



# Blocking Delaunay Triangulations from the Exterior

Oswin Aichholzer, Thomas Hackl, Maarten Löffler, Alexander Pilz, Irene Parada, <u>Manfred Scheucher</u>, Birgit Vogtenhuber







• pq edge in DT(P) iff  $\exists$  empty circle trough p and q

 $\boldsymbol{q}$ 

p

2







• pq edge in DT(P) iff  $\exists$  empty circle trough p and q

• dual *Voronoi* diagram:

edge iff corresponding cells adjacent

• pq edge in DT(P) iff  $\exists$  empty circle trough p and q

• dual *Voronoi* diagram:

edge iff corresponding cells adjacent

# Blocking a DT

- Q blocks  $p_1p_2$ 
  - $:\Leftrightarrow p_1p_2$  is not an edge of the DT of  $P\cup Q$



# Blocking a DT

• Q blocks  $p_1p_2$ 

 $:\Leftrightarrow p_1p_2$  is not an edge of the DT of  $P\cup Q$ 



• Q blocks P if all edges spanned by P are blocked

# Blocking a DT

- Q blocks  $p_1p_2$ 
  - $:\Leftrightarrow p_1p_2$  is not an edge of the DT of  $P\cup Q$



- Q blocks P if all edges spanned by P are blocked
- Moreover, Q blocks P from the exterior if all points of Q lie outside  $\operatorname{conv}(P)$

Aronov, Dulieu, and Hurtado 2011: every set P of n points can be blocked by 2n - 2 points

Aronov, Dulieu, and Hurtado 2011: every set P of n points can be blocked by 2n - 2 points moreover, conv. pos.  $\Rightarrow \frac{4n}{3}$  blocking points sufficient

Aronov, Dulieu, and Hurtado 2011:

every set P of n points can be blocked by 2n - 2 points moreover, conv. pos.  $\Rightarrow \frac{4n}{3}$  blocking points sufficient

Aichholzer, Fabila-Monroy, Hackl, van Kreveld, Pilz, Ramos, and Vogtenhuber 2012: in general  $\frac{3n}{2}$  blocking points sufficient, conv. pos.  $\Rightarrow \frac{5n}{4}$  blocking points sufficient

#### Aronov, Dulieu, and Hurtado 2011:

every set P of n points can be blocked by 2n-2 points moreover, conv. pos.  $\Rightarrow \frac{4n}{3}$  blocking points sufficient

Aichholzer, Fabila-Monroy, Hackl, van Kreveld, Pilz, Ramos, and Vogtenhuber 2012:

in general  $\frac{3n}{2}$  blocking points sufficient, conv. pos.  $\Rightarrow \frac{5n}{4}$  blocking points sufficient n-1 blocking points always needed

#### **Conjecture (Aichholzer et al.)**:

conv. pos.  $\Rightarrow n$  blockings points necessary and sufficient

#### Aronov, Dulieu, and Hurtado 2011:

every set P of n points can be blocked by 2n-2 points moreover, conv. pos.  $\Rightarrow \frac{4n}{3}$  blocking points sufficient

Aichholzer, Fabila-Monroy, Hackl, van Kreveld, Pilz, Ramos, and Vogtenhuber 2012:

in general  $\frac{3n}{2}$  blocking points sufficient, conv. pos.  $\Rightarrow \frac{5n}{4}$  blocking points sufficient n-1 blocking points always needed

#### **Conjecture (Aichholzer et al.)**:

conv. pos.  $\Rightarrow n$  blockings points necessary and sufficient

Biniaz 2021: *n* points always necessary



**Theorem 1:** For  $k \in \mathbb{N}$ ,  $\exists$  set P of 4k points in general position that requires 5k - 5 exterior-blocking points.

 $\Rightarrow$  minimal blocking sets of certain point sets must contain inner points



**Theorem 1:** For  $k \in \mathbb{N}$ ,  $\exists$  set P of 4k points in general position that requires 5k - 5 exterior-blocking points.

**Theorem 2:** For  $k \in \mathbb{N}$ ,  $\exists$  set P of 3k points (degenerate) that requires 4k - 2 exterior-blocking points.



**Theorem 1:** For  $k \in \mathbb{N}$ ,  $\exists$  set P of 4k points in general position that requires 5k - 5 exterior-blocking points.

*general position* = no 3 points on common line and no 4 points on common circle



**Theorem 1:** For  $k \in \mathbb{N}$ ,  $\exists$  set P of 4k points in general position that requires 5k - 5 exterior-blocking points.

*general position* = no 3 points on common line and no 4 points on common circle



**Theorem 1:** For  $k \in \mathbb{N}$ ,  $\exists$  set P of 4k points in general position that requires 5k - 5 exterior-blocking points.

*general position* = no 3 points on common line and no 4 points on common circle













#### thank you for your attention