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Order Types

triple orientations: clockwise, counter clockwise, collinear
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triple orientations: clockwise, counter clockwise, collinear

[Goodman and Pollack ’83]: two point sets S and T have
the same order type if there is a bijection ϕ : S → T such
that any triple (p, q, r) ∈ S3 has the same orientation as
the image (ϕ(p), ϕ(q), ϕ(r)) ∈ T 3
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Order Types

equivalence relation on point sets

equivalence classes: the order types

fixed size ⇒ finitely many classes

triple orientations: clockwise, counter clockwise, collinear

[Goodman and Pollack ’83]: two point sets S and T have
the same order type if there is a bijection ϕ : S → T such
that any triple (p, q, r) ∈ S3 has the same orientation as
the image (ϕ(p), ϕ(q), ϕ(r)) ∈ T 3
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Order Types

n = 3: n = 4:

n = 5:
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Point Set Representation

• List of coordinates
0160 7359
1768 6530
2592 6679
4239 6383
3955 5593
2960 5759
2338 4960
2880 4320
2960 2520
5759 7359
3076 5497
2684 5783
3113 5976
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Point Set Representation

• Figure of the point set

• List of coordinates
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Point Set Representation

• Figure of the point set

• List of coordinates

• + spanned lines / segments
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Point Set Representation

• Figure of the point set

• List of coordinates

• + spanned lines / segments

• ⇒ identification of
(non)redundant edges!
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Geometric Graphs

• geometric graph (on S): vertices mapped to set S,
edges drawn as straight-line segments
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Geometric Graphs

• geometric graphs G,H topologically equivalent if ∃
homeomorphism of the plane transforming G into H

• geometric graph (on S): vertices mapped to set S,
edges drawn as straight-line segments
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Geometric Graphs

• geometric graphs G,H topologically equivalent if ∃
homeomorphism of the plane transforming G into H

• geometric graph (on S): vertices mapped to set S,
edges drawn as straight-line segments

• equivalence class describable by cyclic order around
vertices and crossings
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Geometric Graphs

• we consider ”topology-preserving deformations”

Definition: A geometric graph G supports a set S of
points if every ”continuous deformation” that
• keeps edges straight and
• preserves topological equiv.

also preserves the order type of the vertex set.

crossing fixed, i.e.,
convex position
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Geometric Graphs

• we consider ”topology-preserving deformations”

Definition: A geometric graph G supports a set S of
points if every ”continuous deformation” that
• keeps edges straight and
• preserves topological equiv.

also preserves the order type of the vertex set.

no such continuous
transformation
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Geometric Graphs

continuous map f : R2 × [0, 1]→ R2 is ambient isotopy
if f(·, t) is homeomorphism ∀t ∈ [0, 1] and f(·, 0) = Id

Definition: A geometric graph G supports a set S of
points if every ambient isotopy that
• keeps edges straight and
• preserves topological equiv.

also preserves the order type of the vertex set.
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Exit Edges

• ab exit edge with witness c if @p ∈ S s.t.
line ap separates b from c or bp separates a from c

• S finite point set in general position

a b

c
p
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• S finite point set in general position
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Exit Edges

• ab exit edge with witness c if @p ∈ S s.t.
line ap separates b from c or bp separates a from c

• S finite point set in general position
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c
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Exit Edges

• ab exit edge with witness c if @p ∈ S s.t.
line ap separates b from c or bp separates a from c

• S finite point set in general position

• ⇒ exit graph of S
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Exit Edges

c
ca ab b

• other lines might prevent witness from passing exit
edge
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Exit Edges

ab

c

stretchability!

• ... and even worse...
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Exit Edges

Proposition. S . . . point set in general position
S(t) . . . continuous deformation of S
(a, b, c) . . . first triple to become collinear at time t0 > 0
If c lies on segment ab in S(t0),
then ab is an exit edge in S(0) with witness c
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Exit Edges

Proposition. S . . . point set in general position
S(t) . . . continuous deformation of S
(a, b, c) . . . first triple to become collinear at time t0 > 0
If c lies on segment ab in S(t0),
then ab is an exit edge in S(0) with witness c

ba

c
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Exit Edges

Proposition. S . . . point set in general position
S(t) . . . continuous deformation of S
(a, b, c) . . . first triple to become collinear at time t0 > 0
If c lies on segment ab in S(t0),
then ab is an exit edge in S(0) with witness c

Corollary. The exit graph of every point set is supporting.
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Exit Edges

Proposition. S . . . point set in general position
S(t) . . . continuous deformation of S
(a, b, c) . . . first triple to become collinear at time t0 > 0
If c lies on segment ab in S(t0),
then ab is an exit edge in S(0) with witness c

Corollary. The exit graph of every point set is supporting.

• strongly related to ”minimal reduced systems”
[Bokowski and Sturmfels ’86]

• the inversion of the statement is not true in general –
exit edges might not be necessary for a supporting
graph
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Exit Edges

n = 3: n = 4:

n = 5:
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Properties

Lower Bound: 3n
5 + O(1) bound . . .n− 3 construction
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Properties

Lower Bound: 3n
5 + O(1) bound . . .n− 3 construction
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Properties

Lower Bound: 3n
5 + O(1) bound . . .n− 3 construction

Upper Bound: Θ(n2)

(empty 4 in line arr., ≤ n(n−1)
3 [Roudneff ’72, Blanc ’11])

q∗r

q
s

t

t∗s∗

r∗
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Properties

Theorem. If |S| ≥ 9, then any supporting graph contains a
crossing.
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Properties

Theorem. If |S| ≥ 9, then any supporting graph contains a
crossing.

Proof:

G . . . crossingfree geometric graph on S.
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Properties

Theorem. If |S| ≥ 9, then any supporting graph contains a
crossing.

Proof:

G . . . crossingfree geometric graph on S.

∀ plane graph ∃ plane straight-line embedding with√
n/2 points on a line [Dujmović ’17].

⇒ G drawn on S′ with order type different to S
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Properties

Theorem. If |S| ≥ 9, then any supporting graph contains a
crossing.

Proof:

G . . . crossingfree geometric graph on S.

∀ plane graph ∃ plane straight-line embedding with√
n/2 points on a line [Dujmović ’17].

⇒ G drawn on S′ with order type different to S

Continuously morph S into S′, keeping planarity and
topologically equivalence to G.
[Alamdari, Angelini, Barrera-Cruz, Chan, Da Lozzo, Di Battista,
Frati, Haxell, Lubiw, Patrignani, Roselli, Singla, Wilkinson ’17]
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Properties

Theorem. If |S| ≥ 9, then any supporting graph contains a
crossing.

Proof:

G . . . crossingfree geometric graph on S.

∀ plane graph ∃ plane straight-line embedding with√
n/2 points on a line [Dujmović ’17].

⇒ G drawn on S′ with order type different to S

⇒ G does not support S.

Continuously morph S into S′, keeping planarity and
topologically equivalence to G [Alamdari et al. ’17]
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Properties

Theorem. Let G be the exit graph of S. Every vertex in
the unbounded face of G is extremal, i.e., lies on the
boundary of convex hull of S.
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Properties

Theorem. Let G be the exit graph of S. Every vertex in
the unbounded face of G is extremal, i.e., lies on the
boundary of convex hull of S.

ab

c

stretchability!
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• different order types may yield the same exit edges
(exit graphs not topologically equivalent)

the construction based on example of two line arrangements
with the ”same” triangles [Felsner and Weil ’00]
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• different order types may yield the same exit edges
(exit graphs not topologically equivalent)

also a triangle in the projective plane

also a triangle in the projective plane

the construction based on example of two line arrangements
with the ”same” triangles [Felsner and Weil ’00]
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Thank you for your attention!
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