The space of curves in a conformal 3-manifold

Ulrich Pinkall

Technische Universität Berlin

Oberwolfach, May 2007

Joint work with F. Henrich
Closed curves in S^3
Curves in a conformal 3-manifold

- M a 3-manifold with conformal structure (equivalence class of Riemannian metrics)

- Main example: $M = S^3$

- $\mathcal{M} = \{\text{immersions } \gamma: S^1 \to M\}/\text{Diff}_0(S^1)$ (space of unparametrized oriented closed curves)

- More generally: Space of compact submanifolds of codimension k in a conformal n-manifold
\mathcal{M} is an infinite dimensional Frechet manifold (C^{∞}-topology on closed curves in M).

What works as usual on Frechet manifolds?

- Defining tensors (like Riemannian metrics)
- Everything that involves only differentiation (like computing the Levi-Civita connection of a Riemannian metric)
Infinite dimensional manifolds

Where one has to be careful:

- No existence and uniqueness theorem for ODE’s on infinite-dimensional manifolds
 - Vector fields might not have integral curves
 - No geodesics with prescribed initial velocity

- Integration over \mathcal{M} not easy
 - better not talk about volume of subsets of \mathcal{M}
Tangent bundle of \mathcal{M}

- $T_{\gamma}\mathcal{M} = \{\text{normal vector fields } Y \text{ along } \gamma\}$

- A compatible Riemannian metric \langle , \rangle on \mathcal{M} defines a Riemannian metric on \mathcal{M}:
 $$\langle Y, Z \rangle_{L^2} = \int \langle Y(s), Z(s) \rangle ds$$

- For a 1-parameter family $t \mapsto \gamma_t$, $t \in [0, 1]$ use Levi-Civita parallel translation along the orthogonal trajectories to transport normal vectors of γ_0 to normal vectors of $\gamma_1 \rightsquigarrow$ affine connection $\hat{\nabla}$ on \mathcal{M}
Levi-Civita connection of $\langle Y, Z \rangle_{L^2}$

- Vector field \mathcal{H} on \mathcal{M}:
 \[\mathcal{H}_\gamma = \text{Mean curvature vector field along } \gamma \]

- Tensor field C on \mathcal{M}:
 \[C : T_\gamma \mathcal{M} \times T_\gamma \mathcal{M} \to T_\gamma \mathcal{M} \]
 \[C_X Y = \langle X, \mathcal{H} \rangle Y + \langle Y, \mathcal{H} \rangle X - \langle X, Y \rangle \mathcal{H} \]

- $\hat{\nabla} + \frac{1}{2} C$ is the Levi-Civita connection of $\langle Y, Z \rangle_{L^2}$
Canonical affine connection on \mathcal{M}

- $\nabla := \hat{\nabla} + C$ is a conformally invariant affine connection on \mathcal{M}

- ∇ admits no parallel Riemannian metric, but the conformally invariant function

$$L : T\mathcal{M} \to \mathbb{R}_+$$

$$\frac{1}{L(Y)} = \int 1/|Y(s)| ds$$

is invariant under parallel translation:

$$\nabla L = 0$$

- L is called the *harmonic mean Lagrangian*
Harmonic mean Lagrangian

- L vanishes on normal vector fields $Y \in T_\gamma M$ that have zeroes
- L is homogeneous of degree one, hence for curves $t \mapsto \gamma_t \in \mathcal{M}, \quad t \in [a, b]$

 the functional

 \[
 \mathcal{L} = \int_a^b L(\dot{\gamma}) \in \mathbb{R}_+
 \]

 is parametrization-independent

- \mathcal{L} measures in a conformally invariant way the “length” of a curve in \mathcal{M}
Let \(f : S^1 \times [a, b] \to M \) be an immersed cylinder, viewed as a curve \(t \mapsto \gamma_t \) in \(M \). Then the following are equivalent:

- \(\gamma \) is a geodesic of \(\nabla \)
- \(\gamma \) is a critical point of \(\mathcal{L} \)
- \(f \) is isothermic and the curves \(\gamma_t \) make an angle of 45° with the curvature lines of \(f \)

\(\leadsto \) variational characterization of isothermic surfaces
The space of circles in S^3 is a 6-dimensional totally geodesic submanifold $Circ(S^3)$ of M.

Geodesics in $Circ(S^3)$ are special minimal surfaces (helicoids) with respect to some constant curvature metric on a subset of S^3.
Rotation of normal vector fields Y by 90°, $Y \mapsto J(Y)$ defines an almost complex structure on \mathcal{M}:

$$J : T\gamma \mathcal{M} \to T\gamma \mathcal{M}$$

The Nijenhuis-Tensor of J vanishes.

For any compatible metric $\langle \cdot , \cdot \rangle$ on \mathcal{M} the Levi-Civita connection of the L^2-metric $\langle \cdot , \cdot \rangle_{L^2}$ induced on \mathcal{M} leaves J parallel.

Hence $\langle \cdot , \cdot \rangle_{L^2}$ is a Kähler metric on \mathcal{M}.

$\nabla J = 0$ for the canonical connection.
Holomorphic curves in \mathcal{M}

- Locally a holomorphic curve

 $$f : U \to \mathcal{M}, \quad U \subset \mathbb{C}$$

 defines a fibration

 $$\phi : f^{-1}(U) \to U$$

- ϕ is a conformal submersion

- Classical topic in case $\mathcal{M} = S^3$ and $f(z)$ is a round circle for all $z \in U$ ("isotropic circle congruences")
The space of round circles in S^3 is a totally geodesic complex submanifold of \mathcal{M}.

So is the space of straight lines in a non-euclidean geometry embedded in S^3.

The Hopf fibration is a holomorphic 2-sphere in \mathcal{M}.
The total torsion modulo 2π of any unit normal vector field N along γ is conformally invariant and independent of N:

$$\mathcal{T}(\gamma) \in S^1 = \mathbb{R}/2\pi$$

\mathcal{T} is the monodromy in the normal bundle of γ.

In case M is simply connected:

- M is connected.
- \mathcal{T} can be defined modulo 4π (use only normal vector fields with even linking number) $\leadsto \mathcal{T}/2 \in S^1$ is well-defined.
- An isomorphism of fundamental groups is induced by

$$\mathcal{T}/2 : M \to S^1$$
Critical points of the total torsion

- γ is a critical point of $T \iff$

$$R(N, JN)\gamma' + H' = 0$$

where N is any unit normal vector field along γ.

- In standard S^3: $\iff \gamma$ is a round circle.

- Define in general γ to be a round circle in M if it is a critical point of T.

- Question: Do there always exist closed round circles? How many?