Polygonal smoke

Ulrich Pinkall

jointly with Steffen Weißmann

DFG Research Center MATHEON
Mathematics for key technologies

May 18, DDG 2010, Tennessee
Polygonal smoke
Claim: The whole smoke can be modelled as a collection of entangled smoke rings.

Smoke rings move on their own, but they also interact.

Interaction can even imply a topology change (reconnection)
Claim: The whole smoke can be modelled as a collection of entangled smoke rings.

Smoke rings move on their own, but they also interact.

Interaction can even imply a topology change (reconnection).
Claim: The whole smoke can be modelled as a collection of entangled smoke rings.

Smoke rings move on their own, but they also interact.

Interaction can even imply a topology change (reconnection)
Vortex filaments
Colliding vortex rings
A velocity vector field v is uniquely determined by its vorticity $\omega = \text{curl} \, v$.

v is given by the Biot-Savart formula:

$$v(x) = \frac{1}{4\pi} \int_{\mathbb{R}^3} \omega(y) \times \frac{x - y}{|x - y|^3} \, dy$$

In an ideal fluid ω flows with the velocity v it generates:

$$\dot{\omega} = \text{curl} \, (v \times \omega) = [\omega, v]$$
A velocity vector field v is uniquely determined by its vorticity

$$\omega = \text{curl } v$$

v is given by the Biot-Savart formula:

$$v(x) = \frac{1}{4\pi} \int_{\mathbb{R}^3} \omega(y) \times \frac{x - y}{|x - y|^3} \, dy$$

In an ideal fluid ω flows with the velocity v it generates:

$$\dot{\omega} = \text{curl } (v \times \omega) = [\omega, v]$$
A velocity vector field v is uniquely determined by its vorticity

$$\omega = \text{curl} \ v$$

v is given by the Biot-Savart formula:

$$v(x) = \frac{1}{4\pi} \int_{\mathbb{R}^3} \omega(y) \times \frac{x - y}{|x - y|^3} \, dy$$

In an ideal fluid ω flows with the velocity v it generates:

$$\dot{\omega} = \text{curl} \ (v \times \omega) = [\omega, v]$$
Away from obstacles vorticity is neither created nor destroyed

Just swept along with the flow

All vorticity originates at the boundaries of obstacles

Kaffeeöffelexperiment by Felix Klein
Origin of vorticity

- Away from obstacles vorticity is neither created nor destroyed

- Just swept along with the flow

- All vorticity originates at the boundaries of obstacles

- *Kaffeelöfflexperiment* by Felix Klein
Away from obstacles vorticity is neither created nor destroyed.

Just swept along with the flow.

All vorticity originates at the boundaries of obstacles.

Kaffeeöffelexperiment by Felix Klein
Origin of vorticity

- Away from obstacles vorticity is neither created nor destroyed
- Just swept along with the flow
- All vorticity originates at the boundaries of obstacles
- *Kaffeelöfflexperiment* by Felix Klein
Vorticity originates as 2-dimensional vortex sheets

Vortex sheets roll up into 1-dimensional structures ("smoke rings")
Vortex sheet roll up

- Vorticity originates as 2-dimensional vortex sheets
- Vortex sheets roll up into 1-dimensional structures ("smoke rings")
Airplane rides on a giant vortex ring

Extends back to where it took off

Vorticity concentrated on a filament
Airplane rides on a giant vortex ring.

Extends back to where it took off.

Vorticity concentrated on a filament.
Airplane rides on a giant vortex ring
Extends back to where it took off
Vorticity concentrated on a filament
Suppose all vorticity is concentrated in a small tube of radius R around a space curve γ (like water flowing through the tube).

Then away from γ the velocity field is given by

$$v(x) = K \oint \frac{\gamma' \times (x - \gamma)}{|x - \gamma|^3}$$
Suppose all vorticity is concentrated in a small tube of radius R around a space curve γ (like water flowing through the tube).

Then away from γ the velocity field is given by

$$v(x) = K \oint \frac{\gamma' \times (x - \gamma)}{|x - \gamma|^3}$$
Evolution of γ: Evaluate velocity ν on $\gamma$$ \rightsquigarrow$

$$\dot{\gamma} \approx C_f K \log(R) \gamma' \times \gamma''$$

- Scale down K as $R \rightarrow 0$$ \rightsquigarrow$ smoke ring flow
- da Rios and Levi-Civita 1906
- Integrable system equivalent to the non-linear Schroedinger equation (Hashimoto 1972)
Evolution of γ: Evaluate velocity v on $\gamma \mapsto$

$$\dot{\gamma} \approx C_f K \log(R) \gamma' \times \gamma''$$

Scale down K as $R \to 0 \mapsto$ smoke ring flow

da Rios and Levi-Civita 1906

Integrable system equivalent to the non-linear Schroedinger equation (Hashimoto 1972)
Evolution of γ: Evaluate velocity v on γ \(\rightsquigarrow\)

$$\dot{\gamma} \approx C_f \, K \, \log(R) \, \gamma' \times \gamma''$$

Scale down K as $R \rightarrow 0 \rightsquigarrow$ smoke ring flow

da Rios and Levi-Civita 1906

Integrable system equivalent to the non-linear Schroedinger equation (Hashimoto 1972)
Evolution of γ: Evaluate velocity v on $\gamma \rightsquigarrow$

$$\dot{\gamma} \approx C_f K \log(R) \gamma' \times \gamma''$$

Scale down K as $R \to 0 \rightsquigarrow$ smoke ring flow

da Rios and Levi-Civita 1906

Integrable system equivalent to the non-linear Schroedinger equation (Hashimoto 1972)
\[\dot{\gamma} = \gamma' \times \gamma'' \]

- Curve moves orthogonal to its osculating plane.
- Speed is proportional to the curvature.
- Length is constant.
- Area vector is constant.
\[\dot{\gamma} = \gamma' \times \gamma'' \]

- Curve moves orthogonal to its osculating plane.
- Speed is proportional to the curvature.
- Length is constant.
- Area vector is constant.
Smoke ring flow

- $\dot{\gamma} = \gamma' \times \gamma''$

- Curve moves orthogonal to its osculating plane.

- Speed is proportional to the curvature.

- Length is constant.

- Area vector is constant.
\[\dot{\gamma} = \gamma' \times \gamma'' \]

- Curve moves orthogonal to its osculating plane.
- Speed is proportional to the curvature.
- Length is constant.

Area vector is constant.
・ $\dot{\gamma} = \gamma' \times \gamma''$

・ Curve moves orthogonal to its osculating plane.

・ Speed is proportional to the curvature.

・ Length is constant.

 Area vector is constant.
\[\dot{\gamma} = \gamma' \times \gamma'' \]

- Curve moves orthogonal to its osculating plane.
- Speed is proportional to the curvature.
- Length is constant.
- Area vector is constant.

...
For a space curve:

\[A = \frac{1}{2} \oint \gamma \times \gamma' \]

For a closed polygon:

\[A = \frac{1}{2} \sum_{i=1}^{n} \gamma_i \times \gamma_{i+1} \]

\(b \) a unit vector \(\sim \) \(\langle A, b \rangle \) is the algebraic area of the orthogonal projection of \(\gamma \) onto a plane with normal vector \(b \)
For a space curve:

\[A = \frac{1}{2} \int \gamma \times \gamma' \]

For a closed polygon:

\[A = \frac{1}{2} \sum_{i=1}^{n} \gamma_i \times \gamma_{i+1} \]

\(b \) a unit vector \(\rightsquigarrow \langle A, b \rangle \) is the algebraic area of the orthogonal projection of \(\gamma \) onto a plane with normal vector \(b \)
Area vector of a polygon

For a space curve:

\[A = \frac{1}{2} \oint \gamma \times \gamma' \]

For a closed polygon:

\[A = \frac{1}{2} \sum_{i=1}^{n} \gamma_i \times \gamma_{i+1} \]

- \(b \) a unit vector \(\rightsquigarrow \langle A, b \rangle \) is the algebraic area of the orthogonal projection of \(\gamma \) onto a plane with normal vector \(b \)
Area vector of a polygon

▷ For a space curve:

\[A = \frac{1}{2} \int \gamma \times \gamma' \]

▷ For a closed polygon:

\[A = \frac{1}{2} \sum_{i=1}^{n} \gamma_i \times \gamma_{i+1} \]

▷ \(b \) a unit vector \(\sim \langle A, b \rangle \) is the algebraic area of the orthogonal projection of \(\gamma \) onto a plane with normal vector \(b \)
A quadrilateral $\gamma_0, \gamma_1, \gamma_2, \gamma_3$ in \mathbb{R}^3 is called a *skew parallelogram* of twist τ if the difference vector

$$V = \frac{\gamma_3 + \gamma_1}{2} - \frac{\gamma_2 + \gamma_0}{2}$$

between the centers of its diagonals is a multiple of its area vector:

$$V = \tau A$$

Opposite sides of a skew parallelogram have the same length.
A quadrilateral $\gamma_0, \gamma_1, \gamma_2, \gamma_3$ in \mathbb{R}^3 is called a *skew parallelogram* of twist τ if the difference vector

$$V = \frac{\gamma_3 + \gamma_1}{2} - \frac{\gamma_2 + \gamma_0}{2}$$

between the centers of its diagonals is a multiple of its area vector:

$$V = \tau A$$

Opposite sides of a skew parallelogram have the same length.
A quadrilateral $\gamma_0, \gamma_1, \gamma_2, \gamma_3$ in \mathbb{R}^3 is called a skew parallelogram of twist τ if the difference vector

$$V = \frac{\gamma_3 + \gamma_1}{2} - \frac{\gamma_2 + \gamma_0}{2}$$

between the centers of its diagonals is a multiple of its area vector:

$$V = \tau A$$

Opposite sides of a skew parallelogram have the same length.
A polygon η is called a Darboux transform with rod-length ρ and twist τ if all quadrilaterals

$$\eta_i \quad \eta_{i+1}$$

$$\gamma_i \quad \gamma_{i+1}$$

are skew parallelograms with

$$|\eta_i - \gamma_i| = \rho$$

and twist τ.

For generic ρ, τ every closed polygon has exactly two closed Darboux transforms.

Hoffmann 2000
A polygon η is called a Darboux transform with rod-length ρ and twist τ if all quadrilaterals

\[\eta_i \quad \eta_{i+1} \]
\[\gamma_i \quad \gamma_{i+1} \]

are skew parallelograms with

\[|\eta_i - \gamma_i| = \rho \text{ and twist } \tau. \]

For generic ρ, τ every closed polygon has exactly two closed Darboux transforms.

Hoffmann 2000
A polygon η is called a Darboux transform with rod-length ρ and twist τ if all quadrilaterals η_i η_{i+1} γ_i γ_{i+1} are skew parallelograms with $|\eta_i - \gamma_i| = \rho$ and twist τ.

For generic ρ, τ every closed polygon has exactly two closed Darboux transforms.

Hoffmann 2000
Closed Darboux transforms of a closed polygon have the same:

- length
- Area vector

...

Iterating Darboux transforms with the same ρ and τ gives “discrete Lund-Regge surfaces” (Schieß 2007)
Iterated Darboux transforms

- Closed Darboux transforms of a closed polygon have the same:
 - length
 - Area vector
 - ...

- Iterating Darboux transforms with the same \(\rho \) and \(\tau \) gives “discrete Lund-Regge surfaces” (Schief 2007)
Iterated Darboux transforms

- Closed Darboux transforms of a closed polygon have the same:
 - length
 - Area vector
- Iterating Darboux transforms with the same ρ and τ gives "discrete Lund-Regge surfaces" (Schief 2007)
Iterated Darboux transforms

- Closed Darboux transforms of a closed polygon have the same:
 - length
 - Area vector
 - ...

- Iterating Darboux transforms with the same ρ and τ gives "discrete Lund-Regge surfaces" (Schief 2007)
Iterated Darboux transforms

- Closed Darboux transforms of a closed polygon have the same:
 - length
 - Area vector
 - ...

- Iterating Darboux transforms with the same \(\rho \) and \(\tau \) gives “discrete Lund-Regge surfaces” (Schiefe 2007)
Using twists τ and $-\tau$ in an alternating fashion preserves reflectional symmetries.

Forget the odd iterations.

Excellent discrete version of the smoke-ring flow.
Using twists τ and $-\tau$ in an alternating fashion preserves reflectional symmetries.

Forget the odd iterations.

Excellent discrete version of the smoke-ring flow.
Using twists τ and $-\tau$ in an alternating fashion preserves reflectional symmetries.

Forget the odd iterations.

Excellent discrete version of the smoke-ring flow.
Using twists τ and $-\tau$ in an alternating fashion preserves reflectional symmetries.

Forget the odd iterations.

Excellent discrete version of the smoke-ring flow.
Using twists τ and $-\tau$ in an alternating fashion preserves reflectional symmetries.

Forget the odd iterations.

Excellent discrete version of the smoke-ring flow.
Using twists τ and $-\tau$ in an alternating fashion preserves reflectional symmetries.

Forget the odd iterations.

Excellent discrete version of the smoke-ring flow.
Using twists τ and $-\tau$ in an alternating fashion preserves reflectional symmetries.

Forget the odd iterations.

Excellent discrete version of the smoke-ring flow.
Using twists τ and $-\tau$ in an alternating fashion preserves reflectional symmetries.

- Forget the odd iterations.

- Excellent discrete version of the smoke-ring flow.
To make this practical, several features have to be included:

- Interaction between thick vortex rings
- Obstacles
- Vorticity generation at obstacle boundaries ("vortex shedding")
- Topology changes ("vortex reconnection")
To make this practical, several features have to be included:

- Interaction between thick vortex rings
- Obstacles
- Vorticity generation at obstacle boundaries ("vortex shedding")
- Topology changes ("vortex reconnection")
To make this practical, several features have to be included:

- Interaction between thick vortex rings
- Obstacles
- Vorticity generation at obstacle boundaries ("vortex shedding")
- Topology changes ("vortex reconnection")
What is missing?

To make this practical, several features have to be included:

- Interaction between thick vortex rings
- Obstacles
- Vorticity generation at obstacle boundaries ("vortex shedding")
- Topology changes ("vortex reconnection")
To make this practical, several features have to be included:

- Interaction between thick vortex rings
- Obstacles
- Vorticity generation at obstacle boundaries ("vortex shedding")
- Topology changes ("vortex reconnection")
See Steffen’s talk on Thursday!