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Computerized tomography (CT)

Nobel price in physiology or medicine 1979:
Allan M. Cormack and Godfrey N. Hounsfield
(Image: first clinical CT scan, London 1971)

X-ray images from different directions

Object f : R2 → R [Radon, 1917]

Radon transform Rf(`) =
∫
`

f(x) dx , ` line in R2
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Optical diffraction

Optical diffraction occurs when the wavelength of the imaging beam is large
≈ the size of the object (µm scale)

Simulation of the scattered field from
spherical particles (size ≈ wavelength)

Image with diffraction
© Medizinische Universität Innsbruck
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Arbitrary rotations

– Sample confinement, such as fixation on a surface or embedding in
a gel, has substantial impact on biological cell clusters

– Contact-less tools for 3D manipulation based on optical and
acoustical tweezers
[Kv̊ale-Løvmo, Pressl, Thalhammer, Ritsch-Marte 2020]

– Drawback: less control about the exact movement
Video of trapped specimen (pollen)
© Medizinische Universität Innsbruck

At first
Assume we know the rotation
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Optical Diffraction Tomography (ODT)

f = 0

f 6= 0

rs r3

r1

r2

Measurement plane
r3 = rM

Incident field: Plane wave with normal r3

u inc

C Kirisits, M Quellmalz, M Ritsch-Marte, O Scherzer, E Setterqvist, G Steidl.
Fourier reconstruction for diffraction tomography of an object rotated into arbitrary orientations.
Arxiv prerpint, 2104.07990, 2021.
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Modeling of Optical Diffraction Tomography

– We have the scattered field u(r1, r2, rM) at measurement plane r3 = rM

– We want the scattering potential f(r) with supp f ⊂ Brs ⊂ R3

– Object illuminated by plane wave u inc(r) = eik0r3

– Total field utot(r) = u(r) + u inc(r) solves the wave equation

−
(
∆ + f(r) + k2

0
)

utot(r) = 0

– Rearranging yields
− (∆ + k2

0 ) u(r)− (∆ + k2
0 ) u inc(r)︸ ︷︷ ︸
=0

= f(r)
(

u(r) + u inc(r)
)

Born approximation

Assuming |u| �
∣∣u inc
∣∣, we obtain

−
(
∆ + k2

0
)

u(r) = f(r)u inc(r)
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Fourier diffraction theorem

Theorem
1. scattering potential f ∈ Lp, p > 1, where supp(f) ⊂ Brs , 0 < rs < rM,
2. incident field is a plane wave u inc(r) = eik0r3 ,
3. Born approximation is valid and u satisfies the Sommerfeld condition (u

is an outgoing wave),
4. scattered field u is measured at the plane r3 = rM.

Then √
2
π
κie−iκrMF1,2 u(k1, k2, rM)︸ ︷︷ ︸

measurements

= F f

 k1

k2

κ− k0

 , (k1, k2) ∈ R2,

where κ :=
√

k2
0 − k2

1 − k2
2 .

[Wolf 1969] [Natterer, Wuebbeling 2001] [Kak, Slaney 2001]

k1

k2

k3

−k0

Semisphere of available data in
Fourier space
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Rotation of the object

Rotation Rn(t),α(t) ∈ SO(3) around the axis n(t) ∈ S2 with angle α(t), t ∈ [0, L]

√
2
π
κie−iκrMF1,2 ut(k1, k2, rM)︸ ︷︷ ︸

measurements

= F f

Rn(t),α(t)

 k1

k2

κ− k0


︸ ︷︷ ︸

=: T(k1, k2, t)

,

where κ =
√

k2
0 − k2

1 − k2
2

We have F f(T(k1, k2, t)) on

U = {(k1, k2, t) : k2
1 + k2

2 ≤ k2
0 , t ∈ [0, L]}

We want f : R3 → C with supp f ⊂ Brs

Set T(U) for full rotation
around n = (1, 0, 0)T
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Backpropagation

Idea: Compute inverse Fourier transform of 1T(U)F f

fbp(r) := (2π)−
3
2

∫
T(U)
F f(k) eik·r dk .

Theorem
Let the rotation axis n ∈ C1([0, L], S2) and angle α ∈ C1[0, L]. Then

fbp(r) = (2π)−
3
2

∫
U
F f(T(k1, k2, t)) eiT(k1 ,k2 ,t)·r |det∇T(k1, k2, t)|

Card T−1(T(k1, k2, t)) d(k1, k2, t),

where
|det∇T(k1, k2, t)| =

k0

κ

∣∣((1− cos α)
(

n3 n′ · h − n′3n · h
)
− n3 n ·

(
n′ × h

)
sin α

)
−α′ (n1k2 − n2k1) + (n · h)

(
n1n′2 − n2n′1

)
sin α

∣∣ ,

where h := (k1, k2,±κ− k0)>.

It is complicated to determine the Crofton symbol Card(T−1(y)) algebraically (except for a constant n).
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Example: Rotation around the first axis

Backpropagation formula f±bp (r) = (2π)−
3
2

∫
U
F f(T(k1, k2, t)) eT(k1 ,k2 ,t)·r k0 |k2|

2κ d(k1, k2, t)

[Kak, Slaney 2001] [Müller, Schürmann, Guck 2016]

k1

√
2k0

k0

2k0
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Example: Half rotation

Constant rotation axis n = (1, 0, 0)>

Restricted angle α ∈ [0,π]

11

2

0

Card(T−1(y)) at section y1 = 0
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Example: Moving rotation axis

Moving rotation axes n(t) = (cos(c sin(t)), sin(c sin(t)), 0)>, for c > 0

Rotation angle α(t) = t ∈ [0, 2π)

Then

Card(T−1(y)) =

{
4 in a neighborhood of the line segment {y = (y1, 0, 0)> : 0 < y1 < 2k0 sin(c)}
2 elsewhere on T(U).
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Inversion methods
Approach 1: Inverse NDFT

– Discretize the forward problem f 7→ F f as an NDFT (non-uniform discrete Fourier transform)
– Fast algorithm for the NDFT in O

(
N3 log N

)
steps

[Dutt, Rokhlin 93], [Beylkin 95], [Potts, Steidl, Tasche 01], [Potts, Kunis, Keiner 04+]

– Computation the inverse with conjugate gradient method (CGNE)

– Cost: 2 NDFTs per iteration step
– Suitable for arbitrary rotations

Approach 2: Discrete backpropagation

– Discretize the integral in the backpropagation formula using the values of F f on T(UN)

– Cost: 1 NDFT
– Requires the computation of the Crofton symbol Card(T−1(T(k1, k2, t)))
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Test setup

– Normalized wavelength λ = 1 ⇒ k0 = 2π
λ

= 2π

– Test function f given analytically

– Compute the simulated data F f with a very fine grid
of size 5N to avoid the “inverse crime”

Simulated data: Fourier transform |F f | at 496944
nodes (constant rotation axis)
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Numerical test

Test function
slice plot r1 = 0

Inverse NDFT
(PSNR 29.52, SSIM 0.863)

Backpropagation
(PSNR 25.25, SSIM 0.366)

Grid: 80× 80× 80 = 512 000 grid points
M = 496 944 points in Fourier space

Fixed rotation axis n = (1, 0, 0)>

Computation time: Inverse NDFT: 8.1 sec (with 20 iterations), Backpropagation: 0.4 sec
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Numerical test: Rotation around other axis

Test function
slice plot r1 = 0

Inverse NDFT
(PSNR 22.94, SSIM 0.658)

Packpropagation
(PSNR 21.04, SSIM 0.341)

Grid: 80× 80× 80 = 512 000 grid points

Fixed rotation axis n = (0, 1, 0)>
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Numerical test: Shepp–Logan phantom

Test function
slice r1 = 0

Inverse NDFT
(PSNR 32.56, SSIM 0.892)

Backpropagation
(PSNR 27.81, SSIM 0.422)

Grid: 160× 160× 160 = 4 096 000 grid points
M = 4 050 624 points in Fourier space

Fixed rotation axis n = (1, 0, 0)>

Computation time: Inverse NDFT: 46 sec (with 20 iterations), Backpropagation: 10 sec
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Numerical test: Non-constant rotation axis

Test function
slice r1 = 0

Inverse NDFT
(PSNR 33.62, SSIM 0.934)

Backpropagation
(PSNR 27.55, SSIM 0.440)

Moving rotation axis
n(t) =

(
cos(π8 sin(t)), sin(π8 sin(t)), 0

)>
, t ∈ [0, 2π]
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Numerical test: Half rotation

Test function
slice r1 = 0

Inverse NDFT
(PSNR 30.80, SSIM 0.816)

Backpropagation
(PSNR 26.01, SSIM 0.324)
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Motion detection
Goal: Estimate the rotation Rt from the measurements ut at time t

Common circle approach:
– For each t we have the Fourier data F f on one semisphere
– Two semispheres intersect in a circle (arc), where F f must agree
– Find the common circle of two semispheres
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Conclusion

– Fourier diffraction theorem on Lp(Brs ), p > 1
– Backpropagation formula for arbitrary rotations
– Compared two reconstruction methodr Backpropagation is fasterr Inverse NFFT is always applicable and shows slightly better results

Future research
– Detection of rotation from data
– Application to real-world data
– Higher order approximations of wave equation
– Measuring only the intensities (phase retrieval)

Thank you for your attention!
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