

Arrangements of Pseudocircles

Stefan Felsner and Manfred Scheucher

pseudocircle ...simple closed curve

pseudocircle ...simple closed curve

pseudocircle ...simple closed curve

pseudocircle ...simple closed curve

simple ... no 3 pcs. intersect in common point
connected ... intersection graph is connected

simple ... no 3 pcs. intersect in common point *connected* ... intersection graph is connected

simple ... no 3 pcs. intersect in common point
connected ... intersection graph is connected

assumptions throughout presentation

simple ... no 3 pcs. intersect in common point
connected ... intersection graph is connected

assumptions throughout presentation

simple ... no 3 pcs. intersect in common point
connected ... intersection graph is connected

assumptions throughout presentation

circleable ... \exists isomorphic arrangement of circles

Plane VS Sphere

connected ... graph of arrangement is connected

connected ... graph of arrangement is connected

intersecting ...any 2 pseudocircles cross twice

connected ... graph of arrangement is connected

intersecting ... any 2 pseudocircles cross twice

arr. of great-pseudocircles ...any 3 pcs. form a Krupp

connected ... graph of arrangement is connected

intersecting ...any 2 pseudocircles cross twice

arr. of great-pseudocircles ...any 3 pcs. form a Krupp

connected ... graph of arrangement is connected intersecting ... any 2 pseudocircles cross twice arr. of great-pseudocircles ...any 3 pcs. form a Krupp digon-free ... no cell bounded by two pcs.

connected ... graph of arrangement is connected intersecting ... any 2 pseudocircles cross twice arr. of great-pseudocircles ...any 3 pcs. form a Krupp digon-free ... no cell bounded by two pcs. *cylindrical* ... \exists two cells separated by each of the pcs.

connected ... graph of arrangement is connected

intersecting ... any 2 pseudocircles cross twice

arr. of great-pseudocircles ...any 3 pcs. form a Krupp

8 intersecting arrangements

21 connected arrangements

Enumeration of Arrangements

n	3	4	5	6	7
connected	3	21	984	609 423	?
+digon-free	1	3	30	4 509	?
intersecting	2	8	278	145 058	447 905 202
+digon-free	1	2	14	2 131	3 012 972
great-p.c.s	1	1	1	4	11

Table: # of combinatorially different arragements of n pcs.

Enumeration of Arrangements

n	3	4	5	6	7
connected	3	21	984	609 423	?
+digon-free	1	3	30	4 509	?
intersecting	2	8	278	145 058	447 905 202
+digon-free	1	2	14	2 131	3 012 972
great-p.c.s	1	1	1	4	11

Table: # of combinatorially different arragements of n pcs.

arrangements of pcs: $2^{\Theta(n^2)}$

arrangements of circles: $2^{\Theta(n \log n)}$

ullet dual graph is quadrangulation on $O(n^2)$ vertices

- dual graph is quadrangulation on ${\cal O}(n^2)$ vertices
- Tutte'62: $2^{\Theta(m)}$ triangulations on m vertices
- \Rightarrow Upper bound: $2^{O(n^2)}$ non-isomorphic arrangements

- ullet dual graph is quadrangulation on $O(n^2)$ vertices
- Tutte'62: $2^{\Theta(m)}$ triangulations on m vertices
- \Rightarrow Upper bound: $2^{O(n^2)}$ non-isomorphic arrangements
- Lower bound: $2^{\Omega(n^2)}$ non-isomorphic arrangements

- ullet dual graph is quadrangulation on $O(n^2)$ vertices
- Tutte'62: $2^{\Theta(m)}$ triangulations on m vertices
- \Rightarrow Upper bound: $2^{O(n^2)}$ non-isomorphic arrangements
- Lower bound: $2^{\Omega(n^2)}$ non-isomorphic arrangements

Theorem: There are $2^{\Theta(n^2)}$ arrangements on n pcs.

Upper bound: arrangement changes if a triangle "flips"

- Upper bound: arrangement changes if a triangle "flips"
- we sketch the proof for *line*-arrangements

• lines l_1, \ldots, l_n given by $l_i : y_i = a_i x + b_i$

• lines l_1, \ldots, l_n given by $l_i : y_i = a_i x + b_i$

• l_i , l_j , and l_k meet in a common point

$$\iff \det \begin{pmatrix} 1 & 1 & 1 \\ a_i & a_j & a_k \\ b_i & b_j & b_k \end{pmatrix} = 0 \qquad l_j - l_j$$

- lines l_1, \ldots, l_n given by $l_i : y_i = a_i x + b_i$
- l_i , l_j , and l_k meet in a common point

$$\iff \det \begin{pmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} \\ a_i & a_j & a_k \\ b_i & b_j & b_k \end{pmatrix} = 0 \qquad \qquad \mathbf{l}_j - \mathbf{l}_j$$

- system of $\binom{n}{3}$ quadratic polynomials in 2n variables
- simple arr. ⇔ all polynomials non-zero

• Milnor–Thom Theorem:

the number of cells in \mathbb{R}^d induced by zero set of m polynomials of degree $\leq D$ is at most $(50Dm/d)^d$

• Upper bound: $2^{O(n \log n)}$

Lower bound: # of permutations

Lower bound: # of permutations

Theorem: There are $2^{\Theta(n \log n)}$ arrangements on n circles.

Part I: Circleability

• non-circleability of intersecting n=6 arrangement [Edelsbrunner and Ramos '97]

- non-circleability of intersecting n=6 arrangement [Edelsbrunner and Ramos '97]
- non-circleability of n=5 arrangement [Linhart and Ortner '05]

- non-circleability of intersecting n=6 arrangement [Edelsbrunner and Ramos '97]
- non-circleability of n=5 arrangement [Linhart and Ortner '05]
- circleability of all n=4 arrangements [Kang and Müller '14]

- non-circleability of intersecting n=6 arrangement [Edelsbrunner and Ramos '97]
- non-circleability of n=5 arrangement [Linhart and Ortner '05]
- circleability of all n=4 arrangements [Kang and Müller '14]
- NP-hardness of circleability [Kang and Müller '14]

Theorem. There are exactly 4 non-circleable n=5 arrangements (984 classes).

Theorem. There are exactly 4 non-circleable n=5 arrangements (984 classes).

- ullet assume there is a circle representation of \mathcal{N}_5^1
- shrink the yellow, green, and red circle
- cyclic order is preserved (also for blue)

- ullet assume there is a circle representation of \mathcal{N}_5^1
- shrink the yellow, green, and red circle
- cyclic order is preserved (also for blue)

- ullet assume there is a circle representation of \mathcal{N}_5^1
- shrink the yellow, green, and red circle
- cyclic order is preserved (also for blue)

contradiction: 4 crossings

Theorem. There are exactly 3 non-circleable digon-free intersecting n=6 arrangements (2131 classes).

Theorem. There are exactly 3 non-circleable digon-free intersecting n=6 arrangements (2131 classes).

 $\mathcal{N}_6^{\triangle}$ is unique digon-free intersecting with 8 triangular cells

Grünbaum Conjecture: $p_3 \ge 2n-4$

Proof.

based on sweeping argument in 3-D

$$C_1,\ldots,C_6$$
 ...circles (on \mathbb{S}^2)

$$E_1,\ldots,E_6\ldots$$
 planes (in \mathbb{R}^3)

Proof.

 C_1,\ldots,C_6 ...circles (on \mathbb{S}^2)

 $E_1,\ldots,E_6\ldots$ planes (in \mathbb{R}^3)

move planes away from the origin

 E_i moves to $t \cdot E_i$ as $t \to \infty$

Proof.

 C_1,\ldots,C_6 ...circles (on \mathbb{S}^2)

 $E_1,\ldots,E_6\ldots$ planes (in \mathbb{R}^3)

move planes away from the origin

no great-circle arr. \Rightarrow events occur

not all planes contain the origin

Proof.

 C_1,\ldots,C_6 ...circles (on \mathbb{S}^2)

 $E_1,\ldots,E_6\ldots$ planes (in \mathbb{R}^3)

move planes away from the origin

no great-circle arr. \Rightarrow events occur

first event is triangle flip (∄ digons)

Proof.

 C_1,\ldots,C_6 ...circles (on \mathbb{S}^2)

 $E_1,\ldots,E_6\ldots$ planes (in \mathbb{R}^3)

move planes away from the origin

no great-circle arr. \Rightarrow events occur

first event is triangle flip (∄ digons)

but triangle flip not possible because all triangles in NonKrupp. Contradiction.

Proof. (similar)

 $C_1, \ldots, C_6 \ldots$ circles

 $E_1, \ldots, E_6 \ldots$ planes

Proof. (similar)

 $C_1, \ldots, C_6 \ldots$ circles

 $E_1, \ldots, E_6 \ldots$ planes

move planes towards the origin

Proof. (similar)

 $C_1, \ldots, C_6 \ldots$ circles

 $E_1, \ldots, E_6 \ldots$ planes

move planes towards the origin

 \exists NonKrupp subarr. \Rightarrow events occur

∃ point of intersection outside the unit-sphere (will move inside)

Proof. (similar)

 C_1,\ldots,C_6 ...circles

 $E_1, \ldots, E_6 \ldots$ planes

move planes towards the origin

 \exists NonKrupp subarr. \Rightarrow events occur

first event is triangle flip (∄ digons)

Proof. (similar)

 $C_1, \ldots, C_6 \ldots$ circles

 $E_1, \ldots, E_6 \ldots$ planes

move planes towards the origin

 \exists NonKrupp subarr. \Rightarrow events occur

first event is triangle flip (∄ digons)

but triangle flip not possible because all triangles in Krupp. Contradiction.

Great-Circle Theorem:

An arrangement of great-pcs. is circleable (i.e., has a circle representation) if and only if it has a great-circle repr.

Great-Circle Theorem:

An arrangement of great-pcs. is circleable (i.e., has a circle representation) if and only if it has a great-circle repr.

Proof.

• C_1, \ldots, C_n ... circles E_1, \ldots, E_n ... planes

Great-Circle Theorem:

An arrangement of great-pcs. is circleable (i.e., has a circle representation) if and only if it has a great-circle repr.

- C_1, \ldots, C_n ... circles E_1, \ldots, E_n ... planes
- move planes towards the origin

Great-Circle Theorem:

An arrangement of great-pcs. is circleable (i.e., has a circle representation) if and only if it has a great-circle repr.

- C_1, \ldots, C_n ... circles E_1, \ldots, E_n ... planes
- move planes towards the origin
- all triples Krupp
 - ⇒ all intersections remain inside
 - \Rightarrow no events

Great-Circle Theorem:

An arrangement of great-pcs. is circleable (i.e., has a circle representation) if and only if it has a great-circle repr.

- C_1, \ldots, C_n ... circles E_1, \ldots, E_n ... planes
- move planes towards the origin
- all triples Krupp
 - ⇒ all intersections remain inside
 - \Rightarrow no events
- we obtain a great-circle arrangement

Great-Circle Theorem:

An arrangement of great-pcs. is circleable (i.e., has a circle representation) if and only if it has a great-circle repr.

Great-Circle Theorem:

An arrangement of great-pcs. is circleable (i.e., has a circle representation) if and only if it has a great-circle repr.

Corollaries:

- ∀ non-stretchable arr. of pseudolines
 - ∃ corresponding non-circleable arr. of pseudocircles

Great-Circle Theorem:

An arrangement of great-pcs. is circleable (i.e., has a circle representation) if and only if it has a great-circle repr.

Corollaries:

- ∀ non-stretchable arr. of pseudolines
 ∃ corresponding non-circleable arr. of pseudocircles
- deciding circleability is $\exists \mathbb{R}$ -complete

```
( NP \subseteq \exists \mathbb{R} \subseteq PSPACE )
```

Great-Circle Theorem:

An arrangement of great-pcs. is circleable (i.e., has a circle representation) if and only if it has a great-circle repr.

Corollaries:

- ∀ non-stretchable arr. of pseudolines
 ∃ corresponding non-circleable arr. of pseudocircles
- deciding circleability is $\exists \mathbb{R}$ -complete
- ∃ infinite families of minimal non-circ. arrangements
- ∃ arr with a disconnected realization space

• . . .

Computational Part

- find circle representations heuristically
- hard instances by hand

Computational Part

enumeration via recursive search on flip graph

Computational Part

- connected arrangements encoded via primal-dual graph
- intersecting arrangements encoded via dual graph

Part II: Triangles in Arrangements

Part II: Triangles in Arrangements

assumption throughout part II:

intersecting ... any 2 pseudocircles cross twice

Cells in Arrangements

digon, triangle, quadrangle, pentagon, . . . , k-cell

Grünbaum's Conjecture ('72):

• $p_3 \ge 2n - 4$?

Grünbaum's Conjecture ('72):

• $p_3 \ge 2n - 4$?

Known:

- $p_3 \ge 4n/3$ [Hershberger and Snoeyink '91]
- $p_3 \ge 4n/3$ for non-simple arrangements, tight for infinite family [Felsner and Kriegel '98]

Grünbaum's Conjecture ('72):

• $p_3 \ge 2n - 4$?

Known:

- $p_3 \ge 4n/3$ [Hershberger and Snoeyink '91]
- $p_3 \ge 4n/3$ for non-simple arrangements, tight for infinite family [Felsner and Kriegel '98]

Our Contribution:

- disprove Grünbaum's Conjecture
- $p_3 < 1.\overline{45}n$
- New Conjecture: 4n/3 is tight

Theorem. The minimum number of triangles in digon-free arrangements of n pseudocircles is

- (i) 8 for $3 \le n \le 6$.
- (ii) $\lceil \frac{4}{3}n \rceil$ for $6 \le n \le 14$.
- (iii) $< 1.\overline{45}n$ for all n = 11k + 1 with $k \in \mathbb{N}$.

Figure: Arrangement of n=12 pcs with $p_3=16$ triangles.

Figure: Arrangement of n=12 pcs with $p_3=16$ triangles.

- start with $\mathscr{C}_1 := \mathscr{A}_{12}$
- ullet merge \mathscr{C}_k and $\mathscr{A}_{12} \longrightarrow \mathscr{C}_{k+1}$
- $n(\mathscr{C}_k) = 11k + 1$, $p_3(\mathscr{C}_k) = 16k$
- $\frac{16k}{11k+1}$ increases as k increases with limit $\frac{16}{11}=1.\overline{45}$

- start with $\mathscr{C}_1 := \mathscr{A}_{12}$
- ullet merge \mathscr{C}_k and $\mathscr{A}_{12} \longrightarrow \mathscr{C}_{k+1}$ maintain the path!
- $n(\mathcal{C}_k) = 11k + 1$, $p_3(\mathcal{C}_k) = 16k$
- $\frac{16k}{11k+1}$ increases as k increases with limit $\frac{16}{11}=1.\overline{45}$

Theorem. The minimum number of triangles in digon-free arrangements of n pseudocircles is

- (i) 8 for $3 \le n \le 6$.
- (ii) $\lceil \frac{4}{3}n \rceil$ for $6 \le n \le 14$.
- (iii) $< 1.\overline{45}n$ for all n = 11k + 1 with $k \in \mathbb{N}$.

Conjecture. $\lceil 4n/3 \rceil$ is tight for infinitely many n.

• \exists unique arrangement $\mathcal{N}_6^{\triangle}$ with $n=6, p_3=8$

• $\mathcal{N}_6^{\triangle}$ appears as a subarrangement of every arr. with

$$p_3 < 2n - 4$$
 for $n = 7, 8, 9$

• $\mathcal{N}_6^{\triangle}$ is non-circularizable

• \exists unique arrangement $\mathcal{N}_6^{\triangle}$ with $n=6, p_3=8$

• $\mathcal{N}_6^{\triangle}$ appears as a subarrangement of every arr. with

$$p_3 < 2n - 4$$
 for $n = 7, 8, 9$

- $\mathcal{N}_6^{\triangle}$ is non-circularizable
- ⇒ Grünbaum's Conjecture might still be true for arrangements of circles!

Theorem. $p_3 \geq 2n/3$

Theorem. $p_3 \geq 2n/3$

Proof.

intersecting

- ullet C ... pseudocircle in $\mathscr A$
- All incident digons lie on the same side of C.

Theorem. $p_3 \geq 2n/3$

Proof.

- intersecting
- ullet C ... pseudocircle in ${\mathscr A}$
- All incident digons lie on the same side of C.

Theorem. $p_3 \geq 2n/3$

Proof.

- C ... pseudocircle in \mathscr{A}
- ullet All incident digons lie on the same side of C.
- ullet \exists two digons or triangles on each side of C [Hershberger and Snoeyink '91] .

Theorem. $p_3 \geq 2n/3$

Conjecture. $p_3 \ge n-1$

Theorem.
$$p_3 \leq \frac{2}{3}n^2 + O(n)$$

Theorem.
$$p_3 \leq \frac{2}{3}n^2 + O(n)$$

• $\frac{4}{3}\binom{n}{2}$ construction for infinitely many values of n, based on pseudoline arrangements [Blanc '11]

Theorem.
$$p_3 \leq \frac{2}{3}n^2 + O(n)$$

- $\frac{4}{3}\binom{n}{2}$ construction for infinitely many values of n, based on pseudoline arrangements [Blanc '11]
- Question: $p_3 \le \frac{4}{3} \binom{n}{2} + O(1)$?

Theorem.
$$p_3 \leq \frac{2}{3}n^2 + O(n)$$

- $\frac{4}{3}\binom{n}{2}$ construction for infinitely many values of n, based on pseudoline arrangements [Blanc '11]
- Question: $p_3 \le \frac{4}{3} \binom{n}{2} + O(1)$?

n	2	3	4	5	6	7	8	9	10
simple	0	8	8	13	20	29	≥ 37	≥ 48	≥ 60
$+ {\sf digon-free}$	_	8	8	12	20	29	≥ 37	≥ 48	≥ 60
$\lfloor \frac{4}{3} \binom{n}{2} \rfloor$	1	4	8	13	20	28	37	48	60

Theorem.
$$p_3 \leq \frac{2}{3}n^2 + O(n)$$

• $\frac{4}{3}\binom{n}{2}$ construction for infinitely many values of n, based on pseudoline arrangements [Blanc '11]

Theorem. $p_3 \leq \frac{2}{3}n^2 + O(n)$

Proof:

 \mathscr{A} ... arrangement of $n \geq 4$ pseudocircles

X ... set of crossings (vertices of graph)

Theorem.
$$p_3 \leq \frac{2}{3}n^2 + O(n)$$

Proof:

 \mathscr{A} ... arrangement of $n \geq 4$ pseudocircles

X ... set of crossings (vertices of graph)

Claim A: No vertex is incident to 4 triangular cells.

Theorem.
$$p_3 \leq \frac{2}{3}n^2 + O(n)$$

Proof:

 \mathscr{A} ... arrangement of $n \geq 4$ pseudocircles

X ... set of crossings (vertices of graph)

Claim A: No vertex is incident to 4 triangular cells.

X'...crossings incident to *precisely* 3 triangles

Outline:

• We will show |X'| = O(n).

Outline:

- We will show |X'| = O(n).
- \Rightarrow # of triangles incident to a crossing from X' is O(n).

Outline:

- We will show |X'| = O(n).
- \Rightarrow # of triangles incident to a crossing from X' is O(n).
- each crossing of $Y := X \setminus X'$ is incident to at most 2 triangles
- ullet each remaining triangle is incident to $oldsymbol{3}$ crossings of Y

not incident to any vertex from X'

Outline:

- We will show |X'| = O(n).
- \Rightarrow # of triangles incident to a crossing from X' is O(n).
- each crossing of $Y := X \setminus X'$ is incident to at most 2 triangles
- ullet each remaining triangle is incident to $oldsymbol{3}$ crossings of Y
- Since $|Y| \le |X| = n(n-1)$, we count

$$p_3 \le \frac{2}{3}|Y| + O(n) \le \frac{2}{3}n^2 + O(n)$$

Claim B: Two adjacent crossings u, v in X' share two triangles.

Claim B: Two adjacent crossings u, v in X' share two triangles.

Claim C: Let u, v, w be three distinct crossings in X'. If u is adjacent to both v and w, then v is adjacent to w.

(If both edges uv and uw are incident to two triangles, then uvw form a triangle)

Claim B: Two adjacent crossings u, v in X' share two triangles.

Claim C: Let u, v, w be three distinct crossings in X'. If u is adjacent to both v and w, then v is adjacent to w.

 \Rightarrow each connected comp. of the graph induced by X' is either singleton, edge, or triangle.

We can convert crossings of X' into digons using \triangle -flips!

We can convert crossings of X' into digons using \triangle -flips!

We can convert crossings of X' into digons using \triangle -flips!

There are at most O(n) digons [Agarwal, Nevo, Pach, Pinchasi, Sharir, Smorodinsky 2004]

- \Rightarrow at most O(n) flips
- $\Rightarrow |X'|$ at most O(n)

$$\Rightarrow p_3 \le \frac{2}{3}n^2 + O(n)$$

