

Erdős–Szekeres–type Problems on Planar Point Sets

Manfred Scheucher

General Position

a finite point set S in the plane is in general position if \nexists collinear points in S

General Position

a finite point set S in the plane is in general position if \nexists collinear points in S

throughout this presentation, every set is in general position

a k-gon (in S) is the vertex set of a convex k-gon

a k-gon (in S) is the vertex set of a convex k-gon

Theorem (Erdős & Szekeres 1935). $\forall k \in \mathbb{N}, \exists a \text{ smallest integer } g(k) \text{ such that}$ every set of g(k) points contains a k-gon.

Theorem (Erdős & Szekeres '35) $2^{k-2} + 1 \le g(k) \le \binom{2k-4}{k-2} + 1$

equality conjectured by Szekeres, Erdős offered 500\$ for a proof

Theorem (Erdős & Szekeres '35) $2^{k-2} + 1 \le g(k) \le \binom{2k-4}{k-2} + 1$

several improvements of order $4^{k-o(k)}$

Theorem (Erdős & Szekeres '35) $2^{k-2} + 1 \le g(k) \le \binom{2k-4}{k-2} + 1$

several improvements of order $4^{k-o(k)}$

•
$$g(k) \le 2^{k+O(k^{2/3}\log k)}$$
 [Suk '16]

Theorem (Erdős & Szekeres '35) $2^{k-2} + 1 \le g(k) \le \binom{2k-4}{k-2} + 1$

several improvements of order $4^{k-o(k)}$

•
$$g(k) \le 2^{k + O(k^{2/3} \log k)}$$
 [Suk '16]

Theorem (Erdős & Szekeres '35) $2^{k-2} + 1 \le g(k) \le \binom{2k-4}{k-2} + 1$

several improvements of order $4^{k-o(k)}$

Theorem (Erdős & Szekeres '35) $2^{k-2} + 1 \le g(k) \le \binom{2k-4}{k-2} + 1$

several improvements of order $4^{k-o(k)}$

Known:
$$g(4) = 5$$
, $g(5) = 9$, $g(6) = 17$

Theorem (Erdős & Szekeres '35) $2^{k-2} + 1 \le g(k) \le \binom{2k-4}{k-2} + 1$

several improvements of order $4^{k-o(k)}$

Known:
$$g(4) = 5$$
, $g(5) = 9$, $g(6) = 17$
computer assisted proof, 1500 CPU hours [Szekeres–Peters '06]

Theorem (Erdős & Szekeres '35) $2^{k-2} + 1 \le g(k) \le \binom{2k-4}{k-2} + 1$

several improvements of order $4^{k-o(k)}$

Theorem. $g(k) \le 2^{k+o(k)}$. [Suk '16] < 1 hour using SAT solvers [S.'18, Marić '19] Known: g(4) = 5, g(5) = 9, $g(6) \stackrel{\checkmark}{=} 17$

computer assisted proof, 1500 CPU hours [Szekeres-Peters '06]

Proof of the Erdős–Szekeres Theorem

Theorem (Erdős & Szekeres '35) $2^{k-2} + 1 \le g(k) \le \binom{2k-4}{k-2} + 1$

Proof of the Erdős–Szekeres Theorem

Theorem (Erdős & Szekeres '35) $2^{k-2} + 1 \le g(k) \le \binom{2k-4}{k-2} + 1$

we show that every set of $\phi(a, b) + 1 = {a+b-4 \choose a-2} + 1$ points contains *a*-cup or *b*-cap.

Proof of the Erdős–Szekeres Theorem

Theorem (Erdős & Szekeres '35) $2^{k-2} + 1 \le g(k) \le \binom{2k-4}{k-2} + 1$

we show that every set of $\phi(a, b) + 1 = {a+b-4 \choose a-2} + 1$ points contains *a*-cup or *b*-cap.

using a = b = k, we then get $g(k) \leq \binom{2k-4}{k-2} + 1$.

Let S be a set of $\phi(a, b) + 1 = {a+b-4 \choose a-2} + 1$ points and suppose it does not contain a *a*-cup. We show that there is a *b*-cap.

Let S be a set of $\phi(a, b) + 1 = {a+b-4 \choose a-2} + 1$ points and suppose it does not contain a *a*-cup. We show that there is a *b*-cap.

Base Case: If a = 2 or b = 2, we have $\phi(a, b) + 1 = {\geq 0 \choose 0} + 1 = 2$ points \Rightarrow 2-cup / 2-cap

Let S be a set of $\phi(a, b) + 1 = {a+b-4 \choose a-2} + 1$ points and suppose it does not contain a *a*-cup. We show that there is a *b*-cap.

Step: Let E be the set of rightmost (end)points of all (a-1)-cups

Let S be a set of $\phi(a, b) + 1 = {a+b-4 \choose a-2} + 1$ points and suppose it does not contain a *a*-cup. We show that there is a *b*-cap.

Step: Let E be the set of rightmost (end)points of all (a-1)-cups

Let S be a set of $\phi(a, b) + 1 = {a+b-4 \choose a-2} + 1$ points and suppose it does not contain a *a*-cup. We show that there is a *b*-cap.

Step: Let E be the set of rightmost (end)points of all (a-1)-cups

 $S \setminus E$ has no $(a-1)\text{-}\mathrm{cup}$

Let S be a set of $\phi(a, b) + 1 = {a+b-4 \choose a-2} + 1$ points and suppose it does not contain a *a*-cup. We show that there is a *b*-cap.

Step: Let E be the set of rightmost (end)points of all (a-1)-cups

 $S \setminus E$ has no $(a-1)\text{-}\mathrm{cup}$

if $S \setminus E$ contains b-cap, we are done; hence assume $\nexists b$ -cap

Let S be a set of $\phi(a, b) + 1 = {a+b-4 \choose a-2} + 1$ points and suppose it does not contain a *a*-cup. We show that there is a *b*-cap.

Step: Let E be the set of rightmost (end)points of all (a-1)-cups

$$S \setminus E$$
 has no $(a-1)$ -cup

if $S \setminus E$ contains *b*-cap, we are done; hence assume $\nexists b$ -cap by induction, $|S \setminus E| \le \phi(a-1,b)$,

Let S be a set of $\phi(a, b) + 1 = {a+b-4 \choose a-2} + 1$ points and suppose it does not contain a *a*-cup. We show that there is a *b*-cap.

Step: Let E be the set of rightmost (end)points of all (a-1)-cups

$$S \setminus E$$
 has no $(a-1)$ -cup

if $S \setminus E$ contains *b*-cap, we are done; hence assume $\nexists b$ -cap by induction, $|S \setminus E| \le \phi(a - 1, b)$, $|E| = |S| - |S \setminus E| \ge \phi(a, b - 1) + 1$ because $\phi(a, b) = \phi(a - 1, b) + \phi(a, b - 1)$

Let S be a set of $\phi(a, b) + 1 = {a+b-4 \choose a-2} + 1$ points and suppose it does not contain a *a*-cup. We show that there is a *b*-cap.

Step: Let E be the set of rightmost (end)points of all (a-1)-cups

$$S \setminus E$$
 has no $(a-1)$ -cup

if $S \setminus E$ contains *b*-cap, we are done; hence assume $\nexists b$ -cap by induction, $|S \setminus E| \le \phi(a - 1, b)$, $|E| = |S| - |S \setminus E| \ge \phi(a, b - 1) + 1$

by induction, E has (b-1)-cap (because no a-cup)

Let S be a set of $\phi(a, b) + 1 = {a+b-4 \choose a-2} + 1$ points and suppose it does not contain a *a*-cup. We show that there is a *b*-cap.

Step: Let E be the set of rightmost (end)points of all (a-1)-cups

Let S be a set of $\phi(a, b) + 1 = {a+b-4 \choose a-2} + 1$ points and suppose it does not contain a *a*-cup. We show that there is a *b*-cap.

Step: Let E be the set of rightmost (end)points of all (a-1)-cups

by induction, E has (b-1)-cap (because no a-cup)

Let S be a set of $\phi(a, b) + 1 = {a+b-4 \choose a-2} + 1$ points and suppose it does not contain a *a*-cup. We show that there is a *b*-cap.

Step: Let E be the set of rightmost (end)points of all (a-1)-cups $\Rightarrow \exists b$ -cap! Q.E.D.

by induction, E has (b-1)-cap (because no a-cup)

this bound is actually tight because there exist sets $S_{a,b}$ with $\phi(a,b) = {a+b-4 \choose a-2}$ points without *a*-cups and *b*-caps.

• Base:
$$S_{2,b} = S_{a,2} = \text{single point}$$

• Base:
$$S_{2,b} = S_{a,2} = single point$$

• construct $S_{a,b}$ recursively: combine $L = S_{a-1,b}$ and $U = S_{a,b-1}$

- Base: $S_{2,b} = S_{a,2} = \text{single point}$
- construct $S_{a,b}$ recursively: combine $L = S_{a-1,b}$ and $U = S_{a,b-1}$
- this will give

$$|S_{a,b}| = \phi(a,b) = \phi(a,b-1) + \phi(a-1,b) = \binom{a+b-4}{a-2,b-2}$$

- Base: $S_{2,b} = S_{a,2} = \text{single point}$
- construct $S_{a,b}$ recursively: combine $L = S_{a-1,b}$ and $U = S_{a,b-1}$
- U right of L
- U "high above" L

- Base: $S_{2,b} = S_{a,2} = \text{single point}$
- construct $S_{a,b}$ recursively: combine $L = S_{a-1,b}$ and $U = S_{a,b-1}$
- U right of L
- U "high above" L

no <u>a-cup</u> or <u>b-cap</u>

• Base:
$$S_{2,b} = S_{a,2} = single point$$

- construct $S_{a,b}$ recursively: combine $L = S_{a-1,b}$ and $U = S_{a,b-1}$
- U right of L
- U "high above" L

• no *a*-cup or *b*-cap

• Q.E.D.

- $=S_{a-1,b}$

 $=S_{a,b-1}$
• use $S_{2,k}$, $S_{3,k-1}$, ..., $S_{k,2}$ as gadgets to construct a large set without k-gons

• place $S_{a,b}$'s very flat in very small bubbles

• place $S_{a,b}$'s very flat in very small bubbles (high above/deep below)

 $S_{k,2}$

- place $S_{a,b}$'s very flat in very small bubbles
- bubbles can have arbitrary relative positions

 $S_{k,2}$

$$S_{k,2}$$

$$S_{k-1,3}$$

$$S_{k-2,4}$$

$$S_{k-3,5}$$

$$S_{2,k}$$

• each ℓ -gon has:

 $(\leq t)$ -cap in top-layer t, $(\leq k - b)$ -cup in bottom-layer b, ≤ 1 point per interm. layer $\Rightarrow \ell < k$

$$S_{k,2}$$

$$S_{k-1,3}$$

$$t = 2$$

$$S_{k-2,4}$$

$$b = 4$$

$$S_{2,k}$$

• each ℓ -gon has:

$$(\leq t)$$
-cap in top-layer t ,
 $(\leq k - b)$ -cup in bottom-layer b ,
 ≤ 1 point per interm. layer
 $\Rightarrow \ell < k$

• number of points: $\phi(k,2) + \phi(k-1,3) + \ldots = \sum_{j=0}^{k-2} {k-2 \choose j} = 2^{k-2}$

$$S_{k,2}$$
 $S_{k-1,3}$
 $S_{k-2,4}$
 $S_{k-3,5}$
 $b = 4$

$$S_{2,k}$$

• each ℓ -gon has:

$$(\leq t)$$
-cap in top-layer t ,
 $(\leq k - b)$ -cup in bottom-layer b ,
 ≤ 1 point per interm. layer
 $\Rightarrow \ell < k$

- number of points: $\phi(k, 2) + \phi(k - 1, 3) + \ldots = \sum_{j=0}^{k-2} {k-2 \choose j} = 2^{k-2}$
- therefore $g(k) \ge 2^{k-2} + 1$

$$S_{k,2}$$
 $S_{k-1,3}$
 $S_{k-2,4}$
 $S_{k-3,5}$
 $b = 4$

Lemma (Fractional EST, Pór & Valtr '02) Let S be a point set with $|S| \ge 2^{32k}$ points. Then there exists k-cup/cap $X \subset S$ satisfying $|T_i \cap S| \ge \frac{|S|}{2^{32k}}$ for every i.

Lemma (Fractional EST, Pór & Valtr '02) Let S be a point set with $|S| \ge 2^{32k}$ points. Then there exists k-cup/cap $X \subset S$ satisfying $|T_i \cap S| \ge \frac{|S|}{2^{32k}}$ for every i.

linear in S!

- Fractional EST
- auxiliary poset on each T_i

- Fractional EST
- auxiliary poset on each T_i

- Fractional EST
- auxiliary poset on each T_i

- Fractional EST
- auxiliary poset on each T_i
- Dilworth's theorem: large antichain or chain in each T_i

- Fractional EST
- auxiliary poset on each T_i
- Dilworth's theorem: large antichain or chain in each T_i
- pigeonhole principle:

- Fractional EST
- auxiliary poset on each T_i
- Dilworth's theorem: large antichain or chain in each T_i
- pigeonhole principle: a) many T_i 's with antichain

- Fractional EST
- auxiliary poset on each T_i
- Dilworth's theorem: large antichain or chain in each T_i
- pigeonhole principle: a) many T_i 's with antichain

- Fractional EST
- auxiliary poset on each T_i
- Dilworth's theorem: large antichain or chain in each T_i
- pigeonhole principle: a) many T_i 's with antichain or b) many T_i 's with chain

- Fractional EST
- auxiliary poset on each T_i
- Dilworth's theorem: large antichain or chain in each T_i
- pigeonhole principle: a) many T_i 's with antichain or b) many T_i 's with chain

- Fractional EST
- auxiliary poset on each T_i
- Dilworth's theorem: large antichain or chain in each T_i
- pigeonhole principle: a) many T_i 's with antichain or b) many T_i 's with chain

• ... which combine to k-gons

maximum # of k-gons among all sets of n points?

maximum # of k-gons among all sets of n points?

n points in convex position

any
$$k$$
-subset is k -gon

$$\Rightarrow \max = \binom{n}{k}$$

 $g_k(n) :=$ minimum # of k-gons among all sets of n points

 $g_k(n) :=$ minimum # of k-gons among all sets of n points

•
$$g_k(n) = \Theta(n^k)$$
 each $g(k)$ -subset gives k -gon
because $g_k(n) \ge \frac{\binom{n}{g(k)}}{\binom{n-k}{g(k)-k}} \ge c \cdot \frac{n^{g(k)}}{n^{g(k)-k}} = c \cdot n^k$

each k-gon counted by at most that many g(k)-subsets

 $g_k(n) :=$ minimum # of k-gons among all sets of n points

•
$$g_k(n) = \Theta(n^k)$$

• k = 4: rectilinear crossing number of K_n : $g_4(n) = \overline{cr}(K_n) \sim c_4 \cdot {n \choose 4}$ with $0.3799 < c_4 < 0.3805$ [Ábrego et al. '08, Aichholzer et al. '20]

 $g_k(n) :=$ minimum # of k-gons among all sets of n points

•
$$g_k(n) = \Theta(n^k)$$

- k = 4: rectilinear crossing number of K_n : $g_4(n) = \overline{cr}(K_n) \sim c_4 \cdot {n \choose 4}$ with $0.3799 < c_4 < 0.3805$ [Ábrego et al. '08, Aichholzer et al. '20]
- various notions of crossing numbers have been studied intensively (not necessarily straight-line drawings, not necessarily complete graphs)

• $(a,b) \in {S \choose 2}$ is k-edge if \overline{ab} partitions $S \setminus \{a,b\}$ into k and n-k-2 points

• $(a,b) \in {S \choose 2}$ is k-edge if \overline{ab} partitions $S \setminus \{a,b\}$ into k and n-k-2 points

- $(a,b) \in {S \choose 2}$ is k-edge if \overline{ab} partitions $S \setminus \{a,b\}$ into k and n-k-2 points
- $e_k(S)$ = number of k-edges in S

- $(a,b) \in {S \choose 2}$ is k-edge if \overline{ab} partitions $S \setminus \{a,b\}$ into k and n-k-2 points
- $e_k(S)$ = number of k-edges in S

- $(a,b) \in {S \choose 2}$ is k-edge if \overline{ab} partitions $S \setminus \{a,b\}$ into k and n-k-2 points
- $e_k(S)$ = number of k-edges in S

- $(a,b) \in {S \choose 2}$ is k-edge if \overline{ab} partitions $S \setminus \{a,b\}$ into k and n-k-2 points
- $e_k(S)$ = number of k-edges in S

$$g_4(S) + \sum_{k=0}^{\lfloor n/2 \rfloor - 1} k(n - 2 - k) e_k(S) = 3\binom{n}{4}$$

$$e_0 = 6$$

 $e_1 = 6$
 $e_2 = 9$

$$g_4(S) + \sum_{k=0}^{\lfloor n/2 \rfloor - 1} k(n-2-k)e_k(S) = 3\binom{n}{4}$$

$$g_4(S) + \sum_{k=0}^{\lfloor n/2 \rfloor - 1} k(n-2-k)e_k(S) = 3\binom{n}{4}$$

Theorem (Ábrego, Fernández-Merchant '04 and Lovász, Vesztergombi, Wagner, Welzl '05):

$$g_4(S) + \sum_{k=0}^{\lfloor n/2 \rfloor - 1} k(n - 2 - k) e_k(S) = 3\binom{n}{4}$$

Corollary: Given a set S of n points, the value $g_4(S)$ (which is of order $\Theta(n^4)$) can be computed in $O(n^2)$ time

Theorem (Ábrego, Fernández-Merchant '04 and Lovász, Vesztergombi, Wagner, Welzl '05):

$$g_4(S) + \sum_{k=0}^{\lfloor n/2 \rfloor - 1} k(n - 2 - k) e_k(S) = 3\binom{n}{4}$$

Corollary: Given a set S of n points, the value $g_4(S)$ (which is of order $\Theta(n^4)$) can be computed in $O(n^2)$ time

Remark: $g_k(S)$ can be computed in $O(k \cdot n^3)$ time [Mitchell Rote Sundaram Woeginger '95]

$$g_4(S) + \sum_{k=0}^{\lfloor n/2 \rfloor - 1} k(n - 2 - k) e_k(S) = 3\binom{n}{4}$$

$$g_4(S) + \sum_{k=0}^{\lfloor n/2 \rfloor - 1} k(n - 2 - k) e_k(S) = 3\binom{n}{4}$$

$$g_4(S) + \sum_{k=0}^{\lfloor n/2 \rfloor - 1} k(n-2-k)e_k(S) = 3\binom{n}{4}$$

$$g_4(S) + \sum_{k=0}^{\lfloor n/2 \rfloor - 1} k(n-2-k)e_k(S) = 3\binom{n}{4}$$

Proof Idea:
$$\sum_{e} k_e \cdot (n-2-k_e) = 2 \boxtimes + 3 \bigtriangleup$$

$$g_4(S) + \sum_{k=0}^{\lfloor n/2 \rfloor - 1} k(n - 2 - k) e_k(S) = 3\binom{n}{4}$$

Proof Idea:
$$\sum_{e} k_e \cdot (n-2-k_e) = 2 \boxtimes + 3 \bigtriangleup = 3 \binom{n}{4} - \boxtimes$$

$$g_4(S) + \sum_{k=0}^{\lfloor n/2 \rfloor - 1} k(n-2-k)e_k(S) = 3\binom{n}{4}$$

Proof Idea:
$$\sum_{e} k_e \cdot (n-2-k_e) = 2 \boxtimes + 3 \bigtriangleup = 3 \binom{n}{4} - \boxtimes$$
 QED

$$g_4(S) + \sum_{k=0}^{\lfloor n/2 \rfloor - 1} k(n-2-k)e_k(S) = 3\binom{n}{4}$$

Theorem (Ábrego, Fernández-Merchant '04 and Lovász, Vesztergombi, Wagner, Welzl '05):

$$g_4(S) + \sum_{k=0}^{\lfloor n/2 \rfloor - 1} k(n - 2 - k) e_k(S) = 3\binom{n}{4}$$

Remark: this crossings – k-edges relation generalizes to simple topological drawings of K_n [Ábrego, Fernández-Merchant, Ramos, Salazar '11]

Theorem (Ábrego, Fernández-Merchant '04 and Lovász, Vesztergombi, Wagner, Welzl '05):

$$g_4(S) + \sum_{k=0}^{\lfloor n/2 \rfloor - 1} k(n-2-k)e_k(S) = 3\binom{n}{4}$$

Remark: this crossings – k-edges relation generalizes to simple topological drawings of K_n [Ábrego, Fernández-Merchant, Ramos, Salazar '11]

a k-hole (in S) is the vertex set of a convex k-gon containing no other points of S

a k-hole (in S) is the vertex set of a convex k-gon containing no other points of S

a k-hole (in S) is the vertex set of a convex k-gon containing no other points of S

- 3 points $\Rightarrow \exists$ 3-hole
- 5 points $\Rightarrow \exists$ 4-hole

a k-hole (in S) is the vertex set of a convex k-gon containing no other points of S

- 3 points $\Rightarrow \exists$ 3-hole
- 5 points $\Rightarrow \exists$ 4-hole

a k-hole (in S) is the vertex set of a convex k-gon containing no other points of S

- 3 points $\Rightarrow \exists$ 3-hole
- 5 points $\Rightarrow \exists$ 4-hole
- 10 points $\Rightarrow \exists$ 5-hole [Harborth '78]

a k-hole (in S) is the vertex set of a convex k-gon containing no other points of S

- 3 points $\Rightarrow \exists$ 3-hole
- 5 points $\Rightarrow \exists$ 4-hole
- 10 points $\Rightarrow \exists$ 5-hole [Harborth '78]
- ∃ arbitrarily large point sets with no 7-hole [Horton '83]

a k-hole (in S) is the vertex set of a convex k-gon containing no other points of S

- 3 points $\Rightarrow \exists$ 3-hole
- 5 points $\Rightarrow \exists$ 4-hole
- 10 points $\Rightarrow \exists$ 5-hole [Harborth '78]
- ∃ arbitrarily large point sets with no 7-hole [Horton '83]
- Sufficiently large point sets ⇒ ∃ 6-hole
 [Gerken '08 and Nicolás '07, independently]

4 points, no 4-hole (h(4) = 5)

29 points, no 6-hole [Overmars '02] ($30 \le h(6) \le 463$)

29 points, no 6-hole [Overmars '02] ($30 \le h(6) \le 463$)

29 points, no 6-hole [Overmars '02] $(30 \le h(6) \le 463)$

Horton's construction for $n=2^1$ points, no 7-holes

Horton's construction for $n=2^2$ points, no 7-holes

Horton's construction for $n=2^3$ points, no 7-holes

Horton's construction for $n=2^4\,$ points, no 7-holes

Horton's construction for $n=2^4$ points, no 7-holes

Horton's construction: $n = 2^k$ points, no 7-holes $(h(7) = \infty)$

- $S_1 = \text{single point}$, and S_n recursively: two copies L, U of $S_{\frac{n}{2}}$
 - from left to right: points alternatingly in L and U
 - U high above L

 $S_1 = \text{single point, and } S_n$ recursively: two copies L, U of $S_{\frac{n}{2}}$

• from left to right: points alternatingly in L and U

 $S_1 = \text{single point, and } S_n$ recursively: two copies L, U of $S_{\frac{n}{2}}$

 $\bullet\,$ from left to right: points alternatingly in L and U

 $S_1 = \text{single point}$, and S_n recursively: two copies L, U of $S_{\frac{n}{2}}$

 $\bullet\,$ from left to right: points alternatingly in L and U

 $S_1 = \text{single point}$, and S_n recursively: two copies L, U of $S_{\frac{n}{2}}$

 $\bullet\,$ from left to right: points alternatingly in L and U

• we show $h(5) \leq g(6)$:

consider 6-gon G with minimum number of interior points I

• we show $h(5) \leq g(6)$:

consider 6-gon G with minimum number of interior points I

if I is empty, G is a 6-hole

• we show $h(5) \leq g(6)$:

consider 6-gon G with minimum number of interior points I

• we show $h(5) \leq g(6)$:

consider 6-gon G with minimum number of interior points I

if I is empty, G is a 6-hole if I contains 1 point, we find a 5-hole

• we show $h(5) \leq g(6)$:

consider 6-gon G with minimum number of interior points I

if I is empty, G is a 6-hole if I contains 1 point, we find a 5-hole if I contains ≥ 2 points, we choose ab as bounding edge of $\operatorname{conv}(I)$,

• we show $h(5) \leq g(6)$:

consider 6-gon G with minimum number of interior points I

• h(5) = 10 [Harborth '78], similar but more technical

- h(5) = 10 [Harborth '78], similar but more technical
- $h(6) \leq g(9)$ [Gerken '08], similar but 30+ pages

- h(5) = 10 [Harborth '78], similar but more technical
- $h(6) \leq g(9)$ [Gerken '08], similar but 30+ pages
- $h(6) \le \max\{400, g(8)\} \le 463$ [Koshelev '09] 50+ pages

- h(5) = 10 [Harborth '78], similar but more technical
- $h(6) \leq g(9)$ [Gerken '08], similar but 30+ pages
- $h(6) \le \max\{400, g(8)\} \le 463$ [Koshelev '09] 50+ pages using the estimate $g(k) \le \binom{2k-5}{k-2} + 1$ [Tóth & Valtr '05]

- h(5) = 10 [Harborth '78], similar but more technical
- $h(6) \leq g(9)$ [Gerken '08], similar but 30+ pages
- $h(6) \le \max\{400, g(8)\} \le 463$ [Koshelev '09] 50+ pages
- h(6) < g(216) [Valtr '09] only 7 pages

- h(5) = 10 [Harborth '78], similar but more technical
- $h(6) \leq g(9)$ [Gerken '08], similar but 30+ pages
- $h(6) \le \max\{400, g(8)\} \le 463$ [Koshelev '09] 50+ pages
- h(6) < g(216) [Valtr '09] only 7 pages

Q1: \exists shorter (computed assisted?) proof for existence of 6-holes? Q2: is h(6) bounded in terms of max{const, g(7)}?

Thm (affine 1st moment, Edelman and Jamison '85): $\underbrace{h_0(P)}_{1} - \underbrace{h_1(P)}_{n} + \underbrace{h_2(P)}_{\binom{n}{2}} - h_3(P) \pm \ldots = \sum_{k \ge 0} (-1)^k h_k(P) = 0$

Thm (affine 1st moment, Edelman and Jamison '85): $\underbrace{h_0(P)}_{1} - \underbrace{h_1(P)}_{n} + \underbrace{h_2(P)}_{\binom{n}{2}} - h_3(P) \pm \ldots = \sum_{k \ge 0} (-1)^k h_k(P) = 0$

Proof Idea: holds for n points in convex position,

any k-subset is k-hole

$$\sum_{k\geq 0} (-1)^k \binom{n}{k} = (1+(-1))^n = 0$$

Binomial theorem

Thm (affine 1st moment, Edelman and Jamison '85):

$$\underbrace{h_0(P)}_{1} - \underbrace{h_1(P)}_{n} + \underbrace{h_2(P)}_{\binom{n}{2}} - h_3(P) \pm \dots = \sum_{k \ge 0} (-1)^k h_k(P) = 0$$

Proof Idea: holds for n points in convex position,

and invariant to mutations! (i.e., when a point moves over a line)

Thm (affine 1st moment, Edelman and Jamison '85):

$$\underbrace{h_0(P)}_{1} - \underbrace{h_1(P)}_{n} + \underbrace{h_2(P)}_{\binom{n}{2}} - h_3(P) \pm \dots = \sum_{k \ge 0} (-1)^k h_k(P) = 0$$

Proof Idea: holds for n points in convex position,

С

and invariant to mutations!

(i.e., when a point moves over a line)

for each k-hole which we get/destroy with ab we also get/destroy a (k + 1)-hole with abc

Thm (affine 1st moment, Edelman and Jamison '85):

$$\underbrace{h_0(P)}_{1} - \underbrace{h_1(P)}_{n} + \underbrace{h_2(P)}_{\binom{n}{2}} - h_3(P) \pm \ldots = \sum_{k \ge 0} (-1)^k h_k(P) = 0$$

Thm (affine 2nd moment, Ahrens Gordon & McMohan '99): $\sum k \cdot (-1)^k h_k(P) = \# \text{ of inner pts. of } P$

Thm (affine 1st moment, Edelman and Jamison '85):

$$\underbrace{h_0(P)}_{1} - \underbrace{h_1(P)}_{n} + \underbrace{h_2(P)}_{\binom{n}{2}} - h_3(P) \pm \ldots = \sum_{k \ge 0} (-1)^k h_k(P) = 0$$

Thm (affine 2nd moment, Ahrens Gordon & McMohan '99): $\sum k \cdot (-1)^k h_k(P) = \# \text{ of inner pts. of } P$

Idea: $k \cdot h_k(P) = \sum_e h_k(P;e)$

•
$$h_3(n) \ge \lfloor \frac{1}{3} {n \choose 2} \rfloor = \Omega(n^2)$$

• $\forall \text{ edge } e$
 $\exists 3\text{-hole with closest point}$

•
$$h_3(n) \ge \lfloor \frac{1}{3} {n \choose 2} \rfloor = \Omega(n^2)$$

• $\forall \text{ edge } e$
 $\exists 3\text{-hole with closest point}$

 $h_k(n) :=$ minimum # of k-holes among all sets of n points

• $h_4(n) \ge \Omega(n^2)$

 \forall crossed edge e

 \exists 4-hole with diagonal e

 $h_k(n) :=$ minimum # of k-holes among all sets of n points

• $h_4(n) \ge \Omega(n^2)$

 $\forall \ {\rm crossed} \ {\rm edge} \ e$

 \exists 4-hole with diagonal e

O(n) uncrossed edges (planar graph)

•
$$h_5(n) \ge \lfloor \frac{1}{10}n \rfloor = \Omega(n)$$

•
$$h_5(n) \ge \lfloor \frac{1}{10}n \rfloor = \Omega(n)$$

•
$$h_5(n) \ge \lfloor \frac{1}{10}n \rfloor = \Omega(n)$$

•
$$h_5(n) \ge \lfloor \frac{1}{10}n \rfloor = \Omega(n)$$
 • same idea: $h_6(n) \ge \Omega(n)$

 $h_k(n) :=$ minimum # of k-holes among all sets of n points

Bárány and Füredi '87]
h₃, h₄ both in Θ(n²)
h₅ in Ω(n log^{4/5} n) and O(n²)
[Aichholzer, Balko, Hackl, Kynčl, Parada, S., Valtr, and Vogtenhuber '17] (computer assisted proof, 20 pages)

Horton set S_n defined recursively: two copies L, U of $S_{\frac{n}{2}}$

• from left to right: points alternatingly in L and U

Horton set S_n defined recursively: two copies L, U of $S_{\frac{n}{2}}$

• from left to right: points alternatingly in L and U

Horton set S_n defined recursively: two copies L, U of $S_{\frac{n}{2}}$

• from left to right: points alternatingly in L and U

- each 6-hole is one of two types:
- entirely from U or L points from both, U and L

• each 6-hole is one of two types:

entirely from U or L

points from both, U and L

no 4 caps \Rightarrow 3-cup plus 3-cap

• each 6-hole is one of two types:

• each 6-hole is one of two types:

• similar recurrences for 3-, 4-, and 5-holes

Horton Lattice

• Horton lattice: perturbation of $\sqrt{n} \times \sqrt{n}$ grid

gives currently best bounds for h_3, h_4, h_5, h_6 and no 7-holes [Bárány & Valtr '04]

What about Higher Dimensions??

Higher Dimensions

a finite point set P in \mathbb{R}^d is in general position if no d + 1 points lie in a common hyperplane

k-gon = k points in convex position

k-hole = k-gon with no other points of P in its convex hull

dimension reduction (Károlyi '01):

dimension reduction (Károlyi '01):

$$g^{(d)}(k) \le g^{(d-1)}(k-1) + 1 \le \dots \le \underbrace{g^{(2)}(k-d+1) + d - 2}_{\le 2^{k+o(k)} \text{ (Suk'17)}}$$

Károlyi and Valtr '03: $g^{(d)}(k) = \Omega(c^{d-\sqrt[d]{k}})$

dimension reduction (Károlyi '01):

$$g^{(d)}(k) \le g^{(d-1)}(k-1) + 1 \le \dots \le \underbrace{g^{(2)}(k-d+1) + d - 2}_{\le 2^{k+o(k)} \text{ (Suk'17)}}$$

Károlyi and Valtr '03:
$$g^{(d)}(k) = \Omega(c^{d-\sqrt[d-1]{k}})$$

asymptotic behavior remains unknown for $d \geq 3$

central problem: determine the largest value k = H(d) such that every sufficiently large set in d-space contains a k-hole

central problem: determine the largest value k = H(d) such that every sufficiently large set in d-space contains a k-hole

• H(2) = 6 because $h^{(2)}(6) < \infty$ and $h^{(2)}(7) = \infty$ [Gerken '07, Nicolás '07] [Horton '87]

central problem: determine the largest value k = H(d) such that every sufficiently large set in d-space contains a k-hole

•
$$H(2)=6$$
 because $h^{(2)}(6)<\infty$ and $h^{(2)}(7)=\infty$

•
$$2d + 1 \le H(d) < d^{d+o(d)}$$
 [Valtr '92]

- (2d+1)-holes exist in sufficiently large sets
- $\exists d$ -dimensional Horton sets without $d^{d+o(d)}$ -holes

central problem: determine the largest value k = H(d) such that every sufficiently large set in d-space contains a k-hole

•
$$H(2)=6$$
 because $h^{(2)}(6)<\infty$ and $h^{(2)}(7)=\infty$

•
$$2d + 1 \le H(d) < d^{d+o(d)}$$
 [Valtr '92]

- (2d+1)-holes exist in sufficiently large sets
- $\exists d$ -dimensional Horton sets without $d^{d+o(d)}$ -holes
- in particular, $7 \le H(3) \le 22$ remains open

central problem: determine the largest value k = H(d) such that every sufficiently large set in d-space contains a k-hole

•
$$H(2)=6$$
 because $h^{(2)}(6)<\infty$ and $h^{(2)}(7)=\infty$

•
$$2d + 1 \le H(d) < d^{d+o(d)}$$
 [Valtr '92]

• $H(d) < 2^{7d}$ [Bukh, Chao & Holzman '20]

central problem: determine the largest value k = H(d) such that every sufficiently large set in d-space contains a k-hole

•
$$H(2)=6$$
 because $h^{(2)}(6)<\infty$ and $h^{(2)}(7)=\infty$

•
$$2d + 1 \le H(d) < d^{d+o(d)}$$
 [Valtr '92]

- $H(d) < 2^{7d}$ [Bukh, Chao & Holzman '20]
- *d*-dimensional Horton lattice without *d*^{O(d³)}-holes
 [Conlon & Lim '21]

central problem: determine the largest value k = H(d) such that every sufficiently large set in d-space contains a k-hole

•
$$H(2)=6$$
 because $h^{(2)}(6)<\infty$ and $h^{(2)}(7)=\infty$

•
$$2d + 1 \le H(d) < d^{d+o(d)}$$
 [Valtr '92]

- $H(d) < 2^{7d}$ [Bukh, Chao & Holzman '20]
- *d*-dimensional Horton lattice without *d^{O(d³)}*-holes
 [Conlon & Lim '21]
- do exponentially large holes exist?

Number of Holes in Higher Dimensions

• random sets give $O(n^d)$ bounds for k-holes

Theorem (Balko S. Valtr '20 + '21). Let $d \ge 2$ and $k \ge d+1$, and let K be a convex body in \mathbb{R}^d . If S is a set of n points chosen uniformly and independently at random from K, then the expected number of k-holes in S is $\Theta(n^d)$.

In particular:

 \exists sets of n points in \mathbb{R}^d with $O(n^d)$ many k-holes

Number of Holes in Higher Dimensions

• random sets give $O(n^d)$ bounds for k-holes

• d-dimensional Horton sets with d > 2 contain $\Omega(n^{\min\{k,2^{d-1}\}})$ many k-holes [Balko S. Valtr '20]

• no explicit construction known with $O(n^d)$ k-holes

