Erdős-Szekeres-type Problems on Planar Point Sets

Manfred Scheucher

General Position

a finite point set S in the plane is
in general position if \nexists collinear points in S

General Position

a finite point set S in the plane is in general position if \nexists collinear points in S

throughout this presentation, every set is in general position

k-Gons

k-Gons

a k-gon (in S) is the vertex set of a convex k-gon

Theorem (Erdős \& Szekeres 1935).
$\forall k \in \mathbb{N}, \exists$ a smallest integer $g(k)$ such that every set of $g(k)$ points contains a k-gon.

k-Gons

Theorem (Erdős \& Szekeres '35)
$2^{k-2}+1 \leq g(k) \leq\binom{ 2 k-4}{k-2}+1$
equality conjectured by Szekeres, Erdős offered $500 \$$ for a proof

k-Gons

Theorem (Erdős \& Szekeres '35)
$2^{k-2}+1 \leq g(k) \leq\binom{ 2 k-4}{k-2}+1$
\vdots several improvements of order $4^{k-o(k)}$
Theorem. $g(k) \leq 2^{k+o(k)}$. [Suk '16]

k-Gons

Theorem (Erdős \& Szekeres '35)
$2^{k-2}+1 \leq g(k) \leq\binom{ 2 k-4}{k-2}+1$
\vdots several improvements of order $4^{k-o(k)}$
Theorem. $g(k) \leq 2^{k+o(k)}$. [Suk '16]

- $g(k) \leq 2^{k+O\left(k^{2 / 3} \log k\right)}[$ Suk '16]

k-Gons

Theorem (Erdős \& Szekeres '35)
$2^{k-2}+1 \leq g(k) \leq\binom{ 2 k-4}{k-2}+1$
\vdots several improvements of order $4^{k-o(k)}$
Theorem. $g(k) \leq 2^{k+o(k)}$. [Suk '16]

- $g(k) \leq 2^{k+O\left(k^{2 / 3} \log k\right)}$ [Suk '16]
- $g(k) \leq 2^{k+O(\sqrt{k \log k})}$, also for pseudo-configurations of points [Holmsen, Mojarrad, Pach and Tardos '17]

k-Gons

Theorem (Erdős \& Szekeres '35)
$2^{k-2}+1 \leq g(k) \leq\binom{ 2 k-4}{k-2}+1$
\vdots several improvements of order $4^{k-o(k)}$
Theorem. $g(k) \leq 2^{k+o(k)}$. [Suk '16]

Known: $\underline{g(4)=5, g(5)=9, g(6)=17}$

k-Gons

Theorem (Erdős \& Szekeres '35)
$2^{k-2}+1 \leq g(k) \leq\binom{ 2 k-4}{k-2}+1$
\vdots several improvements of order $4^{k-o(k)}$
Theorem. $g(k) \leq 2^{k+o(k)}$. [Suk '16]

Known: $g(4)=5, g(5)=9, g(6)=17$

k-Gons

Theorem (Erdős \& Szekeres '35)
$2^{k-2}+1 \leq g(k) \leq\binom{ 2 k-4}{k-2}+1$
\vdots several improvements of order $4^{k-o(k)}$
Theorem. $g(k) \leq 2^{k+o(k)}$. [Suk '16]

Known: $g(4)=5, g(5)=9, g(6)=17$ \uparrow computer assisted proof, 1500 CPU hours [Szekeres-Peters '06]

k-Gons

Theorem (Erdős \& Szekeres '35)
$2^{k-2}+1 \leq g(k) \leq\binom{ 2 k-4}{k-2}+1$
\vdots several improvements of order $4^{k-o(k)}$
Theorem. $g(k) \leq 2^{k+o(k)}$. [Suk '16]
<1 hour using SAT solvers [S.' 18 , Marić '19]
Known: $g(4)=5, g(5)=9, g(6) \stackrel{ }{=} 17$ \uparrow computer assisted proof, 1500 CPU hours [Szekeres-Peters '06]

Proof of the Erdős-Szekeres Theorem

Theorem (Erdős \& Szekeres '35)
$2^{k-2}+1 \leq g(k) \leq\binom{ 2 k-4}{k-2}+1$

Proof of the Erdős-Szekeres Theorem

Theorem (Erdős \& Szekeres '35)
$2^{k-2}+1 \leq g(k) \leq\binom{ 2 k-4}{k-2}+1$
we show that every set of $\phi(a, b)+1=\binom{a+b-4}{a-2}+1$ points contains a-cup or b-cap.

Proof of the Erdős-Szekeres Theorem

Theorem (Erdős \& Szekeres '35)
$2^{k-2}+1 \leq g(k) \leq\binom{ 2 k-4}{k-2}+1$
we show that every set of $\phi(a, b)+1=\binom{a+b-4}{a-2}+1$ points contains a-cup or b-cap.

using $a=b=k$, we then get $g(k) \leq\binom{ 2 k-4}{k-2}+1$.

Cups and Caps: Upper Bound

Let S be a set of $\phi(a, b)+1=\binom{a+b-4}{a-2}+1$ points and suppose it does not contain a a-cup.
We show that there is a b-cap.

Cups and Caps: Upper Bound

Let S be a set of $\phi(a, b)+1=\binom{a+b-4}{a-2}+1$ points and suppose it does not contain a a-cup.
We show that there is a b-cap.
Base Case: If $a=2$ or $b=2$, we have $\phi(a, b)+1=\binom{\geq 0}{0}+1=2$ points $\Rightarrow 2$-cup / 2-cap

Cups and Caps: Upper Bound

Let S be a set of $\phi(a, b)+1=\binom{a+b-4}{a-2}+1$ points and suppose it does not contain a a-cup.
We show that there is a b-cap.
Step: Let E be the set of rightmost (end)points of all ($a-1$)-cups

Cups and Caps: Upper Bound

Let S be a set of $\phi(a, b)+1=\binom{a+b-4}{a-2}+1$ points and suppose it does not contain a a-cup.
We show that there is a b-cap.
Step: Let E be the set of rightmost (end)points of all ($a-1$)-cups

Cups and Caps: Upper Bound

Let S be a set of $\phi(a, b)+1=\binom{a+b-4}{a-2}+1$ points and suppose it does not contain a a-cup.
We show that there is a b-cap.
Step: Let E be the set of rightmost (end)points of all ($a-1$)-cups
$S \backslash E$ has no ($a-1$)-cup

Cups and Caps: Upper Bound

Let S be a set of $\phi(a, b)+1=\binom{a+b-4}{a-2}+1$ points and suppose it does not contain a a-cup.
We show that there is a b-cap.
Step: Let E be the set of rightmost (end)points of all ($a-1$)-cups
$S \backslash E$ has no ($a-1$)-cup
if $S \backslash E$ contains b-cap, we are done; hence assume $\nexists b$-cap

Cups and Caps: Upper Bound

Let S be a set of $\phi(a, b)+1=\binom{a+b-4}{a-2}+1$ points and suppose it does not contain a a-cup.
We show that there is a b-cap.
Step: Let E be the set of rightmost (end)points of all ($a-1$)-cups
$S \backslash E$ has no ($a-1$)-cup
if $S \backslash E$ contains b-cap, we are done; hence assume $\nexists b$-cap by induction, $|S \backslash E| \leq \phi(a-1, b)$,

Cups and Caps: Upper Bound

Let S be a set of $\phi(a, b)+1=\binom{a+b-4}{a-2}+1$ points and suppose it does not contain a a-cup.
We show that there is a b-cap.
Step: Let E be the set of rightmost (end)points of all ($a-1$)-cups
$S \backslash E$ has no ($a-1$)-cup
if $S \backslash E$ contains b-cap, we are done; hence assume $\nexists b$-cap by induction, $|S \backslash E| \leq \phi(a-1, b)$,
$|E|=|S|-|S \backslash E| \geq \phi(a, b-1)+1$ because $\phi(a, b)=\phi(a-1, b)+\phi(a, b-1)$

Cups and Caps: Upper Bound

Let S be a set of $\phi(a, b)+1=\binom{a+b-4}{a-2}+1$ points and suppose it does not contain a a-cup.
We show that there is a b-cap.
Step: Let E be the set of rightmost (end)points of all ($a-1$)-cups
$S \backslash E$ has no ($a-1$)-cup
if $S \backslash E$ contains b-cap, we are done; hence assume $\nexists b$-cap by induction, $|S \backslash E| \leq \phi(a-1, b)$,
$|E|=|S|-|S \backslash E| \geq \phi(a, b-1)+1$
by induction, E has ($b-1$)-cap (because no a-cup)

Cups and Caps: Upper Bound

Let S be a set of $\phi(a, b)+1=\binom{a+b-4}{a-2}+1$ points and suppose it does not contain a a-cup.
We show that there is a b-cap.
Step: Let E be the set of rightmost (end)points of all ($a-1$)-cups

by induction, E has ($b-1$)-cap (because no a-cup)

Cups and Caps: Upper Bound

Let S be a set of $\phi(a, b)+1=\binom{a+b-4}{a-2}+1$ points and suppose it does not contain a a-cup.
We show that there is a b-cap.
Step: Let E be the set of rightmost (end)points of all ($a-1$)-cups

by induction, E has ($b-1$)-cap (because no a-cup)

Cups and Caps: Upper Bound

Let S be a set of $\phi(a, b)+1=\binom{a+b-4}{a-2}+1$ points and suppose it does not contain a a-cup.
We show that there is a b-cap.
Step: Let E be the set of rightmost (end)points of all ($a-1$)-cups

$$
\Rightarrow \exists b \text {-cap! Q.E.D. }
$$

by induction, E has ($b-1$)-cap (because no a-cup)

Cups and Caps: Lower Bound

Cups and Caps: Lower Bound

this bound is actually tight because there exist sets $S_{a, b}$ with $\phi(a, b)=\binom{a+b-4}{a-2}$ points without a-cups and b-caps.

Cups and Caps: Lower Bound

- Base: $S_{2, b}=S_{a, 2}=$ single point

Cups and Caps: Lower Bound

- Base: $S_{2, b}=S_{a, 2}=$ single point
- construct $S_{a, b}$ recursively:
combine $L=S_{a-1, b}$ and $U=S_{a, b-1}$

Cups and Caps: Lower Bound

- Base: $S_{2, b}=S_{a, 2}=$ single point
- construct $S_{a, b}$ recursively:
combine $L=S_{a-1, b}$ and $U=S_{a, b-1}$
- this will give

$$
\left|S_{a, b}\right|=\phi(a, b)=\phi(a, b-1)+\phi(a-1, b)=\binom{a+b-4}{a-2, b-2}
$$

Cups and Caps: Lower Bound

- Base: $S_{2, b}=S_{a, 2}=$ single point
- construct $S_{a, b}$ recursively:
combine $L=S_{a-1, b}$ and $U=S_{a, b-1}$
- U right of L
- U "high above" L

Cups and Caps: Lower Bound

- Base: $S_{2, b}=S_{a, 2}=$ single point
- construct $S_{a, b}$ recursively:
combine $L=S_{a-1, b}$ and $U=S_{a, b-1}$
- U right of L
- U "high above" L
- no a-cup or b-cap

Cups and Caps: Lower Bound

- Base: $S_{2, b}=S_{a, 2}=$ single point
- construct $S_{a, b}$ recursively:
combine $L=S_{a-1, b}$ and $U=S_{a, b-1}$
- U right of L
- U "high above" L
- no a-cup or b-cap
- Q.E.D.

k-Gons: $2^{k-2}+1$ Lower Bound

k-Gons: $2^{k-2}+1$ Lower Bound

- use $S_{2, k}, S_{3, k-1}, \ldots, S_{k, 2}$ as gadgets to construct a large set without k-gons

k-Gons: $2^{k-2}+1$ Lower Bound

- place $S_{a, b}$'s very flat in very small bubbles

S

k-Gons: $2^{k-2}+1$ Lower Bound

- place $S_{a, b}$'s very flat in very small bubbles (high above/deep below)

no points inbetween
$S_{k-3,5}$

k-Gons: $2^{k-2}+1$ Lower Bound

- place $S_{a, b}$'s very flat in very small bubbles
no points inbetween

k-Gons: $2^{k-2}+1$ Lower Bound

- place $S_{a, b}$'s very flat in very small bubbles
- bubbles can have arbitrary relative positions

k-Gons: $2^{k-2}+1$ Lower Bound

k-Gons: $2^{k-2}+1$ Lower Bound

- each ℓ-gon has:
$(\leq t)$-cap in top-layer t,

$$
S_{k, 2}
$$

$S_{2, k}$

k-Gons: $2^{k-2}+1$ Lower Bound

- each ℓ-gon has:
$(\leq t)$-cap in top-layer t,

$$
S_{k, 2}
$$

$(\leq k-b)$-cup in bottom-layer b,
≤ 1 point per interm. layer
$\Rightarrow \ell<k$

- number of points:
$\phi(k, 2)+\phi(k-1,3)+\ldots=$
$\sum_{j=0}^{k-2}\binom{k-2}{j}=2^{k-2}$

$S_{2, k}$

k-Gons: $2^{k-2}+1$ Lower Bound

- each ℓ-gon has:
$(\leq t)$-cap in top-layer t,

$$
S_{k, 2}
$$

$(\leq k-b)$-cup in bottom-layer b,
≤ 1 point per interm. layer

$$
\Rightarrow \ell<k
$$

- number of points:
$\phi(k, 2)+\phi(k-1,3)+\ldots=$
$\sum_{j=0}^{k-2}\binom{k-2}{j}=2^{k-2}$
- therefore $g(k) \geq 2^{k-2}+1$
$S_{2, k}$

Sketch of Suk's $2^{k+o(k)}$ Upper Bound

Sketch of Suk's $2^{k+o(k)}$ Upper Bound

Lemma (Fractional EST, Pór \& Valtr '02) Let S be a point set with $|S| \geq 2^{32 k}$ points. Then there exists k-cup/cap $X \subset S$ satisfying $\left|T_{i} \cap S\right| \geq \frac{|S|}{2^{32 k}}$ for every i.

Sketch of Suk's $2^{k+o(k)}$ Upper Bound

Lemma (Fractional EST, Pór \& Valtr '02) Let S be a point set with $|S| \geq 2^{32 k}$ points. Then there exists k-cup/cap $X \subset S$ satisfying $\left|T_{i} \cap S\right| \geq \frac{|S|}{2^{32 k}}$ for every i.
linear in S !

Sketch of Suk's $2^{k+o(k)}$ Upper Bound

- Fractional EST
- auxiliary poset on each T_{i}

Sketch of Suk's $2^{k+o(k)}$ Upper Bound

- Fractional EST
- auxiliary poset on each T_{i}

Sketch of Suk's $2^{k+o(k)}$ Upper Bound

- Fractional EST
- auxiliary poset on each T_{i}

Sketch of Suk's $2^{k+o(k)}$ Upper Bound

- Fractional EST
- auxiliary poset on each T_{i}
- Dilworth's theorem: large antichain or chain in each T_{i}

Sketch of Suk's $2^{k+o(k)}$ Upper Bound

- Fractional EST
- auxiliary poset on each T_{i}
- Dilworth's theorem: large antichain or chain in each T_{i}
- pigeonhole principle:

Sketch of Suk's $2^{k+o(k)}$ Upper Bound

- Fractional EST
- auxiliary poset on each T_{i}
- Dilworth's theorem: large antichain or chain in each T_{i}
- pigeonhole principle:
a) many T_{i} 's with antichain

Sketch of Suk's $2^{k+o(k)}$ Upper Bound

- Fractional EST
- auxiliary poset on each T_{i}
- Dilworth's theorem: large antichain or chain in each T_{i}
- pigeonhole principle:
a) many T_{i} 's with antichain

Sketch of Suk's $2^{k+o(k)}$ Upper Bound

- Fractional EST
- auxiliary poset on each T_{i}
- Dilworth's theorem: large antichain or chain in each T_{i}
- pigeonhole principle: a) many T_{i} 's with antichain or b) many T_{i} 's with chain

Sketch of Suk's $2^{k+o(k)}$ Upper Bound

- Fractional EST
- auxiliary poset on each T_{i}
- Dilworth's theorem: large antichain or chain in each T_{i}
- pigeonhole principle:
a) many T_{i} 's with antichain or b) many T_{i} 's with chain

Sketch of Suk's $2^{k+o(k)}$ Upper Bound

- Fractional EST
- auxiliary poset on each T_{i}
- Dilworth's theorem: large antichain or chain in each T_{i}
- pigeonhole principle:
a) many T_{i} 's with antichain or b) many T_{i} 's with chain

Quantity of k-Gons

maximum \# of k-gons among all sets of n points?

Quantity of k-Gons

maximum \# of k-gons among all sets of n points?

n points in convex position

$$
\begin{aligned}
& \text { any } k \text {-subset is } k \text {-gon } \\
& \qquad \Rightarrow \max =\binom{n}{k}
\end{aligned}
$$

Quantity of k-Gons

$g_{k}(n):=$ minimum \# of k-gons among all sets of n points

Quantity of k-Gons

$g_{k}(n):=$ minimum \# of k-gons among all sets of n points

- $g_{k}(n)=\Theta\left(n^{k}\right)$ each $g(k)$-subset gives k-gon
because $g_{k}(n) \geq \frac{\left.\binom{n}{\left.g^{n-k}\right)} \geq c \cdot \frac{n^{g(k)}}{n^{g(k)-k}}=c \cdot n^{k} .{ }^{(k)-k}\right)}{}$
each k-gon counted by at most that many $g(k)$-subsets

Quantity of k-Gons

$g_{k}(n):=$ minimum \# of k-gons among all sets of n points

- $g_{k}(n)=\Theta\left(n^{k}\right)$
- $k=4$: rectilinear crossing number of K_{n} : $g_{4}(n)=\overline{c r}\left(K_{n}\right) \sim c_{4} \cdot\binom{n}{4}$ with $0.3799<c_{4}<0.3805$
[Ábrego et al. '08, Aichholzer et al. '20]

Quantity of k-Gons

$g_{k}(n):=$ minimum \# of k-gons among all sets of n points

- $g_{k}(n)=\Theta\left(n^{k}\right)$
- $k=4$: rectilinear crossing number of K_{n} : $g_{4}(n)=\overline{c r}\left(K_{n}\right) \sim c_{4} \cdot\binom{n}{4}$ with $0.3799<c_{4}<0.3805$ [Ábrego et al. '08, Aichholzer et al. '20]
- various notions of crossing numbers have been studied intensively (not necessarily straight-line drawings, not necessarily complete graphs)

An Invariant: crossings - k-edges relation

An Invariant: crossings - k-edges relation

- $(a, b) \in\binom{S}{2}$ is k-edge if $\overline{a b}$ partitions $S \backslash\{a, b\}$ into k and $n-k-2$ points

An Invariant: crossings - k-edges relation

- $(a, b) \in\binom{S}{2}$ is k-edge if $\overline{a b}$ partitions $S \backslash\{a, b\}$ into k and $n-k-2$ points

An Invariant: crossings - k-edges relation

- $(a, b) \in\binom{S}{2}$ is k-edge if $\overline{a b}$ partitions $S \backslash\{a, b\}$ into k and $n-k-2$ points
- $e_{k}(S)=$ number of k-edges in S

An Invariant: crossings - k-edges relation

- $(a, b) \in\binom{S}{2}$ is k-edge if $\overline{a b}$ partitions $S \backslash\{a, b\}$ into k and $n-k-2$ points
- $e_{k}(S)=$ number of k-edges in S

An Invariant: crossings - k-edges relation

- $(a, b) \in\binom{S}{2}$ is k-edge if $\overline{a b}$ partitions $S \backslash\{a, b\}$ into k and $n-k-2$ points
- $e_{k}(S)=$ number of k-edges in S

$$
\begin{aligned}
& e_{0}=6 \\
& e_{1}=6
\end{aligned}
$$

An Invariant: crossings - k-edges relation

- $(a, b) \in\binom{S}{2}$ is k-edge if $\overline{a b}$ partitions $S \backslash\{a, b\}$ into k and $n-k-2$ points
- $e_{k}(S)=$ number of k-edges in S

An Invariant: crossings - k-edges relation

Theorem (Ábrego, Fernández-Merchant '04 and Lovász, Vesztergombi, Wagner, Welzl '05):

$$
g_{4}(S)+\sum_{k=0}^{\lfloor n / 2\rfloor-1} k(n-2-k) e_{k}(S)=3\binom{n}{4}
$$

$$
\begin{aligned}
& e_{0}=6 \\
& -\quad e_{1}=6 \\
& e_{2}=9
\end{aligned}
$$

An Invariant: crossings - k-edges relation

Theorem (Ábrego, Fernández-Merchant '04 and Lovász, Vesztergombi, Wagner, Welzl '05):

$$
g_{4}(S)+\sum_{k=0}^{\lfloor n / 2\rfloor-1} k(n-2-k) e_{k}(S)=3\binom{n}{4}
$$

An Invariant: crossings - k-edges relation

Theorem (Ábrego, Fernández-Merchant '04 and Lovász, Vesztergombi, Wagner, Welzl '05):

$$
g_{4}(S)+\sum_{k=0}^{\lfloor n / 2\rfloor-1} k(n-2-k) e_{k}(S)=3\binom{n}{4}
$$

An Invariant: crossings - k-edges relation

Theorem (Ábrego, Fernández-Merchant '04 and Lovász, Vesztergombi, Wagner, Welzl '05):

$$
g_{4}(S)+\sum_{k=0}^{\lfloor n / 2\rfloor-1} k(n-2-k) e_{k}(S)=3\binom{n}{4}
$$

Corollary: Given a set S of n points, the value $g_{4}(S)$ (which is of order $\Theta\left(n^{4}\right)$) can be computed in $O\left(n^{2}\right)$ time

An Invariant: crossings - k-edges relation

Theorem (Ábrego, Fernández-Merchant '04 and Lovász, Vesztergombi, Wagner, Welzl '05):

$$
g_{4}(S)+\sum_{k=0}^{\lfloor n / 2\rfloor-1} k(n-2-k) e_{k}(S)=3\binom{n}{4}
$$

Corollary: Given a set S of n points, the value $g_{4}(S)$ (which is of order $\Theta\left(n^{4}\right)$) can be computed in $O\left(n^{2}\right)$ time

Remark: $g_{k}(S)$ can be computed in $O\left(k \cdot n^{3}\right)$ time [Mitchell Rote Sundaram Woeginger '95]

An Invariant: crossings - k-edges relation

Theorem (Ábrego, Fernández-Merchant '04 and Lovász, Vesztergombi, Wagner, Welzl '05):

$$
g_{4}(S)+\sum_{k=0}^{\lfloor n / 2\rfloor-1} k(n-2-k) e_{k}(S)=3\binom{n}{4}
$$

Proof Idea: $\sum_{e} k_{e} \cdot\left(n-2-k_{e}\right)=$

An Invariant: crossings - k-edges relation

Theorem (Ábrego, Fernández-Merchant '04 and Lovász, Vesztergombi, Wagner, Welzl '05):

$$
g_{4}(S)+\sum_{k=0}^{\lfloor n / 2\rfloor-1} k(n-2-k) e_{k}(S)=3\binom{n}{4}
$$

Proof Idea: $\sum_{e} k_{e} \cdot\left(n-2-k_{e}\right)=$

An Invariant: crossings - k-edges relation

Theorem (Ábrego, Fernández-Merchant '04 and Lovász, Vesztergombi, Wagner, Welzl '05):

$$
g_{4}(S)+\sum_{k=0}^{\lfloor n / 2\rfloor-1} k(n-2-k) e_{k}(S)=3\binom{n}{4}
$$

Proof Idea: $\sum_{e} k_{e} \cdot\left(n-2-k_{e}\right)=$

An Invariant: crossings - k-edges relation

Theorem (Ábrego, Fernández-Merchant '04 and Lovász, Vesztergombi, Wagner, Welzl '05):

$$
g_{4}(S)+\sum_{k=0}^{\lfloor n / 2\rfloor-1} k(n-2-k) e_{k}(S)=3\binom{n}{4}
$$

Proof Idea: $\sum_{e} k_{e} \cdot\left(n-2-k_{e}\right)=2 \boxtimes+3 \triangle$

An Invariant: crossings - k-edges relation

Theorem (Ábrego, Fernández-Merchant '04 and Lovász, Vesztergombi, Wagner, Welzl '05):

$$
g_{4}(S)+\sum_{k=0}^{\lfloor n / 2\rfloor-1} k(n-2-k) e_{k}(S)=3\binom{n}{4}
$$

Proof Idea: $\sum_{e} k_{e} \cdot\left(n-2-k_{e}\right)=2 \boxtimes+3 \triangle=3\binom{n}{4}-\boxtimes$

An Invariant: crossings - k-edges relation

Theorem (Ábrego, Fernández-Merchant '04 and Lovász, Vesztergombi, Wagner, Welzl '05):

$$
g_{4}(S)+\sum_{k=0}^{\lfloor n / 2\rfloor-1} k(n-2-k) e_{k}(S)=3\binom{n}{4}
$$

Proof Idea: $\sum_{e} k_{e} \cdot\left(n-2-k_{e}\right)=2 \boxtimes+3 \triangle=3\binom{n}{4}-\boxtimes$
QED

An Invariant: crossings - k-edges relation

Theorem (Ábrego, Fernández-Merchant '04 and Lovász, Vesztergombi, Wagner, Welzl '05):

$$
g_{4}(S)+\sum_{k=0}^{\lfloor n / 2\rfloor-1} k(n-2-k) e_{k}(S)=3\binom{n}{4}
$$

An Invariant: crossings - k-edges relation

Theorem (Ábrego, Fernández-Merchant '04 and Lovász, Vesztergombi, Wagner, Welzl '05):

$$
g_{4}(S)+\sum_{k=0}^{\lfloor n / 2\rfloor-1} k(n-2-k) e_{k}(S)=3\binom{n}{4}
$$

Remark: this crossings - k-edges relation generalizes to simple topological drawings of K_{n}
[Ábrego, Fernández-Merchant, Ramos, Salazar '11]

An Invariant: crossings - k-edges relation

Theorem (Ábrego, Fernández-Merchant '04 and Lovász, Vesztergombi, Wagner, Welzl '05):

$$
g_{4}(S)+\sum_{k=0}^{\lfloor n / 2\rfloor-1} k(n-2-k) e_{k}(S)=3\binom{n}{4}
$$

Remark: this crossings - k-edges relation generalizes to simple topological drawings of K_{n}
[Ábrego, Fernández-Merchant, Ramos, Salazar '11]

k-Holes

a k-hole (in S) is the vertex set of a convex k-gon containing no other points of S

k-Holes

a k-hole (in S) is the vertex set of a convex k-gon containing no other points of S

Erdős, 1970's: For k fixed, does every sufficiently large point set contain k-holes?

k-Holes

a k-hole (in S) is the vertex set of a convex k-gon containing no other points of S

Erdős, 1970's: For k fixed, does every sufficiently large point set contain k-holes?

- 3 points $\Rightarrow \exists$ 3-hole
- 5 points $\Rightarrow \exists$ 4-hole

k-Holes

a k-hole (in S) is the vertex set of a convex k-gon containing no other points of S

Erdős, 1970's: For k fixed, does every sufficiently large point set contain k-holes?

- 3 points $\Rightarrow \exists$ 3-hole
- 5 points $\Rightarrow \exists$ 4-hole

k-Holes

a k-hole (in S) is the vertex set of a convex k-gon containing no other points of S

Erdős, 1970's: For k fixed, does every sufficiently large point set contain k-holes?

- 3 points $\Rightarrow \exists$ 3-hole
- 5 points $\Rightarrow \exists$ 4-hole
- 10 points $\Rightarrow \exists$ 5-hole [Harborth '78]

k-Holes

a k-hole (in S) is the vertex set of a convex k-gon containing no other points of S

Erdős, 1970's: For k fixed, does every sufficiently large point set contain k-holes?

- 3 points $\Rightarrow \exists 3$-hole
- 5 points $\Rightarrow \exists$ 4-hole
- 10 points $\Rightarrow \exists$ 5-hole [Harborth '78]
- \exists arbitrarily large point sets with no 7 -hole [Horton '83]

k-Holes

a k-hole (in S) is the vertex set of a convex k-gon containing no other points of S

Erdős, 1970's: For k fixed, does every sufficiently large point set contain k-holes?

- 3 points $\Rightarrow \exists$ 3-hole
- 5 points $\Rightarrow \exists$ 4-hole
- 10 points $\Rightarrow \exists$ 5-hole [Harborth '78]
- \exists arbitrarily large point sets with no 7 -hole [Horton '83]
- Sufficiently large point sets $\Rightarrow \exists 6$-hole [Gerken '08 and Nicolás '07, independently]

k-Holes

- $h(4)=5, h(5)=10,30 \leq h(6) \leq 463, h(7)=\infty$

k-Holes

exact value remains unknown

- $h(4)=5, h(5)=10,30 \leq h(6) \leq 463, h(7)=\infty$

k-Holes

4 points, no 4-hole $(h(4)=5)$

k-Holes

9 points, no 5-hole $(h(5)=10)$

k-Holes

k-Holes

- found by computer (simulated annealing)
- contains 7-gon

29 points, no 6 -hole [Overmars '02] ($30 \leq h(6) \leq 463$)

k-Holes

- found by computer (simulated annealing)
- contains 7-gon

Two Remarks:

- \exists 6-hole-free sets with 8-gons
- larger gons give 6-holes

k-Holes

Horton's construction for $n=2^{1}$ points, no 7 -holes

k-Holes

Horton's construction for $n=2^{2}$ points, no 7 -holes

Horton's construction for $n=2^{3}$ points, no 7 -holes

Horton's construction for $n=2^{3}$ points, no 7 -holes

k-Holes

Horton's construction for $n=2^{4}$ points, no 7 -holes

Horton's construction for $n=2^{4}$ points, no 7 -holes

Horton's construction: $n=2^{k}$ points, no 7 -holes $(h(7)=\infty)$

Horton Sets

$S_{1}=$ single point, and S_{n} recursively: two copies L, U of $S_{\frac{n}{2}}$

- from left to right: points alternatingly in L and U
- U high above L

Horton Sets

$S_{1}=$ single point, and S_{n} recursively: two copies L, U of $S_{\frac{n}{2}}$

- from left to right: points alternatingly in L and U
- U high above L
- no 4-cups open from above

Horton Sets

$S_{1}=$ single point, and S_{n} recursively: two copies L, U of $S_{\frac{n}{2}}$

- from left to right: points alternatingly in L and U
- U high above L
- no 4-cups open from above
- no 4-cups open from above in U / L (recursive)

Horton Sets

$S_{1}=$ single point, and S_{n} recursively: two copies L, U of $S_{\frac{n}{2}}$

- from left to right: points alternatingly in L and U
- U high above L
- no 4-cups open from above
- no 4-cups open from above in U / L (recursive)

Horton Sets

$S_{1}=$ single point, and S_{n} recursively: two copies L, U of $S_{\frac{n}{2}}$

- from left to right: points alternatingly in L and U
- U high above L
- no 4-cups open from above
- no 4-cups open from above in U / L (recursive)

Existence of Holes

Existence of Holes

- we show $h(5) \leq g(6)$:
consider 6-gon G with minimum number of interior points I

Existence of Holes

- we show $h(5) \leq g(6)$:
consider 6-gon G with minimum number of interior points I
if I is empty, G is a 6 -hole

Existence of Holes

- we show $h(5) \leq g(6)$:
consider 6-gon G with minimum number of interior points I
if I is empty, G is a 6 -hole
if I contains 1 point, we find a 5 -hole

Existence of Holes

- we show $h(5) \leq g(6)$:
consider 6-gon G with minimum number of interior points I
if I is empty, G is a 6 -hole
if I contains 1 point, we find a 5 -hole

Existence of Holes

- we show $h(5) \leq g(6)$:
consider 6-gon G with minimum number of interior points I
if I is empty, G is a 6 -hole
if I contains 1 point, we find a 5 -hole if I contains ≥ 2 points, we choose $a b$ as bounding edge of conv(I),

Existence of Holes

- we show $h(5) \leq g(6)$:
consider 6-gon G with minimum number of interior points I
if I is empty, G is a 6 -hole
if I contains 1 point, we find a 5 -hole if I contains ≥ 2 points, we choose $a b$ as bounding edge of conv (I),
and find a 5-hole or smaller 6-gon G^{\prime} (contradiction to minimality)

Existence of Holes

- $h(5)=10$ [Harborth '78], similar but more technical

Existence of Holes

- $h(5)=10$ [Harborth '78], similar but more technical
- $h(6) \leq g(9)$ [Gerken '08], similar but $30+$ pages

Existence of Holes

- $h(5)=10$ [Harborth '78], similar but more technical
- $h(6) \leq g(9)$ [Gerken '08], similar but $30+$ pages
- $h(6) \leq \max \{400, g(8)\} \leq 463$ [Koshelev '09] 50+ pages

Existence of Holes

- $h(5)=10$ [Harborth '78], similar but more technical
- $h(6) \leq g(9)$ [Gerken '08], similar but $30+$ pages
- $h(6) \leq \max \{400, g(8)\} \leq 463$ [Koshelev '09] 50+ pages using the estimate $g(k) \leq\binom{ 2 k-5}{k-2}+1$ [Tóth \& Valtr '05]

Existence of Holes

- $h(5)=10$ [Harborth '78], similar but more technical
- $h(6) \leq g(9)$ [Gerken '08], similar but $30+$ pages
- $h(6) \leq \max \{400, g(8)\} \leq 463$ [Koshelev '09] 50+ pages
- $h(6)<g(216)$ [Valtr '09] only 7 pages

Existence of Holes

- $h(5)=10$ [Harborth '78], similar but more technical
- $h(6) \leq g(9)$ [Gerken '08], similar but $30+$ pages
- $h(6) \leq \max \{400, g(8)\} \leq 463$ [Koshelev '09] 50+ pages
- $h(6)<g(216)$ [Valtr '09] only 7 pages

Q1: \exists shorter (computed assisted?) proof for existence of 6-holes?
Q2: is $h(6)$ bounded in terms of $\max \{$ const, $g(7)\}$?

k-holes: First and Second Moment Invariant

Thm (affine 1st moment, Edelman and Jamison '85): $\underbrace{h_{0}(P)}_{1}-\underbrace{h_{1}(P)}_{n}+\underbrace{h_{2}(P)}_{\substack{n \\ 2 \\ 2}}-h_{3}(P) \pm \ldots=\sum_{k \geq 0}(-1)^{k} h_{k}(P)=0$

k-holes: First and Second Moment Invariant

Thm (affine 1st moment, Edelman and Jamison '85):
$\underbrace{h_{0}(P)}_{1}-\underbrace{h_{1}(P)}_{n}+\underbrace{h_{2}(P)}_{\binom{n}{2}}-h_{3}(P) \pm \ldots=\sum_{k \geq 0}(-1)^{k} h_{k}(P)=0$ $\binom{n}{2}$

Proof Idea: holds for n points in convex position,

any k-subset is k-hole

$$
\sum_{k \geq 0}(-1)^{k}\binom{n}{k}=(1+(-1))^{n}=0
$$

Binomial theorem

k-holes: First and Second Moment Invariant

Thm (affine 1st moment, Edelman and Jamison '85):
$\underbrace{h_{0}(P)}_{1}-\underbrace{h_{1}(P)}_{n}+\underbrace{h_{2}(P)}_{\substack{n \\ 2 \\ 2}}-h_{3}(P) \pm \ldots=\sum_{k \geq 0}(-1)^{k} h_{k}(P)=0$
Proof Idea: holds for n points in convex position, and invariant to mutations!
(i.e., when a point moves over a line)

k-holes: First and Second Moment Invariant

Thm (affine 1st moment, Edelman and Jamison '85):
$\underbrace{h_{0}(P)}_{1}-\underbrace{h_{1}(P)}_{n}+\underbrace{h_{2}(P)}_{\binom{n}{2}}-h_{3}(P) \pm \ldots=\sum_{k \geq 0}(-1)^{k} h_{k}(P)=0$
$\binom{n}{2}$
Proof Idea: holds for n points in convex position,
 and invariant to mutations!
(i.e., when a point moves over a line)
for each k-hole which we get/destroy with $a b$ we also get/destroy a $(k+1)$-hole with $a b c$

k-holes: First and Second Moment Invariant

Thm (affine 1st moment, Edelman and Jamison '85):
$\underbrace{h_{0}(P)}_{1}-\underbrace{h_{1}(P)}_{n}+\underbrace{h_{2}(P)}_{\binom{n}{2}}-h_{3}(P) \pm \ldots=\sum_{k \geq 0}(-1)^{k} h_{k}(P)=0$

Thm (affine 2nd moment, Ahrens Gordon \& McMohan '99):
$\sum k \cdot(-1)^{k} h_{k}(P)=\#$ of inner pts. of P

k-holes: First and Second Moment Invariant

Thm (affine 1st moment, Edelman and Jamison '85):
$\underbrace{h_{0}(P)}_{1}-\underbrace{h_{1}(P)}_{n}+\underbrace{h_{2}(P)}_{\substack{n \\ 2 \\ \hline}}-h_{3}(P) \pm \ldots=\sum_{k \geq 0}(-1)^{k} h_{k}(P)=0$

Thm (affine 2nd moment, Ahrens Gordon \& McMohan '99):
$\sum k \cdot(-1)^{k} h_{k}(P)=\#$ of inner pts. of P
Idea: $k \cdot h_{k}(P)=\sum_{e} h_{k}(P ; e)$

Quantity of k-Holes

$h_{k}(n):=$ minimum $\#$ of k-holes among all sets of n points

Quantity of k-Holes

$h_{k}(n):=$ minimum \# of k-holes among all sets of n points

- $h_{3}(n) \geq\left\lfloor\frac{1}{3}\binom{n}{2}\right\rfloor=\Omega\left(n^{2}\right)$
\forall edge e
\exists 3-hole with closest point

Quantity of k-Holes

$h_{k}(n):=$ minimum \# of k-holes among all sets of n points

- $h_{3}(n) \geq\left\lfloor\frac{1}{3}\binom{n}{2}\right\rfloor=\Omega\left(n^{2}\right)$
\forall edge e
\exists 3-hole with closest point

Quantity of k-Holes

$h_{k}(n):=$ minimum \# of k-holes among all sets of n points

- $h_{4}(n) \geq \Omega\left(n^{2}\right)$
\forall crossed edge e
\exists 4-hole with diagonal e

Quantity of k-Holes

$h_{k}(n):=$ minimum \# of k-holes among all sets of n points

- $h_{4}(n) \geq \Omega\left(n^{2}\right)$
\forall crossed edge e
\exists 4-hole with diagonal e
not empty

Quantity of k-Holes

$h_{k}(n):=$ minimum \# of k-holes among all sets of n points

- $h_{4}(n) \geq \Omega\left(n^{2}\right)$

\forall crossed edge e
\exists 4-hole with diagonal e

Quantity of k-Holes

$h_{k}(n):=$ minimum \# of k-holes among all sets of n points

- $h_{4}(n) \geq \Omega\left(n^{2}\right)$

\forall crossed edge e
\exists 4-hole with diagonal e

$O(n)$ uncrossed edges
(planar graph)

Quantity of k-Holes

$h_{k}(n):=$ minimum \# of k-holes among all sets of n points

- $h_{5}(n) \geq\left\lfloor\frac{1}{10} n\right\rfloor=\Omega(n)$

Quantity of k-Holes

$h_{k}(n):=$ minimum \# of k-holes among all sets of n points

- $h_{5}(n) \geq\left\lfloor\frac{1}{10} n\right\rfloor=\Omega(n)$

Quantity of k-Holes

$h_{k}(n):=$ minimum \# of k-holes among all sets of n points

- $h_{5}(n) \geq\left\lfloor\frac{1}{10} n\right\rfloor=\Omega(n)$

Quantity of k-Holes

$h_{k}(n):=$ minimum \# of k-holes among all sets of n points

- $h_{5}(n) \geq\left\lfloor\frac{1}{10} n\right\rfloor=\Omega(n) \quad$ - same idea: $h_{6}(n) \geq \Omega(n)$

Quantity of k-Holes

$h_{k}(n):=$ minimum \# of k-holes among all sets of n points
[Bárány and Füredi '87]

- h_{3}, h_{4} both in $\Theta\left(n^{2}\right)$

Quantity of k-Holes

$h_{k}(n):=$ minimum \# of k-holes among all sets of n points

[Bárány and Füredi '87]

- h_{3}, h_{4} both in $\Theta\left(n^{2}\right)$
- h_{5} in $\Omega\left(n \log ^{4 / 5} n\right)$ and $O\left(n^{2}\right)$
[Aichholzer, Balko, Hackl, Kynčl,
Parada, S., Valtr, and Vogtenhuber '17]
(computer assisted proof, 20 pages)

Quantity of k-Holes

$h_{k}(n):=$ minimum \# of k-holes among all sets of n points
[Bárány and Füredi '87]

- h_{3}, h_{4} both in $\Theta\left(n^{2}\right)$
- h_{5} in $\Omega\left(n \log ^{4 / 5} n\right)$ and $O\left(n^{2}\right)$
[Aichholzer, Balko, Hackl, Kynčl,
Parada, S., Valtr, and Vogtenhuber '17]
- $h_{6}(n)$ in $\Omega(n)$ and $O\left(n^{2}\right)$
[Gerken '08, Nicolás '07]

Quantity of k-Holes

$h_{k}(n):=$ minimum \# of k-holes among all sets of n points
[Bárány and Füredi '87]

- h_{3}, h_{4} both in $\Theta\left(n^{2}\right)$
- h_{5} in $\Omega\left(n \log ^{4 / 5} n\right)$ and $O\left(n^{2}\right)$
[Aichholzer, Balko, Hackl, Kynčl,
Parada, S., Valtr, and Vogtenhuber '17]
- $h_{6}(n)$ in $\Omega(n)$ and $O\left(n^{2}\right)$
[Gerken '08, Nicolás '07]
- $h_{k}(n)=0$ for $k \geq 7$ [Horton '83]

Quantity of k-Holes

$h_{k}(n):=$ minimum \# of k-holes among all sets of n points

[Bárány and Füredi '87]

- h_{3}, h_{4} both in $\Theta\left(n^{2}\right)$
- h_{5} in $\Omega\left(n \log ^{4 / 5} n\right)$ and $O\left(n^{2}\right)$
[Aichholzer, Balko, Hackl, Kynčl,
Parada, S., Valtr, and Vogtenhuber '17]
- $h_{6}(n)$ in $\Omega(n)$ and $O\left(n^{2}\right)$
[Gerken '08, Nicolás '07]

Conjecture: $h_{5}(n)$ and
$h_{6}(n)$ are both in $\Theta\left(n^{2}\right)$

- $h_{k}(n)=0$ for $k \geq 7 \quad$ [Horton '83]

Horton Sets II

Horton set S_{n} defined recursively: two copies L, U of $S_{\frac{n}{2}}$

- from left to right: points alternatingly in L and U
- U high above L
- no 4-cups open from above/below

Horton Sets II

Horton set S_{n} defined recursively: two copies L, U of $S_{\frac{n}{2}}$

- from left to right: points alternatingly in L and U
- U high above L
- no 4-cups open from above/below
- cups open from above:

$$
U_{3}(n)=U_{3}\left(\frac{n}{2}\right)+\frac{n}{2}-1 \leq n
$$

Horton Sets II

Horton set S_{n} defined recursively: two copies L, U of $S_{\frac{n}{2}}$

- from left to right: points alternatingly in L and U
- U high above L
- no 4-cups open from above/below
- cups open from above:

$$
\begin{aligned}
& U_{3}(n)=U_{3}\left(\frac{n}{2}\right)+\frac{n}{2}-1 \leq n \\
& U_{2}(n)=U_{2}\left(\frac{n}{2}\right)+n-1 \leq 2 n
\end{aligned}
$$

L

Horton Sets II

- each 6-hole is one of two types: entirely from U or L points from both, U and L

Horton Sets II

- each 6-hole is one of two types:
entirely from U or L
points from both, U and L
no 4 caps $\stackrel{\downarrow}{\Rightarrow}$ 3-cup plus 3-cap

Horton Sets II

- each 6-hole is one of two types:
entirely from U or L

$$
\Longrightarrow h_{6}\left(S_{n}\right)=2 h_{6}\left(S_{\frac{n}{2}}\right)+U_{3}\left(\frac{n}{2}\right)^{2}=O\left(n^{2}\right)
$$

Horton Sets II

- each 6-hole is one of two types:
entirely from U or L

$$
\Longrightarrow h_{6}\left(S_{n}\right)=2 h_{6}\left(S_{\frac{n}{2}}\right)+U_{3}\left(\frac{n}{2}\right)^{2}=O\left(n^{2}\right)
$$

- similar recurrences for 3-, 4-, and 5-holes

Horton Lattice

- Horton lattice: perturbation of $\sqrt{n} \times \sqrt{n}$ grid

gives currently best bounds for $h_{3}, h_{4}, h_{5}, h_{6}$ and no 7-holes [Bárány \& Valtr '04]

What about Higher Dimensions??

Higher Dimensions

a finite point set P in \mathbb{R}^{d} is in general position if no $d+1$ points lie in a common hyperplane
k-gon $=k$ points in convex position
k-hole $=k$-gon with no other points of P in its convex hull

Higher Dimensional k-Gons

dimension reduction (Károlyi '01):

$$
g^{(d)}(k) \leq g^{(d-1)}(k-1)+1 \leq \ldots \leq \underbrace{g^{(2)}(k-d+1)+d-2}_{\leq 2^{k+o(k)}(\text { Suk' } 17)}
$$

Higher Dimensional k-Gons

dimension reduction (Károlyi '01):

$$
g^{(d)}(k) \leq g^{(d-1)}(k-1)+1 \leq \ldots \leq \underbrace{g^{(2)}(k-d+1)+d-2}_{\leq 2^{k+o(k)}(\text { Suk'17 })}
$$

Károlyi and Valtr '03: $g^{(d)}(k)=\Omega(c \sqrt[d-1]{k})$

Higher Dimensional k-Gons

dimension reduction (Károlyi '01):

$$
g^{(d)}(k) \leq g^{(d-1)}(k-1)+1 \leq \ldots \leq \underbrace{g^{(2)}(k-d+1)+d-2}_{\leq 2^{k+o(k)}(\text { Suk'17 })}
$$

Károlyi and Valtr '03: $g^{(d)}(k)=\Omega(c \sqrt[d-1]{k})$
asymptotic behavior remains unknown for $d \geq 3$

Higher Dimensional k-Holes

central problem: determine the largest value $k=H(d)$ such that every sufficiently large set in d-space contains a k-hole

Higher Dimensional k-Holes

central problem: determine the largest value $k=H(d)$ such that every sufficiently large set in d-space contains a k-hole

- $H(2)=6$ because $h^{(2)}(6)<\infty$ and $h^{(2)}(7)=\infty$ [Gerken '07, Nicolás '07] [Horton '87]

Higher Dimensional k-Holes

central problem: determine the largest value $k=H(d)$ such that every sufficiently large set in d-space contains a k-hole

- $H(2)=6$ because $h^{(2)}(6)<\infty$ and $h^{(2)}(7)=\infty$
- $2 d+1 \leq H(d)<d^{d+o(d)}$ [Valtr '92]
- $(2 d+1)$-holes exist in sufficiently large sets
- $\exists d$-dimensional Horton sets without $d^{d+o(d)}$-holes

Higher Dimensional k-Holes

central problem: determine the largest value $k=H(d)$ such that every sufficiently large set in d-space contains a k-hole

- $H(2)=6$ because $h^{(2)}(6)<\infty$ and $h^{(2)}(7)=\infty$
- $2 d+1 \leq H(d)<d^{d+o(d)}$ [Valtr '92]
- $(2 d+1)$-holes exist in sufficiently large sets
- $\exists d$-dimensional Horton sets without $d^{d+o(d)}$-holes
- in particular, $7 \leq H(3) \leq 22$ remains open

Higher Dimensional k-Holes

central problem: determine the largest value $k=H(d)$ such that every sufficiently large set in d-space contains a k-hole

- $H(2)=6$ because $h^{(2)}(6)<\infty$ and $h^{(2)}(7)=\infty$
- $2 d+1 \leq H(d)<d^{d+o(d)}$ [Valtr '92]
- $H(d)<2^{7 d}$ [Bukh, Chao \& Holzman '20]

Higher Dimensional k-Holes

central problem: determine the largest value $k=H(d)$ such that every sufficiently large set in d-space contains a k-hole

- $H(2)=6$ because $h^{(2)}(6)<\infty$ and $h^{(2)}(7)=\infty$
- $2 d+1 \leq H(d)<d^{d+o(d)}$ [Valtr '92]
- $H(d)<2^{7 d}$ [Bukh, Chao \& Holzman '20]
- d-dimensional Horton lattice without $d^{O\left(d^{3}\right)}$-holes [Conlon \& Lim '21]

Higher Dimensional k-Holes

central problem: determine the largest value $k=H(d)$ such that every sufficiently large set in d-space contains a k-hole

- $H(2)=6$ because $h^{(2)}(6)<\infty$ and $h^{(2)}(7)=\infty$
- $2 d+1 \leq H(d)<d^{d+o(d)}$ [Valtr '92]
- $H(d)<2^{7 d}$ [Bukh, Chao \& Holzman '20]
- d-dimensional Horton lattice without $d^{O\left(d^{3}\right)}$-holes [Conlon \& Lim '21]
- do exponentially large holes exist?

Number of Holes in Higher Dimensions

- random sets give $O\left(n^{d}\right)$ bounds for k-holes

Theorem (Balko S. Valtr '20 + '21). Let $d \geq 2$ and $k \geq d+1$, and let K be a convex body in \mathbb{R}^{d}.
If S is a set of n points chosen uniformly and independently at random from K, then the expected number of k-holes in S is $\Theta\left(n^{d}\right)$.

In particular:
\exists sets of n points in \mathbb{R}^{d} with $O\left(n^{d}\right)$ many k-holes

Number of Holes in Higher Dimensions

- random sets give $O\left(n^{d}\right)$ bounds for k-holes
- d-dimensional Horton sets with $d>2$ contain $\Omega\left(n^{\min \left\{k, 2^{d-1}\right\}}\right)$ many k-holes [Balko S. Valtr '20]
- no explicit construction known with $O\left(n^{d}\right) k$-holes

