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Blocking a DT

P P Q

• Q blocks p1p2
:⇔ p1p2 is not an edge of the DT of P ∪Q
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Blocking a DT

P P PQ Q

• Q blocks p1p2
:⇔ p1p2 is not an edge of the DT of P ∪Q

• Q blocks P if all edges spanned by P are blocked

• Moreover, Q blocks P from the exterior

if all points of Q lie outside conv(P )
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Aichholzer, Fabila-Monroy, Hackl, van Kreveld, Pilz,

Ramos, and Vogtenhuber 2012:

in general 3n
2 blocking points sufficient,

conv. pos. ⇒ 5n
4 blocking points sufficient

n− 1 blocking points always needed

Conjecture (Aichholzer et al.):

conv. pos. ⇒ n blockings points necessary and sufficient

Biniaz 2021: n points always necessary
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Our Results

Theorem 1: For k ∈ N, ∃ set P of 4k points in general
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Theorem 2: For k ∈ N, ∃ set P of 3k points (degenerate)

that requires 4k − 2 exterior-blocking points.
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thank you for your attention
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