Blocking Delaunay Triangulations from the Exterior

Oswin Aichholzer, Thomas Hackl, Maarten Löffler, Alexander Pilz, Irene Parada, Manfred Scheucher, Birgit Vogtenhuber

Denmark Technical University

Delaunay Triangulation

- pq edge in $D T(P)$ iff \exists empty circle trough p and q

Delaunay Triangulation

- $p q$ edge in $D T(P)$ iff \exists empty circle trough p and q

Delaunay Triangulation

- pq edge in $D T(P)$ iff \exists empty circle trough p and q

Delaunay Triangulation

- $p q$ edge in $D T(P)$ iff \exists empty circle trough p and q

Delaunay Triangulation

- $p q$ edge in $D T(P)$ iff \exists empty circle trough p and q

Delaunay Triangulation

- $p q$ edge in $D T(P)$ iff \exists empty circle trough p and q
- dual Voronoi diagram:
edge iff corresponding cells adjacent

Delaunay Triangulation

- $p q$ edge in $D T(P)$ iff \exists empty circle trough p and q
- dual Voronoi diagram:
edge iff corresponding cells adjacent

Blocking a DT

- Q blocks $p_{1} p_{2}$
$: \Leftrightarrow p_{1} p_{2}$ is not an edge of the DT of $P \cup Q$

Blocking a DT

- Q blocks $p_{1} p_{2}$
$: \Leftrightarrow p_{1} p_{2}$ is not an edge of the DT of $P \cup Q$

- Q blocks P if all edges spanned by P are blocked

Blocking a DT

- Q blocks $p_{1} p_{2}$
$: \Leftrightarrow p_{1} p_{2}$ is not an edge of the DT of $P \cup Q$

- Q blocks P if all edges spanned by P are blocked
- Moreover, Q blocks P from the exterior if all points of Q lie outside $\operatorname{conv}(P)$

Literature

Aronov, Dulieu, and Hurtado 2011:
every set P of n points can be blocked by $2 n-2$ points

Literature

Aronov, Dulieu, and Hurtado 2011:
every set P of n points can be blocked by $2 n-2$ points moreover, conv. pos. $\Rightarrow \frac{4 n}{3}$ blocking points sufficient

Literature

Aronov, Dulieu, and Hurtado 2011:
every set P of n points can be blocked by $2 n-2$ points moreover, conv. pos. $\Rightarrow \frac{4 n}{3}$ blocking points sufficient

Aichholzer, Fabila-Monroy, Hackl, van Kreveld, Pilz, Ramos, and Vogtenhuber 2012: in general $\frac{3 n}{2}$ blocking points sufficient, conv. pos. $\Rightarrow \frac{5 n}{4}$ blocking points sufficient

Literature

Aronov, Dulieu, and Hurtado 2011:
every set P of n points can be blocked by $2 n-2$ points moreover, conv. pos. $\Rightarrow \frac{4 n}{3}$ blocking points sufficient

Aichholzer, Fabila-Monroy, Hackl, van Kreveld, Pilz, Ramos, and Vogtenhuber 2012: in general $\frac{3 n}{2}$ blocking points sufficient, conv. pos. $\Rightarrow \frac{5 n}{4}$ blocking points sufficient $n-1$ blocking points always needed
Conjecture (Aichholzer et al.):
conv. pos. $\Rightarrow n$ blockings points necessary and sufficient

Literature

Aronov, Dulieu, and Hurtado 2011:
every set P of n points can be blocked by $2 n-2$ points moreover, conv. pos. $\Rightarrow \frac{4 n}{3}$ blocking points sufficient

Aichholzer, Fabila-Monroy, Hackl, van Kreveld, Pilz, Ramos, and Vogtenhuber 2012: in general $\frac{3 n}{2}$ blocking points sufficient, conv. pos. $\Rightarrow \frac{5 n}{4}$ blocking points sufficient $n-1$ blocking points always needed
Conjecture (Aichholzer et al.):
conv. pos. $\Rightarrow n$ blockings points necessary and sufficient
Biniaz 2021: n points always necessary

Our Results

Theorem 1: For $k \in \mathbb{N}, \exists$ set P of $4 k$ points in general position that requires $5 k-5$ exterior-blocking points.

Our Results

Theorem 1: For $k \in \mathbb{N}, \exists$ set P of $4 k$ points in general position that requires $5 k-5$ exterior-blocking points.
\Rightarrow minimal blocking sets of certain point sets must contain inner points

Our Results

Theorem 1: For $k \in \mathbb{N}, \exists$ set P of $4 k$ points in general position that requires $5 k-5$ exterior-blocking points.

Theorem 2: For $k \in \mathbb{N}, \exists$ set P of $3 k$ points (degenerate) that requires $4 k-2$ exterior-blocking points.

Our Results

Theorem 1: For $k \in \mathbb{N}, \exists$ set P of $4 k$ points in general position that requires $5 k-5$ exterior-blocking points.
general position $=$ no 3 points on common line and no 4 points on common circle

Our Results

Theorem 1: For $k \in \mathbb{N}, \exists$ set P of $4 k$ points in general position that requires $5 k-5$ exterior-blocking points.
general position $=$ no 3 points on common line and no 4 points on common circle

Our Results

Theorem 1: For $k \in \mathbb{N}, \exists$ set P of $4 k$ points in general position that requires $5 k-5$ exterior-blocking points.
general position $=$ no 3 points on common line and no 4 points on common circle

Our Results

Theorem 1: For $k \in \mathbb{N}, \exists$ set P of $4 k$ points in general position that requires $5 k-5$ exterior-blocking points.

Our Results

Theorem 1: For $k \in \mathbb{N}, \exists$ set P of $4 k$ points in general position that requires $5 k-5$ exterior-blocking points.

Our Results

Theorem 1: For $k \in \mathbb{N}, \exists$ set P of $4 k$ points in general position that requires $5 k-5$ exterior-blocking points.

Our Results

Theorem 1: For $k \in \mathbb{N}, \exists$ set P of $4 k$ points in general position that requires $5 k-5$ exterior-blocking points.

Our Results

Theorem 1: For $k \in \mathbb{N}, \exists$ set P of $4 k$ points in general position that requires $5 k-5$ exterior-blocking points.

thank you for your attention

