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Definitions

pseudocircle . . . simple closed curve

arrangement . . . collection of pcs. s.t. intersection of any
two pcs. either empty or 2 points where curves cross

touching!

arrangement arrangement no arrangement

2



Definitions
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arrangement . . . collection of pcs. s.t. intersection of any
two pcs. either empty or 2 points where curves cross

arrangement arrangement arrangement
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Definitions

simple . . . no 3 pcs. intersect in common point

connected . . . intersection graph is connected

assumptions
throughout
presentation

Krupp NonKrupp 3-Chain

circleable . . . ∃ isomorphic arrangement of circles
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Plane VS Sphere

• circleability

• isomorphism
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Classes of Arrangements

connected . . . graph of arrangement is connected

Krupp NonKrupp 3-Chain
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Classes of Arrangements

intersecting . . . any 2 pseudocircles cross twice

connected . . . graph of arrangement is connected

Krupp NonKrupp
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Classes of Arrangements

intersecting . . . any 2 pseudocircles cross twice

connected . . . graph of arrangement is connected

arr. of great-pseudocircles . . . any 3 pcs. form a Krupp

digon-free . . . no cell bounded by two pcs.
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Classes of Arrangements

cylindrical . . . ∃ two cells separated by each of the pcs.

intersecting . . . any 2 pseudocircles cross twice

connected . . . graph of arrangement is connected

arr. of great-pseudocircles . . . any 3 pcs. form a Krupp

digon-free . . . no cell bounded by two pcs.
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Classes of Arrangements

intersecting . . . any 2 pseudocircles cross twice

connected . . . graph of arrangement is connected

arr. of great-pseudocircles . . . any 3 pcs. form a Krupp

4
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1 greatcircle arr.

8 intersecting arrangements

21 connected arrangements
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Enumeration of Arrangements

n 3 4 5 6 7

connected 3 21 984 609 423 ?

+digon-free 1 3 30 4 509 ?

intersecting 2 8 278 145 058 447 905 202

+digon-free 1 2 14 2 131 3 012 972

great-p.c.s 1 1 1 4 11

Table: # of combinatorially different arragements of n pcs.

6



Enumeration of Arrangements

n 3 4 5 6 7

connected 3 21 984 609 423 ?

+digon-free 1 3 30 4 509 ?

intersecting 2 8 278 145 058 447 905 202

+digon-free 1 2 14 2 131 3 012 972

great-p.c.s 1 1 1 4 11

Table: # of combinatorially different arragements of n pcs.

arrangements of pcs: 2Θ(n2)

arrangements of circles: 2Θ(n log n)
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Counting Arrangements of Pseudocircles

• dual graph is quadrangulation on O(n2) vertices
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• ⇒ Upper bound: 2O(n2) non-isomorphic arrangements

• Tutte’62: 2Θ(m) triangulations on m vertices

• Lower bound: 2Ω(n2) non-isomorphic arrangements
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Counting Arrangements of Pseudocircles

• dual graph is quadrangulation on O(n2) vertices

• ⇒ Upper bound: 2O(n2) non-isomorphic arrangements

Theorem: There are 2Θ(n2) arrangements on n pcs.

• Tutte’62: 2Θ(m) triangulations on m vertices

• Lower bound: 2Ω(n2) non-isomorphic arrangements
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Counting Arrangements of Circles

• Upper bound: arrangement changes if a triangle ”flips”

4-flip
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Counting Arrangements of Circles

• Upper bound: arrangement changes if a triangle ”flips”

• we sketch the proof for line-arrangements

4-flip
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Counting Arrangements of Circles

• lines l1, . . . , ln given by li : yi = aix+ bi
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Counting Arrangements of Circles

• li, lj , and lk meet in a common point

⇐⇒ det

 1 1 1
ai aj ak
bi bj bk

 = 0

• lines l1, . . . , ln given by li : yi = aix+ bi

li

lj

lk
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Counting Arrangements of Circles

• li, lj , and lk meet in a common point

⇐⇒ det

 1 1 1
ai aj ak
bi bj bk

 = 0

• system of
(
n
3

)
quadratic polynomials in 2n variables

• lines l1, . . . , ln given by li : yi = aix+ bi

li

lj

lk

• simple arr. ⇔ all polynomials non-zero
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Counting Arrangements of Circles

• Milnor–Thom Theorem:
the number of cells in Rd induced by zero set of
m polynomials of degree ≤ D is at most (50Dm/d)d
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Counting Arrangements of Circles

• Milnor–Thom Theorem:
the number of cells in Rd induced by zero set of
m polynomials of degree ≤ D is at most (50Dm/d)d

2n

2
n3 nO(n) = 2O(n log n)

• Upper bound: 2O(n log n)
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Counting Arrangements of Circles

1

2

3

4 1

2

4

3

• Lower bound: # of permutations
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Counting Arrangements of Circles

1

2

3

4
1

2

4

3

• Lower bound: # of permutations
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Counting Arrangements of Circles

Theorem: There are 2Θ(n log n) arrangements on n circles.
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Part I: Circleability
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Circleability Results

• non-circleability of intersecting n = 6 arrangement
[Edelsbrunner and Ramos ’97]
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Circleability Results

• non-circleability of intersecting n = 6 arrangement
[Edelsbrunner and Ramos ’97]

• non-circleability of n = 5 arrangement
[Linhart and Ortner ’05]

• circleability of all n = 4 arrangements
[Kang and Müller ’14]

• NP-hardness of circleability
[Kang and Müller ’14]
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Circleability Results

Theorem. There are exactly 4 non-circleable n = 5

arrangements (984 classes).
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Theorem. There are exactly 4 non-circleable n = 5

arrangements (984 classes).
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Non-Circleability of N1
5

13



Non-Circleability of N1
5

d

b

a

c

• assume there is a circle representation of N1
5

• shrink the yellow, green, and red circle

• cyclic order is preserved (also for blue)
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d

b

a

c

• assume there is a circle representation of N1
5

• shrink the yellow, green, and red circle

• cyclic order is preserved (also for blue)

inzidence-theorem
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Non-Circleability of N1
5

d

b

a

c

• assume there is a circle representation of N1
5

• shrink the yellow, green, and red circle

• cyclic order is preserved (also for blue)

• contradiction: 4 crossings inzidence-theorem
13



Circleability Results

Theorem. There are exactly 3 non-circleable digon-free

intersecting n = 6 arrangements (2131 classes).
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Circleability Results

Theorem. There are exactly 3 non-circleable digon-free

intersecting n = 6 arrangements (2131 classes).

N4
6 is unique digon-free intersecting

with 8 triangular cells

Grünbaum Conjecture: p3 ≥ 2n− 4
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Non-Circleability Proof of N4
6

Proof.

based on sweeping argument in 3-D
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Non-Circleability Proof of N4
6

C1, . . . , C6 . . . circles (on S2)

E1, . . . , E6 . . . planes (in R3)

Proof.
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Non-Circleability Proof of N4
6

C1, . . . , C6 . . . circles (on S2)

E1, . . . , E6 . . . planes (in R3)

move planes away from the origin

Proof.

Ei moves to t · Ei as t→∞
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Non-Circleability Proof of N4
6

C1, . . . , C6 . . . circles (on S2)

E1, . . . , E6 . . . planes (in R3)

move planes away from the origin

Proof.

no great-circle arr. ⇒ events occur

not all planes contain the origin
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Non-Circleability Proof of N4
6

C1, . . . , C6 . . . circles (on S2)

E1, . . . , E6 . . . planes (in R3)

move planes away from the origin

first event is triangle flip (@ digons)

Proof.

no great-circle arr. ⇒ events occur
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Non-Circleability Proof of N4
6

C1, . . . , C6 . . . circles (on S2)

E1, . . . , E6 . . . planes (in R3)

move planes away from the origin

first event is triangle flip (@ digons)

but triangle flip not possible because all
triangles in NonKrupp. Contradiction.

Proof.

no great-circle arr. ⇒ events occur

15



Non-Circularizability Proof of N2
6

C1, . . . , C6 . . . circles

E1, . . . , E6 . . . planes

Proof. (similar)
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Non-Circularizability Proof of N2
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Non-Circularizability Proof of N2
6

C1, . . . , C6 . . . circles

E1, . . . , E6 . . . planes

move planes towards the origin

∃ NonKrupp subarr. ⇒ events occur

Proof. (similar)

∃ point of intersection
outside the unit-sphere

(will move inside)
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Non-Circularizability Proof of N2
6

C1, . . . , C6 . . . circles

E1, . . . , E6 . . . planes

move planes towards the origin

∃ NonKrupp subarr. ⇒ events occur

Proof. (similar)

first event is triangle flip (@ digons)

16



Non-Circularizability Proof of N2
6

C1, . . . , C6 . . . circles

E1, . . . , E6 . . . planes

move planes towards the origin

but triangle flip not possible because
all triangles in Krupp. Contradiction.

∃ NonKrupp subarr. ⇒ events occur

Proof. (similar)

first event is triangle flip (@ digons)
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Great-(Pseudo)Circles

Great-Circle Theorem:

An arrangement of great-pcs. is circleable (i.e., has a circle

representation) if and only if it has a great-circle repr.
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An arrangement of great-pcs. is circleable (i.e., has a circle

representation) if and only if it has a great-circle repr.

Proof.

• C1, . . . , Cn . . . circles E1, . . . , En . . . planes

• move planes towards the origin

• all triples Krupp
⇒ all intersections remain inside
⇒ no events
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Great-(Pseudo)Circles

Great-Circle Theorem:

An arrangement of great-pcs. is circleable (i.e., has a circle

representation) if and only if it has a great-circle repr.

Proof.

• C1, . . . , Cn . . . circles E1, . . . , En . . . planes

• move planes towards the origin

• all triples Krupp
⇒ all intersections remain inside
⇒ no events

• we obtain a great-circle arrangement
17



Great-(Pseudo)Circles

Great-Circle Theorem:

An arrangement of great-pcs. is circleable (i.e., has a circle

representation) if and only if it has a great-circle repr.
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Great-(Pseudo)Circles

Great-Circle Theorem:

An arrangement of great-pcs. is circleable (i.e., has a circle

representation) if and only if it has a great-circle repr.

Corollaries:

• ∀ non-stretchable arr. of pseudolines
∃ corresponding non-circleable arr. of pseudocircles
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Great-(Pseudo)Circles

Great-Circle Theorem:

An arrangement of great-pcs. is circleable (i.e., has a circle

representation) if and only if it has a great-circle repr.

Corollaries:

• deciding circleability is ∃R-complete

• ∀ non-stretchable arr. of pseudolines
∃ corresponding non-circleable arr. of pseudocircles

( NP ⊆ ∃R ⊆ PSPACE )
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Great-(Pseudo)Circles

Great-Circle Theorem:

An arrangement of great-pcs. is circleable (i.e., has a circle

representation) if and only if it has a great-circle repr.

Corollaries:

• ∃ infinite families of minimal non-circ. arrangements

• deciding circleability is ∃R-complete

• ∀ non-stretchable arr. of pseudolines
∃ corresponding non-circleable arr. of pseudocircles

• ∃ arr with a disconnected realization space

• . . .
17



Computational Part

• find circle representations heuristically

• hard instances by hand
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Computational Part

• enumeration via recursive search on flip graph

4-flip

digon-flip
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Computational Part

• intersecting arrangements encoded via dual graph

• connected arrangements encoded via primal-dual graph

arrangement primal-dual gr. primal graph dual graph

20



Part II: Triangles in Arrangements
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Part II: Triangles in Arrangements

assumption throughout part II:

intersecting . . . any 2 pseudocircles cross twice
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Cells in Arrangements

digon, triangle, quadrangle, pentagon, . . . , k-cell

pk . . . # of k-cells

p2 = 6

p3 = 4

p4 = 8

p5 = 0

p6 = 4

22



Triangles in Digon-free Arrangements

Grünbaum’s Conjecture (’72):
• p3 ≥ 2n− 4 ?
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Triangles in Digon-free Arrangements

Grünbaum’s Conjecture (’72):

• p3 ≥ 4n/3 [Hershberger and Snoeyink ’91]

• p3 ≥ 4n/3 for non-simple arrangements,
tight for infinite family [Felsner and Kriegel ’98]

Known:

• p3 ≥ 2n− 4 ?
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Triangles in Digon-free Arrangements

Grünbaum’s Conjecture (’72):

• p3 ≥ 4n/3 [Hershberger and Snoeyink ’91]

• p3 ≥ 4n/3 for non-simple arrangements,
tight for infinite family [Felsner and Kriegel ’98]

Our Contribution:

• disprove Grünbaum’s Conjecture

• New Conjecture: 4n/3 is tight

Known:

• p3 < 1.45n

• p3 ≥ 2n− 4 ?
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Triangles in Digon-free Arrangements

Theorem. The minimum number of triangles in digon-free

arrangements of n pseudocircles is

(i) 8 for 3 ≤ n ≤ 6.

(ii) d 4
3ne for 6 ≤ n ≤ 14.

(iii) < 1.45n for all n = 11k + 1 with k ∈ N.

24



Figure: Arrangement of n = 12 pcs with p3 = 16 triangles.



Figure: Arrangement of n = 12 pcs with p3 = 16 triangles.
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• traverses 1 triangle
• forms 2 triangles

26



Proof of the Theorem
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Proof of the Theorem
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Proof of the Theorem
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Proof of the Theorem

• start with C1 := A12

• merge Ck and A12 −→ Ck+1

• n(Ck) = 11k + 1, p3(Ck) = 16k

• 16k
11k+1 increases as k increases with limit 16

11 = 1.45
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Proof of the Theorem

• start with C1 := A12

• merge Ck and A12 −→ Ck+1

• n(Ck) = 11k + 1, p3(Ck) = 16k

• 16k
11k+1 increases as k increases with limit 16

11 = 1.45

maintain the path!
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Triangles in Digon-free Arrangements

Theorem. The minimum number of triangles in digon-free

arrangements of n pseudocircles is

(i) 8 for 3 ≤ n ≤ 6.

(ii) d 4
3ne for 6 ≤ n ≤ 14.

(iii) < 1.45n for all n = 11k + 1 with k ∈ N.

Conjecture. d4n/3e is tight for infinitely many n.
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Triangles in Digon-free Arrangements

• N4
6 appears as a subarrangement of every arr. with

p3 < 2n− 4 for n = 7, 8, 9

• ∃ unique arrangement N4
6 with n = 6, p3 = 8

• N4
6 is non-circularizable

30



Triangles in Digon-free Arrangements

• N4
6 appears as a subarrangement of every arr. with

p3 < 2n− 4 for n = 7, 8, 9

• ∃ unique arrangement N4
6 with n = 6, p3 = 8

• N4
6 is non-circularizable

• ⇒ Grünbaum’s Conjecture

might still be true for

arrangements of circles!
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Triangles in Arrangements with Digons

Theorem. p3 ≥ 2n/3

31



Triangles in Arrangements with Digons

Theorem. p3 ≥ 2n/3

Proof.

• C . . . pseudocircle in A

C

digon

digon

intersecting

• All incident digons lie on the same side of C.
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Triangles in Arrangements with Digons

Theorem. p3 ≥ 2n/3

Proof.

• C . . . pseudocircle in A

no red-blue intersection possible!

C

digon

digon

intersecting

• All incident digons lie on the same side of C.
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Triangles in Arrangements with Digons

Theorem. p3 ≥ 2n/3

Proof.

• C . . . pseudocircle in A

• ∃ two digons or triangles on each side of C
[Hershberger and Snoeyink ’91] .

• All incident digons lie on the same side of C.

31



Triangles in Arrangements with Digons

Conjecture. p3 ≥ n− 1

Theorem. p3 ≥ 2n/3
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Maximum Number of Triangles

Theorem. p3 ≤ 2
3n

2 +O(n)
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Maximum Number of Triangles

Theorem. p3 ≤ 2
3n

2 +O(n)

• 4
3

(
n
2

)
construction for infinitely many values of n,

based on pseudoline arrangements [Blanc ’11]
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Maximum Number of Triangles

Theorem. p3 ≤ 2
3n

2 +O(n)

• 4
3

(
n
2

)
construction for infinitely many values of n,

based on pseudoline arrangements [Blanc ’11]

• Question: p3 ≤ 4
3

(
n
2

)
+O(1) ?

n 2 3 4 5 6 7 8 9 10

simple 0 8 8 13 20 29 ≥ 37 ≥ 48 ≥ 60

+digon-free - 8 8 12 20 29 ≥ 37 ≥ 48 ≥ 60

b 4
3

(n
2

)
c 1 4 8 13 20 28 37 48 60
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Maximum Number of Triangles

Theorem. p3 ≤ 2
3n

2 +O(n)

• 4
3

(
n
2

)
construction for infinitely many values of n,

based on pseudoline arrangements [Blanc ’11]

• Question: p3 ≤ 4
3

(
n
2

)
+O(1) ?

n 2 3 4 5 6 7 8 9 10

simple 0 8 8 13 20 29 ≥ 37 ≥ 48 ≥ 60

+digon-free - 8 8 12 20 29 ≥ 37 ≥ 48 ≥ 60

b 4
3

(n
2

)
c 1 4 8 13 20 28 37 48 60

circularizable!
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Maximum Number of Triangles

A . . . arrangement of n ≥ 4 pseudocircles

X . . . set of crossings (vertices of graph)

Theorem. p3 ≤ 2
3n

2 +O(n)

Proof:
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Maximum Number of Triangles

A . . . arrangement of n ≥ 4 pseudocircles

Claim A: No vertex is incident to 4 triangular cells.

X . . . set of crossings (vertices of graph)

intersecting, n ≥ 4

Theorem. p3 ≤ 2
3n

2 +O(n)

Proof:

4 4

44
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Maximum Number of Triangles

A . . . arrangement of n ≥ 4 pseudocircles

Claim A: No vertex is incident to 4 triangular cells.

X . . . set of crossings (vertices of graph)

X’ . . . crossings incident to precisely 3 triangles

Theorem. p3 ≤ 2
3n

2 +O(n)

Proof:

33



Maximum Number of Triangles

• We will show |X ′| = O(n).

Outline:
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Maximum Number of Triangles

• We will show |X ′| = O(n).

Outline:

• ⇒ # of triangles incident to a crossing from X ′ is O(n).
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Maximum Number of Triangles

• We will show |X ′| = O(n).

• each remaining triangle is incident to 3 crossings of Y

• each crossing of Y := X \X ′ is incident to at most
2 triangles

Outline:

• ⇒ # of triangles incident to a crossing from X ′ is O(n).

not incident to any vertex from X ′

34



Maximum Number of Triangles

• We will show |X ′| = O(n).

• each remaining triangle is incident to 3 crossings of Y

• each crossing of Y := X \X ′ is incident to at most
2 triangles

Outline:

• Since |Y | ≤ |X| = n(n− 1), we count

p3 ≤
2

3
|Y |+O(n) ≤ 2

3
n2 +O(n)

• ⇒ # of triangles incident to a crossing from X ′ is O(n).

34



Maximum Number of Triangles

Claim B: Two adjacent crossings u, v in X ′ share two
triangles.

u v

three intersections

4
4

44

4
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Maximum Number of Triangles

Claim B: Two adjacent crossings u, v in X ′ share two
triangles.

Claim C: Let u, v, w be three distinct crossings in X ′.
If u is adjacent to both v and w, then v is adjacent to w.

(If both edges uv and uw are incident to two triangles,
then uvw form a triangle)

4 4

4
N

u
v

w
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Maximum Number of Triangles

Claim B: Two adjacent crossings u, v in X ′ share two
triangles.

Claim C: Let u, v, w be three distinct crossings in X ′.
If u is adjacent to both v and w, then v is adjacent to w.

⇒ each connected comp. of the graph induced by X’ is
either singleton, edge, or triangle.

4 4 4

4N N

N
?

?

?

4 4

4 4N

N

N

N
?

?
4 4

4
N N

N

?

?

N
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Maximum Number of Triangles

4 4 4

4N N

N
?

?

?

4 4
4 4N

N

N

N
?

?
4 4

4
N N

N

?

?

N

We can convert crossings of X’ into digons using 4-flips!
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Maximum Number of Triangles

4 4 4

4N N

N
?

?

?

4 4
4 4N

N

N

N
?

?
4 4

4
N N

N

?

?

N

We can convert crossings of X’ into digons using 4-flips!

4

N

?
D

D ?

N

N

N N

4
N

N

N

?

?
?

D

D ??
4

N

NN D

DD

?
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Maximum Number of Triangles

We can convert crossings of X’ into digons using 4-flips!

There are at most O(n) digons
[Agarwal, Nevo, Pach, Pinchasi, Sharir, Smorodinsky 2004]

⇒ at most O(n) flips

⇒ |X ′| at most O(n)

⇒ p3 ≤ 2
3n

2 +O(n)
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Thank you for your attention!


