2. empty hexagon theorem for pseudolinear [S.'23]

- Theorem: C_{k} minimal k-gon with $k \geq 5$
\Rightarrow the convex side of C_{k} induces pseudolinear drawing

Discussion

- 5-holes in convex drawings of $K_{n \geq 13}$?
- largest pseudolinear subdrawing in convex drawing?
- largest C_{k} in convex drawing?

$$
\begin{gathered}
\widetilde{R}_{\text {conv }}(k) \leq \widetilde{R}(k, 5) \leq c^{k^{2} \log (k)} \text { via [Suk \& Zeng '22] } \\
\text { (convex drawings do not contain twisted } T_{5} \text {) }
\end{gathered}
$$

(a)

－ 4 要

