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Abstract
In this paper, we study the mathematical imaging problem of optical diffraction
tomography (ODT) for the scenario of a microscopic rigid particle rotating in
a trap created, for instance, by acoustic or optical forces. Under the influence
of the inhomogeneous forces the particle carries out a time-dependent smooth,
but irregular motion described by a set of affine transformations. The rotation
of the particle enables one to record optical images from a wide range of angles,
which largely eliminates the ‘missing cone problem’ in optics. This advan-
tage, however, comes at the price that the rotation axis in this scenario is not
fixed, but continuously undergoes some variations, and that the rotation angles
are not equally spaced, which is in contrast to standard tomographic recon-
struction assumptions. In the present work, we assume that the time-dependent
motion parameters are known, and that the particle’s scattering potential is com-
patible with making the first order Born or Rytov approximation. We prove
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a Fourier diffraction theorem and derive novel backpropagation formulae for
the reconstruction of the scattering potential, which depends on the refrac-
tive index distribution inside the object, taking its complicated motion into
account. This provides the basis for solving the ODT problem with an efficient
non-uniform discrete Fourier transform.

Keywords: optical diffraction tomography, Fourier diffraction theorem, back-
propagation, nonequispaced discrete Fourier transform, optical imaging

(Some figures may appear in colour only in the online journal)

1. Introduction

In optical diffraction tomography (ODT), see, for instance [6, 22, 23, 30, 36, 43], the three-
dimensional (3D) refractive index distribution of an object is constructed from optical mea-
surements, i.e. from intensity images or from interferometric data, taken from different angles.
The illumination directions are varied, for instance by active scanning or by means of a lenslet
array as in Fourier ptychography [38]. Alternatively, the object is embedded in a gel and
rotated while the illumination direction is kept fixed. In either case, the light propagation direc-
tions utilized to solve the inverse problem from a set of images recorded from these directions
are known. Moreover, typically the viewing directions are regularly distributed around a preva-
lent direction, which means that the viewing angles are restricted to a certain hardware-related
interval. Depending on the width of this interval, the sampling in Fourier space remains incom-
plete, which leads to artifacts in the reconstruction, such as the well-known ‘missing cone
artifact’ in optics [25, 27, 37], which can be seen, for instance, in figure 3.

The present paper is motivated by the context of carrying out ODT on a trapped particle
which is held in place by optical or acoustic forces [9]. We assume that these forces can be
employed to induce rotations of the trapped particle in a controlled way, e.g. by using holo-
graphic optical tweezers with several spots or by standing ultrasound waves. This generally
allows to view the particle from a wider range of directions than possible with illumination
scans on a fixed object, and thus leads to more complete sampling in Fourier space and con-
sequently to fewer artifacts. However, this comes at the price that the viewing directions are
then not as regularly spaced as normally the case. Even more importantly, in optical or acous-
tic trapping the particle itself is not completely immobilized and the locally acting forces are
typically inhomogeneous, so that the particle undergoes a time-dependent smooth, but com-
plicated motion described by a set of affine transformations. In a real experimental situation, a
video would be recorded and the parameters of the affine transformations, i.e. translation vec-
tor and rotation axis and angle at a given time, would have to be extracted at every sampling
time by some suitable method. In this work we assume these parameters to be known. Apart
from this, we assume that the particle can be described as a rigid body and that its center of
mass is fixed, which means we do not have any translations but only rotation around the center
of mass.

The concrete model, which we study in this paper, is based on a series of assumptions:

(a) In a lens-less imaging configuration, the object is probed with coherent light, assumed as
plane waves. The optical field (not just the intensity) is measured, either in reflection or
in transmission. This means that the full optical amplitude and phase information has to
be captured, for example interferometrically. Alternatively, we can consider data recorded
by intensity measurements, where the phase has been determined by a phase-retrieval
algorithm under suitable constraints [13].
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(b) The scattering properties of the probe only slightly deviate from the background, meaning
that linearized models assuming Born’s or Rytov’s approximation are valid. If these sim-
plifications cannot be made, methods from full waveform inversion have to be considered,
see, for instance [40]. This is not pursued here.

(c) Certain assumptions for the propagation of the light through the object have to be made,
i.e. on the forward model: if the properties of object and optical set-up allow the imag-
ing to be approximately given by geometric optics, then, mathematically, the problem
becomes analogous to inverting the 3D x-ray transform, see [3]. In this case, the optical
image resembles a projection image, and optical projection tomography can be used [33].
This is, for instance, fulfilled in low numerical aperture imaging of biological samples with
sufficient amplitude contrast, with large structures on the scale of the optical wavelength
and with limited refractive index contrast. For imaging with a higher numerical aperture
objective, and/or for samples with small structures diffracting the light beams, deviations
from geometrical optics are to be expected. In this situation diffraction models, see, for
instance the work of Devaney [6–8] and [29], more accurately describing the propagation
of the light through the sample, need to be considered. These models will be investigated
in this paper. Please note that all of these approaches still assume that first order Born or
Rytov approximations are valid, which means that the object cannot be strongly refracting
or scattering.

(d) We assume that the motion of the particle has been estimated beforehand. We mention
our work [11] for retrieving the motion parameters, which is applicable if the imaging of
the sample is well approximated by projections, as described above. For motion estima-
tion also the algorithms from single particle cryogenic electron microscopy (cryo-EM)
[4, 34, 41] can be used, see also [14, 39].

In this paper, we present algorithms for 3D visualization of a single rigid object rotating
around its center of mass. The mathematical model describing the optical experiment is a
diffraction tomography model based on the Born or Rytov approximation. The contributions
of this work are as follows:

(a) We present a rigorous derivation and precise formulation of the Fourier diffraction
theorem. This provides a firm theoretical basis for the reconstruction algorithms consid-
ered thereafter.

(b) Taking into account rotations around a moving axis we establish a new backpropagation
formula. While it avoids irregular sampling in Fourier space, it does require knowledge
of the Banach indicatrix, i.e. the number of times each point in Fourier space is covered,
which can be difficult to determine.

(c) As an alternative we propose using the inverse nonequispaced discrete Fourier transform
(NDFT) to deal with the irregular sampling, which has the advantage of being independent
of the Banach indicatrix.

(d) A numerical comparison of the two reconstruction approaches shows that the NDFT leads
to better reconstruction quality while requiring higher computation times.

The outline of this paper is as follows: in section 2, we introduce the mathematical setting
of diffraction tomography, and formulate the basic model based on Born’s or Rytov’s approx-
imation for wave propagation. In section 3, we state a rigorous proof of the Fourier diffraction
theorem, which builds the foundation of our reconstruction formulae. Then, in section 4,
we derive a backpropagation reconstruction formula, which can take into account arbitrary
(uncontrolled) rotations of the sample. Section 5 discusses the discretization of the backprop-
agation formula from the preceding section as well as an alternative reconstruction method
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Figure 1. Conceptual setup. The support of f lies entirely in Brs . Left: transmission
imaging. Right: reflection imaging.

based on the inverse NDFT. Section 6 shows numerical reconstructions, comparing the back-
propagation formula with the inverse NDFT. Conclusions are presented in section 7. The
appendix A provides background information on distributions and Fourier analysis and some
of the rather technical proofs.

2. Conceptual experiment

In this section, we describe the experimental situation we have in mind when develop-
ing our tomographic reconstruction method for arbitrary object rotations and formulate the
mathematical wave propagation models. A schematic overview of the set-up is given in
figure 1.

The object we want to image tomographically is illuminated by a plane wave uinc which
propagates in direction e3 = (0, 0, 1)� with wave number k0, that is

uinc(r) = eik0r3 . (2.1)

Note that the wavelength λ of uinc is related to the wave number via k0 = 2πn0
λ , where n0 is

the constant refractive index of the background. The object is assumed to be enclosed by the
open ball Brs ⊂ R3 centered at 0 with radius rs. In order to generate multiple illuminations
of the object, it is rotated around its center of mass which is fixed at 0. The incident wave uinc

induces a scattered wave usca which is recorded in a plane at a distance from the object at
r3 = rM > rs for transmission imaging and at r3 = −rM < −rs for reflection imaging,
respectively.

By n(r) we denote the refractive index of the object. The scattering properties of the object
are characterized by the function

k(r) = k0
n(r)
n0

, for all r ∈ R
3. (2.2)

Note that k differs from k0 only in Brs . The function

f (r) = k2(r) − k2
0 (2.3)

is referred to as the scattering potential [43] and will be the quantity which we set out to
reconstruct from the measurements of the scattered waves. By construction we have

supp( f ) ⊆ Brs ⊂ (−rs, rs)
3. (2.4)
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The total field utot = uinc + usca satisfies the reduced wave equation

(Δ+ k2)utot = 0, (2.5)

while uinc in turn fulfills the Helmholtz equation

(Δ+ k2
0)uinc = 0. (2.6)

Inserting equation (2.6) in equation (2.5) together with some rearranging gives

−(Δ+ k2
0)usca = f (usca + uinc). (2.7)

Neglecting usca in the right-hand side of equation (2.7) (assuming that usca is small in
comparison with uinc), we obtain the Born approximation:

−(Δ+ k2
0)uBorn = f uinc. (2.8)

Another simplification of equation (2.5) is the Rytov approximation. While their underly-
ing assumptions and physical validity are different, Born and Rytov approximations may
be analyzed within the same mathematical framework. In fact, every inversion method for
the Born approximation uBorn can be applied for the Rytov approximation uRytov by the relation

exp

(
uBorn

uinc

)
=

uRytov

uinc
+ 1.

More on the background and comparisons of the approximations can be found in [23, chapter
6]. For simplicity of notation, we set uBorn = u from now on.

3. Fourier diffraction theorem

The Fourier diffraction theorem is the basis for reconstruction formulae in diffraction tomog-
raphy, as it relates the 2D Fourier transform of the measurements to the 3D Fourier trans-
form of the scattering potential. While this result is well-known, see for instance [23, section
6.3], [30, theorem 3.1] or [43], we are not aware of a rigorous derivation. It is the purpose
of this section to provide such a derivation, in the form of theorem 3.1, leading to a mathemati-
cally precise formulation of the Fourier diffraction theorem, see corollary 3.3. We only assume
the scattering potential f to be compactly supported and in Lp(R3), p > 1, which covers the
practically relevant situation of f being discontinuous. In this sense, theorem 3.1 and corollary
3.3 lay the theoretical groundwork for the reconstruction methods considered in this paper.

Under Born’s approximation, the relation between the scattered wave u and the scattering
potential f is governed by equation (2.8). We assume further that u satisfies the Sommerfeld
radiation condition

lim
s→∞

max
‖r‖=s

‖r‖
∣∣∣∣ ∂

∂‖r‖u(r) − ik0u(r)

∣∣∣∣ = 0,

where ∂
∂‖r‖ denotes the radial derivative. Physically speaking, u is an outgoing wave. The

corresponding outgoing Green function is given by

G(r) :=
eik0‖r‖

4π ‖r‖ ,
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see [5, chapter 2]. In proving theorem 3.1, which is the basis of corollary 3.3, we have to
characterize the partial Fourier transform F1,2G, where the subscripts indicate that the trans-
form is taken with respect to r1 and r2. However, the function (r1, r2) 
→ G(r1, r2, r3) is not in
L1(R2) for any r3 ∈ R. Therefore, the transform F1,2G cannot be defined as a classical Fourier
integral. Instead we have to resort to the distributional setting.

We denote by D′(R3) the space of distributions and by S′(R3) the space of tempered dis-
tributions. Background material on Fourier transforms, convolutions and distributions can be
found in section A.1 and section A.2 in the appendix A. Finally, in order to formulate theorem
3.1, the proof of which is given in section A.3, we need the following notation. We set

κ = κ(k1, k2) :=

⎧⎪⎨
⎪⎩
√

k2
0 − k2

1 − k2
2, k2

1 + k2
2 � k2

0,

i
√

k2
1 + k2

2 − k2
0, k2

1 + k2
2 > k2

0.

(3.1)

Furthermore, Hr3 : R3 → R denotes the Heaviside function in the third coordinate centered at
r3, that is,

Hr3 (s1, s2, s3) :=

{
0 if s3 < r3,

1 otherwise.

Theorem 3.1. Let k0 > 0 and g ∈ Lp(R3), p > 1, with supp(g) ⊂ Br for some r > 0.
Suppose that the function u is the solution of

Δu + k2
0u = −g (3.2)

which satisfies the Sommerfeld radiation condition. Then, we can identifyF1,2u ∈ D′(R3) with
the following locally integrable function

F1,2u(k1, k2, r3) =

√
π

2
i
κ

(
eiκr3 F

(
(1 − Hr3 )g

)
(k1, k2,κ)

+ e−iκr3 F
(
Hr3g

)
(k1, k2,−κ)

)
. (3.3)

Remark 3.2.

(a) WhileF1,2u is even a tempered distribution, identifyingF1,2u ∈ S′(R3) with the right-hand
side of equation (3.3) (as in example 8.7) is not possible in general, since the right-hand
side is not guaranteed to be polynomially bounded as ‖(k1, k2, r3)‖→∞.

(b) Recall further that κ is imaginary for k2
1 + k2

2 > k2
0. In this case, in equation (3.3), we have

to consider the analytic continuations of F
(
(1 − Hr3 )g

)
and F

(
Hr3g

)
to C3.

The theorem implies the following Fourier diffraction result for our setting, see figure 1.

Corollary 3.3. Assume that

(a) The scattering potential of the probe is given by f ∈ Lp, p > 1, where supp( f ) ⊂ Brs ,
0 < rs < rM ,

(b) The incident field is a plane wave uinc(r) = eik0r3 ,
(c) The Born approximation is valid for the scattered field u and u satisfies the Sommerfeld

radiation condition,
(d) The scattered field u is measured at the plane r3 = rM (transmission imaging) or

r3 = −rM (reflection imaging).

6
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Figure 2. Accessible points in k-space for transmission imaging (left) and reflection
imaging (right).

Then

F1,2u(k1, k2,±rM) =

√
π

2
i eiκrM

κ
F f (k1, k2,±κ− k0) (3.4)

for all k1, k2 ∈ R satisfying k2
1 + k2

2 �= k2
0 .

Proof. Assuming validity of the Born approximation, the scattered wave u satisfies equation
(2.8). According to theorem 3.1 with g = fuinc, we obtain

F1,2u(k1, k2, r3) =
i
√
π

κ
√

2

(
eiκr3 F

(
(1 − Hr3 ) f uinc

)
(k1, k2,κ)

+ e−iκr3 F
(
Hr3 f uinc

)
(k1, k2,−κ)

)
=

i
√
π

κ
√

2

(
eiκr3 F

(
(1 − Hr3 ) f

)
(k1, k2,κ− k0)

+ e−iκr3 F
(
Hr3 f

)
(k1, k2,−κ− k0)

)
,

where we have exploited the specific form of the incident wave uinc. Finally, for transmission
imaging, we have r3 = rM , so that HrM f = 0 and (1 − HrM ) f = f . Similarly, for reflection
imaging, where r3 = −rM , we obtain (1 − H−rM ) f = 0 and H−rM f = f .

Remark 3.4. Even though, mathematically, equation (3.4) holds as long as k2
1 + k2

2 �= k2
0,

physically speaking the spatial frequencies with k2
1 + k2

2 > k2
0 do not contribute to the mea-

surements. Therefore, without rotation of the object, the measurements in both transmission
and reflection imaging provide access to the scattering potential f on a hemisphere

{(k1, k2,±κ− k0)� : k1, k2 ∈ R, k2
1 + k2

2 < k2
0}

in k-space5. The two hemispheres are depicted in figure 2.

5 From now on Fourier space will be referred to as k-space to emphasize that the Fourier transform is taken with respect
to the spatial coordinates.
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Figure 3. Frequency coverage T±(U) for a full rotation about the r1-axis with ‘missing
cones’ extending along the y1-axis. Left: 3D visualization of T+(U) (transmission
imaging). Middle: cross section of T+(U). Right: cross section of T−(U) (reflection
imaging).

4. Backpropagation formulae

According to the Fourier diffraction theorem, illumination of the object from a single direc-
tion provides access to the scattering potential on a surface in k-space. If the probe is rotated
continuously, however, we can obtain knowledge of F f in a volume Y , see figure 3 for an
illustration of such a volume. Consequently, an approximation of the scattering potential that
incorporates all the available information can be found by means of Fourier inversion

f (r) ≈ (2π)−
3
2

∫
Y

eiy·r F f (y)dy.

The reconstruction formula for our setting is made precise in theorem 4.1 and lemma 4.2
below.

We assume that the scattering object undergoes a rotation with varying rotation axis.
Therefore, if the function n = n(t) : [0, L] → S2 describes the orientation of this axis and
α = α(t) : [0, L] → R is the corresponding angle, then the rotation can be represented by the
matrix

R�
n,α :=

⎛
⎝ n2

1(1 − c) + c n1n2(1 − c) − n3s n1n3(1 − c) + n2s
n1n2(1 − c) + n3s n2

2(1 − c) + c n2n3(1 − c) − n1s
n1n3(1 − c) − n2s n2n3(1 − c) + n1s n2

3(1 − c) + c

⎞
⎠ ,

where n = (n1, n2, n3)�, c := cosα and s := sinα. Note that we follow the convention of
describing the rotation of the object by the transpose R�

n,α. Therefore, the scattering potential
of the rotated object is given by f ◦ Rn,α.

Next, denote by ut, 0 � t � L, the wave scattered by the rotated potential f ◦ Rn(t),α(t). Under
Born’s approximation, it satisfies

Δut + k2
0ut = −uinc f ◦ Rn(t),α(t).

The full set of measurements in the transmission and reflection setup, respectively, is then given
by

ut(r1, r2,±rM), r1, r2 ∈ R, 0 � t � L, (4.1)

8
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and, according to corollary 3.3, it is related to the scattering potential f via

F1,2ut(k1, k2,±rM) =

√
π

2
i eiκrM

κ
F f

(
Rn(t),α(t)(k1, k2,±κ− k0)�

)
. (4.2)

Next, let

U := {(k1, k2, t) ∈ R
3 : k2

1 + k2
2 < k2

0, 0 � t � L}

be the set where equation (4.2) is valid and can be used for reconstruction purposes, recall
remark 3.4. Moreover, the map that traces out the accessible domain in k-space is denoted by

T± : U → R
3, T±(k1, k2, t) :=Rn(t),α(t)(k1, k2,±κ− k0)�. (4.3)

In the reconstruction formula below we have to take into account the number of times a point
y in k-space is covered by T±. This number, sometimes referred to as Banach indicatrix of
T±,6 will be denoted by Card(T−1

± (y)), where Card(A) is the cardinality of a set A. Finally, the
approximation to f we wish to reconstruct is

f ±bp(r) := (2π)−
3
2

∫
T±(U )

eiy·r F f (y)dy. (4.4)

The set T±(U) will be referred to as the frequency coverage or k-space coverage of the
experimental setup.

Theorem 4.1. Let the assumptions of corollary 3.3 be satisfied. In addition, assume that
α ∈ C1[0, L] and n ∈ C1([0, L], S2). Then, for all r ∈ R3,

f ±bp(r) =
−i
2π2

∫
U

eiT±(k1,k2,t)·r F1,2ut(k1, k2,±rM)

× κ e−iκrM |∇T±(k1, k2, t)|
Card(T−1

± (T±(k1, k2, t)))
d(k1, k2, t), (4.5)

where |∇T±| is the magnitude of the Jacobian determinant of T±.

Proof. First, we show that Card(T−1
± ) is finite at almost every point in the range

of T±. By lemma 4.2, we have |∇T±| ∈ L1(U). Applying a change of variables that
takes into account the potential noninjectivity of T±, see [2, theorem 5.8.30], gives∫

T±(U ) Card(T−1
± ) dy =

∫
U |∇T±| dy. It follows that Card(T−1

± (y)) < ∞ for almost every y ∈
T±(U).

Next, we can write

f ±bp(r) = (2π)−
3
2

∫
T±(U )

eiy·r F f (y)
Card(T−1

± (y))

Card(T−1
± (y))

dy,

since Card(T−1
± ) vanishes nowhere and is finite almost everywhere. Applying [2, theorem

5.8.30] once again, where the function to be integrated is y 
→ eiy·r F f (y)/Card(T−1
± (y)), gives

6 In computerized tomography (CT) the Banach indicatrix is called Crofton symbol (see for instance [28]).
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f ±bp(r) = (2π)−
3
2

∫
U

eiT±(k1,k2,t)·r F f (T±(k1, k2, t))

× |∇T±(k1, k2, t)|
Card(T−1

± (T±(k1, k2, t)))
d(k1, k2, t). (4.6)

The assertion now follows after using equation (4.2) to express F f in terms of the
measurements.

In order to actually use the reconstruction formula (4.5), it remains to calculate the Jacobian
determinant |∇T±| as well as the Banach indicatrix Card(T−1

± ). While the former is carried
out in lemma 4.2, the latter is quite a challenging task in general. However, in the remainder
of this section we identify special cases for which we can determine Card(T−1

± ).

Lemma 4.2. For α ∈ C1[0, L] and n ∈ C1([0, L], S2), the Jacobian determinant of T± is
given by

|∇T±(k1, k2, t)| = k0

κ

∣∣((1 − cos α)
(
n3n′ · h − n′

3n · h
)
− n3n ·

(
n′ × h

)
sin α

)
− α′ (n1k2 − n2k1) + (n · h)

(
n1n′

2 − n2n′
1

)
sin α

∣∣ ,
(4.7)

where h := (k1, k2,±κ− k0)�. In particular |∇T±| ∈ L1(U).

The proof of this lemma is postponed until section A.4.
For rotation axes independent of t the Jacobian determinant of T± simplifies considerably.

Moreover, the Banach indicatrix is constant almost everywhere.

Corollary 4.3. Let the assumptions of theorem 4.1 be satisfied. If n′(t) = 0, then

|∇T±(k1, k2, t)| = k0 |α′(t)| |n2k1 − n1k2|
κ

. (4.8)

If in addition n �= e3 and α is strictly increasing with α(0) = 0 and α(L) = 2π, then

Card(T−1
± (T±(k1, k2, t))) = 2

for almost every (k1, k2, t) ∈ U .

Proof. Equation (4.8) is a direct consequence of equation (4.7). It remains to show the second
statement. Let (k̂1, k̂2, t̂) ∈ U be given. We want to find the number of points (k1, k2, t) ∈ U
which satisfy

T±(k1, k2, t) = T±(k̂1, k̂2, t̂). (4.9)

First, we point out that there can be no t �= t̂ such that

T±(k̂1, k̂2, t) = T±(k̂1, k̂2, t̂),

unless T±(k̂1, k̂2, t̂) lies on the rotation axis or t̂ ∈ {0, L}. These cases, however, correspond to
a subset V ⊂ U of measure zero.

Thus we look for (k1, k2) �= (k̂1, k̂2). Denote a general point on the hemisphere by
h± = h±(k1, k2) := (k1, k2,±κ− k0)� and set ĥ± := h±(k̂1, k̂2). Since T± is the composition of
h± with a rotation and rotations preserve the lengths of vectors, we deduce from equation (4.9)
that

‖h±‖ = ‖ĥ±‖. (4.10)

10
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Calculating these norms shows that κ(k1, k2) = κ(k̂1, k̂2) and that

k2
1 + k2

2 = k̂2
1 + k̂2

2. (4.11)

Furthermore, the rotation Rn,α does not affect the vector component in the direction of the
rotation axis n, that is,

h± · n = Rn,α(t)h± · n = Rn,α(̂t)ĥ
± · n = ĥ± · n (4.12)

and consequently

0 = n · (h± − ĥ±) = n1(k1 − k̂1) + n2(k2 − k̂2).

Since, by assumption, n2
1 + n2

2 �= 0, there exists λ ∈ R such that k1 − k̂1 = −λn2 and
k2 − k̂2 = λn1.Hence, (k1, k2) = (k̂1 − λn2, k̂2 + λn1). Now we conclude from equation (4.11)
that

0 = λ2(n2
1 + n2

2) + 2λ(k̂2n1 − k̂1n2),

which has the two solutions λ1 = 0 and λ2 = 2(k̂2n1 − k̂1n2)/(n2
1 + n2

2). The former corre-
sponds to (k1, k2) = (k̂1, k̂2) and the latter to a reflection of (k̂1, k̂2) across the line passing
through the origin with direction (n1, n2). We can ignore the possibility that the two solutions
coincide, as this corresponds to a set of measure zero.

It remains to count the t ∈ [0, L] which satisfy

T±(k̂1 − λ2n2, k̂2 + λ2n1, t) = T±(k̂1, k̂2, t̂). (4.13)

Equations (4.10) and equation (4.12) imply that during rotation ĥ± and h±(k̂1 − λ2n2, k̂2 +
λ2n1) move along the same circle around the rotation axis. Since, by assumption, the range of
α is [0, 2π], both points on the hemisphere make a full turn. So there must be at least one t
satisfying equation (4.13). But since α is also bijective, there is exactly one such t. Thus we
have shown that for almost every (k̂1, k̂2, t̂) ∈ U there is exactly one other point (k1, k2, t) such
that equation (4.9) holds. Therefore Card(T−1

± (T±(k̂1, k̂2, t̂))) = 2 almost everywhere in U .

Let us consider a simple example which is also treated in the numerical part.

Example 4.4 (Full uniform rotation around the r1-axis). We consider rotation around
the r1-axis with rotation matrix

R�
e1,α =

⎛
⎝1 0 0

0 cos α − sin α
0 sin α cos α

⎞
⎠

and α(t) = t, t ∈ [0, 2π]. Instead of t we write α below. From corollary 4.3 it follows that

f ±bp(r) =
−ik0

4π2

∫
U

ei(Re1,αh±·r−κrM)F1,2uα(k1, k2,±rM) |k2| d(k1, k2,α), (4.14)

where h± := (k1, k2,±κ− k0)�.
We want to illustrate the corresponding sets T±(U). Consider y ∈ T+(U), i.e.

y = (y1, y2, y3)� = Re1,α(k1, k2,κ− k0)� where k2
1 + k2

2 < k2
0 and 0 � α � 2π. Then, it

holds that y1 = k1 and

11
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y2
2 + y2

3 = k2
2 + (κ− k0)2 = k2

2 + k2
0 − k2

1 − k2
2 − 2κk0 + k2

0

= 2k2
0 − 2k0

√
k2

0 − k2
1 − k2

2 − k2
1.

Since k2
2 ∈ [0, k2

0 − k2
1), this implies

y2
2 + y2

3 < 2k2
0 − y2

1,

y2
2 + y2

3 � 2k2
0 − 2k0

√
k2

0 − y2
1 − y2

1 =

(
k0 −

√
k2

0 − y2
1

)2

.

The first equation can be rewritten as ‖y‖2 < 2k2
0, while the second equation gives

‖(y2, y3)‖ � k0 −
√

k2
0 − y2

1

k0 − ‖(y2, y3)‖ �
√

k2
0 − y2

1.

Noting that k0 − ‖(y2, y3)‖ > −
√

k2
0 − y2

1 and taking the square, we get (‖(y2, y3)‖ − k0)2 +
y2

1 � k2
0. In summary, we see that

T+(U) = {y ∈ R
3 : ‖y‖2 < 2k2

0, (‖(y2, y3)‖ − k0)2 + y2
1 � k2

0}, (4.15)

which is displayed in figure 3. Similar considerations for T−(U) show that this set together with
T+(U) generates a solid horn torus of radius k0, see figure 3 right. Finally we point out that a
rotation around any other axis in the r1–r2-plane leads to a k-space coverage T±(U) which is a
rotated version of the one displayed in figure 3.

Remark 4.5 (Maximal and minimal k-space coverage). Subsequent rotations about
two orthogonal axes in the r1–r2-plane generate a radially symmetric k-space coverage accord-
ing to figure 4. This is the maximal coverage that can be obtained within the experimental setup.
In contrast, the rotation around the r3-axis does not provide additional information in k-space,
recall figure 2.

In the previous examples, the rotation axis n was kept constant. In the following, we consider
a moving rotation axis n(t), t ∈ [0, 2π], in the setup of transmission imaging.

Proposition 4.6. Let n ∈ C1(([0, 2π], S2) and α ∈ C1[0, L]. We denote the trajectory of
e3 = (0, 0, 1)� under T+ by

e(t) :=Rn(t),α(t)e3, t ∈ [0, L].

Let y ∈ R3 with ‖y‖ <
√

2k0. Then, there exists (k1, k2, t) ∈ U with T+(k1, k2, t) = y if and only
if

y · e(t) = −‖y‖2

2k0
. (4.16)

Moreover, Card(T−1
+ (y)) equals the number of solutions t ∈ [0, L] of equation (4.16).

Proof. Assume that there exists (k1, k2, t) ∈ U such that y = T+(k1, k2, t) = Rn(t),α(t)h with
h = (k1, k2,κ− k0). Since the norm is invariant under rotations, it holds that

‖y‖2 = ‖h‖2 = 2k0(k0 − κ), (4.17)

12
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Figure 4. Frequency coverage for subsequent rotations around two orthogonal axes in
the r1 –r2 plane. Left: cross section of transmission imaging. Right: cross section of
reflection imaging.

which implies that κ =
√

k2
0 − k2

1 − k2
2 depends only on ‖y‖ and, by the invariance of the scalar

product under the rotation Rn(t),−α(t), it follows from equation (4.17) that

y · e(t) = h · e3 = h3 = κ− k0 = −‖y‖2

2k0
,

which shows equation (4.16).
Conversely, let y ∈ R3 with ‖y‖ <

√
2k0, and let t satisfy equation (4.16). Set

k = (k1, k2, k3)� :=Rn(t),−ty. We show that (k1, k2, t) ∈ U and T+(k1, k2, t) = y, i.e., that
k3 =

√
k2

0 − k2
1 − k2

2 − k0. We have by equation (4.16) and the invariance of the scalar product
and vector lengths with respect to rotations

k3 = k · e3 = y · e(t) =
−‖y‖2

2k0
=

−‖k‖2

2k0
> −k0

so that k3 + k0 > 0. Moreover, the above equation implies that

(k3 + k0)2 = −k2
1 − k2

2 + k2
0. (4.18)

Thus, k2
1 + k2

2 < k2
0, so that (k1, k2, t) ∈ U . Taking the square root in equation (4.18), we obtain

the desired form of k3. Since, for fixed t, the map (k̃1, k̃2) 
→ T+(k̃1, k̃2, t) is one-to-one, we have
shown the assertion.

Example 4.7 (Half rotation around the r1-axis). We consider the same fixed rotation
axis as in example 4.4, but we restrict the angle α(t) = t, t ∈ [0, π]. In what follows, we show
that the Banach indicatrix Card(T−1

+ (·)) takes different values on sets of positive measure, see
figure 5.

Let y ∈ T+(U)\{0}. Since T+(U) is a subset of the k-space coverage for the full rota-
tion, equation (4.15) shows that ‖y‖2 < 2k2

0 and (‖(y2, y3)‖ − k0)2 + y2
1 � k2

0, which yields
‖y‖2 � 2k0

√
y2

2 + y2
3. By proposition 4.6, the Banach indicatrix Card(T−1

+ (y)) is equal to the

13
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number of solutions t ∈ [0, π] of

y2 sin t + y3 cos t = −‖y‖2

2k0
. (4.19)

Let us denote the left side by

ψ(t) := y2 sin t + y3 cos t, t ∈ [0, π].

If y2, y3 �= 0, the derivativeψ′(t) = y2 cos t − y3 sin t has only one zero t0 = arctan y2
y3

in [0, π],

where we use the branch of the arctangent with range [0,π). If y3 = 0 and y2 �= 0, then ψ′ has
the unique zero t0 = π

2 , which comes along with setting arctan y2
0 = π

2 . If y2 = 0 and y3 �= 0,
then ψ is monotone on [0,π] and thus equation (4.19) has one solution. If y2 = y3 = 0, also
y1 = 0 and thus there are infinitely many solutions.

In the case y2 < 0, we see that the unique zero t0 ∈ [0, π] of ψ′ fulfills sin t0 = y2

√
y2

2 + y2
3

and cos t0 = y3

√
y2

2 + y2
3. Then we obtain ψ(t0) = −

√
y2

2 + y2
3 < 0. The second derivative is

ψ′′(t) = −ψ(t) and hence ψ′′(t0) > 0. Together with the continuity of ψ′, this implies that ψ
decreases on [0, t0] and increases on [t0, π]. We have the two local maxima ψ(0) = y3 and
ψ(π) = −y3 and the minimum ψ(t0) = −

√
y2

2 + y2
3. Hence, equation (4.19) has two solutions

if −‖y‖2

2k0
� − |y3| and otherwise one solution if 0 > −‖y‖2

2k0
> − |y3|. Note that we have already

seen that ‖y‖2 � 2k0

√
y2

2 + y2
3.

An analogous consideration for y2 > 0 shows that φ has its maximum
√

y2
2 + y2

3 at t0 and
goes monotonically to the minima at the boundary ψ(0) = y3 and ψ(π) = −y3. Then equation

(4.19) has one solution if −‖y‖2

2k0
� − |y3| and no solution otherwise. In conclusion, we have for

0 < ‖y‖2 < 2k2
0,

Card(T−1
+ (y)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2, y2 < 0 and 2k0 |y3| � ‖y‖2 � 2k0

√
y2

2 + y2
3,

1, y2 < 0 and 2k0 |y3| > ‖y‖2,

1, y2 > 0 and 2k0 |y3| � ‖y‖2,

1, y2 = 0,

0, otherwise.

Example 4.8 (Moving rotation axis). For c > 0 arbitrary fixed, we consider the moving
rotation axes

nc(t) = (cos(c sin t), sin(c sin t), 0)�,

and the rotation angleα(t) = t ∈ [0, 2π]. The axes nc(t) oscillate slightly around e1 in the r1–r2

plane. Then

e(t) = (− sin(c sin t) sin t, cos(c sin t) sin t, cos t)�.

We consider y = (y1, 0, 0)� ∈ T+(U). Then proposition 4.6 implies that Card(T−1
+ (y)) is the

number of solutions t of

y · e(t) = −y1 sin(c sin t) sin t = − y2
1

2k0
. (4.20)

14
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Figure 5. Areas of constant Banach indicatrix Card(T−1(y)) for the half rotation,
sectional plot at y1 = 0.

We show that equation (4.20) has 4 solutions if 0 < y1 < 2k0 sin c. Since the function (0, π
2 ) �

t 
→ sin(c sin t) sin t is the composition and product of the positive, strictly increasing sine
function, it is strictly increasing with supremum sin c. So there is one solution t̂ ∈ (0, π

2 ) of
equation (4.20). The other three solutions π − t̂, π + t̂, and 2π − t̂ follow by the symmetry of
the sine. Hence, we see that Card(T−1

+ (y)) = 4. Since T+(U) � y 
→ y · e(t) is continuous, this
result holds also in a small neighborhood of y. However, for the point y = (0, 0, y3), we see
that equation (4.16) becomes

−y3 cos t = − y2
3

2k0
. (4.21)

If 0 < y3 < 2k0, equation (4.21) has 2 solutions t ∈ (0, 2π) and Card(T−1
+ (y)) = 2. By conti-

nuity, Card(T−1
+ (·)) = 2 then holds in a small neighborhood of y.

As T+ maps sets of measure 0 to sets of measure 0, the considerations above show that
there exist two subsets of U , both of positive measure, on which Card(T−1

+ (T+(·))) attains
different values. Note that this conclusion holds for any c > 0 and therefore for very small
movements of the rotation axis n(t). Taking into account the non-triviality of determining the
regions of U with different Banach indicatrix, this example hints to the complexity of applying
the backpropagation formula equation (4.5) for general rotations.

5. Discrete backpropagation and inverse NDFT

Next, we are interested in the numerical reconstruction of the 3D function f from given two-
dimensional functions ut. By equation (4.2), we can build on the relation

−
√

2
π

e−iκrM κiF1,2ut(k1, k2,±rM) = F f (T±(k1, k2, t)), (k1, k2, t) ∈ U .

In this paper, we work with simulated data. We assume in the numerical part that the func-
tion F f is known on Y± = T±(U). More precisely, F f is either given analytically or we
approximate it by the computation described at the end of this section.
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For N ∈ 2N, let IN := {−N
2 + j : j = 0, . . . , N − 1}. We aim to reconstruct the function f

with supp f ⊂ Brs ⊂ R3 at the equispaced N × N × N grid

RN :=
2rs

N
I3

N ⊂ [−rs, rs]
3.

To this end, we assume that F f is given on the following sampling set in the k-space: let

UN,S :=

{
(k1, k2, t) : (k1, k2) ∈ 2k0I2

N , k2
1 + k2

2 � k2
0, t =

2π j
S

, j = 0, . . . , S − 1

}
.

(5.1)

In particular, for S := � 4
πN�, the number of data points M := |UN,� 4

π N�| is approximately equal

to N3. In this case, we use the abbreviation UN :=UN,� 4
π N�. Then the sampling points in the

k-space are given by the M points in

Y±
N :=T±(UN). (5.2)

In the following, we propose two reconstruction techniques, namely the discrete backprop-
agation and the inverse NDFT. Our numerical tests will indicate that the latter appears to be
preferable.

5.1. Discrete backpropagation

The discrete backpropagation is directly based on a discretization of the integral in equation
(4.6) using the values of F f on Y±

N . For r ∈ RN , we approximate f bp(r) by

fbp(r) := (2π)−
3
2
πLk2

0

N3

∑
(k1,k2,t)∈UN

F f (T±(k1, k2, t)) eir·T±(k1,k2,t) (5.3)

× |∇T±(k1, k2, t)|
Card(T−1

± (T±(k1, k2, t)))
.

We will see that evaluating fbp on RN is, up to the multiplicative constant in front of the sum,
an adjoint NDFT applied to

F f (T±(k1, k2, t))
|∇T±(k1, k2, t)|

Card(T−1
± (T±(k1, k2, t)))

, (k1, k2, t) ∈ UN.

Remark 5.1. For the discrete backpropagation equation (5.3), it is crucial to know the
Banach indicatrix Card(T−1

± (T±(·))), which we computed in some special cases, see exam-
ples 4.4 and 4.7. However, even for a small movement of the rotation axis as in example 4.8, it
seems to be quite difficult to determine the Banach indicatrix in general. Such considerations
are not necessary when applying the inverse NDFT considered next.

5.2. Inverse NDFT

To explain the inverse NDFT, we recall the NDFT first. The NDFT is the linear operator FN :
R

N3 → R
M defined for our vectors fN := ( f (r))r∈RN

=
(

f
(

2rs
N j

))
j∈I3

N
elementwise by
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FNfN(y) :=
8r3

s

N3

∑
r∈RN

f (r)eir·y =
8r3

s

N3

∑
j∈I3

N

f

(
2rs

N
j
)

ei 2rs
N j·y, y ∈ Y±

N , (5.4)

see [31, section 7.1]. In other words, we can consider the NDFT via the tensor

FN =
(

ei 2rs
N j·y

)
j∈I3

N ,y∈Y±
N

. Furthermore, it provides an approximation of the Fourier transform

F f (y) ≈ FNfN(y), y ∈ Y±
N .

Then, as already mentioned above, the discrete backpropagation formula equation (5.3) is just
the application of the adjoint NDFT to weighted values (F f (y))y∈Y±

N
. In contrast, the inverse

NDFT reconstructs the values ( f (r))r∈RN
by solving the least squares problem

arg min
f∈RN3 ‖FNf − (F f (y))y∈Y±

N
‖2

2. (5.5)

More precisely, we call a solution of this problem inverse NDFT of (F f (y))y∈Y±
N

, see [31,
section 7.6.2].

Remark 5.2 (Fast computation by NFFT). Computationally we will solve the least
squares problem equation (5.5) by a conjugate gradient method on the normal equations
(CGNE) as proposed in [26]. Each iteration step of the CGNE algorithm requires the com-
putation of an NDFT and an adjoint NDFT. Both the computation of the NDFT and its adjoint
can be realized in an efficient way by the so-called nonequispaced fast Fourier transform
(NFFT). The NFFT requires only O(N3 log N) arithmetic operations instead of O(N6) oper-
ations for the NDFT and is highly recommendable in 3D. Depending on the choice of the
inner parameters, the NFFT provides an arbitrarily tight approximation of the NDFT, see, e.g.,
[1, 10, 35].

Computation of k-space data. If the functionF f or its values at Y±
N are not given, we have to

synthesize them for our numerical tests. Since the function f is known in our synthetic exam-
ples and can therefore be sampled on an arbitrary fine grid, we choose n � N and approximate
the values F f (y) by applying the NDFT on the fine grid, i.e., we take

F f (y) ≈ 8r3
s

n3

∑
r∈Rn

f (r)eir·y =
8r3

s

n3

∑
j∈I3

n

f

(
2rs

n
j
)

ei 2rs
n j·y, y ∈ YN (5.6)

as given values for both the discrete backpropagation and the inverse NDFT. We note that
equation (5.6) resembles Fn evaluated on a different grid than in equation (5.4).

6. Numerical tests

In this section, we demonstrate the performance of the discrete backpropagation in equation
(5.3) and the inverse NDFT defined in equation (5.5) by numerical examples. For computing
the NDFT and its adjoint, we apply the NFFT software library [24]. If not stated otherwise,
we use the NFFT for all reconstructions. We fixed the number of CGNE iteration steps in the
inverse NDFT to 20. In this section, we concentrate on the transmission imaging associated
with T+.
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6.1. Sampling

The wavelength λ is related with the wave number via k0 = 2π
λ

. Since the discretized Fourier
transform FN f (y) is πN

rs
-periodic in y and the data points y ∈ Y+

N satisfy ‖y‖ �
√

2k0, it is

reasonable that the model parameters satisfy
√

2k0 � πN
2rs

or, equivalently,

N � 2
√

2k0rs

π
=

4
√

2rs

λ
.

In particular, we choose N = 2
√

2k0rs
π , where we note that rs can always be made larger in

order to make sure that N is an integer. The distance between adjacent grid points r ∈ RN is
then 2rs

N = λ
2
√

2
, which only depends on the wavelength λ. In our numerical tests, we fix the

wavelength λ = 1 such that all measurements in r are in multiples of the wavelength. Hence,
the wave number is k0 = 2π. The data points T+(k1, k2, t) in the k-space are on the grid Y+

N

described in the equation (5.2). Therefore all data points in Y+
N are contained in a ball of radius√

2k0 ≈ 8.89.
In our first numerical tests, we choose the grid size N = 80 which corresponds to the radius

rs =
λN

4
√

2
≈ 14.1λ of the maximal support of f . Then we have N3 = 512 000 grid points in

RN and 496 944 data points in Y+
N . If not available analytically, we simulated the values

F f (y), y ∈ Y+
N , by an NDFT of length n = 5N as in equation (5.6).

We compare the reconstruction quality based on the structural similarity index measure [42]
and the peak signal-to-noise ratio (PSNR) determined by

PSNR(f, g) := 10 log10
maxr∈RN |f(r)|2

N−3
∑

r∈RN
|f(r) − g(r)|2

,

where f is the ground truth and g is the reconstructed value. Note that higher values indicate a
better reconstruction quality for both. If F f (y), y ∈ Y+

N is computed from the function values
at a fine grid, then it appears reasonable to take as ground truth for the PSNR the voxel values
which are the averages of their five-point neighborhood on the fine grid

f av
N (r) :=

1
53

∑
j∈{−2,−1,...,2}3

f

(
r +

2rs

5N
j
)

, r ∈ RN .

6.2. Function with exactly known Fourier transform

In order to illustrate the effectiveness of the proposed reconstruction algorithms, we make the
first test with the characteristic function f a(r) = 1Ba(r) of the ball with radius a > 0. Its Fourier
transform is known analytically,

F f a(y) =

√
2
π

1

‖y‖3

(
sin ‖ay‖ − ‖ay‖ cos ‖ay‖

)
, y ∈ R

3, (6.1)

see [31, p 183]. The object is fully rotated around the axis n(t) = e1 and angle α(t) = t, t ∈
[0, 2π], as in example 4.4. We consider the two cases that the input for our reconstruction
arises from (i) the exact data F f a(y) by equation (6.1), and (ii) the approximate data F5N f a

by equation (5.6). The error between the approximation FN f a(y) and the true values F f a(y),
y ∈ Y+

N , is shown for different N in table 1.
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Table 1. The root mean square error (RMSE) of FN f a with respect toF f a in dependence
on the grid size N for the NDFT.

N 80 160 240 320 400 800

RMSE 3.72 × 10−2 9.37 × 10−3 4.38 × 10−3 2.58 × 10−3 1.67 × 10−3 4.46 × 10−4

Figure 6. Test with the characteristic function f a of a ball of radius a = 9, with resolu-
tion N = 80. All plots show the slice of the 3D function at r1 = −0.3. The reconstruc-
tions use either the exact data F f a, or the approximated data from equation (5.6). In
both cases, we use the same set of points Y+

N .

The reconstruction is depicted in figure 6. For both cases, we compare the inverse NDFT
with the discrete backpropagation equation (5.3). The latter shows stronger artifacts due to the
sharp cutoff in the k-space. There is almost no difference between the exact data in (i) and
approximate ones in (ii); since the approximate data is computed on a very fine grid.

6.3. Simple test function

As a second test function f , we take the characteristic function of a ball and cut out a small
segment around the plane {r2 = 0}. The rotation is around the r1 axis as in the previous test.
The reconstruction results are shown in figure 7, where the inverse NDFT yields an image with
fewer artifacts than the discrete backpropagation.

The reconstruction becomes more difficult when the object has discontinuities perpendicu-
lar to the rotation axis. To this end, we take the previous test function, but the rotation is now
around the r2 axis. The reconstruction in figure 8, resolves the gap considerably worse than in
the previous example. This is because we do not have any data of the Fourier transform F f
near the k2 axis away from the origin. However, the information about the Fourier transform in
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Figure 7. Top: slice plot of the test function with discontinuity around the plane r2 = 0,
and its reconstructions. Bottom: sectional plot of test function and its reconstructions.

Figure 8. The same setting and test function as in figure 7, but this time the object is
rotated around e2 instead of e1.

this region is important due to the singularities of f along planes perpendicular to the r2 axis.
Again, the discrete backpropagation produces more artifacts than the inverse NDFT.
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6.4. Perturbed rotation

In practical applications, the rotation of the object is often a little perturbed. For the follow-
ing test, we consider the rotation angle α(t) = t and the slightly moving rotation axis nc(t)
with c = π/8, see example 4.8. This axis nc(t) is in the r1r2 plane and it moves around e1.
The reconstruction results are depicted in figure 9, where we chose the resolution N = 160
and thus rs ≈ 28.3. In these tests, the perturbation slightly improves the quality of the recon-
structions, because the set of missing k-space data is different. We note that we applied the
discrete backpropagation equation (5.3) with Banach indicatrix Card(T−1

+ ) ≡ 2, even though
it is 4 in a small region. This still results in a good approximation.

In case of a stronger movement of the rotation axis nc with c = π/2, see again example 4.8,
the limitation of having no exact knowledge of the Banach indicatrix Card(T−1

+ (y)) becomes
more severe. In figure 10, we see that the reconstruction quality of the inverse NDFT is
comparable to the previous example. However, the backpropagation behaves considerably
worse than in the case of a smaller movement, which could be explained by the fact that the
exact Banach indicatrix deviates farther from the approximation by a constant we use.

Remark 6.1 (Computation time). The discrete backpropagation in equation (5.3) con-
sists of one adjoint NDFT, whereas each iteration step of the CGNE method of the inverse
NDFT requires about twice the computational effort: to perform both an NDFT and an adjoint
NDFT. Hence, the backpropagation algorithm is considerably faster than the inverse NDFT. In
practice, this difference is a little smaller, since the NFFT software includes a node-dependent
precomputation, which has to be done only once. For the grid size of N = 160, which
corresponds to approximately 4 million grid points, the discrete backpropagation takes about
9.6 s, whereas 20 iteration steps of the CGNE algorithm take 46 s on an Intel Core i7-10700
CPU.

6.5. Noisy measurements

In practical applications, the measurements are corrupted by noise. For some noise level δ > 0,
we consider the Gaussian white noise model

gδ(y) :=F f (y) + δN (0, 1), y ∈ Y+
N .

The CGNE method used for the inverse NDFT is a regularizer with the number of iterations as
the regularization parameter. Let us denote by fδk the kth iterate of the CGNE method applied
to gδ . The discrepancy principle [12, section 7.3] states to choose k such that the residual∥∥FNfδk − gδ

∥∥ is approximately δ. A popular parameter choice rule requiring no knowledge of
the noise level δ is the L-curve method [18], where one chooses k at the corner in the log–log
plot of the residual

∥∥FNfδk − gδ
∥∥ versus the norm of the approximate solution

∥∥fδk
∥∥. As discrete

norm, we take the root mean square

∥∥gδ
∥∥ :=

⎛
⎜⎝ 1∣∣Y+

N

∣∣ ∑
y∈Y+

N

∣∣gδ(y)
∣∣2
⎞
⎟⎠

1/2

.

For an overview of parameter choice rules in the conjugate gradient method, we refer to [20].
In table 2, we show the reconstruction error with different parameter choice rules. We use

the same test function as in figure 9, the resolution N = 160, and the rotation around the r1
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Figure 9. A Shepp–Logan phantom as test function (A) with the bigger resolution
N = 160. Reconstruction for the constant rotation axis n(t) = e1 with the inverse NDFT
(B) and with the backpropagation (C). With the slightly moving rotation axis n(t), the
inverse NDFT (D) again produces a clearer image than the backpropagation (E).

axis. We compute the corner of the L-curve according to [19]. The L-curve method tends to
overestimate the stopping index k, whereas the discrepancy principle produces slightly better
reconstructions.
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Figure 10. The same setting and test function as in figure 7, with a larger movement of
the rotation axis.

Table 2. PSNR for with different noise levels δ with the L-curve method and discrepancy
principle for choosing the number k of CGNE iteration, which is displayed in parenthe-
ses. The best choice serves as a benchmark; it is attained at the iteration index k which
maximizes PSNR(fav, fδk) among k = 1, . . . , 100, where we know the ground truth f av.
The backpropagation contains no regularization and thus works only well with very
small noise. The function f is the same as in figure 9 with constant rotation axis e1
and resolution N = 160.

Noise level δ
max |F f | Best choice L-curve Discrepancy Backpropagation

0.0% 33.01 (100) — — 27.81
0.1% 30.98 (18) 27.80 (65) 30.16 (13) 23.25
0.2% 28.84 (13) 25.89 (29) 28.07 (10) 18.49
0.5% 25.20 (8) 18.81 (25) 24.07 (6) 11.04
1.0% 22.58 (6) 20.78 (3) 20.78 (3) 5.03

7. Conclusions

In this paper, we considered the reconstruction of the 3D refractive index distribution of
an object that is rotating irregularly around its center of mass, where we assume that the
motion parameters are known or estimated beforehand. We presented a rigorous proof of
the Fourier diffraction theorem for a compactly supported f ∈ Lp(R3), p > 1. We derived a
novel backpropagation formula, which generalizes the existing theory to an arbitrarily mov-
ing rotation axis. For the numerical reconstruction, we compared the discrete backpropagation
with the inverse NDFT, which is based on an iterative inversion of the nonuniform discrete
Fourier transform. It turns out that the inverse NDFT usually gives a better reconstruction and
does not require knowledge of the Banach indicatrix, which can be hard to determine. However,
the computation times for the inverse NDFT are higher, but still reasonable for usual image
sizes.
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Appendix A

A.1. Distributions and the Fourier transform

This section collects several results about distributions and the Fourier transform. We refer to
[16, 21, 31, 32] for more details.

Definition 8.1 (Test function). The spaceD(Rn) of test functions is the set of all infinitely
differentiable functions φ : Rn → C with compact support equipped with the inductive limit
topology.

Definition 8.2 (Distribution). The space D′(Rn) of distributions is the topological dual
of D(Rn), i.e. the space of all functionals v : D(Rn) → C such that

v[aφ+ bψ] = av[φ] + bv[ψ]

for all a, b ∈ C and φ,ψ ∈ D(Rn) and

v[φn] → v[φ]

whenever φn → φ in D(Rn).

Example 8.3. Every locally absolutely integrable function v ∈ L1
loc(R

n) can be identified
with a distribution via

φ 
→
∫
Rn
v(r)φ(r)dr.

It is common to use the same symbol for the function and the associated distribution.

By Lp(Ω), p ∈ [1,∞], we denote the Banach space of (equivalence classes of) complex-
valued functions with finite norm

‖ f ‖Lp :=

(∫
Ω

| f (r)|p dr
) 1

p

, p ∈ [1,∞),

‖ f ‖L∞ := esssupr∈Ω | f (r)|.
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If Ω ⊂ R
n is bounded, then these spaces are continuously embedded, i.e., for 1 � p � q, we

have

Lq(Ω) ↪→ Lp(Ω). (8.1)

The functions of D(Rn) form a dense set in Lp(Rn), p ∈ [1,∞).

Definition 8.4 (Fourier transform on L1(Rn)). The Fourier transform of a function g ∈
L1(Rn) is defined by

Fg(k) := (2π)−
n
2

∫
Rn

g(r)e−ik·r dr (8.2)

for all k ∈ Rn.

The Fourier transform F : L1(Rn) → C0(Rn) is a linear, continuous operator into the space
C0(Rn) of continuous functions vanishing at infinity with operator norm ‖F‖L1→C0

= (2π)−
n
2 .

In contrast, the Fourier transform on the two spaces introduced next, maps again onto the same
space.

Definition 8.5 (Schwartz space). The Schwartz space S(Rn) consists of all infinitely
differentiable functions φ : Rn → C such that

pα,β(φ) := sup
r∈Rn

|rα∂βφ(r)| < +∞

for all multi-indices α, β ∈ Nn
0. The topology on S(Rn) is induced by the seminorms pα,β .

Definition 8.6 (Tempered distribution). The space S′(Rn) of tempered distributions is
the topological dual of S(Rn).

Example 8.7. Every function v ∈ L1
loc(R

n) that is polynomially bounded for ‖r‖→∞ can
be identified with a tempered distribution via

φ 
→
∫
Rn
v(r)φ(r)dr.

For the following result note that S(Rn) ⊂ L1(Rn).

Proposition 8.8. The Fourier transform is a linear, bijective, continuous operator F :
S(Rn) → S(Rn). It has a continuous inverse defined by

F−1φ(r) := (2π)−
n
2

∫
Rn
φ(k)eik·r dk

for all φ ∈ S(Rn) and r ∈ Rn.

Observe that∫
Rn
φ(r)Fψ(r)dr =

∫
Rn
Fφ(r)ψ(r)dr, (8.3)

holds for all φ,ψ ∈ S(Rn). Combined with the fact that, for every v ∈ S′(Rn), the map φ 
→
v[Fφ] is another tempered distribution we are led to the following extension of the Fourier
transform.

Definition 8.9 (Fourier transform on S′(Rn)). The Fourier transform of v ∈ S′(Rn) is
defined by

Fv[φ] := v[Fφ]

25



Inverse Problems 37 (2021) 115002 C Kirisits et al

for all φ ∈ S(Rn).

With this definition, proposition 8.8 carries over to S′(Rn).

Proposition 8.10. The Fourier transform is a linear, bijective, continuous operator F :
S′(Rn) → S′(Rn). It has a continuous inverse defined by

F−1v[φ] = v[F−1φ]

for all v ∈ S′(Rn) and φ ∈ S(Rn).

Remark 8.11. Many other operations can be extended from S(Rn) to S′(Rn) in a way similar
to definition 8.9. Suppose A : S(Rn) → S(Rn) is linear and bounded, and that there is another
linear, bounded operator B : S(Rn) → S(Rn) such that

∫
Rn (Aφ)ψ =

∫
Rnφ(Bψ) for all Schwartz

functions φ and ψ. Then A can be uniquely extended to S′(Rn) by setting Au[φ] = u[Bφ]. See
[16, remark 5.15] for more details.

Two further operations which can be extended from S(Rn) to S′(Rn) in the way explained
above are multiplication and convolution with a Schwartz function. Both φ 
→ ψφ and
φ 
→ ψ ∗ φ map S(Rn) continuously into itself. Moreover, regarding convolution note that we
have ∫

Rn
(ψ∗η)(r)φ(r)dr =

∫
Rn
η(r)(Mψ∗φ)(r)dr (8.4)

for all φ,ψ, η ∈ S(Rn), where the operator M : S(Rn) → S(Rn) is given by Mφ(x) = φ(−x).
This gives rise to the following definition.

Definition 8.12 (Convolution of a Schwartz function with a tempered distribution).
The convolution of ψ ∈ S(Rn) with v ∈ S′(Rn) is defined by

(ψ∗v)[φ] := v[Mψ∗φ]

for all φ ∈ S(Rn).

The following result relates the operations of multiplication and convolution by means of
the Fourier transform.

Theorem 8.13 (Convolution theorem). For all φ ∈ S(Rn) and all v ∈ S′(Rn), we have

F (φ∗v) = (2π)
n
2FφFv and Fφ∗Fv = (2π)

n
2 F (φv).

Note that theorem 8.13 remains true, if we replace F by F−1.

A.2. Partial Fourier transforms

In the following, we introduce partial Fourier transforms, and show that they are well-defined
on S′(Rn). In other words, we prove that an m-dimensional Fourier transform (m < n) is
well-defined for n-dimensional tempered distributions and that it possesses an appropriate
convolution property.

Definition 8.14 (Partial Fourier transforms on S(Rn)). For j ∈ {1, . . . , n}, we define
the partial Fourier transform F j of φ ∈ S(Rn) by
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F jφ(r1, . . . , r j−1, k j, r j+1, . . . rn) = (2π)−
1
2

×
∫
R

φ(r1, . . . , r j−1, s, r j−1, . . . rn)e−ik js ds. (8.5)

More generally, for an index set I = { j1, . . . , jm} ⊂ {1, . . . , n}, the partial Fourier transform
FIφ of φ ∈ S(Rn) is defined by

FIφ :=F jm . . .F j1φ. (8.6)

Note that, for fixed r1, . . . , r j−1, r j+1, . . . rn, the map r j 
→ φ(r), defines a Schwartz function
on R. This function is then also in L1(R) and therefore the integral in equation (8.5) is well-
defined. Moreover, by the Fubini–Tonelli theorem the order in which theF ji appear in equation
(8.6) does not matter. Finally, we point out that F1,...,n = F .

Proposition 8.15. Partial Fourier transforms are linear, bijective, continuous operators
FI : S(Rn) → S(Rn). They have continuous inverses defined by

F−1
I φ :=F−1

jm . . .F−1
j1
φ,

where

F−1
j φ(r1, . . . , r j−1, k j, r j+1, . . . rn) = (2π)−

1
2

×
∫
R

φ(r1, . . . , r j−1, s, r j−1, . . . rn)eik js ds.

Proof. This result can be shown in essentially the same way as proposition 8.8. The main
steps are as follows.

First, from equations (8.5) and (8.6) we deduce that the function FIφ is bounded. Second,
it is infinitely differentiable and the operator FI exchanges differentiation and multiplication
with polynomials in the expected way. More specifically, and assuming that I = {1, . . . , m} to
keep the notation simple, we have

(k, r)α∂βFIφ = (−i)|α1|+|β1|FI

(
∂α1

s rα2sβ1∂β2
r φ

)
(8.7)

for all k ∈ R
m, r ∈ R

n−m and all multi-indices α = (α1,α2), β = (β1, β2) ∈ N
m
0 × N

n−m
0 .

These two facts imply that FIφ ∈ S(Rn).
Next, exploiting equation (8.7), we can show that for each pair of multi-indices α, β there

exists another pair α′, β′ and a C > 0 such that pα,β(FIφ) � Cpα′ ,β′ (φ). This shows that FI is
continuous on S(Rn).

Finally, note that k 
→ FIφ(k, r) is nothing but the regular Fourier transform of the Schwartz
function s 
→ φ(s, r). ThereforeFI has an inverse. It is continuous on S(Rn) for the same reasons
FI is.

Since equation (8.3) remains valid if we replace F by FI , we can extend the partial Fourier
transforms to S′(Rn).

Definition 8.16 (Partial Fourier transforms on S′(Rn)). For every v ∈ S′(Rn), we
define FIv by

FIv[φ] := v[FIφ]

for all φ ∈ S(Rn).
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Proposition 8.17. Partial Fourier transforms are linear, bijective, continuous operatorsFI :
S′(Rn) → S′(Rn). They have continuous inverses defined by

F−1
I v[φ] = v[F−1

I φ]

for all v ∈ S′(Rn) and all φ ∈ S(Rn).

Proof. The continuity of the extension of FI to S′(Rn) follows from remark 8.11. Analo-
gously, F−1

I can be extended to a continuous operator on S′(Rn). These two extensions are still
inverse to each other, because FIF−1

I v[φ] = v[F−1
I FIφ] = v[φ] = F−1

I FIv[φ].

Remark 8.18. It follows from remark 8.11 that partial Fourier transforms can be composed
in the following way. Suppose I and J are disjoint subsets of {1, . . . , n}. Then an application
of the Fubini–Tonelli theorem shows that FIFJφ = FI∪Jφ for every φ ∈ S(Rn). This property
immediately carries over to the distributional setting

FIFJv[φ] = v[FJFIφ] = v[FI∪Jφ] = FI∪Jv[φ]

for all v ∈ S′(Rn) and all φ ∈ S(Rn). In the proof of theorem 3.1 where n = 3, we make use of
the special case F3F1,2 = F implying that

F1,2 = F−1
3 F . (8.8)

Definition 8.19 (Partial convolution on S(Rn)). Let j ∈ {1, . . . , n} and φ,ψ ∈ S(Rn).

We denote by φ
j∗ψ the convolution of φ and ψ along the jth coordinate, i.e.,

(φ
j
∗ψ)(r) :=

∫
R

φ(r1, . . . , r j−1, s, r j+1, . . . , rn)

× ψ(r1, . . . , r j−1, r j − s, r j+1, . . . , rn)ds.

As is the case for ordinary convolution, partial convolution with a Schwartz function is a
continuous operation on S(Rn).

Proposition 8.20. For every ψ ∈ S(Rn) and j ∈ {1, . . . , n} the operation φ 
→ ψ
j
∗φ maps

S(Rn) continuously into itself.

Proof. We sketch the main steps of this proof. First, since we can differentiate under the

integral sign, the functionψ
j
∗φ is infinitely differentiable for all φ,ψ ∈ S(Rn). Furthermore, by

means of a generalized product rule one can show that for every multi-index α, the derivative

∂α(ψ
j
∗φ) is a linear combination of partial convolutions of derivatives of φ and ψ. Combining

this with the fact that rβ(χ
j
∗η) is a bounded function for all multi-indices β and Schwartz

functions χ, η, we find that rβ∂α(ψ
j∗φ) is bounded too. In fact, it has an upper bound of the

form Cpα′ ,β′ (φ), where C � 0 depends on ψ. This finishes the proof.

Partial convolution is not only continuous, but also satisfies an identity analogous to
equation (8.4), namely∫

Rn
(η

j
∗φ)(r)ψ(r)dr =

∫
Rn
φ(r)(M jη

j
∗ψ)(r)dr
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for all φ,ψ, η ∈ S(Rn), where M jφ(r) = φ(r1, . . . , r j−1,−r j, r j+1, . . . , rn). Thus we can extend
it to a continuous operation on S′(R3) in the following way, recall remark 8.11.

Definition 8.21 (Partial convolution of a Schwartz function with a tempered
distribution). The partial convolution of ψ ∈ S(Rn) with v ∈ S′(Rn) is defined by

(ψ
j
∗ v)[φ] := v[M jψ

j
∗φ]

for all φ ∈ S(Rn).

Finally, we have all prerequisites for formulating a one-dimensional convolution theorem
for tempered distributions on Rn.

Theorem 8.22 (Partial convolution theorem on S′(Rn)). For all φ ∈ S(Rn) and v ∈
S′(Rn), we have

F j(φ
j∗ v) = (2π)

1
2 F jφF jv, and F jφ

j∗F jv = (2π)
1
2 F j(φv). (8.9)

The same identities hold for F−1
j instead of F j.

Proof. First we observe that a corresponding one-dimensional convolution theorem for
Schwartz functions, that is,

F j(φ
j∗ψ) = (2π)

1
2 F jφF jψ and F jφ

j∗F jψ = (2π)
1
2 F j(φψ) (8.10)

for all φ,ψ ∈ S(Rn) holds true. Indeed, letting the coordinates ri for i �= j be fixed, equation
(8.10) is nothing but a standard convolution theorem for the one-dimensional Schwartz
functions r j 
→ φ(r) and r j 
→ ψ(r).

Next, it follows directly from definitions 8.14 and 8.21 that

F j(φ
j
∗ v)[ψ] = φ

j
∗ v[F jψ] = v[M jφ

j
∗F jψ].

The second identity in equation (8.10) implies that

M jφ
j
∗F jψ = (2π)

1
2 F j

(
(F−1

j M jφ)ψ
)
= (2π)

1
2 F j

(
(F jφ)ψ

)
,

where we have also exploited the fact thatF j = F−1
j M j. Combining the previous two equalities

gives

F j(φ
j∗ v)[ψ] = (2π)

1
2 v[F j

(
(F jφ)ψ

)
] = (2π)

1
2 F jv[(F jφ)ψ]

= (2π)
1
2 (F jφ)F jv[ψ].

In the last equality we have used the fact that multiplication of a tempered distribution with a
Schwartz function is defined by φv[ψ] = v[φψ]. This finishes the first part of equation (8.9).
The second part follows analogously, as do the corresponding formulas for the inverse F−1

j .
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A.3. Proof of theorem 3.1
In order to prove theorem 3.1, we have to characterize the partial Fourier transform F1,2G,
where the subscripts indicate that the transform is taken with respect to r1 and r2 and

G(r) :=
eik0‖r‖

4π ‖r‖ (8.11)

is the Green function of the Helmholtz operator −(Δ+ k2
0) which satisfies the Sommerfeld

radiation condition, see [5, chapter 2]. Since G(·, ·, r3) is not in L1(R2) for any r3 ∈ R, we
cannot compute this transformF1,2G as an ordinary Fourier integral. Instead, in lemma 8.23 we
calculate F1,2G in the distributional sense. Mathematical details about distributions, (partial)
Fourier transforms and convolutions can be found in sections A.1 and A.2.

We define

Gε(r) := e−ε‖r‖G(r), ε > 0,

and note that Gε → G in S′(R3) for ε→ 0. We will also use the abbreviation

κε :=
√

(k0 + iε)2 − k2
1 − k2

2 (8.12)

to denote the principal square root of (k0 + iε)2 − k2
1 − k2

2, that is, the root with positive
imaginary part.

Lemma 8.23. The partial Fourier transform F1,2G ∈ S′(R3) is given by

F1,2G[φ] = lim
ε→0

F1,2Gε[φ] = lim
ε→0

∫
R3

i eiκε|r3|

4πκε
φ(k1, k2, r3)d(k1, k2, r3)

for all Schwartz functions φ ∈ S(R3).

Proof. Since F1,2 is continuous on S′(R3), recall proposition 8.17, we also have F1,2Gε →
F1,2G in S′(R3). It remains to calculate F1,2Gε. We do so in two steps, according to equation
(8.8).

First, exploiting the fact that Gε is a radial function, see [31, equation (4.28)], we obtain for
the 3D Fourier transform

FGε(k) = ‖k‖−1(2π)−
3
2

∫ ∞

0
es(−ε+ik0) sin(s ‖k‖) ds,

for all k ∈ R3. The integral on the right-hand side can be calculated via integration by parts as

FGε(k) =
(2π)−

3
2

‖k‖2 − (k0 + iε)2
=

(2π)−
3
2

k2
3 − κ2

ε

.

Second, for a ∈ C with Re a > 0, formula 17.23.14 in [15] states that∫
R

eik3r3

k2
3 + a2

dk3 = π
e−a|r3|

a
.

With respect to the above integral, we use a := − iκε, which fulfills Re a > 0 since Imκε > 0.
Then we obtain

F1,2Gε = F−1
3 FGε = (2π)−2

∫
R

eik3r3

k2
3 − κ2

ε

dk3 = − 1
4π

eiκε|r3 |

iκε
. (8.13)
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Proof (of theorem 31). Let g ∈ Lp(R3), p > 1, with supp(g) ⊂ Br. Then, by the embedding
in equation (8.1) and density of D(R3) in Lp(R3), p ∈ [1,∞), we can find a sequence of func-
tions gn ∈ D(R3) with supp gn ∈ Br, such that gn → g in Lq(R3), for q ∈ [1, p] if p ∈ (1,∞)
and for q ∈ [1,∞) otherwise, as n →∞. For each gn, consider

(Δ+ k2
0)un = −gn

with the Sommerfeld radiation condition. The unique solution un is given by the convolution
un = gn ∗ G, see [5, chapter 2]. From equation (8.8) and the convolution theorems 8.13 and
8.22, for the 3D Fourier transform F and the partial Fourier transform F3, it follows that

F1,2un = F−1
3 F (g∗

nG) = (2π)
3
2 F−1

3 (FgnFG) = 2π
(
F−1

3 Fgn

) 3∗
(
F−1

3 FG
)

= 2π(F1,2gn)
3∗ (F1,2G),

(8.14)

where
3∗ denotes the partial convolution with respect to the third coordinate. Now, for every

φ ∈ S(R3), it follows by continuity of partial convolutions on S′(R3) that

F1,2un[φ] = 2π
(
F1,2gn

3∗F1,2G
)

[φ] = 2π lim
ε→0

(
F1,2gn

3∗F1,2Gε

)
[φ]

= 2π lim
ε→0

F1,2Gε[M3F1,2gn
3∗φ],

and by Fubini’s theorem and equation (8.1) further

F1,2un[φ] =
i
2

lim
ε→0

∫
R3

φ

κε

∫
R

eiκε|r3−x| F1,2gn(k1, k2, x) dx d(k1, k2, r3).

Now, let φ ∈ D(R3). In order to change integration and limit, we will apply Lebesgue’s dom-
inated convergence theorem twice. First, noting that F1,2gn(k1, k2, ·) ∈ L1(R) we conclude by
Lebesgue’s theorem that

lim
ε→0

∫
R

eiκε|r3−x| F1,2gn(k1, k2, x)dx =

∫
R

eiκ|r3−x|F1,2gn(k1, k2, x)dx,

for all (k1, k2, r3) ∈ R3. It is then immediate that

lim
ε→0

φ(k1, k2, r3)
κε(k1, k2)

∫
R

eiκε|r3−x|F1,2gn(k1, k2, x)dx =
φ(k1, k2, r3)
κ(k1, k2)

×
∫
R

eiκ|r3−x| F1,2gn(k1, k2, x)dx (8.15)

for k2
1 + k2

2 �= k2
0. In the following, we suppress the arguments of φ and κ for the sake of sim-

plicity. The function (k1, k2) 
→ |κ|−1 =
∣∣k2

0 − k2
1 − k2

2

∣∣−1/2
is locally integrable, since we have

for c > k0 in cylindrical coordinates that∫
Bc

∣∣k2
0 − k2

1 − k2
2

∣∣−1/2
d(k1, k2) = 2π

∫ c

0
ρ
∣∣k2

0 − ρ2
∣∣−1/2

dρ

= 2π(k0 +
√

c2 − k0).
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From now on, we assume φ ∈ D(R3). Using the integrability of κ and |κ| � |κε|, it follows
that ∣∣∣∣ φκε

∫
R

eiκε|r3−x|F1,2gn(k1, k2, x) dx

∣∣∣∣ � |φ|
|κ|

∫
R

|F1,2gn(k1, k2, x)|

× dx � |φ|
2π |κ| ‖gn‖L1 ∈ L1(R3). (8.16)

Taking into account equations (8.15) and (8.16) and applying Lebesgue’s dominated conver-
gence theorem again, then gives

F1,2un[φ] =
i
2

∫
R3

φ

κ

∫
R

eiκ|r3−x|F1,2gn(k1, k2, x)dx d(k1, k2, r3).

Next, we can express

∫
R

eiκ|r3−x|F1,2gn(k1, k2, x) dx

= eiκr3

∫ r3

−∞
e−iκxF1,2gn(k1, k2, x)dx + e−iκr3

∫ +∞

r3

eiκxF1,2gn(k1, k2, x)dx

= eiκr3

∫
R

(
1 − Hr3 (k1, k2, x)

)
e−iκxF1,2gn(k1, k2, x)dx

+ e−iκr3

∫
R

Hr3 (k1, k2, x)eiκxF1,2gn(k1, k2, x)dx

= eiκr3

∫
R

e−iκxF1,2((1 − Hr3 )gn)(k1, k2, x)dx + e−iκr3

∫
R

eiκxF1,2(Hr3gn)(k1, k2, x)dx

=
√

2π
(
eiκr3F ((1 − Hr3 )gn)(k1, k2,κ) + e−iκr3F (Hr3gn)(k1, k2,−κ)

)
,

(8.17)

where we recall that for k1, k2 ∈ R such that k2
1 + k2

2 > k2
0, the analytic continuations of

F ((1 − Hr3 )gn) and F (Hr3gn) to C3 have to be considered. Therefore, we have

F1,2un[φ] =
i
√
π√
2

∫
R3

φ

κ

(
eiκr3 F ((1 − Hr3 )gn)(k1, k2,κ)

+ e−iκr3 F (Hr3gn)(k1, k2,−κ)
)

d(k1, k2, r3).

(8.18)

We consider n →∞ in equation (8.18) and start with the right-hand side. Taking into account
gn → g in L1(R3) and F : L1(R3) → C0(R3), we obtain the pointwise limit

lim
n→∞

φ

κ

(
eiκr3 F ((1 − Hr3 )gn)(k1, k2,κ) + e−iκr3 F (Hr3gn)(k1, k2,−κ)

)
=

φ

κ

(
eiκr3 F ((1 − Hr3 )g)(k1, k2,κ) + e−iκr3 F (Hr3g)(k1, k2,−κ)

) (8.19)

for k2
1 + k2

2 �= k2
0. Further, we have
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∣∣∣∣φκ (
eiκr3 F ((1 − Hr3 )gn)(k1, k2,κ) + e−iκr3 F (Hr3gn)(k1, k2,−κ)

)∣∣∣∣
� |φ|

(2π)3/2 |κ| ‖gn‖L1

for k2
1 + k2

2 �= k2
0, which follows from equations (8.16) and (8.17). As gn → g in L1(R3), we

can then find a constant C > 0 and N ∈ N such that∣∣∣∣φκ (
eiκr3 F ((1 − Hr3 )gn)(k1, k2,κ) + e−iκr3 F (Hr3gn)(k1, k2,−κ)

)∣∣∣∣
� C

|φ|
|κ| ‖g‖L1 ∈ L1(R3) (8.20)

for every n � N and almost every (k1, k2, r3) ∈ R3. With equations (8.19) and (8.20) at our
disposal, Lebesgue’s dominated convergence theorem gives

lim
n→∞

∫
R3

φ

κ

(
eiκr3 F ((1 − Hr3 )gn)(k1, k2,κ) + e−iκr3 F (Hr3gn)(k1, k2,−κ)

)
d(k1, k2, r3)

=

∫
R3

φ

κ

(
eiκr3 F ((1 − Hr3 )g)(k1, k2,κ) + e−iκr3 F (Hr3g)(k1, k2,−κ)d(k1, k2, r3).

(8.21)

Next, we consider the convergence of the left-hand side in equation (8.18). From [17,
theorem 6, remark 1], it follows that the unique solution u of equation (3.2) for g ∈ Lq1 (R3)
satisfying the Sommerfeld radiation condition, fulfills

‖u‖Lq2 � C(k0)‖g‖Lq1 (8.22)

if q1 <
3
2 , q2 > 3 and 1

2 � 1
q1

− 1
q2

� 2
3 . In particular, q2 = 3 + ε and q1 ∈ [9 + 3ε/(9 +

2ε), 6 + 2ε/(5 + ε)] fulfill the above requirements for ε > 0 small enough. Thus, for every
p > 1, we can find 1 < q1 < p by setting ε small enough. For g ∈ Lp(R3), p > 1 supported
in Br, we know by the embedding in equation (8.1) that g ∈ Lq1 (R3), for 1 < q1 < p. Thus,
equation (8.22) implies that un → u in Lq2 (R3), since gn → g in Lq1 (R3). In particular, un → u
in S′(R3). Then the continuity of F1,2 on S′(R3) gives

F1,2u[φ] = lim
n→∞

F1,2un[φ] (8.23)

for all φ ∈ S(R3) and by equation (8.21) finally

F1,2u[φ]

=
i
√
π√
2

∫
R3
φ

1
κ

(
eiκr3 F ((1 − Hr3 )g)(k1, k2,κ) + e−iκr3 F (Hr3g)(k1, k2,−κ)

)
︸ ︷︷ ︸

∈L1
loc(R3)

d(k1, k2, r3),

for all φ ∈ D(R3). Then the assertion follows by applying the du Bois–Reymond lemma, see
[16, lemma 3.2].
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A.4. Proof of lemma 4.2

In this subsection we compute the determinant of the Jacobian |∇T±(k1, k2, t)|.

Proof. By definition we have

|∇T±(k1, k2, t)| =
∣∣∣∣det

(
∂

∂k1
Rn(t),α(t)h,

∂

∂k2
Rn(t),α(t)h,

∂

∂t
Rn(t),α(t)h

)∣∣∣∣ , (8.24)

where the first and second columns are given by

∂

∂k1
Rn,αh = Rn,α

∂

∂k1
h = Rn,α

⎛
⎝ 1

0
∓k1/κ

⎞
⎠ ,

∂

∂k2
Rn,αh = Rn,α

∂

∂k2
h = Rn,α

⎛
⎝ 0

1
∓k2/κ

⎞
⎠ .

Multiplying the argument of the determinant in equation (8.24) with the orthogonal matrix
Rn(t),−α(t) = R−1

n(t),α(t) does not change the determinant. Hence we get

|∇T±(k1, k2, t)| =
∣∣∣∣det

(
∂

∂k1
h,

∂

∂k2
h, Rn(t),−α(t)

∂

∂t
Rn(t),α(t)h

)∣∣∣∣
=

∣∣∣∣∣∣∣det

⎛
⎜⎝

1 0 v1

0 1 v2

∓k1

κ
∓k2

κ
v3

⎞
⎟⎠
∣∣∣∣∣∣∣

=

∣∣∣∣k1

κ
v1 +

k2

κ
v2 ± v3

∣∣∣∣ ,

(8.25)

where

v = (v1, v2, v3)� :=Rn(t),−α(t)
∂

∂t
Rn(t),α(t)h.

In the rest of this proof we calculate v. To shorten our notation, we suppress the dependency
on t and set c := cos (α(t)) and s := sin (α(t)). We set

z :=
∂

∂t
Rn(t),α(t)h = (1 − c)

((
n′ · h

)
n + (n · h) n′)+ α′s ((n · h) n − h)

− α′c (n × h) − s
(
n′ × h

)
,

where the second equality is a consequence of Rodrigues’ rotation formula

Rn,αy = (1 − cos(α)) (n · y) n + cos(α) y − sin(α) (n × y) . (8.26)

Then we have

v = Rn(t),−α(t)z = (1 − c) (n · z) n + cz + s (n × z) .
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Since n · n = 1 and consequently n · n′ = 0, we obtain

v = Rn(t),−α(t)z = (1 − c) n
(
(1 − c)

(
n′ · h

)
− sn ·

(
n′ × h

))
+ s

(
(1 − c)

((
n′ · h

)
n + (n · h) n′)+ α′s ((n · h) n − h) − α′c (n × h)

− s
(
n′ × h

))
+ s

(
(1 − c) (n · h)

(
n × n′)− α′s (n × h) − α′c (n × (n × h))

− s
(
n ×

(
n′ × h

)))
.

Expanding the vector triple products in the last line using the Grassmann identity, we see that

v = (1 − c) n
(
(1 − c)

(
n′ · h

)
− sn ·

(
n′ × h

))
+ c(1 − c)

((
n′ · h

)
n + (n · h) n′)

+ α′cs ((n · h) n − h) − α′c2 (n × h) − cs
(
n′ × h

)
+ s(1 − c) (n · h)

(
n × n′)− α′s2 (n × h) − α′sc (n (n · h) − h)

− s2
(
n′ (n · h)

)
.

Sorting the terms, we obtain

v = n
(
(1 − c)2

(
n′ · h

)
− s(1 − c) n ·

(
n′ × h

)
+ c(1 − c)

(
n′ · h

))
+ n′ (c(1 − c) (n · h) − s2 (n · h)

)
− α′ (n × h) − sc

(
n′ × h

)
+ s(1 − c) (n · h)

(
n × n′) = n

(
(1 − c)

(
n′ · h

)
− s(1 − c) n ·

(
n′ × h

))
− n′ (1 − c) (n · h) − α′ (n × h) − sc

(
n′ × h

)
+ s(1 − c) (n · h)

(
n × n′) .

If n′ = 0, then v = −α′ (n × h). Otherwise, the vectors n, n′ and n × n′ are orthogonal and
Lagrange’s identity yields

n′ × h = n
(
n ·

(
n′ × h

))
+

1

‖n × n′‖2

(
n × n′) ((n × n′) · (n′ × h

))
= n

(
n ·

(
n′ × h

))
−

(
n × n′) (n · h) .

Hence, we obtain

v = n
(
(1 − c)

(
n′ · h

)
− s(1 − c) n ·

(
n′ × h

))
− n′ (1 − c) (n · h) − α′ (n × h) − sc

(
n
(
n ·

(
n′ × h

))
−

(
n × n′) (n · h)

)
+ s (1 − c) (n · h)

(
n × n′) = (1 − c)

(
n (n′ · h) − n′ (n · h)

)
− ns

(
n ·

(
n′ × h

))
− α′ (n × h) + s (n · h)

(
n × n′) . (8.27)

By equation (8.25), we have

|∇T±(k1, k2, t)| =

∣∣∣∣∣∣
⎛
⎝v1

v2

v3

⎞
⎠ ·

⎛
⎝k1/κ

k2/κ
±1

⎞
⎠
∣∣∣∣∣∣ = 1

κ

∣∣∣∣∣∣
⎛
⎝v1

v2

v3

⎞
⎠ ·

⎛
⎝ k1

k2

±κ

⎞
⎠
∣∣∣∣∣∣

=
1
κ

∣∣∣∣∣∣v ·

⎛
⎝h +

⎛
⎝ 0

0
k0

⎞
⎠
⎞
⎠
∣∣∣∣∣∣ = k0

κ
|v3| ,
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where the last equality follows from v · h = 0.Replacing v3 by the third component of equation
(8.27) yields

|∇T±(k1, k2, t)| = k0

κ
|
(
(1 − c)

(
n3 (n′ · h) − n′

3 (n · h)
)
− n3sn ·

(
n′ × h

))
− α′ (n1k2 − n2k1) + s (n · h)

(
n1n′

2 − n2n′
1

)
|,

which proves the first assertion. The Jacobian determinant is in L1(U), because (k1, k2) 
→
1/κ(k1, k2) is locally integrable on R

2 while the remaining expression is bounded on U .
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