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Reconstructing Functions on the Sphere from Circular Means
Funk–Radon transform

Funk–Radon transform [Funk 1911]

I Sphere Sd−1 = {ξ ∈ Rd : ‖ξ‖ = 1}
I Function f : Sd−1 → C

I Funk–Radon transform

Ff(ξ) =

∫
〈ξ,η〉=0

f(η) dλ(η)

(integrals of f along all great circles)

Goal
Reconstruct the function f from integrals Ff

I Possible for even functions f(ξ) = f(−ξ)
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Reconstructing Functions on the Sphere from Circular Means
Circular means on the sphere

Circular means on the sphere
I f : Sd−1 → C
I Mean operator integrates f along all hyperplane

sections:

Mf(ξ, t) =

∫
〈ξ,η〉=t

f(η) dλ(η), ξ ∈ Sd−1, t ∈ [−1, 1]

I integral dλ is normalized to one

I The inversion ofM is overdetermined
e.g.Mf(ξ, 1) = f(ξ)

I Reconstruct f knowingMf on a submanifold of Sd−1 × [−1, 1]
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Circular means on the sphere

Circular means on the sphere
I f : Sd−1 → C
I Mean operator integrates f along all hyperplane

sections:

Mf(ξ, t) =

∫
〈ξ,η〉=t

f(η) dλ(η), ξ ∈ Sd−1, t ∈ [−1, 1]

Singular value decomposition [Berens, Butzer & Pawelke 1961]

I Y kn spherical harmonic of degree n
I Pn,d Legendre (ultraspherical) polynomial of degree n in dimension d,

orthogonal polynomial on [−1, 1] w.r.t. the weight (1− t2)
d−3
2

Then
MY kn (ξ, t) = Y kn (ξ)Pn,d(t).
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Circular means on the sphere
I f : Sd−1 → C
I Mean operator integrates f along all hyperplane

sections:

Mf(ξ, t) =

∫
〈ξ,η〉=t

f(η) dλ(η), ξ ∈ Sd−1, t ∈ [−1, 1]

Theorem “Euler–Poisson–Darboux equation”
Let f ∈ C2(Sd−1). Denote by ∆•ξ the Laplace–Beltrami operator w.r.t. ξ ∈ Sd−1.
Then, for ξ ∈ Sd−1 and t ∈ (−1, 1), the mean operatorMf satisfies

∆•ξMf(ξ, t) =

(
(1− t2)

∂2

∂t2
− (d− 1) t

∂

∂t

)
Mf(ξ, t).
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Reconstructing Functions on the Sphere from Circular Means
Circular means on the sphere

Sobolev spaces
I Sobolev spaceHs(Sd−1) with smoothness index s ∈ R is the completion of the

space of smooth functions f : Sd−1 → C with the norm

‖f‖2Hs(Sd−1) =

∞∑
n=0

Nn,d∑
k=1

∣∣〈f, Y kn 〉∣∣2 (n+ d−2
2

)2s
I Sobolev norm inHs,r(Sd−1 × [−1, 1]) for s, r ∈ R

‖g‖2Hs,r(Sd−1×[−1,1];wd)
=

∞∑
n,l=0

Nn,d∑
k=1

∣∣∣〈g, Y kn P̃l,d〉∣∣∣2 (n+ d−2
2

)2s (
l + d−2

2

)2r
Y kn (ξ) P̃l,d(t) form orthonormal basis in L2(Sd−1 × [−1, 1];wd) with weight

wd(ξ, t) = (1− t2)
d−3
2
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Reconstructing Functions on the Sphere from Circular Means
Circular means on the sphere

Sobolev estimate ofM

Theorem
Let s ∈ R. The mean operatorM on the sphere Sd−1 extends to a bounded linear
operator

M : Hs(Sd−1)→ Hs+ d−2
2 ,0(Sd−1 × [−1, 1];wd).
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Reconstructing Functions on the Sphere from Circular Means
Circular means on the sphere

Injectivity sets of the mean operatorM
Theorem [Hielscher, Q.]

LetD ⊂ Sd−1 × [−1, 1], g0 : D → C, and let s > d−1
2 . The following are equivalent:

1. The problem
M
∣∣
D
f = g0

has a unique solution f ∈ Hs(Sd−1).
2. The Euler–Poisson–Darboux differential equation

∆•ξg(ξ, t) =

(
(1− t2)

∂2

∂t2
− (d− 1) t

∂

∂t

)
g(ξ, t).

with boundary condition g
∣∣
D

= g0 has a unique solution

g ∈ Hs+ d−2
2 ,0(Sd−1 × [−1, 1];wd).

30 September 2019 ·Michael Quellmalz 10 / 22 tu-chemnitz.de/∼qmi

tu-chemnitz.de/~qmi


Reconstructing Functions on the Sphere from Circular Means
Examples

Content

1. Funk–Radon transform

2. Circular means on the sphere

3. Examples
Circles with fixed radius
Vertical slices
Sections through a fixed point
Circles through the North Pole (z = 1)

30 September 2019 ·Michael Quellmalz 11 / 22 tu-chemnitz.de/∼qmi

tu-chemnitz.de/~qmi


Reconstructing Functions on the Sphere from Circular Means
Examples

Circles with fixed radius
For fixed z ∈ [−1, 1], compute

Tzf(ξ) =

∫
〈ξ,η〉=z

f(η) dη

Eigenvalue decomposition

TzY kn = Pn,d(z)Y
k
n

“Freak theorem” [Schneider 1969]

The set of values z for which Tz is not injective is countable and dense in [−1, 1].

This is because Tz is injective if and only if Pn,d(z) = 0 ∀n ∈ N0.
Explicit algorithm to determine if Tz is injective for given z [Rubin 2000]
Applications in Compton tomography [Moon 2016] [Palamodov 2017]
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Reconstructing Functions on the Sphere from Circular Means
Examples

Vertical slices

M(ξ, t) =

∫
〈ξ,η〉=t

f(η) ds(η), ξd = 0

I Circles perpendicular to the equator
I Injective for symmetric functions
f(ξ1, ξ2, ξ3) = f(ξ1, ξ2,−ξ3)

I Orthogonal projection onto equatorial
plane ↗ Radon transform in R2

[Gindikin, Reeds & Shepp 1994]
I Application in photoacoustic tomography

[Zangerl & Scherzer 2010]
I Singular value decomposition

[Hielscher & Q. 2016] [Rubin 2018] [Q. 2019]
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Reconstructing Functions on the Sphere from Circular Means
Examples

Planes through a fixed point [Salman 2016]

Consider an arbitrary point inside the
sphere:

(0, . . . , 0, z), 0 ≤ z < 1

Plane section through (0, . . . , 0, z) is

{η ∈ Sd−1 : 〈ξ,η〉 = zξd}.

Definition

Uzf(ξ) =

∫
〈ξ,η〉=zξd

f(η) dλ(η)

z = 0: Funk–Radon transform
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Reconstructing Functions on the Sphere from Circular Means
Examples

Connection with the Funk–Radon transform
Define

h(ξ) = π−1

(√
1 + z

1− z
π(ξ)

)
, ξ ∈ Sd−1

that consists of
1. Stereographic projection π : Sd−1 → Rd−1

2. Uniform scaling Rd−1 → Rd−1, x 7→
√

1+z
1−z x

3. Inverse stereographic projection π−1 : Rd−1 → Sd−1

We are going to see that
hmaps great circles to small circles through (0, 0, z).
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Reconstructing Functions on the Sphere from Circular Means
Examples

1) Stereographic projection π

I G ... great circle of S2
I E ... equator of S2

I G intersects E in two
antipodal points (or is identical
to E)

I π(E) = E

I π(G) is circle or line in R2 and
intersects π(E) in two
antipodal points
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2) Uniform scaling

I Uniform scaling with
factor σ =

√
1+z
1−z

I Unit circle E becomes
circle σ(π(E)) with radius σ

I σ(π(G)) intersects σ(π(E))
in two antipodal points
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3) Inverse stereographic projection π−1

I Circle with radius s becomes
circle of latitude z,
h(E)

I h(G) = π−1(σ(π(G)))
intersects h(E) in two
antipodal points

I h(G) is small circle through
(0, 0, z)
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Examples

Nullspace of Uz [Q. 2018]

For ξ ∈ Sd−1, we define ξ∗ ∈ Sd−1 as the point re-
flection of the sphere about the point (0, . . . , 0, z).

Let f ∈ L2(Sd−1). Then

Uzf = 0

if and only if for almost every ξ ∈ Sd−1

f(ξ) = − 1− z2

1 + z2 − 2zηd
f(ξ∗).

Reconstruction is unique for two center points [Agranovsky & Rubin 2019]
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Examples

Case z = 1: Circles through the North Pole [Abouelaz & Daher 1993]

Spherical Slice Transform U1f(ξ) =

∫
〈ξ,η〉=1ξd

f(η) ds(η)

I Stereographic projection turns circles into
lines in the plane
↗ Radon transform in equatorial plane Rd−1

I Injective if f is differentiable and vanishes at
the North Pole (0, . . . , 0, 1) [Helgason, 1999]

I Injective for functions L2(Sd−1) vanishing
around the North Pole [Daher 2005]

I Injective for bounded functions
f ∈ L∞(Sd−1) [Rubin 2017]

I Continuity result with Uz for z < 1 [Q. 2018]
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Reconstructing Functions on the Sphere from Circular Means
Overview

Name Definition Injectivity Range SVD

mean operator Mf(ξ, t) 3 ⊂Hd/2−1,0
even 3

Funk–Radon Mf(ξ, 0) f(ξ) = f(−ξ) =H
d−2
2

even 3

spherical section
transform

Mf(ξ, z),
z ∈ [−1, 1] fixed

3 if Pn,d(z) 6= 0 ∀n ∈ N0 ⊂H
d−2
2 3

vertical slices Mf((σ0), t),
σ ∈ Sd−2

f(ξ′, ξd) = f(ξ′,−ξd) ⊂H0, d−2
2 −

1
4

even 3

sections through
fixed point

Mf(ξ, zξd),
z ∈ (−1, 1) fixed

f even w.r.t. some
reflection in zεd

= H̃
d−2
2

z 7

sections through
North Pole

Mf(ξ, ξd) 3 for f ∈ L∞(Sd−1) 7

30 September 2019 ·Michael Quellmalz 21 / 22 tu-chemnitz.de/∼qmi

tu-chemnitz.de/~qmi


Reconstructing Functions on the Sphere from Circular Means
The end

\endinput
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