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General Position

a finite point set S in the plane is
in general position if 3 collinear points in S

throughout this presentation, every set Is in general position
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k-Gons

a k-gon (in S) is the vertex set of a convex k-gon

6-gon

Theorem (Erdos & Szekeres 1935).
V k € N, 3 a smallest integer g(k) such that
every set of g(k) points contains a k-gon.
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Theorem (Erdos & Szekeres '35)
k2 41 <g(k) < () +1

T k—2

equality conjectured by Szekeres, Erdos offered 5009 for a proof
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k-Gons

Theorem (Erdos & Szekeres '35)

2721 < g(k) < (35) +1

several improvements of order 4%—°(k)

Theorem. g(k) < 2F+o(k) [Suk '16]

o g(k) < 20K logk) 5 "16]

also for pseudo-configurations of points
[Holmsen, Mojarrad, Pach and Tardos '17]
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k-Gons

Theorem (Erdos & Szekeres '35)
M2+ 1<g(k) < (3) +1

several improvements of order 4%—°(%)
Theorem. g(k) < 2F+o(k) [Suk '16]
< 1 hour using SAT solvers [S."18, Mari¢ '19]
Known: g(4) =5, g(5) =9, g(6) = 17

*

computer assisted proof, 1500 CPU hours [Szekeres—Peters '06]
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Theorem (Erdos & Szekeres '35)
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we show that every set of ¢(a,b) +1 = (“7°2%) + 1 points
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Proof of the Erdos—Szekeres Theorem

Theorem (Erdos & Szekeres '35)
k=2 41 <g(k) < (7)) +1

we show that every set of ¢(a,b) +1 = (“7°2%) + 1 points
contains a-cup or b-cap.

\Cip.// /7(;\

using a = b = k, we then get g(k) < (°*7)) + 1.
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Cups and Caps: Upper Bound

Let S be a set of ¢(a,b) +1 = (“2354) + 1 points and
suppose It does not contain a a-cup.
We show that there is a b-cap.

Base Case: If a =2 or b = 2, we have
¢(a,b) +1= (") +1 =2 points = 2-cup / 2-cap



Cups and Caps: Upper Bound

Let S be a set of ¢(a,b) +1 = (“2354) + 1 points and
suppose It does not contain a a-cup.
We show that there is a b-cap.

Step: Let F be the set of rightmost (end)points of all
(a — 1)-cups



Cups and Caps: Upper Bound

Let S be a set of ¢(a,b) +1 = (“2:354) + 1 points and
suppose It does not contain a a-cup.
We show that there is a b-cap.

Step: Let F be the set of rightmost (end)points of all
(a — 1)-cups

c b
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(a — 1)-cups
S\ E has no (a — 1)-cup



Cups and Caps: Upper Bound

Let S be a set of ¢(a,b) +1 = (“23;4) + 1 points and
suppose It does not contain a a-cup.
We show that there is a b-cap.

Step: Let F be the set of rightmost (end)points of all
(a — 1)-cups

S\ E has no (a — 1)-cup

if S'\ E contains b-cap, we are done; hence assume i b-cap



Cups and Caps: Upper Bound

Let S be a set of ¢(a,b) +1 = (“2354) + 1 points and
suppose It does not contain a a-cup.
We show that there is a b-cap.

Step: Let F be the set of rightmost (end)points of all
(a — 1)-cups

S\ E has no (a — 1)-cup
if S'\ E contains b-cap, we are done; hence assume i b-cap

by induction, |S'\ E| < ¢(a — 1,b),



Cups and Caps: Upper Bound

Let S be a set of ¢(a,b) +1 = (a;rf;l) + 1 points and
suppose It does not contain a a-cup.
We show that there is a b-cap.

Step: Let F be the set of rightmost (end)points of all
(a — 1)-cups
S\ E has no (a — 1)-cup
if S'\ E contains b-cap, we are done; hence assume i b-cap
by induction, |S'\ E| < ¢(a — 1,b),
E| =[5 =S\ E| = ¢(a,b—1) +1
because ¢(a,b) = ¢(a — 1,b) + ¢(a,b— 1)



Cups and Caps: Upper Bound

Let S be a set of ¢(a,b) +1 = (a;rf;l) + 1 points and
suppose It does not contain a a-cup.
We show that there is a b-cap.

Step: Let F be the set of rightmost (end)points of all
(a — 1)-cups

S\ E has no (a — 1)-cup

if S'\ E contains b-cap, we are done; hence assume i b-cap
by induction, |S'\ E| < ¢(a — 1,b),

E| =S| =[S\ B| > ¢(a,b—1) +1

by induction, F has (b — 1)-cap (because no a-cup)
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Let S be a set of ¢(a,b) +1 = (“2354) + 1 points and
suppose It does not contain a a-cup.
We show that there is a b-cap.

Step: Let F be the set of rightmost (end)points of all
(a — 1)-cups
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by induction, F has (b — 1)-cap (because no a-cup)
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Let S be a set of ¢(a,b) +1 = (“2354) + 1 points and
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We show that there is a b-cap.

Step: Let F be the set of rightmost (end)points of all
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Cups and Caps: Upper Bound

Let S be a set of ¢(a,b) +1 = (“23;4) + 1 points and
suppose It does not contain a a-cup.
We show that there is a b-cap.

Step: Let F be the set of rightmost (end)points of all

(@ —1)-cups 7+ = 3 b-cap! QE.D.
4

—-a,

by induction, F has (b — 1)-cap (because no a-cup)
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Cups and Caps: Lower Bound

this bound is actually tight because there exist sets 5, ;

with ¢(a,b) = (“2354) points without a-cups and b-caps.
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o Base: 53, = 54,2 = single point
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Cups and Caps: Lower Bound

o Base: 53, = 54,2 = single point

e construct S, recursively:
combine L = 5,1 and U = 5, 51

e this will give
|Sa,b‘ — ¢(a7 b) — ¢(CL, b— 1) + ¢(a o 17 b) — (aa——;l?b_—42)



Cups and Caps: Lower Bound

Base: S2 = 54,2 = single point

construct S, ; recursively:
combine L = 5,1 and U = 5, 51

U right of L o U="5ap-1

o [
U "high above” L

L = Sa—l,b *
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construct S, ; recursively:
combine L = 5,1 and U = 5, 51

U right of L

U "high above” L
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Cups and Caps: Lower Bound

Base: S2 = 54,2 = single point

construct S, ; recursively:
combine L = 5,1 and U = 5, 51

U right of L

U "high above” L

no a-cup or b-cap

Q.E.D.
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k-Gons: 272 4+ 1 Lower Bound

o use Sok , S3k—1 , ..., Ok,2 as gadgets to construct a
large set without k-gons
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o place S,4's very flat in very small bubbles @

(520) 8



k-Gons: 272 4+ 1 Lower Bound

o place S, 's very flat in very small bubbles
(high above/deep below)

no points inbetween



k-Gons: 272 4+ 1 Lower Bound

no points inbetween



k-Gons: 2572 41 Lower Bound
o place S,'s very flat in very small bubbles @
e bubbles can have arbitrary relative positions

(520) 8



k-Gons: 272 4+ 1 Lower Bound

Sk .2

Sk—1.3

Sk—2.4

Sk—3.5




k-Gons: 272 4+ 1 Lower Bound

e each /-gon has:

(< t)-cap in top-layer t,

(< k —b)-cup in bottom-layer b,
< 1 point per interm. layer
=<k




k-Gons: 272 4+ 1 Lower Bound

e each /-gon has:

(< t)-cap in top-layer t,

(< k—0b)-cup in bottom-layer b, | g, ., /o/’\

< 1 point per interm. layer /

= 0<k Sk—2,4 /

e number of points: Sk—3,5<._./l

b(k,2) + ¢k —1,3)+...=
Sisg (757) =2k




k-Gons: 272 4+ 1 Lower Bound

e each /-gon has:

(< t)-cap in top-layer t,

(< k —b)-cup in bottom-layer b,
< 1 point per interm. layer
=<k

e number of points:
o(k,2)+o(k—1,3)+...=
k—2 (k—2 _
Zj:O ( j ) = 2877

o therefore g(k) > 2F72 4+ 1
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Sketch of Suk's 2¥+°(k) Upper Bound

Lemma (Fractional EST, Pér & Valtr '02) Let S be a

point set with |S| > 232* points. Then there exists
S|

k-cup/cap X C S satisfying |1; N S| > 5555 for every i.




Sketch of Suk's 2¥+°(k) Upper Bound

Lemma (Fractional EST, Pér & Valtr '02) Let S be a
point set with |S| > 232* points. Then there exists
k-cup/cap X C S satisfying [1; N S| > 2|§S;|k for every 1.

\

linear in S'!
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e Fractional EST
e auxiliary poset on each T;




Sketch of Suk's 2¥+°(k) Upper Bound

e Fractional EST
e auxiliary poset on each T;

comparable

Li—1/F
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Fractional EST

auxiliary poset on each T;

Dilworth’s theorem: large antichain or chain in each T;

pigeonhole principle:

a) many T;'s with antichain

™,



Sketch of Suk's 2¥+°(¥) Upper Bound

Fractional EST
auxiliary poset on each T;

Dilworth’s theorem: large antichain or chain in each T;

pigeonhole principle:  a) many T;'s with antichain

N



Sketch of Suk's 2¥+°(k) Upper Bound

Fractional EST

auxiliary poset on each T;

Dilworth’s theorem: large antichain or chain in each T;

pigeonhole principle:

a) many T;'s with antichain
or b) many T;'s with chain

™



Sketch of Suk's 2¥+°(k) Upper Bound

Fractional EST
auxiliary poset on each T;

Dilworth’s theorem: large antichain or chain in each T;

pigeonhole principle:  a) many T;'s with antichain
or b) many T;'s with chain

™

e ES gives left-cups or right-caps



Sketch of Suk's 2¥+°(k) Upper Bound

e Fractional EST
e auxiliary poset on each T;

e Dilworth's theorem: large antichain or chain in each T;

e pigeonhole principle:  a) many 7;'s with antichain
or b) many T;'s with chain

e ES gives left-cups or right-caps

e ...which combine to k-gons
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Quantity of k-Gons

maximum # of k-gons among all sets of n points?
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Quantity of k-Gons

maximum # of k-gons among all sets of n points?

n points In convex position

any k-subset Is k-gon

= max = (Z’)

11



Quantity of k-Gons

gr(n) := minimum # of k-gons among all sets of n points
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Quantity of k-Gons

gr(n) := minimum # of k-gons among all sets of n points

o gi(n) = O(nk) each g(k)-subset gives k-gon

¥

because gi(n) > ((i““,l)) > C- n?;fk(f_)k = c-nk

gk —k
each k-gon counted by at most that many g(k)-subsets

11



Quantity of k-Gons

gr(n) := minimum # of k-gons among all sets of n points

o gr(n) = O(n*)

e k=4 : rectilinear crossing number of K,,:

ga(n) =er(K,) ~ cs - (}}) with 0.3799 < ¢4 < 0.3805

[Abrego et al. '08, Aichholzer et al. '20]

11



Quantity of k-Gons

gr(n) := minimum # of k-gons among all sets of n points

* gi(n) = O(n")

e k=4 : rectilinear crossing number of K,,:
ga(n) =er(Ky,) ~ cqa - (1)) with 0.3799 < ¢4 < 0.3805
[Abrego et al. '08, Aichholzer et al. '20]

e various notions of crossing numbers have been studied
intensively (not necessarily straight-line drawings, not
necessarily complete graphs)

11



An Invariant: crossings — k-edges relation
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e (a,b) € (g) is k-edge if ab partitions S\ {a,b} into k
and n — k — 2 points

o ¢;(5) = number of k-edges in S
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An Invariant: crossings — k-edges relation

Theorem (Abrego, Fernandez-Merchant '04 and
Lovasz, Vesztergombi, Wagner, Welzl '05):

ga(S) + S5 ke — 2 — k)er(S) = 3(7)

o
6():6
¢ ® 61:6
. o 62:9
®
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An Invariant: crossings — k-edges relation

Theorem (Abrego, Fernandez-Merchant '04 and
Lovasz, Vesztergombi, Wagner, Welzl '05):

ga(S) + S5 ke — 2 — k)er(S) = 3(7)

60:6
e1 =0
62:9

g1=3-(1)—0-1-4-6-2-3-9=105—24 — 54 = 27

12



An Invariant: crossings — k-edges relation

Theorem (Abrego, Fernandez-Merchant '04 and
Lovdsz, Vesztergombi, Wagner, Welzl '05):

ga(S) + S k(n — 2 — k)ex(S) = 3(7)
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Theorem (Abrego, Fernandez-Merchant '04 and
Lovasz, Vesztergombi, Wagner, Welzl '05):

ga(S) + S5 ke — 2 — k)er(S) = 3(7)

Corollary: Given a set S of n points, the value g4(5)
(which is of order ©(n?)) can be computed in O(n?) time
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An Invariant: crossings — k-edges relation

Theorem (Abrego, Fernandez-Merchant '04 and
Lovasz, Vesztergombi, Wagner, Welzl '05):

ga(S) + S5 ke — 2 — k)er(S) = 3(7)

Corollary: Given a set S of n points, the value g4(5)
(which is of order ©(n?)) can be computed in O(n?) time

Remark: gi(S) can be computed in O(k - n3) time
[Mitchell Rote Sundaram Woeginger '95]
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An Invariant: crossings — k-edges relation

Theorem (Abrego, Fernandez-Merchant '04 and
Lovdsz, Vesztergombi, Wagner, Welzl '05):

ga(S) + S5 ke — 2 — k)er(S) = 3(7)

Proof Idea: Z ke (n—2—k,) =
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12



An Invariant: crossings — k-edges relation

Theorem (Abrego, Fernandez-Merchant '04 and
Lovdsz, Vesztergombi, Wagner, Welzl '05):

ga(S) + S5 ke — 2 — k)er(S) = 3(7)

Proof Idea: Z ke (n—2—k,) =

-——
- -

-——
- -

~
-~
——————

i



An Invariant: crossings — k-edges relation

Theorem (Abrego, Fernandez-Merchant '04 and
Lovdsz, Vesztergombi, Wagner, Welzl '05):

ga(S) + S5 ke — 2 — k)er(S) = 3(7)

Proof Idea: Z ke (n—2—k,) =

-——
- -

-——
- -

~
-~
——————

i



An Invariant: crossings — k-edges relation

Theorem (Abrego, Fernandez-Merchant '04 and
Lovasz, Vesztergombi, Wagner, Welzl '05):

ga(S) + S5 ke — 2 — k)er(S) = 3(7)

Proof Idea: >~ k.- (n—2—k.) = 2K + 3A

counted three times

counted twice
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An Invariant: crossings — k-edges relation

Theorem (Abrego, Fernandez-Merchant '04 and
Lovasz, Vesztergombi, Wagner, Welzl '05):

ga(S) + S5 k(n — 2 — K)ex(S) = 3(%)

Proof Idea: Y~ k.- (n—2—k.) = 2K +3A =3(}) —

counted three times

counted twice
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An Invariant: crossings — k-edges relation

Theorem (Abrego, Fernandez-Merchant '04 and
Lovasz, Vesztergombi, Wagner, Welzl '05):

ga(S) + S5 k(n — 2 — K)ex(S) = 3(%)

Proof Idea: > k.- (n—2—k.) = 2K + 3A = 3(2) —
QED

counted three times

counted twice

12



An Invariant: crossings — k-edges relation

Theorem (Abrego, Fernandez-Merchant '04 and
Lovasz, Vesztergombi, Wagner, Welzl '05):

ga(S) + S5 ke — 2 — k)er(S) = 3(7)
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An Invariant: crossings — k-edges relation

Theorem (Abrego, Fernandez-Merchant '04 and
Lovasz, Vesztergombi, Wagner, Welzl '05):

ga(S) + S5 ke — 2 — k)er(S) = 3(7)

Remark: this crossings — k-edges relation generalizes to
simple topological drawings of K,
[Abrego, Fernandez-Merchant, Ramos, Salazar '11]
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An Invariant: crossings — k-edges relation

Theorem (Abrego, Fernandez-Merchant '04 and
Lovdsz, Vesztergombi, Wagner, Welzl '05):

ga(S) + S5 ke — 2 — k)er(S) = 3(7)

Remark: this crossings — k-edges relation generalizes to

simple topological drawings of K,
[Abrego, Fernandez-Merchant, Ramos, Salazar '11]

A A &
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k-Holes

a k-hole (in S) is the vertex set of a convex k-gon
containing no other points of S

not a 6-hole
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Erdos, 1970's: For k fixed, does every sufficiently large
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k-Holes

a k-hole (in S) is the vertex set of a convex k-gon
containing no other points of S

Erdos, 1970's: For k fixed, does every sufficiently large
point set contain k-holes?

e 3 points = d 3-hole
e 5 points = d 4-hole

e 10 points = d 5-hole [Harborth '78]
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k-Holes

a k-hole (in S) is the vertex set of a convex k-gon
containing no other points of S

Erdos, 1970's: For k fixed, does every sufficiently large
point set contain k-holes?

3 points = d 3-hole
5 points = d 4-hole
10 points = 3 5-hole [Harborth 78]

3 arbitrarily large point sets with no 7-hole [Horton '83]
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k-Holes

a k-hole (in S) is the vertex set of a convex k-gon

containing no other points of S

Erdos, 1970's: For k fixed, does every sufficiently large

point set contain k-holes?

3 points = 4 3-hole
5 points = d 4-hole

10 points = 3 5-hole [Harborth 78]
3 arbitrarily large point sets with no 7-hole [Horton '83]

Sufficiently large point sets = 4 6-hole
[Gerken '08 and Nicolds '07, independently]

14



k-Holes

Harborth '78 / \
Horton'83

Overmars '02
Gerken '08, Nicolas '07, Koshelev '09

15



k-Holes

exact value remains unknown

r's

o h(4) =5, h(5) = 10, 30 < h(6) < 463, h(7) = x

Harborth '78 \
Horton'83

Overmars '02
Gerken '08, Nicolas '07, Koshelev '09

15



k-Holes

4 points, no 4-hole (h(4) = 5)

16



k-Holes

/ \
/ \
/ \
/ \
/ \
/ \
/
/ \‘
4
/ \
/ \
/ \
/ \
4 \
/ \
/
/ “
/
/ \
V4 \
/ \
/ \
/ 9
/ ”I \
I, a” 4 \
/ - / \
/ — / \
/ -7 / \
/ P 7 / \

9 points, no 5-hole (h(5) = 10)
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k-Holes

y \
/ \
y \
y \
y \
y \
y \
/ \
y \
/ \
y \
/ \
y \
y \
y \
/ \
/ \
/ \
p \
/ \
p \
y \
py \
// X
/ ——‘.
) ___— \
/ -7 h
- \
/ T
/ T h
/ -7 °
/ - )
/ - °
Vs -—— A
Ve >
-
» o--a A
/ o’ a ’
AN -7 e - 0
/ N ‘< = ([ J ’ -7 h
/ \ 7/ ] ’ k
) \ o o . - )
/ N 1 ‘ - l/ ,’ *
\ = < *
// N .‘~ * -® - *
, \ ~~.'4 7 N\
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k-Holes

AR
o found by computer Two Remarks:
(simulated annealing) e 3 6-hole-free sets
e 7 with 8-gons
e contains 7-gon e larger gons
e give 6-holes
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L \_‘.'_,_, __________________________________________ »

29 points, no 6-hole [Overmars '02] (30 < h(6) < 463)
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e U high above L
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not open
from above
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] 7-hole would give
® no 4-cups open from 4-cap in U open from below

above in U/L (recursive) or
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= no 7-holes! T ‘\\./4

17




Horton Sets

51 = single point, and \S;, recursively: two copies L,U of S»
e from left to right: points alternatingly in L and U
e U high above L

U
® no 4-cups open from //\
above

] 7-hole would give
® no 4-cups open from 4-cap in U open from below

above in U/L (recursive) or
4-cup in L open from above

= no 7-holes! T ‘\\x./f
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Existence of Holes

e we show h(5) < g(6):

consider 6-gon G with minimum number of interior points [

if I is empty, G is a 6-hole

if I contains 1 point, we find a 5-hole b

a
if I contains > 2 points,
we choose ab as bounding edge of

conv([),




Existence of Holes

e we show h(5) < ¢(6):
consider 6-gon G with minimum number of interior points [
if I is empty, G is a 6-hole

if I contains 1 point, we find a 5-hole b

if I contains > 2 points,
we choose ab as bounding edge of

conv([),

and find a 5-hole or smaller 6-gon G’
(contradiction to minimality)

18



Existence of Holes

e h(5) =10 [Harborth '78], similar but more technical
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Existence of Holes

e h(5) =10 [Harborth '78], similar but more technical
o h(6) < g(9) [Gerken '08], similar but 30+ pages

e h(6) < max{400, g(8)} < 463 [Koshelev '09] 50+ pages

!

using the estimate g(k) (%_ 5) + 1 [Téth & Valtr "05]
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Existence of Holes

h(5) = 10 [Harborth '78], similar but more technical
h(6) < g(9) [Gerken '08], similar but 30+ pages
h(6) < max{400, g(8)} < 463 [Koshelev '09] 50+ pages
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Existence of Holes

e h(5) =10 [Harborth '78], similar but more technical
o h(6) < g(9) [Gerken '08], similar but 30+ pages
e h(6) < max{400,g(8)} < 463 [Koshelev '09] 50+ pages

o h(6) < g(216) [Valtr '09] only 7 pages

Q1: 3 shorter (computed assisted?) proof for existence of 6-holes?

Q2: is h(6) bounded in terms of max{const, g(7)}?

19
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k-holes: First and Second Moment Invariant

Thm (affine 1st moment, Edelman and Jamison '85):

ho(P) —h1(P)+ ho(P) —hs(P)-

1 n (g)

> (=1)*he(P) =0

k>0
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k-holes: First and Second Moment Invariant

Thm (affine 1st moment, Edelman and Jamison '85):

ho(P) = hi(P)+ ha(P) —hs(P)+... =) (=1)*he(P) =0
1 n (n) k=0

Proof Idea: holds for n points in convex position,

any k-subset is k-hole

> k01" (}) T (1+(=1))" =0

Binomial theorem
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k-holes: First and Second Moment Invariant

Thm (affine 1st moment, Edelman and Jamison '85):

ho(P) = hi(P)+ ha(P) —hs(P)+... =) (=1)*he(P) =0

1 n (TQL)

Proof Idea: holds for n points in convex position,

k>0

and invariant to mutations!

(i.e., when a point moves over a line)

— 4,

C
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k-holes: First and Second Moment Invariant

Thm (affine 1st moment, Edelman and Jamison '85):

ho(P) = hi(P)+ ha(P) —hs(P)+... =) (=1)*he(P) =0
1 n (n) k=0

Proof Idea: holds for n points in convex position,

and invariant to mutations!
(i.e., when a point moves over a line)

a b

C
for each k-hole which we get/destroy with ab

we also get/destroy a (k + 1)-hole with abc
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k-holes: First and Second Moment Invariant

Thm (affine 1st moment, Edelman and Jamison '85):

ho(P) = hi(P)+ ha(P) —hs(P)+... =) (=1)*he(P) =0
1 n (n) k=0

Thm (affine 2nd moment, Ahrens Gordon & McMohan "99):
Zk . (=1)*hy(P) = # of inner pts. of P

€3 €2

ldea: & - hk(P) — Ze hk(P, 6)
€4 €1

21
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Quantity of £-Holes

hi(n) := minimum # of k-holes among all sets of n points
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V crossed edge ¢
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Quantity of £-Holes

hi(n) := minimum # of k-holes among all sets of n points

O h4(n) Z Q(n2)
V crossed edge ¢
3 4-hole with diagonal e

not empty
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Quantity of £-Holes

hi(n) := minimum # of k-holes among all sets of n points

O h4(n) Z Q(n2)
V crossed edge ¢
o 3 4-hole with diagonal e

O(n) uncrossed edges

. 4 (planar graph)
=
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hi(n) := minimum # of k-holes among all sets of n points
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Quantity of £-Holes

hi(n) := minimum # of k-holes among all sets of n points
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Quantity of £-Holes

hi(n) := minimum # of k-holes among all sets of n points

o hs(n) > |+n| =Q(n) e same idea: hg(n) > Q(n)
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Quantity of £-Holes
hi(n) := minimum # of k-holes among all sets of n points

[Bérany and Fiiredi '87]
o hs, hy both in ©(n?)
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Quantity of £-Holes

hi(n) := minimum # of k-holes among all sets of n points

[Bérany and Fiiredi '87]

r’s

o hs, hy both in ©(n?)

o hs in Q(nlog?’n) and O(n?)
[Aichholzer, Balko, Hackl, Kyn¢l,

Parada, S., Valtr, and Vogtenhuber '17]
(computer assisted proof, 20 pages)
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Quantity of £-Holes

hi(n) := minimum # of k-holes among all sets of n points

[Bérany and Fiiredi '87]

r’s

o hs, hy both in ©(n?)

o hs in Q(nlog?’n) and O(n?)
[Aichholzer, Balko, Hackl, Kyn¢l,
Parada, S., Valtr, and Vogtenhuber '17]

/

o he(n) in Q(n) and O(n?) “~ | Conjecture: hs(n) and
[Gerken '08, Nicolas '07] he(n) are both in ©(n?)

o hg(n) =0for k>7 [Horton '83]
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Horton Sets ||

Horton set .5, defined recursively: two copies L, U of S»

e from left to right: points alternatingly in L and U

e U high above L

e no 4-cups open from
above/below

not open

from above

-
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U
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Horton Sets ||

Horton set .5, defined recursively: two copies L, U of S»

from left to right: points alternatingly in L and U

U high above L
U
no 4-cups open from .\ /\\7\////‘
above/below
cups open from above:

Ug(n):Ug(%)—l—%—l <n
Uz(n) = UQ(%)‘I‘TL — 1 S 2N

L \ \/ ¢
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Horton Sets ||

e each 6-hole is one of two types:

entirely from U or L points from both, U and L
U u _
< = S/ -
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Horton Sets ||

e each 6-hole is one of two types:

entirely from U or L points from both, U and L

v

no 4 caps = 3-cup plus 3-cap

¥

e similar recurrences for 3-, 4-, and 5-holes

24



Horton Lattice

e Horton lattice: perturbation of /n x /n grid

® 6 o o o o
e 6 0 o ° o _cach line looks like Horton set
® 6 o o o o
® 6 o o e o o
® O ® 6 & o o
o ® 6 o o o
® 6 ¢ ¢ ¢ o o o
® 6 6 6 & ¢ o o

gives currently best bounds for hs, hy, hs, hg and no
7-holes [Barany & Valtr '04]
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What about Higher Dimensions??
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Higher Dimensions

a finite point set P in R? is in general position
if no d+ 1 points lie in a common hyperplane

k-gon = k points in convex position

k-hole = k-gon with no other points of P in its convex hull

28



Higher Dimensional £-Gons

dimension reduction (Karolyi '01):

g VE)<g @ VE-1)+1<...<g¥Pk—-d+1)+d—-2

-~

<2k+o(k) (Suk’'l7)

<
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|
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Higher Dimensional £-Gons

dimension reduction (Karolyi '01):

g VE)<g @ VE-1)+1<...<g¥Pk—-d+1)+d—-2

-~

<2k+o(k) (Suk’'l7)

Karolyi and Valtr '03: ¢@ (k) = Q(c " V)

asymptotic behavior remains unknown for d > 3
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Higher Dimensional k-Holes

central problem: determine the largest value k = H (d) such
that every sufficiently large set in d-space contains a k-hole
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central problem: determine the largest value k = H (d) such
that every sufficiently large set in d-space contains a k-hole

o H(2) = 6 because h(?)(6) < 0o and h{?)(7) = ¢
[Gerken '07, Nicolas '07] [Horton '87]
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Higher Dimensional k-Holes

central problem: determine the largest value k = H (d) such

that every sufficiently large set in d-space contains a k-hole

o H(2) = 6 because h{?(6) < oo and

o 2d +1< H(d) < d+od) [Valtr '92

e (2d + 1)-holes exist in sufficient

h(2(7) = o0

y large sets

e 1 d-dimensional Horton sets wit

hout d4t0(d)_holes

e in particular, 7 < H(3) < 22 remains open
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o H(2) = 6 because h'?(6) < oo and h(?(7) = 0
o 2d+1< H(d) < d¥t°) [Valtr '92]

o H(d) < 27 [Bukh, Chao & Holzman '20]
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Higher Dimensional k-Holes

central problem: determine the largest value k = H (d) such
that every sufficiently large set in d-space contains a k-hole

o H(2) = 6 because h'?(6) < oo and h(?(7) = 0
o 2d+1< H(d) < d°d) [Valtr '92]
o H(d) < 27¢ [Bukh, Chao & Holzman '20]

o d-dimensional Horton lattice without d°(?)-holes
[Conlon & Lim '21]

e do exponentially large holes exist?



Number of Holes in Higher Dimensions

e random sets give O(n%) bounds for k-holes

Theorem (Balko S. Valtr '20 + ’'21). Let d > 2 and
k> d+1, and let K be a convex body in R?.

If S is a set of n points chosen uniformly and
independently at random from K,

then the expected number of k-holes in S is O(n?).

In particular:
J sets of n points in RY with O(n?) many k-holes
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Number of Holes in Higher Dimensions

o random sets give O(n%) bounds for k-holes

e d-dimensional Horton sets with d > 2 contain
Q(nmin{%2°7' 1) many k-holes [Balko S. Valtr '20]

e no explicit construction known with O(n?) k-holes
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