The price of spite in Spot Checking Games

Guillaume Sagnol

joint work wit Ralf Borndörfer, Thomas Schlechte, Elmar Swarat.

Zuse Institut Berlin (ZIB)

Sep 30, University of Patras
Truck toll in Germany

A Huge and original system

- Started in 2005
- Tax based on distance and truck category (avg price: 0.17 Euro/km)
- Total revenue around 3 Billion Euros / year
- No toll barriers
Truck toll in Germany

A Huge and original system

- Started in 2005
- Tax based on distance and truck category (avg price: 0.17 Euro/km)
- Total revenue around 3 Billion Euros / year
- No toll barriers

Goal of this work
Study optimal patrolling strategy to enforce the payment of tolls in transportation networks, from a game-theoretic point of view
1 Spot checking games

2 Computation of Equilibria
 - Nash Equilibria: LP
 - Computing a Stackelberg Equilibrium is NP-hard

3 The price of Spite

4 Numerical Results
A simple, general model

Notation

\[G = (V, E) \quad : \quad \text{Graph of the network} \]
\[C \quad : \quad \text{set of weighted commodities } (s_k, t_k, x_k)_{k \in K} \]
\[w_e \quad : \quad \text{cost for taking } e \in E \text{ (travel charge + toll fare)} \]
A simple, general model

Notation

\[G = (V, E) \] : Graph of the network
\[C \] : set of weighted commodities \((s_k, t_k, x_k)_{k \in K}\)
\[w_e \] : cost for taking \(e \in E\) (travel charge + toll fare)

\[q_e \] : Probability that an inspector is on section \(e \in E\)
\[\sigma_e = \pi_e P \] : Expected penalty to pay for evading on \(e\), conditionally to the presence of an inspector

\[\beta_e \] : Reward for the inspector for each user taking \(e\)
1. Transit system with fixed access fare T.
Model examples: underlying Graph

1. Transit system with fixed access fare \(T \).

\[
\begin{align*}
 w_1 &= c_1 \\
 \sigma_1 q_1 &= 0 \\
 w_2 &= c_2 \\
 \sigma_2 q_2 &= 0 \\
 w_3 &= c_3 \\
 \sigma_3 q_3 &= 0 \\
 w_{ad} &= c_1 + c_3 + T \\
 \sigma_{ad} &= 0 \\
 w_4 &= c_4 \\
 \sigma_4 q_4 &= 0 \\
 w_{ce} &= c_4 + c_5 + T \\
 \sigma_{ce} &= 0 \\
 w_5 &= c_5 \\
 \sigma_5 q_5 &= 0
\end{align*}
\]

commodity set: \(\mathcal{K} = \{ a \to d, c \to e \} \)
2. Motorway Network with alternative, toll-free trunk roads

Model examples: underlying Graph

TOLL EVASION LAYER

TRANSITION EDGES ($\sigma = 0$, transition cost τ)

MOTORWAY & SHORTCUTS ($\sigma = 0$)
Spot-checking games

Given:
DiGraph $G = (V, E)$ with edge weights $(w_e, \sigma_e, \beta_e)_{e \in E}$,
and a set of commodities $C = \{(s_k, t_k, x_k) : k \in K\}$.

We use the standard approximation

$$1 - \prod_{e \in r} (1 - q_e \pi_e) \simeq \sum_{e \in r} q_e \pi_e$$

Expected loss for network user choosing path r

$$\Pi_k(r) = -\left(\sum_{e \in r} w_e + q_e \sigma_e \right)$$
Players and Payoffs in a SC game

- The network user chooses a multicommodity flow $p \in \mathcal{F}$
- The inspector chooses control intensities $q \in Q$
- Payoff for the network user:

$$\Pi_U = -\sum_e p_e (w_e + \sigma_e q_e)$$

- Payoff for the inspector:

$$\Pi_I = \sum_e p_e (\beta_e + \alpha \sigma_e q_e)$$

Typically,
- $\beta_e \leq w_e$.
- $\alpha = 1$ (MAXPROFIT) or $\alpha = 0$ (MAXTOLL)
Set of Inspector’s strategies \mathcal{Q}

1. Ideal distribution of γ controllers

$$\mathcal{Q} = \{ q \in [0, 1]^E : \sum_e q_e = \gamma \}$$

2. Feasible Duty rosters

Define \mathcal{Q} as the set of unit flows in a cyclic duty graph:
Outline

1. Spot checking games

2. Computation of Equilibria
 - Nash Equilibria: LP
 - Computing a Stackelberg Equilibrium is NP-hard

3. The price of Spite

4. Numerical Results
Game Theory Background

<table>
<thead>
<tr>
<th>Player</th>
<th>Strategy</th>
<th>Payoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspector</td>
<td>$q \in Q$</td>
<td>$\Pi_I(p, q)$</td>
</tr>
<tr>
<td>$\forall k \in K$, Player k</td>
<td>$p_k \in \mathcal{P}_k$</td>
<td>$\Pi_k(p_k, q)$</td>
</tr>
</tbody>
</table>
Game Theory Background

<table>
<thead>
<tr>
<th>Player</th>
<th>Strategy</th>
<th>Payoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspector</td>
<td>$q \in Q$</td>
<td>$\Pi_I(p, q)$</td>
</tr>
<tr>
<td>$\forall k \in K$, Player k</td>
<td>$p_k \in P_k$</td>
<td>$\Pi_k(p_k, q)$</td>
</tr>
</tbody>
</table>

Best response strategies

$p^* \in BR(q) \iff \forall k \in K, \forall p'_k \in P_k, \quad \Pi_k(p^*_k, q) \geq \Pi_k(p'_k, q)$; $q^* \in BR(p) \iff \forall q' \in Q, \quad \Pi_I(p, q^*) \geq \Pi_I(p, q')$;
Game Theory Background

<table>
<thead>
<tr>
<th>Player</th>
<th>Strategy</th>
<th>Payoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspector</td>
<td>$q \in \mathcal{Q}$</td>
<td>$\Pi_I(p, q)$</td>
</tr>
<tr>
<td>$\forall k \in \mathcal{K}$, Player k</td>
<td>$p_k \in \mathcal{P}_k$</td>
<td>$\Pi_k(p_k, q)$</td>
</tr>
</tbody>
</table>

Best response strategies

$p^* \in BR(q) \iff \forall k \in \mathcal{K}, \forall p'_k \in \mathcal{P}_k, \Pi_k(p_k^*, q) \geq \Pi_k(p'_k, q)$;

$q^* \in BR(p) \iff \forall q' \in \mathcal{Q}, \Pi_I(p, q^*) \geq \Pi_I(p, q')$;

Nash Equilibrium

(p^*, q^*) is a *Nash equilibrium* iff $p^* \in BR(q^*)$ and $q^* \in BR(p^*)$.

G. Sagnol

Spot Checking Games, SAGT 2014
Game Theory Background

<table>
<thead>
<tr>
<th>Player</th>
<th>Strategy</th>
<th>Payoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspector</td>
<td>$q \in \mathcal{Q}$</td>
<td>$\Pi_I(p, q)$</td>
</tr>
<tr>
<td>$\forall k \in \mathcal{K}$, Player k</td>
<td>$p_k \in \mathcal{P}_k$</td>
<td>$\Pi_k(p_k, q)$</td>
</tr>
</tbody>
</table>

Best response strategies

$p^* \in BR(q) \iff \forall k \in \mathcal{K}, \forall p'_k \in \mathcal{P}_k$, $\Pi_k(p^*_k, q) \geq \Pi_k(p'_k, q)$;

$q^* \in BR(p) \iff \forall q' \in \mathcal{Q}$, $\Pi_I(p, q^*) \geq \Pi_I(p, q')$;

Nash Equilibrium

(p^*, q^*) is a Nash equilibrium iff $p^* \in BR(q^*)$ and $q^* \in BR(p^*)$.

Strong Stackelberg equilibrium

(p^*, q^*) is a SSE iff $(p^*, q^*) \in \arg \max_{p \in BR(q)} \Pi_I(p, q)$.

G. Sagnol

Spot Checking Games, SAGT 2014 10/24
Nash Equilibria

Theorem
Although non zero-sum, a Nash equilibrium of the spot-checking game can be found by Linear Programming:

\[
\begin{align*}
\max_{q, \lambda, y} \quad & \sum_{k} x_k \lambda_k \\
\text{s. t.} \quad & y^s_v - y^s_u \leq w(u,v) + \sigma(u,v) q(u,v), \quad \forall s \in V, \forall (u, v) \in E; \quad (1b) \\
& y^s_s = 0, \quad \forall s \in V; \quad (1c) \\
& \lambda_k \leq y^\text{src}(k) \quad \forall k \in K \quad (1d) \\
& q \in Q \quad (1e)
\end{align*}
\]
Theorem
Although non zero-sum, a Nash equilibrium of the spot-checking game can be found by Linear Programming:

\[
\begin{align*}
\max_{q, \lambda, y} & \quad \sum_k x_k \lambda_k \left(+ \sum_e p_e (\beta_e - \alpha w_e) \right) \\
\text{s. t.} & \quad y_v^s - y_u^s \leq w_{(u,v)} + \sigma_{(u,v)} q_{(u,v)}, \quad \forall s \in V, \forall (u, v) \in E; \\
& \quad y_s^s = 0, \quad \forall s \in V; \\
& \quad \lambda_k \leq y_{\text{src}(k)}^{\text{dst}(k)}, \quad \forall k \in K \\
& \quad q \in Q
\end{align*}
\]
Matrix form of SC games

Observe that SC games can be expressed as bimatrix games (modulo the fact that p and q belong to polyhedra rather than standard probability simplexes):

$$\Pi_U = - \sum_e p_e (w_e + \sigma_e q_e) = -p^T \left(\frac{1}{\gamma} w 1^T + \text{diag}(\sigma) \right) q$$

$$\Pi_I = \sum_e p_e (\beta_e + \sigma_e q_e) = p^T \left(\frac{1}{\gamma} \beta 1^T + \alpha \text{diag}(\sigma) \right) q$$

For $\alpha = 1$, the game has a nice “zero-sum + costs” structure:

$$\Pi_U + \Pi_I = \sum_e p_e (\beta_e - w_e)$$
Complexity of polymatrix games

- It is known that NE of \textit{pairwise zero-sum} games can be computed by linear programming (extension of the minimax theorem, [Cai & Daskalakis, 2011])
- It is known that it is NP hard to compute the SSE of a polymatrix game [Conitzer & Sandholm, 2011]
- But what about SSE for \textit{pairwise zero-sum} polymatrix games?
Complexity of polymatrix games

- It is known that NE of *pairwise zero-sum* games can be computed by linear programming (extension of the minimax theorem, [Cai & Daskalakis, 2011]
- It is known that it is NP hard to compute the SSE of a polymatrix game [Conitzer & Sandholm, 2011]
- But what about SSE for *pairwise zero-sum* polymatrix games?

Theorem

It is NP hard to compute a SSE in a SC game, even when $\alpha = 1$ and every user has only 2 possible routes.
Complexity of polymatrix games

- It is known that NE of *pairwise zero-sum* games can be computed by linear programming (extension of the minimax theorem, [Cai & Daskalakis, 2011]
- It is known that it is NP hard to compute the SSE of a polymatrix game [Conitzer & Sandholm, 2011]
- But what about SSE for *pairwise zero-sum* polymatrix games?

Theorem

It is NP hard to compute a SSE in a SC game, even when \(\alpha = 1 \) and every user has only 2 possible routes.

Corollary

It is NP hard to compute a SSE in a polymatrix game, even when the game is pairwise zero-sum.
Outline

1. Spot checking games

2. Computation of Equilibria
 - Nash Equilibria: LP
 - Computing a Stackelberg Equilibrium is NP-hard

3. The price of Spite

4. Numerical Results
Efficiency of a strategy: Inspector payoff in the Stackelberg model:

\[H(q) := \max_{p \in BR(q)} \sum_{e \in E} p_e(\alpha \sigma_e q_e + \beta_e). \]

Define \(N \subseteq Q \): set of NE strategies of the inspector:

\(q \) is in \(N \) if it maximizes \(\sum_k x_k \text{ spl}_k(w_e + \sigma_e q_e) \).

Definition

Price of spite:

\[\text{PoS} := \frac{\max_{q \in Q} H(q)}{\min_{q \in N} H(q)}. \]
An *a posteriori* bound

(For simplicity, we assume $\alpha = 1$)

For a feasible multicommodity flow $p \in \mathcal{F}$, define

$$d(p) = \sum_{e} p_e (w_e - \beta_e)$$

Define $d_{\text{min}} := \min\{d(p) : p \in \mathcal{F}\}$.

Proposition

Let \mathcal{G} be a SC game such that $w_e \geq \beta_e$ for all $e \in E$. Let:

- (p^*, q^*) be a NE of \mathcal{G};
- \hat{p} be a tie-breaking best response to q^*.

Then, for all $q \in \mathcal{Q}$ we have:

$$H(q) \leq H(q^*) + d(\hat{p}) - d_{\text{min}}.$$
An instance with unbounded PoS

Edge labelled with (w_e, σ_e, β_e).

$Q = \{0 \leq q \leq 1 : \sum_e q_e = 2\}$.
Assumptions for a distance-based toll

So we need additional assumptions to bound the PoS. Denote by l_e the length of edge e, and set $\ell_k := \text{spl}_k(l_e)$.

1. **Partition of the edge set in three classes:**

\[
\begin{align*}
we &= (b + f)l_e, \quad \beta_e = fl_e, \quad \sigma_e = 0 & \text{if } e \in E_P \quad \text{(pay edge)} \\
we &\geq bl_e, \quad \beta_e = 0, \quad \sigma_e > 0 & \text{if } e \in E_E \quad \text{(evasion edge)} \\
w_e &\geq 0, \quad \beta_e = \sigma_e = l_e = 0 & \text{if } e \in E_D \quad \text{(dummy edge)}
\end{align*}
\]

2. For each commodity, there is a (s_k, t_k)—path R^k_{pay} with no evasion edge, s.t. $\sum_{e \in R^k_{\text{pay}}} w_e = (b + f)\ell_k$.

3. There exists a uniform control strategy $q^U \in Q$ on the evasion edges, and q^U_e is proportional to $\sigma_e^{-1}l_e$ on the evasion edges, that is, $\exists u > 0 : \forall e \in E_E, q^U_e = u \frac{l_e}{\sigma_e}$.
A parametrized bound

Theorem
Consider an SC game \mathcal{G} satisfying assumptions (A1)-(A3). Then, the price of spite of \mathcal{G} is bounded from above by $\max \left(1, \frac{f}{\alpha u}\right)$.

A parametrized bound

Theorem
Consider an SC game G satisfying assumptions (A1)-(A3). Then, the price of spite of G is bounded from above by $\max \left(1, \frac{f}{\alpha u} \right)$.

Proof:
- Let $\mathcal{L} := \sum_k x_k \ell_k$ be the minimum of total distance covered.
- For all $q \in Q$,
 $$H(q) \leq f \mathcal{L}.$$
- Let (p^*, q^*) be a NE:
 $$H(q^*) \geq \Pi_I(p^*, q^*) = \max_{q \in Q} \sum_{e \in E} p_e^* (\alpha \sigma_e q_e + \beta_e) \geq \min_{p \in F} \max_{q \in Q} \sum_{e \in E} p_e (\alpha \sigma_e q_e + \beta_e)$$
 $$= \max_{q \in Q} \min_{p \in F} \sum_{e \in E} p_e (\alpha \sigma_e q_e + \beta_e)$$
 $$\geq \min_{p \in F} \alpha u \sum_{e \in E_E} p_e \ell_e + f \sum_{e \in E_P} p_e \ell_e$$
 $$\geq \min(\alpha u, f) \mathcal{L}.$$
Outline

1 Spot checking games

2 Computation of Equilibria
 - Nash Equilibria: LP
 - Computing a Stackelberg Equilibrium is NP-hard

3 The price of Spite

4 Numerical Results
Experimental settings

- The Motorway network is divided into control regions. We solve the problem independently on each region.
- Real traffic data (averaged over time for the static instances).
- All instances solved with CPLEX.
- We compare the results to the naive solution, where controls are proportional to the traffic volume on each edge.
- For the static instances, the results are presented for the model with one toll-edge for each commodity, and

\[Q = \{ \mathbf{q} \in [0,1]^E : \sum_e q_e = \gamma \} . \]
Optimal control strategies

Solution of the Nash LP, $\gamma = 50$ inspector teams:

Germany
static instance:
319 nodes,
2948 edges,
5013 commodities.

“Efficiency” of this strategy (w.r.t. SSE, $\alpha = 1$) $\geq 99.3\%$.
Upper bound on the PoS: $\frac{f}{u} = 1.43$
Bounds for several instances

Nash LP solved for the Two-layer, time extended model.
Conclusion and perspectives

Conclusion

- A flexible framework to model toll enforcement problems in transportation networks
- LP and MIP formulation to compute Nash and Stackelberg strategies
- For a distance-based toll, the Nash LP remains tractable for very large instances and approximates the Stackelberg strategy that optimizes the total revenue.

Future work

- Tightness of bound, better bound on PoS ?
- Is there a FPTAS for SSE when $\alpha = 1$, and more generally in pairwise zero-sum polymatrix game ?
- Congestion