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General Position

a finite point set S in the plane is

in general position if @ collinear points in S
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General Position

a finite point set S in the plane is

in general position if @ collinear points in S

throughout this presentation, every set is in general position
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k-Gons

a k-gon (in S) is the vertex set of a convex k-gon

5-gon 6-gon
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k-Gons

a k-gon (in S) is the vertex set of a convex k-gon

Theorem (Erdős & Szekeres 1935).

∀ k ∈ N, ∃ a smallest integer g(k) such that

every set of g(k) points contains a k-gon.

5-gon 6-gon
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k-Gons

Theorem (Erdős & Szekeres ’35)

2k−2 + 1 ≤ g(k) ≤
(
2k−4
k−2

)
+ 1

equality conjectured by Szekeres, Erdős offered 500$ for a proof
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k-Gons

Theorem (Erdős & Szekeres ’35)

2k−2 + 1 ≤ g(k) ≤
(
2k−4
k−2

)
+ 1

Theorem. g(k) ≤ 2k+o(k). [Suk ’16]

... several improvements of order 4k−o(k)
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(
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)
+ 1

Theorem. g(k) ≤ 2k+o(k). [Suk ’16]

... several improvements of order 4k−o(k)

• g(k) ≤ 2k+O(k2/3 log k) [Suk ’16]
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k-Gons

Theorem (Erdős & Szekeres ’35)

2k−2 + 1 ≤ g(k) ≤
(
2k−4
k−2

)
+ 1

Theorem. g(k) ≤ 2k+o(k). [Suk ’16]

... several improvements of order 4k−o(k)

• g(k) ≤ 2k+O(k2/3 log k) [Suk ’16]

• g(k) ≤ 2k+O(
√
k log k),

also for pseudo-configurations of points

[Holmsen, Mojarrad, Pach and Tardos ’17]
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k-Gons

Theorem (Erdős & Szekeres ’35)

2k−2 + 1 ≤ g(k) ≤
(
2k−4
k−2

)
+ 1

Theorem. g(k) ≤ 2k+o(k). [Suk ’16]

Known: g(4) = 5, g(5) = 9, g(6) = 17

... several improvements of order 4k−o(k)
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k-Gons

Theorem (Erdős & Szekeres ’35)

2k−2 + 1 ≤ g(k) ≤
(
2k−4
k−2

)
+ 1

Theorem. g(k) ≤ 2k+o(k). [Suk ’16]

Known: g(4) = 5, g(5) = 9, g(6) = 17

computer assisted proof, 1500 CPU hours [Szekeres–Peters ’06]

< 1 hour using SAT solvers [S.’18, Marić ’19]

... several improvements of order 4k−o(k)
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Proof of the Erdős–Szekeres Theorem

Theorem (Erdős & Szekeres ’35)

2k−2 + 1 ≤ g(k) ≤
(
2k−4
k−2

)
+ 1
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Proof of the Erdős–Szekeres Theorem

we show that every set of φ(a, b) + 1 =
(
a+b−4
a−2

)
+ 1 points

contains a-cup or b-cap.

a-cup
b-cap

Theorem (Erdős & Szekeres ’35)

2k−2 + 1 ≤ g(k) ≤
(
2k−4
k−2

)
+ 1
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Proof of the Erdős–Szekeres Theorem

we show that every set of φ(a, b) + 1 =
(
a+b−4
a−2

)
+ 1 points

contains a-cup or b-cap.

a-cup
b-cap

using a = b = k, we then get g(k) ≤
(
2k−4
k−2

)
+ 1.

Theorem (Erdős & Szekeres ’35)

2k−2 + 1 ≤ g(k) ≤
(
2k−4
k−2

)
+ 1
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Cups and Caps: Upper Bound

Let S be a set of φ(a, b) + 1 =
(
a+b−4
a−2

)
+ 1 points and

suppose it does not contain a a-cup.

We show that there is a b-cap.
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Cups and Caps: Upper Bound

Let S be a set of φ(a, b) + 1 =
(
a+b−4
a−2

)
+ 1 points and

suppose it does not contain a a-cup.

We show that there is a b-cap.

Base Case: If a = 2 or b = 2, we have

φ(a, b) + 1 =
(≥0

0

)
+ 1 = 2 points ⇒ 2-cup / 2-cap
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Cups and Caps: Upper Bound

Let S be a set of φ(a, b) + 1 =
(
a+b−4
a−2

)
+ 1 points and

suppose it does not contain a a-cup.

We show that there is a b-cap.

Step: Let E be the set of rightmost (end)points of all

(a− 1)-cups
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Cups and Caps: Upper Bound

Let S be a set of φ(a, b) + 1 =
(
a+b−4
a−2

)
+ 1 points and

suppose it does not contain a a-cup.

We show that there is a b-cap.

Step: Let E be the set of rightmost (end)points of all

(a− 1)-cups

∈ E ∈ E

∈ E
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Cups and Caps: Upper Bound

Let S be a set of φ(a, b) + 1 =
(
a+b−4
a−2

)
+ 1 points and

suppose it does not contain a a-cup.

We show that there is a b-cap.

Step: Let E be the set of rightmost (end)points of all

(a− 1)-cups

S \ E has no (a− 1)-cup
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Cups and Caps: Upper Bound

Let S be a set of φ(a, b) + 1 =
(
a+b−4
a−2

)
+ 1 points and

suppose it does not contain a a-cup.

We show that there is a b-cap.

Step: Let E be the set of rightmost (end)points of all

(a− 1)-cups

S \ E has no (a− 1)-cup

if S \ E contains b-cap, we are done; hence assume @ b-cap
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Let S be a set of φ(a, b) + 1 =
(
a+b−4
a−2

)
+ 1 points and

suppose it does not contain a a-cup.

We show that there is a b-cap.

Step: Let E be the set of rightmost (end)points of all

(a− 1)-cups

S \ E has no (a− 1)-cup

by induction, |S \ E| ≤ φ(a− 1, b),

if S \ E contains b-cap, we are done; hence assume @ b-cap
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Cups and Caps: Upper Bound

Let S be a set of φ(a, b) + 1 =
(
a+b−4
a−2

)
+ 1 points and

suppose it does not contain a a-cup.

We show that there is a b-cap.

Step: Let E be the set of rightmost (end)points of all

(a− 1)-cups

S \ E has no (a− 1)-cup

by induction, |S \ E| ≤ φ(a− 1, b),

|E| = |S| − |S \ E| ≥ φ(a, b− 1) + 1

because φ(a, b) = φ(a− 1, b) + φ(a, b− 1)

if S \ E contains b-cap, we are done; hence assume @ b-cap
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Cups and Caps: Upper Bound

Let S be a set of φ(a, b) + 1 =
(
a+b−4
a−2
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Step: Let E be the set of rightmost (end)points of all

(a− 1)-cups

S \ E has no (a− 1)-cup

by induction, |S \ E| ≤ φ(a− 1, b),

|E| = |S| − |S \ E| ≥ φ(a, b− 1) + 1
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if S \ E contains b-cap, we are done; hence assume @ b-cap
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Cups and Caps: Upper Bound

Let S be a set of φ(a, b) + 1 =
(
a+b−4
a−2

)
+ 1 points and

suppose it does not contain a a-cup.

We show that there is a b-cap.

Step: Let E be the set of rightmost (end)points of all

(a− 1)-cups

by induction, E has (b− 1)-cap (because no a-cup)

⇒ ∃ b-cap! Q.E.D.
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Cups and Caps: Lower Bound
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Cups and Caps: Lower Bound

this bound is actually tight because there exist sets Sa,b

with φ(a, b) =
(
a+b−4
a−2

)
points without a-cups and b-caps.
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Cups and Caps: Lower Bound

• Base: S2,b = Sa,2 = single point
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Cups and Caps: Lower Bound

• Base: S2,b = Sa,2 = single point

• construct Sa,b recursively:

combine L = Sa−1,b and U = Sa,b−1
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Cups and Caps: Lower Bound

• Base: S2,b = Sa,2 = single point

• construct Sa,b recursively:

combine L = Sa−1,b and U = Sa,b−1

• this will give

|Sa,b| = φ(a, b) = φ(a, b− 1) + φ(a− 1, b) =
(

a+b−4
a−2,b−2

)

7



Cups and Caps: Lower Bound

• Base: S2,b = Sa,2 = single point

• construct Sa,b recursively:

combine L = Sa−1,b and U = Sa,b−1

U = Sa,b−1

L = Sa−1,b

• U right of L

• U ”high above” L

7



Cups and Caps: Lower Bound

• Base: S2,b = Sa,2 = single point

• construct Sa,b recursively:

combine L = Sa−1,b and U = Sa,b−1

U = Sa,b−1

L = Sa−1,b

• U right of L

• U ”high above” L

• no a-cup or b-cap

7



Cups and Caps: Lower Bound

• Base: S2,b = Sa,2 = single point

• construct Sa,b recursively:

combine L = Sa−1,b and U = Sa,b−1

U = Sa,b−1

L = Sa−1,b

• U right of L

• U ”high above” L

• no a-cup or b-cap

• Q.E.D.
7



k-Gons: 2k−2 + 1 Lower Bound
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k-Gons: 2k−2 + 1 Lower Bound

• use S2,k , S3,k−1 , . . . , Sk,2 as gadgets to construct a

large set without k-gons
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k-Gons: 2k−2 + 1 Lower Bound

Sk,2

Sk−1,3

Sk−2,4

S2,k

Sk−3,5

• place Sa,b’s very flat in very small bubbles

...
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k-Gons: 2k−2 + 1 Lower Bound

Sk,2

Sk−1,3

Sk−2,4

S2,k

Sk−3,5

• place Sa,b’s very flat in very small bubbles

...

(high above/deep below)

no points inbetween
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k-Gons: 2k−2 + 1 Lower Bound

Sk,2

Sk−1,3

Sk−2,4

S2,k

Sk−3,5

• place Sa,b’s very flat in very small bubbles

...

no points inbetween
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k-Gons: 2k−2 + 1 Lower Bound

Sk,2

Sk−1,3

Sk−2,4

S2,k

Sk−3,5

• place Sa,b’s very flat in very small bubbles

• bubbles can have arbitrary relative positions

...
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k-Gons: 2k−2 + 1 Lower Bound

Sk,2

Sk−1,3

Sk−2,4

S2,k

...

Sk−3,5
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k-Gons: 2k−2 + 1 Lower Bound

Sk,2

Sk−1,3

Sk−2,4

S2,k

...

(≤ t)-cap in top-layer t,

(≤ k− b)-cup in bottom-layer b,

≤ 1 point per interm. layer

⇒ ` < k

• each `-gon has:

Sk−3,5

t = 2

b = 4
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k-Gons: 2k−2 + 1 Lower Bound

Sk,2

Sk−1,3

Sk−2,4

S2,k

...

(≤ t)-cap in top-layer t,

(≤ k− b)-cup in bottom-layer b,

≤ 1 point per interm. layer

⇒ ` < k

• each `-gon has:

Sk−3,5• number of points:

φ(k, 2) + φ(k − 1, 3) + . . . =∑k−2
j=0

(
k−2
j

)
= 2k−2

t = 2

b = 4
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k-Gons: 2k−2 + 1 Lower Bound

Sk,2

Sk−1,3

Sk−2,4

S2,k

...

(≤ t)-cap in top-layer t,

(≤ k− b)-cup in bottom-layer b,

≤ 1 point per interm. layer

⇒ ` < k

• each `-gon has:

Sk−3,5• number of points:

φ(k, 2) + φ(k − 1, 3) + . . . =∑k−2
j=0

(
k−2
j

)
= 2k−2

• therefore g(k) ≥ 2k−2 + 1

t = 2

b = 4

8



Sketch of Suk’s 2k+o(k) Upper Bound
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Sketch of Suk’s 2k+o(k) Upper Bound

Lemma (Fractional EST, Pór & Valtr ’02) Let S be a

point set with |S| ≥ 232k points. Then there exists

k-cup/cap X ⊂ S satisfying |Ti ∩ S| ≥ |S|
232k

for every i.

xi

xi+1

xi+2

Ti+1

xi−1

Ti

9



Sketch of Suk’s 2k+o(k) Upper Bound

Lemma (Fractional EST, Pór & Valtr ’02) Let S be a

point set with |S| ≥ 232k points. Then there exists

k-cup/cap X ⊂ S satisfying |Ti ∩ S| ≥ |S|
232k

for every i.

xi

xi+1

xi+2

Ti+1

xi−1

linear in S!

Ti

9



Sketch of Suk’s 2k+o(k) Upper Bound

xi

xi+1

xi+2

Ti+1

xi−1

• Fractional EST
• auxiliary poset on each Ti

Ti
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Sketch of Suk’s 2k+o(k) Upper Bound

xi

xi+1

xi+2

Ti+1

xi−1

• Fractional EST
• auxiliary poset on each Ti

comparable

Ti
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Sketch of Suk’s 2k+o(k) Upper Bound

• Fractional EST
• auxiliary poset on each Ti

uncomparable

Ti
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Sketch of Suk’s 2k+o(k) Upper Bound

• Fractional EST
• auxiliary poset on each Ti

• Dilworth’s theorem: large antichain or chain in each Ti
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Sketch of Suk’s 2k+o(k) Upper Bound

• Fractional EST
• auxiliary poset on each Ti

• Dilworth’s theorem: large antichain or chain in each Ti

• pigeonhole principle: a) many Ti’s with antichain
or b) many Ti’s with chain

9



Sketch of Suk’s 2k+o(k) Upper Bound

• Fractional EST
• auxiliary poset on each Ti

• Dilworth’s theorem: large antichain or chain in each Ti

• pigeonhole principle: a) many Ti’s with antichain
or b) many Ti’s with chain

• ES gives left-cups or right-caps
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Sketch of Suk’s 2k+o(k) Upper Bound

• Fractional EST
• auxiliary poset on each Ti

• Dilworth’s theorem: large antichain or chain in each Ti

• pigeonhole principle: a) many Ti’s with antichain
or b) many Ti’s with chain

• ES gives left-cups or right-caps

• . . . which combine to k-gons
9
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Quantity of k-Gons

maximum # of k-gons among all sets of n points?

11



Quantity of k-Gons

maximum # of k-gons among all sets of n points?

n points in convex position

any k-subset is k-gon

⇒ max =
(
n
k

)

11



Quantity of k-Gons

gk(n) := minimum # of k-gons among all sets of n points
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Quantity of k-Gons

gk(n) := minimum # of k-gons among all sets of n points

• gk(n) = Θ(nk)

because gk(n) ≥ ( n
g(k))

( n−k
g(k)−k)

≥ c · ng(k)

ng(k)−k = c · nk

each g(k)-subset gives k-gon

each k-gon counted by at most that many g(k)-subsets
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Quantity of k-Gons

gk(n) := minimum # of k-gons among all sets of n points

• gk(n) = Θ(nk)

• k = 4 : rectilinear crossing number of Kn:

g4(n) = cr(Kn) ∼ c4 ·
(
n
4

)
with 0.3799 < c4 < 0.3805

[Ábrego et al. ’08, Aichholzer et al. ’20]
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Quantity of k-Gons

gk(n) := minimum # of k-gons among all sets of n points

• gk(n) = Θ(nk)

• k = 4 : rectilinear crossing number of Kn:

g4(n) = cr(Kn) ∼ c4 ·
(
n
4

)
with 0.3799 < c4 < 0.3805

[Ábrego et al. ’08, Aichholzer et al. ’20]

• various notions of crossing numbers have been studied

intensively (not necessarily straight-line drawings, not

necessarily complete graphs)
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An Invariant: crossings – k-edges relation
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An Invariant: crossings – k-edges relation

• (a, b) ∈
(
S
2

)
is k-edge if ab partitions S \ {a, b} into k

and n− k − 2 points

2-edge
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An Invariant: crossings – k-edges relation

• (a, b) ∈
(
S
2

)
is k-edge if ab partitions S \ {a, b} into k

and n− k − 2 points

• ek(S) = number of k-edges in S

e0 = 6
e1 = 6
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An Invariant: crossings – k-edges relation

• (a, b) ∈
(
S
2

)
is k-edge if ab partitions S \ {a, b} into k

and n− k − 2 points

• ek(S) = number of k-edges in S

e0 = 6
e1 = 6
e2 = 9

12



An Invariant: crossings – k-edges relation

Theorem (Ábrego, Fernández-Merchant ’04 and

Lovász, Vesztergombi, Wagner, Welzl ’05):

g4(S) +
∑bn/2c−1

k=0 k(n− 2− k)ek(S) = 3
(
n
4

)
e0 = 6
e1 = 6
e2 = 9
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An Invariant: crossings – k-edges relation

Theorem (Ábrego, Fernández-Merchant ’04 and

Lovász, Vesztergombi, Wagner, Welzl ’05):

g4(S) +
∑bn/2c−1

k=0 k(n− 2− k)ek(S) = 3
(
n
4

)
e0 = 6
e1 = 6
e2 = 9

g4 = 3 ·
(
7
4

)
− 0− 1 · 4 · 6− 2 · 3 · 9 = 105− 24− 54 = 27
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An Invariant: crossings – k-edges relation

Theorem (Ábrego, Fernández-Merchant ’04 and

Lovász, Vesztergombi, Wagner, Welzl ’05):

g4(S) +
∑bn/2c−1

k=0 k(n− 2− k)ek(S) = 3
(
n
4

)

Corollary: Given a set S of n points, the value g4(S)

(which is of order Θ(n4)) can be computed in O(n2) time
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An Invariant: crossings – k-edges relation

Theorem (Ábrego, Fernández-Merchant ’04 and

Lovász, Vesztergombi, Wagner, Welzl ’05):

g4(S) +
∑bn/2c−1

k=0 k(n− 2− k)ek(S) = 3
(
n
4

)

Corollary: Given a set S of n points, the value g4(S)

(which is of order Θ(n4)) can be computed in O(n2) time

Remark: gk(S) can be computed in O(k · n3) time

[Mitchell Rote Sundaram Woeginger ’95]
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An Invariant: crossings – k-edges relation

Theorem (Ábrego, Fernández-Merchant ’04 and

Lovász, Vesztergombi, Wagner, Welzl ’05):

g4(S) +
∑bn/2c−1

k=0 k(n− 2− k)ek(S) = 3
(
n
4

)
Proof Idea:

∑
e ke · (n− 2− ke) =

ke

n− 2− ken− 2− ke
12



An Invariant: crossings – k-edges relation
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An Invariant: crossings – k-edges relation
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g4(S) +
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k=0 k(n− 2− k)ek(S) = 3
(
n
4

)
Proof Idea:

∑
e ke · (n− 2− ke) =

counted twice

counted three times

2� + 34
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Theorem (Ábrego, Fernández-Merchant ’04 and

Lovász, Vesztergombi, Wagner, Welzl ’05):

g4(S) +
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k=0 k(n− 2− k)ek(S) = 3
(
n
4

)
Proof Idea:

∑
e ke · (n− 2− ke) = = 3

(
n
4

)
−�

counted twice

counted three times

2� + 34
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Theorem (Ábrego, Fernández-Merchant ’04 and

Lovász, Vesztergombi, Wagner, Welzl ’05):

g4(S) +
∑bn/2c−1

k=0 k(n− 2− k)ek(S) = 3
(
n
4

)
Remark: this crossings – k-edges relation generalizes to

simple topological drawings of Kn
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k-Holes

a k-hole (in S) is the vertex set of a convex k-gon

containing no other points of S

5-hole
not a 6-hole
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Erdős, 1970’s: For k fixed, does every sufficiently large

point set contain k-holes?

a k-hole (in S) is the vertex set of a convex k-gon

containing no other points of S

• 3 points ⇒ ∃ 3-hole

• 5 points ⇒ ∃ 4-hole

14



k-Holes
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k-Holes

Erdős, 1970’s: For k fixed, does every sufficiently large

point set contain k-holes?

• 10 points ⇒ ∃ 5-hole [Harborth ’78]

• ∃ arbitrarily large point sets with no 7-hole [Horton ’83]

• Sufficiently large point sets ⇒ ∃ 6-hole

[Gerken ’08 and Nicolás ’07, independently]

a k-hole (in S) is the vertex set of a convex k-gon

containing no other points of S

• 3 points ⇒ ∃ 3-hole

• 5 points ⇒ ∃ 4-hole

14



k-Holes

• h(4) = 5, h(5) = 10, 30 ≤ h(6) ≤ 463, h(7) =∞

Harborth ’78

Overmars ’02

Gerken ’08, Nicolas ’07, Koshelev ’09

Horton’83
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k-Holes

• h(4) = 5, h(5) = 10, 30 ≤ h(6) ≤ 463, h(7) =∞

Harborth ’78

Overmars ’02

Gerken ’08, Nicolas ’07, Koshelev ’09

Horton’83

exact value remains unknown
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k-Holes

4 points, no 4-hole (h(4) = 5)
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k-Holes

9 points, no 5-hole (h(5) = 10)
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k-Holes

29 points, no 6-hole [Overmars ’02] (30 ≤ h(6) ≤ 463)
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k-Holes

29 points, no 6-hole [Overmars ’02] (30 ≤ h(6) ≤ 463)

• found by computer

(simulated annealing)

• contains 7-gon • larger gons

give 6-holes

• ∃ 6-hole-free sets

with 8-gons

Two Remarks:
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k-Holes

Horton’s construction for n = 21 points, no 7-holes
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Horton’s construction for n = 24 points, no 7-holes
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k-Holes

Horton’s construction for n = 24 points, no 7-holes
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k-Holes

Horton’s construction: n = 2k points, no 7-holes (h(7) =∞)
16



Horton Sets

U

L

• U high above L

• from left to right: points alternatingly in L and U

S1 = single point, and Sn recursively: two copies L,U of Sn
2
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if I contains 1 point, we find a 5-hole

if I contains ≥ 2 points,

we choose ab as bounding edge of

conv(I),

I

a
b

• we show h(5) ≤ g(6):
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Existence of Holes

consider 6-gon G with minimum number of interior points I

if I is empty, G is a 6-hole

if I contains 1 point, we find a 5-hole

if I contains ≥ 2 points,

we choose ab as bounding edge of

conv(I),

and find a 5-hole or smaller 6-gon G′

I

a
b

(contradiction to minimality)

• we show h(5) ≤ g(6):

18



Existence of Holes

• h(5) = 10 [Harborth ’78], similar but more technical
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Existence of Holes

• h(5) = 10 [Harborth ’78], similar but more technical

• h(6) ≤ g(9) [Gerken ’08], similar but 30+ pages

• h(6) ≤ max{400, g(8)} ≤ 463 [Koshelev ’09] 50+ pages

using the estimate g(k) ≤
(
2k−5
k−2

)
+ 1 [Tóth & Valtr ’05]

19



Existence of Holes

• h(5) = 10 [Harborth ’78], similar but more technical

• h(6) ≤ g(9) [Gerken ’08], similar but 30+ pages

• h(6) ≤ max{400, g(8)} ≤ 463 [Koshelev ’09] 50+ pages

• h(6) < g(216) [Valtr ’09] only 7 pages

19



Existence of Holes

• h(5) = 10 [Harborth ’78], similar but more technical

• h(6) ≤ g(9) [Gerken ’08], similar but 30+ pages

• h(6) ≤ max{400, g(8)} ≤ 463 [Koshelev ’09] 50+ pages

• h(6) < g(216) [Valtr ’09] only 7 pages

Q1: ∃ shorter (computed assisted?) proof for existence of 6-holes?

Q2: is h(6) bounded in terms of max{const, g(7)}?

19
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k-holes: First and Second Moment Invariant

Thm (affine 1st moment, Edelman and Jamison ’85):

h0(P )︸ ︷︷ ︸
1

−h1(P )︸ ︷︷ ︸
n

+h2(P )︸ ︷︷ ︸
(n
2)

−h3(P )±. . . =
∑
k≥0

(−1)khk(P ) = 0
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k-holes: First and Second Moment Invariant

Thm (affine 1st moment, Edelman and Jamison ’85):

h0(P )︸ ︷︷ ︸
1

−h1(P )︸ ︷︷ ︸
n

+h2(P )︸ ︷︷ ︸
(n
2)

−h3(P )±. . . =
∑
k≥0

(−1)khk(P ) = 0

Proof Idea: holds for n points in convex position,

∑
k≥0(−1)k

(
n
k

)
= (1 + (−1))n = 0

any k-subset is k-hole

Binomial theorem
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n

+h2(P )︸ ︷︷ ︸
(n
2)

−h3(P )±. . . =
∑
k≥0

(−1)khk(P ) = 0

Proof Idea: holds for n points in convex position,

and invariant to mutations!

for each k-hole which we get/destroy with ab
we also get/destroy a (k + 1)-hole with abc

a b
c

(i.e., when a point moves over a line)
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k-holes: First and Second Moment Invariant

Thm (affine 1st moment, Edelman and Jamison ’85):
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k-holes: First and Second Moment Invariant

Thm (affine 1st moment, Edelman and Jamison ’85):

h0(P )︸ ︷︷ ︸
1

−h1(P )︸ ︷︷ ︸
n

+h2(P )︸ ︷︷ ︸
(n
2)

−h3(P )±. . . =
∑
k≥0

(−1)khk(P ) = 0

Thm (affine 2nd moment, Ahrens Gordon & McMohan ’99):∑
k · (−1)khk(P ) = # of inner pts. of P

Idea: k · hk(P ) =
∑

e hk(P ; e)

e1

e2e3

e4
e5

21
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Quantity of k-Holes

hk(n) := minimum # of k-holes among all sets of n points
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Quantity of k-Holes

• h4(n) ≥ Ω(n2)
∀ crossed edge e

∃ 4-hole with diagonal e

e

hk(n) := minimum # of k-holes among all sets of n points
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Quantity of k-Holes

• h4(n) ≥ Ω(n2)
∀ crossed edge e

∃ 4-hole with diagonal e

not empty

e

hk(n) := minimum # of k-holes among all sets of n points
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Quantity of k-Holes

• h4(n) ≥ Ω(n2)
∀ crossed edge e

∃ 4-hole with diagonal e

O(n) uncrossed edges

(planar graph)

e

hk(n) := minimum # of k-holes among all sets of n points
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Quantity of k-Holes

• h5(n) ≥ b 1
10nc = Ω(n)

hk(n) := minimum # of k-holes among all sets of n points
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Quantity of k-Holes

+1

+1

+1

• h5(n) ≥ b 1
10nc = Ω(n)

hk(n) := minimum # of k-holes among all sets of n points
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Quantity of k-Holes

+1

+1

+1

• h5(n) ≥ b 1
10nc = Ω(n) • same idea: h6(n) ≥ Ω(n)

hk(n) := minimum # of k-holes among all sets of n points
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Quantity of k-Holes

• h3, h4 both in Θ(n2)

[Bárány and Füredi ’87]

hk(n) := minimum # of k-holes among all sets of n points
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Quantity of k-Holes

• h3, h4 both in Θ(n2)

[Bárány and Füredi ’87]

hk(n) := minimum # of k-holes among all sets of n points

• h5 in Ω(n log4/5 n) and O(n2)

[Aichholzer, Balko, Hackl, Kynčl,

Parada, S., Valtr, and Vogtenhuber ’17]
(computer assisted proof, 20 pages)
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[Gerken ’08, Nicolás ’07]
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Quantity of k-Holes

• h3, h4 both in Θ(n2)

• h6(n) in Ω(n) and O(n2)

• hk(n) = 0 for k ≥ 7

[Gerken ’08, Nicolás ’07]

[Bárány and Füredi ’87]

hk(n) := minimum # of k-holes among all sets of n points

[Horton ’83]

• h5 in Ω(n log4/5 n) and O(n2)

[Aichholzer, Balko, Hackl, Kynčl,

Parada, S., Valtr, and Vogtenhuber ’17]
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Quantity of k-Holes

• h3, h4 both in Θ(n2)

• h6(n) in Ω(n) and O(n2)

• hk(n) = 0 for k ≥ 7

[Gerken ’08, Nicolás ’07]

[Bárány and Füredi ’87]

hk(n) := minimum # of k-holes among all sets of n points

[Horton ’83]

• h5 in Ω(n log4/5 n) and O(n2)

[Aichholzer, Balko, Hackl, Kynčl,

Parada, S., Valtr, and Vogtenhuber ’17]

Conjecture: h5(n) and

h6(n) are both in Θ(n2)
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Horton Sets II

Horton set Sn defined recursively: two copies L,U of Sn
2

U

L

• no 4-cups open from

above/below

• U high above L

• from left to right: points alternatingly in L and U

not open
from above
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Horton Sets II

Horton set Sn defined recursively: two copies L,U of Sn
2

U

L

• cups open from above:

U3(n) = U3(n
2 ) + n

2 − 1 ≤ n

• no 4-cups open from

above/below

• U high above L

• from left to right: points alternatingly in L and U

U2(n) = U2(n
2 )+n− 1 ≤ 2n

24



Horton Sets II

entirely from U or L points from both, U and L

• each 6-hole is one of two types:

U

L

U

L
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Horton Sets II

entirely from U or L points from both, U and L

• each 6-hole is one of two types:

no 4 caps ⇒ 3-cup plus 3-cap

U

L

U

L
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Horton Sets II

=⇒ h6(Sn) = 2h6(Sn
2

) + U3(n
2 )2 = O(n2)

entirely from U or L points from both, U and L

• each 6-hole is one of two types:

no 4 caps ⇒ 3-cup plus 3-cap
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Horton Sets II

=⇒ h6(Sn) = 2h6(Sn
2

) + U3(n
2 )2 = O(n2)

entirely from U or L points from both, U and L

• each 6-hole is one of two types:

no 4 caps ⇒ 3-cup plus 3-cap

• similar recurrences for 3-, 4-, and 5-holes

24



Horton Lattice

gives currently best bounds for h3, h4, h5, h6 and no

7-holes [Bárány & Valtr ’04]

• Horton lattice: perturbation of
√
n×
√
n grid

each line looks like Horton set

25
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What about Higher Dimensions??

27



Higher Dimensions

a finite point set P in Rd is in general position

if no d+ 1 points lie in a common hyperplane

k-gon = k points in convex position

k-hole = k-gon with no other points of P in its convex hull

28



Higher Dimensional k-Gons

dimension reduction (Károlyi ’01):

g(d)(k) ≤ g(d−1)(k − 1) + 1 ≤ . . . ≤ g(2)(k − d+ 1) + d− 2︸ ︷︷ ︸
≤2k+o(k) (Suk’17)

Π
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Higher Dimensional k-Gons

dimension reduction (Károlyi ’01):

g(d)(k) ≤ g(d−1)(k − 1) + 1 ≤ . . . ≤ g(2)(k − d+ 1) + d− 2︸ ︷︷ ︸
≤2k+o(k) (Suk’17)

Károlyi and Valtr ’03: g(d)(k) = Ω(c
d−1√

k)

asymptotic behavior remains unknown for d ≥ 3

29



Higher Dimensional k-Holes

central problem: determine the largest value k = H(d) such

that every sufficiently large set in d-space contains a k-hole
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central problem: determine the largest value k = H(d) such

that every sufficiently large set in d-space contains a k-hole

• H(2) = 6 because h(2)(6) <∞ and h(2)(7) =∞
[Gerken ’07, Nicolás ’07] [Horton ’87]
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central problem: determine the largest value k = H(d) such

that every sufficiently large set in d-space contains a k-hole

• H(2) = 6 because h(2)(6) <∞ and h(2)(7) =∞

• in particular, 7 ≤ H(3) ≤ 22 remains open

• 2d+ 1 ≤ H(d) < dd+o(d) [Valtr ’92]

• ∃ d-dimensional Horton sets without dd+o(d)-holes

• (2d+ 1)-holes exist in sufficiently large sets
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Higher Dimensional k-Holes

central problem: determine the largest value k = H(d) such

that every sufficiently large set in d-space contains a k-hole

• H(2) = 6 because h(2)(6) <∞ and h(2)(7) =∞

• 2d+ 1 ≤ H(d) < dd+o(d) [Valtr ’92]

• H(d) < 27d [Bukh, Chao & Holzman ’20]

• do exponentially large holes exist?

• d-dimensional Horton lattice without dO(d3)-holes

[Conlon & Lim ’21]
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Number of Holes in Higher Dimensions

• random sets give O(nd) bounds for k-holes

Theorem (Balko S. Valtr ’20 + ’21). Let d ≥ 2 and

k ≥ d+ 1, and let K be a convex body in Rd.

If S is a set of n points chosen uniformly and

independently at random from K,

then the expected number of k-holes in S is Θ(nd).

In particular:

∃ sets of n points in Rd with O(nd) many k-holes
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Number of Holes in Higher Dimensions

• d-dimensional Horton sets with d > 2 contain

Ω(nmin{k,2d−1}) many k-holes [Balko S. Valtr ’20]

• no explicit construction known with O(nd) k-holes

• random sets give O(nd) bounds for k-holes
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