

k-Gons

a $k\operatorname{-gon}$ in a point set S is a convex polygon spanned by k points of S

Theorem (Erdős & Szekeres 1935). $\forall k \in \mathbb{N}, \exists a \text{ smallest integer } g(k) \text{ such that}$

every set of g(k) points determines a k-gon.

k-Gons

a k-gon in a geometric drawing K_n is a crossing-maximal subdrawing of K_k (every K_4 has crossing)

Theorem (Erdős & Szekeres 1935). $\forall k \in \mathbb{N}, \exists$ a smallest integer g(k) such that every geom. drawing of $K_{g(k)}$ determines a cross.max. K_k

k-Gons

a k-gon in a geometric drawing K_n is a crossing-maximal subdrawing of K_k (every K_4 has crossing)

Theorem (Erdős & Szekeres 1935). $\forall k \in \mathbb{N}, \exists$ a smallest integer g(k) such that every geom. drawing of $K_{g(k)}$ determines a cross.max. K_k

• $g(k) = 2^{k+o(k)}$ [Suk '16]

applies to pseudolinear drawings [Holmsen, Mojarrad, Pach and Tardos '17]

•
$$g(k) = 2^{k-2} + 1$$
 conjectured

Simple Drawings

- edges are Jordan arcs (no self-intersections)
- any two edges intersect in at most one point (common vertex or proper crossing)

Simple Drawings

- edges are Jordan arcs (no self-intersections)
- any two edges intersect in at most one point (common vertex or proper crossing)

generalize crossing-minimal drawings

Simple Drawings

- edges are Jordan arcs (no self-intersections)
- any two edges intersect in at most one point (common vertex or proper crossing)

- generalize crossing-minimal drawings
- and geometric drawings

[Pach, Solymosi & Tóth '03]: \forall simple drawing of $K_{\widetilde{R}(k,\ell)}$ \exists convex C_k (k-gon) or twisted T_ℓ subdrawing

[Pach, Solymosi & Tóth '03]: \forall simple drawing of $K_{\widetilde{R}(k,\ell)}$ \exists convex C_k (k-gon) or twisted T_ℓ subdrawing

- $\widetilde{R}(k,\ell) \leq c^{(k\ell)^4}$ [Pach, Solymosi & Tóth '03]
- $\widetilde{R}(k,\ell) \leq c^{(k\ell)^2 \log(k) \log(\ell)}$ [Suk & Zeng '22]

K-hole - Wikipedia × +	✓ < ^
→ C en.wikipedia.org/wiki/K-hole	G @ < 🖈 🗭 🏻 🅙
≡ K-hole	文A 2 languages ~
Article Talk	More ~
From Wikipedia, the free encyclopedia	noix.
This article is about the effect of	Ketamine. For the trend forecasting
group, see <u>K-HOLE (trend for</u> ed	<u>esting group)</u> .
K-hole is the feeling of getting a hig	h enough dose of ketamine to
experience a state of dissociation. T	his intense detachment from reality
is often a consequence of accidenta	l overconsumption of ketamine;
however, some users consciously se	eek out the k-hole as they find the
powerful dissociative effects to be q	uite pleasurable and enlightening.
Regardless of the subjective experie	ences of k-holing, there are many
psychological and physical risks ass	sociated with such high levels of
ketamine consumption. ^[1]	

Erdős, 1970's: For k fixed, does every sufficiently large point set determine a k-hole?

a k-hole in a point set S is a k-gon which contains no other points of S

Erdős, 1970's: For k fixed, does every sufficiently large point set determine a k-hole?

a k-hole in a point set S is a k-gon which contains no other points of $S \Leftrightarrow$ every triangle is empty

Erdős, 1970's: For k fixed, does every sufficiently large point set determine a k-hole?

a k-hole in a point set S is a k-gon which contains no other points of S

- Sufficiently large point sets ⇒ ∃ 6-hole
 [Gerken '06; Nicolás '07]
- ∃ arbitrarily large point sets with no 7-hole [Horton '83]

a k-hole in a simple drawing of K_n is a C_k such that every triangle has an empty side

a k-hole in a simple drawing of K_n is a C_k such that every triangle has an empty side

a k-hole in a simple drawing of K_n is a C_k such that every triangle has an empty side

- min. # 3-holes between n and 2n 4 [Harborth '78, Aichholzer et al. '15]
- no (\geq 5)-holes [Harborth '78]

a k-hole in a simple drawing of K_n is a C_k such that every triangle has an empty side

- min. # 3-holes between n and 2n 4 [Harborth '78, Aichholzer et al. '15]
- no (\geq 5)-holes [Harborth '78]

• Theorem: no 4-holes

a k-hole in a simple drawing of K_n is a C_k such that every triangle has an empty side

- min. # 3-holes between n and 2n 4 [Harborth '78, Aichholzer et al. '15]
- no (\geq 5)-holes [Harborth '78]

• Theorem: no 4-holes

what now?

In a simple drawing of K_n any 3 vertices induce a triangle \triangle with a bounded side and an unbounded side

In a simple drawing of K_n any 3 vertices induce a triangle \triangle with a bounded side and an unbounded side

In a simple drawing of K_n any 3 vertices induce a triangle \triangle with a bounded side and an unbounded side

In a simple drawing of K_n any 3 vertices induce a triangle \triangle with a bounded side and an unbounded side

In a simple drawing of K_n any 3 vertices induce a triangle \triangle with a bounded side and an unbounded side

Convexity Hierarchy (Arroyo et al. '17)

• geometric

(order types, realizable acyclic rank 3 OM)

- pseudolinear / f-convex (abstract order types, acyclic rank 3 OM, CC-system)
- h-convex
- convex
- simple

Holes Revised

 $k \geq 4$: k-hole \Leftrightarrow convex side of C_k is empty

convex side of C_k := union of convex sides of triangles in induced subdrawing $\mathcal{D}[C_k]$

• min # 3-holes = $\Theta(n^2)$ [Arroyo et al. '18]

- min # 3-holes = $\Theta(n^2)$ [Arroyo et al. '18]
- Theorem: min # 4-holes = $\Theta(n^2)$

- min # 3-holes = $\Theta(n^2)$ [Arroyo et al. '18]
- Theorem: min # 4-holes = $\Theta(n^2)$
- **Theorem:** n sufficiently large \Rightarrow 6-holes exist

- min # 3-holes = $\Theta(n^2)$ [Arroyo et al. '18]
- Theorem: min # 4-holes = $\Theta(n^2)$
- Theorem: n sufficiently large ⇒ 6-holes exist
 proof: 1. find large pseudolinear drawing
 2. empty hexagon theorem for pseudolinear [S.'23]
- **Theorem:** C_k minimal k-gon with $k \ge 5$ \Rightarrow the convex side of C_k induces pseudolinear drawing

Discussion

• 5-holes in convex drawings of $K_{n\geq 13}$?

• largest pseudolinear subdrawing in convex drawing?

• largest C_k in convex drawing?

 $\widetilde{R}_{conv}(k) \leq \widetilde{R}(k,5) \leq c^{k^2 \log(k)} \text{ via [Suk \& Zeng '22]}$ (convex drawings do not contain twisted T_5)

