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pseudocircle . ..simple closed curve

arrangement . ..collection of pcs. s.t. intersection of any
two pcs. either empty or 2 points where curves cross

touching!
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Definitions

pseudocircle . ..simple closed curve

arrangement . ..collection of pcs. s.t. intersection of any
two pcs. either empty or 2 points where curves cross

arrangement arrangement arrangement
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Definitions

simple ...no 3 pcs. intersect in common point | @ssumptions
throughout

presentation

connected . ..intersection graph is connected

circleable ...d isomorphic arrangement of circles

9 & ar

Krupp NonKrupp 3-Chain



Plane VS Sphere

P

e isomorphism

e circleability
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Classes of Arrangements

connected . ..graph of arrangement is connected

T

intersecting . ..any 2 pseudocircles cross twice

T

arr. of great-pseudocircles ...any 3 pcs. form a Krupp

'

digon-free ...no cell bounded by two pcs.

v
cylindrical ...d two cells separated by each of the pcs.



Classes of Arrangements

connected . ..graph of arrangement is connected

T

intersecting . ..any 2 pseudocircles cross twice

T

arr. of great-pseudocircles ...any 3 pcs. form a Krupp
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Enumeration of Arrangements

n 3 4 5 6 I
connected 3 21 084 609 423 7
+digon-free 1 3 30 4 509 ?
intersecting 2 38 278 145 058 447 905 202
+digon-free 1 2 14 2 131 3012972
great-p.c.s 1 1 1 4 11

Table: # of combinatorially different arragements of n pcs.



Enumeration of Arrangements

n 3 4 5 6 I
connected 3 21 084 609 423 7
+digon-free 1 3 30 4 509 ?
intersecting 2 38 278 145 058 447 905 202
+digon-free 1 2 14 2 131 3012972
great-p.c.s 1 1 1 4 11

Table: # of combinatorially different arragements of n pcs.

arrangements of pcs: 2©(7")

arrangements of circles: 29(nlogn)
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Counting Arrangements of Pseudocircles

e dual graph is quadrangulation on O(n?) vertices

o Tutte'62: 29(™) triangulations on m vertices

e = Upper bound: 20(n?) non-isomorphic arrangements

o Lower bound: 22(n°) non-isomorphic arrangements

Theorem: There are 20(7°) arrangements on 71 pcs.




Counting Arrangements of Circles

e Upper bound: arrangement changes if a triangle " flips”




Counting Arrangements of Circles

e Upper bound: arrangement changes if a triangle " flips”

e we sketch the proof for /ine-arrangements

A-flip

>




Counting Arrangements of Circles

e lines ll,. . .,ln given by lz s Y = CLZQC-I-[?Z



Counting Arrangements of Circles
e linesly,...,[, given by [; : y; = a;x + b,

e [;, [;, and [ meet in a common point
l;

1 1 1
<det |a; a; ap]| =0 l
bi b; by

L



Counting Arrangements of Circles
lines ll, ce e ln given by lfL Y = a;x -+ bz

l;, l;, and [, meet in a common point
l;

1 1 1
<det |a; a; ap]| =0 l
bi b; by

n

system of (g) quadratic polynomials in 2n variables

simple arr. < all polynomials non-zero



Counting Arrangements of Circles

e Milnor—-Thom Theorem:
the number of cells in R induced by zero set of
m polynomials of degree < D is at most (50Dm /d)?



Counting Arrangements of Circles

2n

e Milnor—-Thom Theorerrf./
the number of cells in R induced by zero set of
m polynomials of degree < D is at most (50Dm /d)?

n3 2 nO(n) _ 20(n logn)

o Upper bound: 20(nlogn)



Counting Arrangements of Circles

e Lower bound: # of permutations




Counting Arrangements of Circles

e Lower bound: # of permutations




Counting Arrangements of Circles

Theorem: There are 29(7198") 3rrangements on n circles.




Part |: Circleability
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Circleability Results

e non-circleability of intersecting n = 6 arrangement
[Edelsbrunner and Ramos '97]
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Circleability Results

e non-circleability of intersecting n = 6 arrangement
[Edelsbrunner and Ramos '97]

e non-circleability of n = 5 arrangement
[Linhart and Ortner '05]

N
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Circleability Results

e non-circleability of intersecting n = 6 arrangement
|[Edelsbrunner and Ramos '97]

e non-circleability of n = 5 arrangement
[Linhart and Ortner '05]
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[Kang and Miiller '14]
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Circleability Results

non-circleability of intersecting n = 6 arrangement
|[Edelsbrunner and Ramos '97]

non-circleability of n = 5 arrangement
[Linhart and Ortner '05]

circleability of all n = 4 arrangements
[Kang and Miiller '14]

NP-hardness of circleability
[Kang and Miiller '14]
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Circleability Results

Theorem. There are exactly 4 non-circleable n =5

arrangements (984 classes).

N
Z,

%

-

~

12



Circleability Results

Theorem. There are exactly 4 non-circleable n =5

arrangements (984 classes).







Non-Circleability of .

e assume there is a circle representation of N,
e shrink the yellow, green, and red circle

e cyclic order is preserved (also for blue)
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Non-Circleability of .

e assume there is a circle representation of N,
e shrink the yellow, green, and red circle

e cyclic order is preserved (also for blue)

e contradiction: 4 crossings inzidence-theorem
13




Circleability Results

Theorem. There are exactly 3 non-circleable digon-free

intersecting n = 6 arrangements (2131 classes).

% v
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Circleability Results

Theorem. There are exactly 3 non-circleable digon-free

intersecting n = 6 arrangements (2131 classes).

7

J\/GA is unique digon-free intersecting
with 8 triangular cells

Grunbaum Conjecture: p3 > 2n — 4
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Non-Circleability Proof of A

7

Proof.
based on sweeping argument in 3-D
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Non-Circleability Proof of A

7

..,Cg ...circles (on S?)

.., Eg ...planes (in R?)
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Non-Circleability Proof of A

Ci,...,Cg ...circles (on S?)
Ei,...,Eq ...planes (in R?)

move planes away from the origin

!

E; movestot - E; ast — o0
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Non-Circleability Proof of A

Ci,...,Cg ...circles (on S?)
Ei,...,Eq ...planes (in R?)

move planes away from the origin

no great-circle arr. = events occur

f

not all planes contain the origin

15



Non-Circleability Proof of A

Ci,...,Cg ...circles (on S?)
Ei,...,Eq ...planes (in R?)

move planes away from the origin

no great-circle arr. = events occur

first event is triangle flip (# digons)
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Non-Circleability Proof of A

Ci,...,Cg ...circles (on S?)
Ei,...,Eq ...planes (in R?)

move planes away from the origin

no great-circle arr. = events occur

first event is triangle flip (# digons)

but triangle flip not possible because all

triangles in NonKrupp. Contradiction.
[]

15



Non-Circularizability Proof of AZ

. Z’:mf , ((/i;m.i ?érc)i rcles
(gg\fi’ Eq, ..., Eeg .. .planes




Non-Circularizability Proof of AZ

. ’ Z’Z?Of , (Ci;m.i ?érc)i rcles
(gg\f Eq,...,Eq ...planes

7

move planes towards the origin

16



Non-Circularizability Proof of AZ

Proof. (similar)
Ch,...,C¢ ...circles

Eq,...,Eg ...planes

move planes towards the origin

4 NonKrupp subarr. = events occur

f

3 point of intersection
outside the unit-sphere
(will move inside)

16



Non-Circularizability Proof of AZ

Proof. (similar)
Ch,...,C¢ ...circles

Eq,...,Eg ...planes

move planes towards the origin

4 NonKrupp subarr. = events occur

first event is triangle flip (# digons)
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Non-Circularizability Proof of AZ

. (F;Z(,mf : (Cs’ig;m.i ?érc)i rcles
(gg\fi’ Eq,...,Eg ...planes

move planes towards the origin

4 NonKrupp subarr. = events occur

first event is triangle flip (# digons)

but triangle flip not possible because

all triangles in Krupp. Contradiction.
[]
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Great-(Pseudo)Circles

Great-Circle Theorem:
An arrangement of great-pcs. is circleable (i.e., has a circle

representation) if and only if it has a great-circle repr.
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Proof.
o (q,...,C), ...circles Ei,...,FE, ...planes
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e move planes towards the origin
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Great-(Pseudo)Circles

Great-Circle Theorem:
An arrangement of great-pcs. is circleable (i.e., has a circle
representation) if and only if it has a great-circle repr.

Proof.
o (q,...,C), ...circles Ei,...,FE, ...planes

e move planes towards the origin

o all triples Krupp
= all intersections remain inside
— NO events
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Great-(Pseudo)Circles

Great-Circle Theorem:
An arrangement of great-pcs. is circleable (i.e., has a circle
representation) if and only if it has a great-circle repr.

Proof.
o (q,...,C), ...circles Ei,...,FE, ...planes

e move planes towards the origin

o all triples Krupp
= all intersections remain inside
— NO events

e we obtain a great-circle arrangement (]
17



Great-(Pseudo)Circles

Great-Circle Theorem:
An arrangement of great-pcs. is circleable (i.e., has a circle

representation) if and only if it has a great-circle repr.

17



Great-(Pseudo)Circles

Great-Circle Theorem:
An arrangement of great-pcs. is circleable (i.e., has a circle
representation) if and only if it has a great-circle repr.

Corollaries:

e V non-stretchable arr. of pseudolines
3 corresponding non-circleable arr. of pseudocircles
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Great-(Pseudo)Circles

Great-Circle Theorem:
An arrangement of great-pcs. is circleable (i.e., has a circle
representation) if and only if it has a great-circle repr.

Corollaries:

e V non-stretchable arr. of pseudolines
3 corresponding non-circleable arr. of pseudocircles

e deciding circleability is dR-complete
( NP C 3R C PSPACE )
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Great-(Pseudo)Circles

Great-Circle Theorem:
An arrangement of great-pcs. is circleable (i.e., has a circle
representation) if and only if it has a great-circle repr.

Corollaries:

e V non-stretchable arr. of pseudolines
3 corresponding non-circleable arr. of pseudocircles

e deciding circleability is dR-complete
e d infinite families of minimal non-circ. arrangements

e d arr with a disconnected realization space

17



Computational Part

e find circle representations heuristically

e hard instances by hand

18



Computational Part

e enumeration via recursive search on flip graph

3( (

dlgon ﬂlp

19



Computational Part

e connected arrangements encoded via primal-dual graph

e intersecting arrangements encoded via dual graph

DD

arrangement  primal-dual gr. primal graph  dual graph

20



Part Il: Triangles in Arrangements
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Part Il: Triangles in Arrangements

assumption throughout part |I:

intersecting ...any 2 pseudocircles cross twice

21



Cells in Arrangements

digon, triangle, quadrangle, pentagon, ..., k-cell
D .. .7 of k-cells

22



Triangles in Digon-free Arrangements

Griinbaum’s Conjecture (’72):
e p3 > 2n—47




Triangles in Digon-free Arrangements

Griinbaum’s Conjecture (’72):
e p3 > 2n—47

Known:
e p3 > 4n/3 [Hershberger and Snoeyink '91]

e p3 > 4n/3 for non-simple arrangements,
tight for infinite family [Felsner and Kriegel '98]
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Triangles in Digon-free Arrangements

Griinbaum’s Conjecture (’72):
o p3 >2n—47

Known:

e p3 > 4n/3 [Hershberger and Snoeyink "91]

e p3 > 4n/3 for non-simple arrangements,
tight for infinite family [Felsner and Kriegel '98]

Our Contribution:
e disprove Grunbaum's Conjecture
® p3 < 1.45n

e New Conjecture: 4n/3 is tight

23



Triangles in Digon-free Arrangements

Theorem. The minimum number of triangles in digon-free

arrangements of n pseudocircles is
(i) 8 for 3 < n <6.
(ii) [5n] for 6 <n < 14.
(iii) < 1.45n for all n = 11k + 1 with k € N.

24
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Figure: Arrangement of n = 12 pcs with ps = 16 triangles.
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Figure: Arrangement of n = 12 pcs with ps = 16 triangles.
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e traverses 1 triangle
e forms 2 triangles
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Proof of the Theorem

7\
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Proof of the Theorem
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Proof of the Theorem
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Proof of the Theorem

start with 61 := %o

merge 6 and 10 — Gpiq

n(Q@]{) = 11k + 1, pg((@k) — 16k

16k _ ihcreases as k increases with limit % = 1.45

11k+1




Proof of the Theorem

start with 61 := %o

merge 6 and 10 — Gpiq

/
n(Q@]{) = 11k + 1, pg((@k) — 16k

maintain the path!

16k _ ihcreases as k increases with limit % = 1.45

11k+1




Triangles in Digon-free Arrangements

Theorem. The minimum number of triangles in digon-free

arrangements of n pseudocircles is
(i) 8 for 3 < n <6.
(ii) [5n] for 6 <n < 14.
(iii) < 1.45n for all n = 11k + 1 with k € N.

Conjecture. [4n/3] is tight for infinitely many n.

29



Triangles in Digon-free Arrangements

e d unique arrangement </\/6A with n =6, p3 = 8

o 6A appears as a subarrangement of every arr. with
p3<2n—4forn=7,8,9

A . : :
e N is non-circularizable

30



Triangles in Digon-free Arrangements

3 unique arrangement J\/6A with n =6, p3 = 8

J\/6A appears as a subarrangement of every arr. with
p3<2n—4forn=7,8,9

A . . .
Ng~ is non-circularizable

= Grunbaum’s Conjecture

might still be true for

arrangements of circles!

30



Triangles in Arrangements with Digons

Theorem. p3 > 2n/3

31



Triangles in Arrangements with Digons

Theorem. p3 > 2n/3

Intersecting

Proof. ¥

e (... pseudocircle in &

e All incident digons lie on the same side of C.

_ / digon
digon —
@ C /

/
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Triangles in Arrangements with Digons

Theorem. p3 > 2n/3

Intersecting

Proof. ¥

e (... pseudocircle in &

e All incident digons lie on the same side of C.

ﬁred—blue Intersection possible!
digon —
Q C /

/

31



Triangles in Arrangements with Digons

Theorem. p3 > 2n/3

Proof.

e (... pseudocircle in &
e All incident digons lie on the same side of C.

e d two digons or triangles on each side of

[Hershberger and Snoeyink '91] . ]

31



Triangles in Arrangements with Digons

Theorem. p3 > 2n/3

Conjecture. p3 >n —1

N

) ("




Maximum Number of Triangles

Theorem. p; < 2n? 4+ O(n)
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Maximum Number of Triangles

Theorem. p; < 2n? 4+ O(n)

o (%) construction for infinitely many values of n,

based on pseudoline arrangements [Blanc '11]

NN N AN N
XK X X XN
X XXX
X X XX X
XX XX
X X X XX

NSNS NS N\




Maximum Number of Triangles
Theorem. p; < 2n? 4+ O(n)

o (%) construction for infinitely many values of n,

based on pseudoline arrangements [Blanc '11]

e Question: p3 < 5(4) +O(1) ?
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Maximum Number of Triangles

Theorem. p; < 2n? 4+ O(n)

4

o (%) construction for infinitely many values of n,

based on pseudoline arrangements [Blanc '11]

e Question: p3 < 5(3) +0(1) ?

n 2 3|4 5| 6|7 8 9 10
simple 0|8 |8 |13 |20 |[29]|| >37 | >48 | > 60
+digon-free | - | 8 | 8 | 12 | 20 (|29 > 37 | > 48 | > 60
15 (5)] 1|4 |8|13 |20 |28 37 48 60




Theorem. p; < 2n? 4+ O(n)

(5

e Question: p3 < 5(3) +0(1) ?

4
3

Maximum Number of Triangles

) construction for infinitely many values of n,

based on pseudoline arrangements [Blanc '11]

e

circularizablel

n 2 3|4 5| 6|7 8 9 10
simple 0|8 |8 |13 |20 |[29]|| >37 | >48 | > 60
+digon-free | - | 8 | 8 | 12 | 20 (|29 > 37 | > 48 | > 60
15 (5)] 1|4 |8|13 |20 |28 37 48 60
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Maximum Number of Triangles

Theorem. p; < 2n? 4+ O(n)
Proof:
o ...arrangement of n > 4 pseudocircles

X ...set of crossings (vertices of graph)
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Maximum Number of Triangles

Theorem. p; < 2n? 4+ O(n)
Proof:

o ...arrangement of n > 4 pseudocircles

X ...set of crossings (vertices of graph)

Claim A: No vertex is incident to 4 triangular cells.

é Intersecting, n > 4

N\
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Maximum Number of Triangles

Theorem. p; < 2n? 4+ O(n)
Proof:
o ...arrangement of n > 4 pseudocircles

X ...set of crossings (vertices of graph)

Claim A: No vertex is incident to 4 triangular cells.

X' ...crossings incident to precisely 3 triangles

33



Maximum Number of Triangles

Outline:
e We will show | X’| = O(n).
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Maximum Number of Triangles

Outline:
e We will show | X’| = O(n).

e = #£ of triangles incident to a crossing from X’ is O(n).
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Maximum Number of Triangles

Outline:
e We will show | X’| = O(n).

e = #£ of triangles incident to a crossing from X’ is O(n).

e each crossing of Y := X \ X' is incident to at most
2 triangles

e each remaining triangle is incident to 3 crossings of Y

f

not incident to any vertex from X’

34



Maximum Number of Triangles

Outline:

We will show | X'| = O(n).
= #¢ of triangles incident to a crossing from X’ is O(n).

each crossing of Y := X \ X’ is incident to at most
2 triangles

each remaining triangle is incident to 3 crossings of Y

Since |Y| < |X| =n(n —1), we count

2 2
ps < 5[Y[+0(n) < 2n” 4+ O(n)
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Maximum Number of Triangles

Claim B: Two adjacent crossings u, v in X’ share two
triangles.

/

é three intersections \
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Maximum Number of Triangles

Claim B: Two adjacent crossings u, v in X’ share two
triangles.

Claim C: Let u, v, w be three distinct crossings in X’.
If u is adjacent to both v and w, then v is adjacent to w.

(If both edges uv and uw are incident to two triangles,
then uvw form a triangle)

35



Maximum Number of Triangles

Claim B: Two adjacent crossings u, v in X’ share two
triangles.

Claim C: Let u, v, w be three distinct crossings in X’.
If u is adjacent to both v and w, then v is adjacent to w.

= each connected comp. of the graph induced by X' is
either singleton, edge, or triangle.




Maximum Number of Triangles

We can convert crossings of X' into digons using A-flips!
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Maximum Number of Triangles

We can convert crossings of X' into digons using A-flips!




Maximum Number of Triangles

We can convert crossings of X' into digons using A-flips!

There are at most O(n) digons
|[Agarwal, Nevo, Pach, Pinchasi, Sharir, Smorodinsky 2004]

= at most O(n) flips
= |X’| at most O(n)

= p3 < %712 + O(n)

36






