

Almost-equidistant sets

Martin Balko, Attila Pór, <u>Manfred Scheucher</u>, Konrad Swanepoel, and Pavel Valtr

Definitions

A set P of points in \mathbb{R}^d is almost-equidistant if for any 3 points there are two at unit distance

Definitions

A set P of points in \mathbb{R}^d is <u>almost-equidistant</u> if for any 3 points there are two at unit distance

f(d) ... maximum size of an almost-equidistant set in \mathbb{R}^d

Theorem (Bezdek, Nasźodi, Visy '03 and Talata '07): f(2) = 7. unique example.

Theorem (Bezdek, Nasźodi, Visy '03 and Talata '07):

f(2) = 7. unique example.

Theorem (Györey '04):

f(3) = 10. unique example.

Theorem (Bezdek, Nasźodi, Visy '03 and Talata '07):

new, simple proofs (computer-assisted)

f(2) = 7. unique example.

Theorem (Györey '04):

f(3) = 10. unique example.

Theorem: $f(4) \in \{12, 13\}$.

_

Theorem (Bezdek, Nasźodi, Visy '03 and Talata '07):

new, simple proofs (computer-assisted)

f(2) = 7. unique example.

Theorem (Györey '04):

f(3) = 10. unique example.

Theorem: $f(4) \in \{12, 13\}.$

conjectured

• dimension d=5: Clebsch graph witnesses $f(5) \geq 16$ [Larman and Rogers '72]

source of image: http://de.wikipedia.org/wiki/Clebsch-Graph

• dimension d=5: Clebsch graph witnesses $f(5) \geq 16$ [Larman and Rogers '72]

d	1	2	3	4	5	6	7	8	9
lower bnd.	4	7	10	12	16	18	20	24	24
upper bnd.	4	7	10	13	20	26	34	41	49

Lower Bound

• trivial generalization of Moser spindle gives 2d + 3

- (i) glue 2 *d*-simplices
- (ii) copy with shared top vertex
- (iii) rotate until bottom vertices unit distance

Lower Bound

- trivial generalization of Moser spindle gives 2d + 3
- ullet generalization of 10 points in \mathbb{R}^3 gives 2d+4

Upper Bound

- no K_{d+2} and complement triangle-free
- $f(d) \le R(d+2,3)$
- $R(d+2,3) \leq O(d^2/\log d)$ [Atjai, Komlós, Szemerédi '80]

Upper Bound

• no K_{d+2} and complement triangle-free

- $f(d) \le R(d+2,3)$
- $R(d+2,3) \leq O(d^2/\log d)$ [Atjai, Komlós, Szemerédi '80]

Theorem: $f(d) \le O(d^{3/2})$.

Our proof is based on Deaett's, who gave a simpler proof of Rosenfeld's result: an almost-equidistant set on a sphere with radius $1/\sqrt{2}$ in \mathbb{R}^d has at most 2d points.

Lemma: $C \dots k$ points in \mathbb{R}^d , pairw. at unit distance center $c := \frac{1}{k} \sum_{p \in C} p$ $A := \operatorname{span}(C - c)$.

Then the set of points equidistant from all points of C is the affine space $c+A^{\perp}$.

Furthermore, the intersection of all unit spheres centered at the points in C is the (d-k)-dimensional sphere of radius $\sqrt{(k+1)/(2k)}$ centered at c and contained in $c+A^{\perp}$.

$$d = 2, k = 1$$

$$d = k = 2$$

Lemma: $C \dots k$ points in \mathbb{R}^d , pairw. at unit distance center $c := \frac{1}{k} \sum_{p \in C} p$ $A := \operatorname{span}(C - c)$.

Then the set of points equidistant from all points of C is the affine space $c+A^{\perp}$.

Furthermore, the intersection of all unit spheres centered at the points in C is the (d-k)-dimensional sphere of radius $\sqrt{(k+1)/(2k)}$ centered at c and contained in $c+A^{\perp}$.

Corollary: At most d+1 points pairwise at unit distance.

Theorem: $f(d) \le O(d^{3/2})$.

Proof: Let $d \geq 2$, $V \subseteq \mathbb{R}^d$ be an almost-equidistant set, G = (V, E) unit-distance graph of V, and let $k := \lfloor 2\sqrt{d} \rfloor$.

Theorem: $f(d) \leq O(d^{3/2})$.

Proof: Let $d \geq 2$, $V \subseteq \mathbb{R}^d$ be an almost-equidistant set, G = (V, E) unit-distance graph of V, and let $k := \lfloor 2\sqrt{d} \rfloor$. Let $S \subseteq V$ be a set of k points, pairwise at unit distance. If no such set exists, then

$$|V| < R(k,3) \le {k+3-2 \choose 3-1} < {2\sqrt{d+1} \choose 2} = 2d + \sqrt{d}.$$

Thus we assume S exists.

Theorem: $f(d) \le O(d^{3/2})$.

Proof: Let $d \geq 2$, $V \subseteq \mathbb{R}^d$ be an almost-equidistant set, G = (V, E) unit-distance graph of V, and let $k := \lfloor 2\sqrt{d} \rfloor$. Let $S \subseteq V$ be a set of k points, pairwise at unit distance.

 $B:=\{x\in V\colon \|x-s\|=1\ \forall s\in S\}$ (common neighbors).

Since V is a.e.d., the set of non-neighbors of any vertex form a clique. By Corollary, size at most d+1.

Theorem: $f(d) \leq O(d^{3/2})$.

Proof: Let $d \geq 2$, $V \subseteq \mathbb{R}^d$ be an almost-equidistant set, G = (V, E) unit-distance graph of V, and let $k := \lfloor 2\sqrt{d} \rfloor$. Let $S \subseteq V$ be a set of k points, pairwise at unit distance.

 $B:=\{x\in V\colon \|x-s\|=1\; \forall s\in S\}$ (common neighbors).

Since V is a.e.d., the set of non-neighbors of any vertex form a clique. By Corollary, size at most d+1.

Every vertex of $V\setminus B$ is non-neighbor of some vertex of S, thus $|V\setminus B|\leq k(d+1)$.

Apply Lemma to S, B lies on a sphere of radius $\sqrt{(k+1)/(2k)}$ in affine subspace of dimension d-k+1.

... and bit of linear algebra to bound |B| ...

Upper Bound

Recent improvements:

___ use ideas from our proof

- Polyanskii: $O(n^{13/9})$
- Kupavskii, Mustafa, Swanepoel: $O(n^{4/3})$
- Polyanskii: $O(n^{4/3})$ (new proof)

Remark

3D visualization via SageMath

Thank you for your attention!