
Discretization of Surfaces and Integrable SystemsAlexander I. BobenkoUlrich PinkallFachbereich Mathematik, Technische Universit�at Berlin,Strasse des 17. Juni 136, 10623 Berlin, GermanyNovember 19, 19981 IntroductionLong before the theory of solitons, geometers used integrable equations to de-scribe various special curves and surfaces. Nowadays this �eld of research takesadvantage of using both geometrical intuition and algebraic and analytic me-thods of soliton theory in order to study integrable geometries, i.e. geometriesdescribed by integrable systems.The question of proper discretization of the geometries mentioned above hasrecently become a subject of intensive studies. Indeed, one can suggest variousdiscrete problems which have the same continuous limit and nevertheless havequite di�erent properties. Is there a distinguished discretization among themone should chose ? Partially the interest to this problem is motivated by theimportance of discretizations for numerical solution of di�erential equations orvariational problems describing surfaces 1.Taking into account the connection between the above mentioned geometriesand integrable systems it is natural to suggest two approaches to de�ne properdiscrete analogues of integrable geometries:(i) to postulate natural discrete analogues of characteristic geometrical prop-erties,(ii) to construct a discrete integrable system corresponding to a given con-tinous one.These two approaches turn out to be complementary and (as experienceshows) in those cases where both approaches possible yield the same discreteintegrable geometry, i.e. a geometry corresponding to a discrete integrable sys-tem. It is probably more natural to talk about di�erent presentations ratherthen about di�erent methods. These two presentations, which we call geometricand algebraic, are compared in the table below.1At this point we mention a recent construction [26] of compact constant mean curvaturesurfaces based on a new discretization algorithm [44].1



The fundamental research in discrete systems is still in its infancy and manyof the concepts have to be developped by trial-and-error. Very much so is thespecial area of discrete integrable geometry where we cannot present a devel-opped theory starting with a general de�nition2. Rather we have to work byexamples and combinations of geometric and algebraic methods.Geometric description Algebraic descriptionAdvantages � Consistent (De�ni-tions and proper-ties are formulatedin internal geomet-ric terms, no ref-erence to integrablesystems is needed)� Descriptive andvisual (Geome-tric properties areintuitive)
� General picture(Provides a sortof Klein's Erlan-gen program indiscrete integrablegeometry)� Computationalmethods (Providesdirect methodsto prove state-ments and checkconjectures)Disadvantages Does not explain whydi�erent geometries havesimilar properties Not that descriptive, intu-itive and visual as the ge-ometric descriptionGeometric versus algebraic descriptionsFor the present paper we have chosen a historical presentation. In fact, acrucial point is a proper de�nition of the discrete geometry in question and weshow which method �rst provided us with the corresponding de�nitions.The sine-Gordon equation �xt � sin� = 0was probably the �rst known integrable equation. It was derived in di�erentialgeometry to describe surfaces with constant negative Gaussian curvature (K =const < 0). Another real realization of it - the elliptic sinh-Gordon equationuz�z + sinhu = 02It is remarkable that many de�nitions in the present paper have several versions.2



is the Gauss equation for surfaces with constant mean curvature (H = const)and with constant positive Gaussian curvature. In the late 80's a signi�cantprogress in the theory of these surfaces has been achieved (see [51, 46, 4, 40])mainly due to the methods developed in soliton theory. It was natural to tryto make again use of the cooperation of di�erential geometry and theory ofintegrable equations to de�ne discrete analogues of these surfaces.As a result of this research, discrete surfaces with constant Gaussian or meancurvature (we call them the discrete K- and H-surfaces) have been de�ned inthe early 90's [10]. The method of derivation, which was based on an integrablediscretization of the Lax representations, and the corresponding results are pre-sented in Sections 3,4. Geometric properties of discrete K-surfaces are rathersimple and these surfaces have been known already for about 40 years beforewe started to study them. First they were de�ned by Sauer in [47] and inves-tigated in detail by Wunderlich [52] by purely geometric methods. Of course,the relation to discrete integrable systems was at that time unknown. For ourpaper [11] we have chosen the geometric presentation (which is complementaryto the presentation in Section 3): from the de�nition of Sauer and Wunderlichto the Lax representation and �nite-gap integration. For a more algebraic loopgroup description see [45].Discrete H-surfaces turned out to be important for further progress in thestudy of discrete integrable geometries. The geometric properties of discreteH-surfaces are not that transparent as those of discrete K-surfaces. As a result,the geometric De�nition 11 of discrete H-surfaces, which consists of variousingredients of conformal and Euclidean geometries, wouldn't have been guessedwithout using the theory of integrable systems.Keeping in mind that surfaces with constant mean curvature are isothermicand that it is the isothermic parametrization which is discretized in Section 4,it is natural to look for generalizations. Indeed, what are discrete isothermicsurfaces and, more generally, discrete curvature line parametrized surfaces? Theanswer to the last question presented in Section 2.3 is more or less obvious: theseare circular lattices3. The de�nition of discrete isothermic surfaces presented inSection 5.2 and suggested4 in [12] is more complicated and requires the notionof cross-ratio (see Section 2.3). Based on these de�nitions a purely geometrictheory of the Darboux transformations of discrete isothermic surfaces and ofdiscrete H-surfaces has been developed in the contribution by Hertrich-Jeromin,Ho�mann and Pinkall [32].Circular lattices as a discretization of curvature line parametrized surfacesallow a natural generalization to the 3-dimensional case, which is a notion ofdiscrete triply-orthogonal coordinate systems introduced in [6]. This general-ization based on a natural discretization of the Dupin theorem is discussed inSection 5.1. One can proceed further: namely, a generalization of circular lat-tices are the quadrilateral lattices introduced in [20]. These lattices provide anatural discretization of conjugate coordinate systems (see the contribution of3Remarkably, circular lattices as a discretization of curvature line parametrization havebeen used in computer aided surface design [39, 43].4At this point we used the modern treatment of the isothermic surfaces of [16, 14].3



Doliwa and Santini [21]). Algebraic and geometric descriptions in this case areespecially simple.A special case of discrete H-surfaces (H = 0) are discrete isothermic minimalsurfaces (see [12] and Section 5.2). Via a discrete version of the Weierstrassrepresentation they are intimately related to discrete conformal mappings.These mappings considered in Section 5.3 are special circular nets in a plane.In the contribution of Ho�mann [29] it is shown, how discrete H-surfaces canbe parametrized in terms of discrete conformal mappings. Algebraic propertiesof discrete conformal mappings (in particular compatible constraints) are stud-ied in the contribution of Nijho� [42]. Some of the constraints are importantgeometrically. In particular, a discrete analogue of the power function z� canbe described in this way. This discrete mapping is discussed in [6], Section 6and the contribution of Ho�mann [29]. The discrete version of z� belongs to aremarkable subclass of discrete conformal mappings. We �nish our paper withthe discussion of this subclass, recently introduced by Schramm [49] and suggesta generalization of his circular lattices to 3-dimensional Euclidean space, whichwe call Schramm-isothermic nets.2 Parametrizations of surfaces and their discre-tization2.1 Parametrized surfaces and netsSurfaces in Euclidean 3-space studied by analytical methods are usually de-scribed as maps F : R ! R3;where R is a two-dimensional manifold. Let (u; v) : U ! R2 be a local coordi-nate on a domain U � R. In these coordinate the fundamental forms areI = < dF; dF >= Edu2 + 2Fdudv +Gdv2II = � < dF; dN >= Ldu2 + 2Mdudv +Ndv2; (1)where N : R ! S2 is the Gauss map. The principal curvatures k1; k2 are theeigenvalues of the Weingarten operator� E FF G ��1� L MM N �of an immersion (EG�F 2 6= 0). For the mean and the Gaussian curvature thisimplies H = k1 + k22 = EN + LG� 2MF2(EG� F 2)K = k1k2 = LN �M2EG� F 24



In the simplest case R coincides with R2 or with some domain in R2. Thetheory we are dealing with is essentially a local one. We will not distinguishthese two cases by notation and will writeF : R2 ! R3 (2)keeping in mind that F might be de�ned only on a domain in R2.To discretize surfaces described by integrable equations and for investigationby analytical methods it is convenient to identify 3-dimensional Euclidean spacewith the space ImH of imaginary quaternions and to describe immersion interms of 2� 2 matrices [5].Let us denote the algebra of quaternions byH, the multiplicative quaterniongroup by H� = H n f0g and the standard basis of H by f1; i; j;kgij = k; jk = i; ki = j:Using the standard matrix representation ofH the Pauli matrices �� are relatedto this basis as follows:�1 = � 0 11 0 � = i i; �2 = � 0 �ii 0 � = i j;�3 = � 1 00 �1 � = i k; 1 = � 1 00 1 � : (3)The real and imaginary parts of the quaternionq = q01+ q1i+ q2j+ q3kare de�ned by Re q = q0; Imq q = q1i+ q2j+ q3kwith the corresponding normsjqj =qq20 + jIm qj2; jIm qj =qq21 + q22 + q23 :The identi�cationX = �i 3X�=1X��� 2 Im H  ! X = (X1; X2; X3) 2 R3: (4)of R3 and ImH provides us with the following matrix representationX = � �iX3 �iX1 �X2�iX1 +X2 iX3 � (5)of vectors in R3. For the scalar and vector products of vectors in terms ofquaternions one has X � Y = 12 [X;Y ];< X; Y >= �Re (XY ) = � 12 tr XY; (6)XY = � < X; Y > 1+X � Y:5



Figure 1: Quad-graphIn the following we do not distinguish between vectors in R3, imaginary quater-nions or their matrix representation (5). In particular this convention will beused for the immersion F and the Gauss map N .Considering surfaces in R3 there is no need to deal with the most generalparametrization (1). It is well known [19] that surfaces with negative Gaussiancurvature allow asymptotic line parametrizations, i.e. parametrizations withL = N = 0 in (1). On the other hand, any surface without umbilic points(i.e. k1 6= k2 for all points of the surface) allows curvature line parametrizationsF =M = 0.Discrete analogues of these two kinds of parametrizations are presented inthe next two sections. Having in mind applications to the theory of integrablesystems, by a discrete surface we mean a "quadrilateral surface", i.e. a surface"made out of quadrilaterals". More precisely, a discrete surface in the presentpaper is a map F : G! R3; (7)where G is a graph of special topology, which we call a quad-graph. Let usdescribe the topology of quad-graph, an example of which is presented in Fig.1.Introduce the following notations:v 2 V - a vertex of G,V = f vertices of Gg,e = [v; v0] 2 E - the edge connecting the vertices v; v0 2 V ,E = f edges of Gg,q = (v; v0; v00; v000) 2 Q the elementary quadrilateral of G with the verticesv; v0; v00; v000 2 VQ = f quadrilaterals of Gg.The vertices of an elementary quadrilateral are connected by exactly fouredges [v; v0]; [v0; v00]; [v00; v000]; [v000; v] 2 E (in particular [v; v00]; [v0; v000] 62 E).Each edge of a quad-graph belongs either exactly to one or exactly two elemen-tary quadrilaterals. In the �rst case we say that the edge lies on the boundary@G of G.Remark. Since the edges of the discrete surfaces studied in this paper areanalogues of the asymptotic or of the curvature lines on smooth surfaces, onecan additionally assume that the number of edges meeting at each vertice iseven. 6



The case G = Z2 or G � Z2 closest to (2) has been elaborated most exten-sively. To make the notation shorter we will writeF : Z2 ! R3 (8)also in the case when F is de�ned on a subset of Z2. We use the followingnotation for the elements of discrete surfaces (n;m are integer labels):Fn;m - for the vertices,[Fn+1;m; Fn;m]; [Fn;m+1; Fn;m] - for the edges,(Fn;m; Fn+1;m; Fn+1;m+1; Fn;m+1) - for the elementary quadrilaterals. Eachvertex Fn;m has 4 neighbours Fn�1;m; Fn+1;m; Fn;m�1; Fn;m+1.2.2 Discrete A-surfaces (asymptotic line nets)Let us consider a surface F with negative Gaussian curvature. For each regularpoint of F there are 2 directions, where the normal curvature vanishes. Theyare called asymptotic directions. We use asymptotic line parametrizations of FF : R2 ! R3; (9)(u; v) 7! F (u; v):For such a parametrization one has L = N = 0 in (1), i.e. the vectorsFu; Fv; Fuu; Fvv are orthogonal to the normal vector NFu; Fv ; Fuu; Fvv ? N: (10)The fundamental forms are as follows:I = < dF; dF >= A2du2 + 2AB cos�dudv +B2dv2;II = � < dF; dN >= 2Mdudv; (11)where � is the angle between asymptotic lines andA = jFuj; B = jFv j: (12)Our goal is to �nd a proper discrete version of this parametrization. Let usmention two important geometric properties of asymptotic line parametrizationswhich are easy to check and which we want to retain in the discrete case.Property 1 Asymptotic coordinates (9, 11) can be characterized in terms of Fonly: Fuu; Fvv 2 span fFu; Fvg: (13)The next property shows that the asymptotic line parametrization is natural ina�ne geometry.Property 2 (A�ne invariance). Let F : R ! R3 be a surface parametrizedby asymptotic lines and A an a�ne transformation of Euclidean 3-space. Then~F � A � F : R ! R3 is also a parametrization by asymptotic lines.7



Motivated by these two properties we de�ne discrete asymptotic line para-metrizations (we call them discrete A-surfaces because of asymptotic line anda�ne) as follows:De�nition 1 (Narrow de�nition of discrete A-surfaces) A discrete A-surfaceis a map F : Z2 ! R3such that for each point Fn;m there is a (tangent) plane Pn;m which containsFn;m and all its neighbouring pointsFn;m; Fn+1;m; Fn�1;m; Fn;m+1; Fn;m�1 2 Pn;m: (14)This de�nition agrees with the two properties mentioned above of asymptoticline parametrizations. The property (14) is obviously a�nely invariant. Thediscrete versions Fn+1;m � 2Fn;m + Fn�1;m, Fn;m+1 � 2Fn;m + Fn;m�1 of thesecond derivatives Fuu; Fvv lie in the tangent plane Pn;m of the vertex Fn;m,which agrees with (13).De�nition 1 can be easily generalized for the case (7) of a quad-graph G.In this way one can for example de�ne discrete analogues of surfaces with non-positive curvature and with more complicated asymptotic line net. Let us denoteby NN(v) 2 V the set of the nearest neighbours of the vertex v, i.e. the set ofvertices of G, which have common edges with v.De�nition 2 (Wide de�nition of discrete A-surfaces) A discrete A-surface isa map of a quad-graph F : G! R3such that for each point F (v) there is a (tangent) plane Pv ; which containsF (v) 2 Pv and all its neighbouring pointsF (v0) 2 Pv ; 8v0 2 NN(v): (15)Special classes of discrete A-surfaces are discrete K- surfaces and discrete in-de�nite a�ne spheres considered in Section 3 and in the contribution of Bobenkoand Schief [13] respectively.2.3 Discrete C-surfaces (curvature line nets)Let F be a surface without umbilics andF : R2 ! R3; (16)(u; v) 7! F (u; v):be a curvature line parametrization of F . For a curvature line parametrizationboth fundamental forms are diagonal: F =M = 0;I = < dF; dF >= Edu2 +Gdv2;II = � < dF; dN >= Ldu2 +Ndv2: (17)8



Property 3 Curvature line coordinates (16,17) can be caracterized in terms ofthe immersion function F only< Fu; Fv >= 0; Fuv 2 span fFu; Fvg: (18)The next property shows that the notion of a curvature line parametrizationbelongs to conformal (M�obius) geometry.Property 4 (M�obius invariance). Let F : R ! R3 be a surface parametrizedby curvature lines andM a M�obius transformation of Euclidean 3-space. Then~F �M � F : R ! R3 is also a parametrization by curvature lines.Proof. Since the M�obius group is generated by inversions in spheres it is enoughto prove Property 4 for the case of the inversionM in the unit sphere~F = F< F; F >: (19)The direct calculation shows that < ~Fu; ~Fv >= 0 and~Fuv = (�� 2< F;Fv >< F;F > ) ~Fu + (� � 2< F;Fu >< F;F > ) ~Fv ;where � and � are de�ned by Fuv = �Fu + �Fv :To de�ne discrete surfaces parametrized by curvature lines (we call thesesurfaces discrete C-surfaces because of curvature line and conformal) one needsthe notion of the cross-ratio of a quadrilateral (X1; X2; X3; X4) in 3-dimensionalEuclidean space. The notion of the cross-ratioq = (z1 � z2)(z3 � z4)(z2 � z3)(z4 � z1)of 4 complex numbers z1; z2; z3; z4 2 C can be easily extended to points in R3by indentifying a sphere S, passing through X1; X2; X3; X4 with the Riemannsphere CP1. We usually will just speak of the "cross-ratio q 2 C". One has tokeep in mind that q is only well de�ned up to complex conjugation, since S isnot oriented.There is a quaternionic description [12] of the cross-ratio based on the iso-morphism (4).De�nition 3 Let X1; X2; X3; X4 2 ImH be 4 points in R3 and Q be the quater-nion Q = (X1 �X2)(X2 �X3)�1(X3 �X4)(X4 �X1)�1: (20)The unordered pair of complex numbersfq; �qg = Re Q� i jIm Qjis called the cross-ratio of the quadrilateral (X1; X2; X3; X4).9



Lemma 1 The cross-ratio is invariant with respect to the M�obius transforma-tions of R3.Lemma 2 The cross-ratio of a quadrilateral is real i� it is inscribed in a circle5.The quadrilateral is embedded (i.e. its opposite edges do not intersect) i� q < 0.De�nition 4 Let F : R ! R3 be a parametrized surface, (u; v) : U � R ! R2a local coordinate. A two-parameter " = (�1; �2) family of quadrilaterals F " =(F1; F2; F3; F4) with verticesF1 = F (u� �1; v � �2);F2 = F (u+ �1; v � �2);F3 = F (u+ �1; v + �2);F4 = F (u� �1; v + �2)is called an in�nitesimal quadrilateral at (u; v).We consider the limit �! 0;�1 = ��1; �2 = ��2 (21)with some �xed �1;�2 2 R. Up to terms of order O(�3) the vertices of thein�nitesimal quadrilateral coincide withF1 = F + (��1Fu � �2Fv) + 12(�21Fuu + �22Fvv + 2�1�2Fuv) +O(�3);F2 = F + (�1Fu � �2Fv) + 12(�21Fuu + �22Fvv � 2�1�2Fuv) +O(�3);F3 = F + (�1Fu + �2Fv) + 12(�21Fuu + �22Fvv + 2�1�2Fuv) +O(�3);F4 = F + (��1Fu + �2Fv) + 12(�21Fuu + �22Fvv � 2�1�2Fuv) +O(�3);where F; Fu; :::; Fvv are the values of the immersion function and its derivativesat (u; v). The following remark is trivial:Lemma 3(i) q(F ") = q +O(�); q 2 R() Q(F ") = qI +O(�); �! 0(ii) q(F ") = q +O(�2); q 2 R() Q(F ") = qI +O(�2); �! 0Theorem 1 Orthogonal and curvature line parametrized immersions F arecharacterized in terms of in�nitesimal quadrilaterals as follows:(i) Q(F ") = qI +O(�); q < 0; �! 0() F is orthogonally parametrized,5a straight line is a special case 10



(ii) Q(F ") = qI +O(�2); q < 0; �! 0() F is curvature line parametrized.Proof. To calculate the cross-ratio of the in�nitesimal quadrilateral we note,that F " up to scaling is a translation of the quadrilateral with vertices atX1 = 0; X2 = �1Fu � ��1�2Fuv +O(�2);X3 = �1Fu +�2Fv + O(�2); X4 = �2Fv � ��1�2Fuv +O(�2):Inverting it by the transformation (19) we map one of the points to in�nity~X1 =1; ~X2 = Fu � ��2Fuv�1kFu � ��2Fuvk2 +O(�2);~X3 = �1Fu +�2Fvk�1Fu +�2Fvk2 +O(�2); ~X4 = Fv � ��1Fuv�2kFv � ��1Fuvk2 +O(�2):The conditionQ( ~X1; ~X2; ~X3; ~X4) = qI +O(�l); l = 1; 2; q 2 Ris equivalent to~X3 = � ~X2 + � ~X4 +O(�l); � = � q1� q ; � = 11� q :This identity can be rewritten as2 �1Fu +�2Fvk�1Fu +�2Fvk2 = ��1 Fu � ��2FuvkFuk2 �1 + 2��2< Fu; Fuv >kFuk2 �+ (22)��2 Fv � ��1FuvkFvk2 �1 + 2��1< Fv; Fuv >kFvk2 �+ O(�l):One can easily check that the zero oder (�0) term of this identity is equivalentto < Fu; Fv >= 0; q < 0, which proves the �rst statement of the theorem.The term of oder � in the case l = 2 is equivalent to the condition that thevector Fuv lies in the tangential plane. Due to Property 3 of curvature lineparametrizations this completes the proof.This theorem motivates the following de�nition of discrete curvature linenets (discrete C-surfaces):De�nition 5 (Narrow de�nition of discrete C-surfaces) A discrete C-surfaceis a map F : Z2 ! R3such that all elementary quadrilaterals (Fn;m; Fn+1;m; Fn+1;m+1; Fn;m+1) havenegative cross-ratiosQ(Fn;m; Fn+1;m; Fn+1;m+1; Fn;m+1) = qn;m; qn;m < 0: (23)11



The de�nition can be reformulated more geometrically using Lemma 2. Itcan be also generalized6 for the case of a quad-graph (7), which is for exampleuseful to de�ne discrete analogues of surfaces with umbilic points.De�nition 6 (Wide de�nition of discrete C-surfaces) A discrete C-surface isa map of a quad-graph F : G! R3such that all elementary quadrilaterals are inscribed in circles.Special classes of discrete C-surfaces are discrete H-, I- and M-surfaces con-sidered in Sections 4,5.2,5.3.3 Discrete K-surfaces (constant negative Gaus-sian curvature surfaces)Discrete K-surfaces are natural discrete analogues of surfaces with constantnegative Gaussian curvature. In this section we de�ne discrete K-surfaces, studytheir properties and construct some examples. A more geometric presentationof the theory can be found in [11]. For the loop group description see [45].3.1 Smooth surfaces with constant negative Gaussian cur-vatureHere we present some fragments of the theory of smooth surfaces with con-stant negative Gaussian curvature, most of which are classical. A more detailedpresentation one can �nd for example in [2], [5].Let F : R ! R3:be an asymptotic line parametrization (11) of a surface F with negative Gaus-sian curvature. For the constant Gaussian curvature case K = det II= det I =�1 we get the second fundamental formII = 2AB sin�dudvand the following Gauss-Codazzi equations:�uv �AB sin� = 0; (24)Av = Bu = 0: (25)Such a parametrization with non-vanishing A and B is called a weak Chebyshevnet.The Gauss-Codazzi equations are invariant with respect to the transforma-tion A! �A; B ! ��1B; � 2 R: (26)6In this generalized de�nition the embeddedness of the quadrilaterals is not required.12



Every surface with constant negative Gaussian curvature posesses a one-para-meter family of deformations preserving the second fundamental form, the Gaus-sian curvature and the angle � between the asymptotic lines. This deformationis described by the transformation (26). This one-parameter family of surfacesis called the associated family.Equations (24, 25) can be represented as the compatibility conditionUv � Vu + [U; V ] = 0for the following system:	u = U	; 	v = V	; (27)U = i2 � �u=2 �A�e�i�=2�A�ei�=2 ��u=2 � ; (28)V = i2 � ��v=2 B��1ei�=2B��1e�i�=2 �v=2 � :It can easily be checked that (for more detail see [5]) the following formulasdescribe the moving frame of a surface with K = �1; jFuj = �A; jFv j = ��1Bif one uses the isomorphism (4):Fu = �i�A	�1� 0 e�i�=2ei�=2 0 �	; (29)Fv = �iB�	�1� 0 ei�=2e�i�=2 0 �	; (30)N = �i	�1�3	: (31)Matrices (28) belong to the loop algebragK [�] = f� : R� ! su(2) : �(��) = �3�(�)�3gand 	 in (29-31) lies in the corresponding loop groupGK [�] = f� : R� ! SU(2) : �(��) = �3�(�)�3g: (32)The Sym formula [50] allows us to integrate (29, 30).Theorem 2 Let �(u; v); A(u); B(v) be a solution of (24). Then the correspond-ing immersion with K = �1; jFuj = �A; jFv j = ��1B is given byF = 2	�1@	@t ; � = et; (33)where 	(u; v; � = et) 2 SU(2) is a solution of (27, 28). The Gauss map is givenby N = �i	�1�3	: (34)13



We consider not only immersions but more generally weakly regular surfaces,i.e. the surfaces with A 6= 0; B 6= 0 for all u; v. In this case the change of coor-dinates u ! ~u(u); v ! ~v(v) reparametrizes the surface so that the asymptoticlines are parametrized by arc-lengths (generally di�erent for u and v directions)A = jFuj = const; B = jFv j = const: (35)This parametrization is called an anisotropic Chebyshev net (a Chebyshev netif A = B). In this parametrization the Gauss equation and the system (27, 28)become the sine-Gordon equation with the standard Lax representation [23].At last we mention also a well known fact, which also can be easily checked.Proposition 1 The Gauss map N : R2 ! S2 of the surface with K = �1 isLorentz-harmonic, i.e. Nuv = �N; � : R2 ! R: (36)It forms in S2 the same kind of Chebyshev net as the immersion function doesin R3: jNuj = �A; jNv j = ��1B: (37)3.2 Discrete K-surfaces from a discrete Lax representa-tionDiscrete surfaces with constant Gaussian curvature (we will call these surfacesalso discrete weak Chebyshev nets or discrete K-surfaces) are de�ned by nat-ural discrete analogues of the properties (10, 25) of the corresponding smoothsurfaces.De�nition 7 (Geometric de�nition of discrete K-surfaces) A discrete K-surfaceis a discrete A-surface (see De�nition 2)F : G! R3;such that the lenghts of the opposite edges of the elementary quadrilaterals areequal.In particular in the case G = Z2 one has:(i) For each point Fn;m there is a plane Pn;m such thatFn;m; Fn+1;m; Fn�1;m; Fn;m+1; Fn;m�1 2 Pn;m;(ii) the lenghts of the opposite edges of the elementary quadrilaterals are equalkFn+1;m � Fn;mk = kFn+1;m+1 � Fn;m+1k = An 6= 0;kFn;m+1 � Fn;m]j = kFn+1;m+1 � Fn+1;mk = Bm 6= 0;where we have incorporated into the notation that An does not depend on m andBm not on n. 14



In our paper [11], we start with this geometrically motivated de�nition sug-gested by Sauer (see [48] and references theirein, in particular [47]) and studiedby Wunderlich [52] and show how integrable discrete systems appear. In thepresent paper we follow another way, which comes from the theory of integrablesystems. Namely, we discretize the Lax representation (27,28) in a natural way,preserving its loop group structure, and show how De�nition 7 appears in thisapproach 7.A natural integrable discretization of the system (27,28) looks as follows. Toeach point (n;m) of the Z2-lattice one associates a matrix 	n;m. These matricesat two neighboring vertices are related by	n+1;m = Un;m	n;m; 	n;m+1 = Vn;m	n;m; (38)where the matrices Un;m and Vn;m are associated to the edges connecting thepoints (n+1;m); (n;m) and (n;m+1); (n;m) respectively. Having in mind thecontinuous limit (� is a characteristic size of edges)U = I + �U + :::; V = I + �V + :::with U; V of the form (28), and preserving the group structure and the depen-dence of � of the continuous case, it is natural to setUn;m = � an;m �bn;m���bn;m �an;m � ; Vn;m = � cn;m ��1dn;m���1 �dn;m �cn;m � ;where the �elds a; b; c; d live at the corresponding edges. The compatibilitycondition Vn+1;mUn;m = Un;m+1Vn;m (39)in terms of these �elds reads as follows:an;m+1cn;m � bn;m+1 �dn;m = cn+1;man;m � dn+1;m�bn;m;bn;m+1�cn;m = cn+1;mbn;m; an;m+1dn;m = dn+1;m�an;m:By a �-independent gauge transformationUn;m ! Gn+1;mUn;mG�1n;m; Vn;m ! Gn;m+1Vn;mG�1n;mwith the matrices Gn;m = � gn;m 00 �gn;m � (40)at vertices one can normalizebn;m = i; cn;m = 1 for all n;m:7We would like to mention that this method and not the one presented in [11] was the wayhow we came to the notion of the discrete K-surfaces.15



Given g0;0 this condition speci�es all gn;m in a unique way. The equations inthis gauge become as follows:an;m+1 � i �dn;m = an;m + idn+1;m;an;m+1dn;m = dn+1;m�an;m:To simplify this system further, let us remark that the zeroes of the left andthe right hand sides of the equality (which itself follows from (39))vn+1;m(�)un;m(�) = un;m+1(�)vn;m(�);un;m(�) = detUn;m; vn;m(�) = detVn;m;considered as functions of �, should coincide. Both terms in the products abovehave a pair of symmetric zeros �0;��0 each. We suppose that the zeroes ofun;m+1(�) and un;m(�) coincide. This is equivalent to say that the zeroes � =�1=pn of un;m(�) are m-independent and the zeroes � = �qm of vn;m(�) aren-independent un;m(� = �1=pn) = 0; vn;m(� = �qm) = 0:Applying these arguments one getsan;m = 1pn ei�n;m ; dn;m = iqmei�n;mand the equations 8�n;m+1 + �n;m � �n+1;m � �n;m;ei�n;m+1 � ei�n;m = pnqm(e�i�n;m � ei�n+1;m):The �rst equation can be easily resolved as�n;m � hn+1;m � hn;m; �n;m � hn;m+1 + hn;m; (41)where hn;m now can be associated to the corresponding vertices. Finally, hn;msatis�es the equationexp(ihn+1;m+1 + ihn;m)� exp(ihn+1;m + ihn;m+1) =pnqm(1� exp(ihn+1;m+1 + ihn+1;m + ihn+1;m + ihn;m)): (42)This equation �rst appeared in a paper by Hirota [27] without any relation togeometry. In the exponential form Hn;m = exp(ihn;m) it looks as follows:Hn+1;m+1Hn;m = kn;m +Hn+1;mHn;m+11 + kn;mHn+1;mHn;m+1 ; kn;m = pnqm: (43)Having in mind the loop group interpretation of Sect.3.1, our goal is to de�nein the discrete case a map � : Z2 ! GK [�], where GK [�] is the loop group (32).8by � � �0 we mean � = �0 (mod 2�) 16



Let us multiply Un;m and Vn;m by scalar factors to make their determinantsequal to 1: 0Un;m= 1pp�2n +�2Un;m; 0Vn;m= 1p��2q2m+1Vn;m; (44)Un;m(�) = � 1pn eihn+1;m�ihn;m i�i� 1pn e�ihn+1;m+ihn;m � ; (45)Vn;m(�) = � 1 iqm� eihn;m+1+ihn;miqm� e�ihn;m+1�ihn;m 1 � : (46)Evidently 0Un;m; 0Vn;m satisfy the compatibility condition (39).Theorem 3 (Algebraic de�nition of discrete K-surfaces) Let hn;m be a solutionof (42) and �n;m : Z2 ! GK [�] be a solution of the system�n+1;m = 0Un;m �n;m; �n;m+1 = 0Vn;m �n;m: (47)Then the discrete surface described by the formulaFn;m = 2�n;m�1 @�n;m@t ; � = et (48)is a discrete K-surface in a sense of De�nition 7. The Gauss map Nn;m of thissurface (Nn;m is de�ned as a unit vector orthogonal to the plane Pn;m) is givenby Nn;m = �i�n;m�1�3�n;m: (49)Proof. For the edges de�ned by (48) one hasFn+1;m � Fn;m = 2�n;m�1( 0U �1n;m@ 0Un;m@t )�n;m;Fn;m+1 � Fn;m = 2�n;m�1( 0V �1n;m @ 0Vn;m@t )�n;m;Fn�1;m � Fn;m = �2�n;m�1(@ 0Un�1;m@t 0U �1n�1;m)�n;m;Fn;m�1 � Fn;m = �2�n;m�1(@ 0Vn;m�1@t 0V �1n;m�1)�n;m:All these vectors as well as Nn;m (forming a frame associated with the vertexFn;m) have common factors �n;m�1 on the left and �n;m on the right, whichdescribe a rotation of this frame as a whole. Considering the local geometry of
17



the frame we can neglect this rotation. Direct calculation yields2 0U �1n;m @ 0Un;m@t = i sin�un(�)  0 eihn;m�ihn+1;me�ihn;m+ihn+1;m 0 ! ;2 0V �1n;m @ 0Vn;m@t =�i sin�vm(�) 0 eihn;m+ihn;m+1e�ihn;m�ihn;m+1 0 ! ;�2@ 0Un�1;m@t 0U �1n�1;m=�i sin�un(�) 0 eihn;m�ihn�1;me�ihn;m+ihn�1;m 0 ! ;�2@ 0Vn;m�1@t 0V �1n;m�1= i sin�vm(�)  0 eihn;m+ihn;m�1e�ihn;m�ihn;m�1 0 ! ;
(50)

where we de�nedsin�un(�) := 2�p�1n�2 + p�2n ; sin�vm(�) := 2��1qm1 + ��2q2m : (51)The vectors (50) are orthogonal to �i�3, which proves the orthogonality of thecorresponding edges to Nn;m. The property (ii) of De�nition 7 of the discreteK-surfaces also holds evidently.3.3 Gauss map of discrete K-surfacesDe�nition 8 A map N : Z2 ! S2 is called a Chebyshev net if < Nn+1;m; Nn;m >is independent of m and < Nn;m+1; Nn;m > is independent of n.Corollary 1 The Gauss map (49) forms a Chebyshev net. Under the actionof the associated family (�-family) the edges and the normals of the discreteK-surface described in Theorem 3 transform as follows< Nn+1;m; Nn;m >= cos�un(�); kFn+1;m � Fn;mk = sin�un(�);< Nn;m+1; Nn;m >= cos�vm(�); kFn;m+1 � Fn;mk = sin�vm(�);where the angles �(�) are determined by (51).This corollary allows us to interprete �un(�) and �vm(�) as the angles betweenthe planes Pn+1;m;Pn;m and between the planes Pn;m+1;Pn;m respectively.Corollary 2 The vectors of the normals and the edges of a discrete K-surfaceas described in Theorem 3 are related as follows:Fn+1;m � Fn;m = Nn+1;m �Nn;m;Fn;m+1 � Fn;m = �Nn;m+1 �Nn;m: (52)18
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Figure 2: Angles between edges of a discrete K-surfaceProof. Use the isomorphism (4) and the moving frame in the proof of Theorem3.De�nition 9 A map N : Z2 ! S2 is called Lorentz-harmonic if for any n;mNn+1;m+1 �Nn+1;m �Nn;m+1 +Nn;m =�n;m(Nn+1;m+1 +Nn+1;m +Nn;m+1 +Nn;m); � : Z2 ! R: (53)A direct computation with the frames of Theorem 3 proves the followingCorollary 3 The Gauss map (49) is Lorentz-harmonic3.4 The discrete sine-Gordon equationThe formulas (50) allow us to determine the angles between all edges (see Fig.2for the notations of the angles)�(1)n;m � �hn;m+1 � hn+1;m + �;�(2)n;m � hn�1;m + hn;m+1;�(3)n;m � �hn;m�1 � hn�1;m + �; (54)�(4)n;m � hn+1;m + hn;m�1:Let us consider again a small piece of a discrete K-surface and derive a di�erenceequation for the angles between edges, which can be regarded as a di�erenceanalogue of the sine-Gordon equation (24). Now if we orient the lattice diago-nally (Fig.3), the following theorem holds.Theorem 4 The neighbouring angles between the edges of a discrete K-surfacesatisfy the equation�u + �d � �l � �r � 2 arg(1� kle�i�l) + 2 arg(1� kre�i�r); (55)19



where kl = plql; kr = prqrare the products (see Section 3.2) associated with the quadrilaterals correspond-ing to �l and �r respectively.Proof. Using the symmetry of the quadrilateral�(1)n;m = �(3)n+1;m+1; �(2)n+1;m = �(4)n;m+1; (56)the Hirota equation (42)exp(i�(1)n;m + i�(2)n+1;m) + 1 = kn;m(exp(i�(1)n;m) + exp(i�(2)n+1;m)); kn;m = pnqm;and the fact that the sum of angles around a vertex is equal to 2��(1)n;m + �(2)n;m + �(3)n;m + �(4)n;m � 0;one derives for �(1)n;m�(1)n;m + �(1)n�1;m�1 � �(1)n�1;m � �(1)n;m�1 =2arg(1� kn�1;m exp(�i�(1)n�1;m)) + 2 arg(1� kn;m�1 exp(�i�(1)n;m�1)):Turning the lattice by 450 we get this equation in the form (55). For symmetryreasons all the angles �(2), �(3), �(4) satisfy the same equation (55).For obvious reasons equation (55) is called the discrete sine-Gordon equation.In the exponential form Q = exp(i�) this equation reads as follows:QuQd = Ql � kl1� klQl Qr � kr1� krQr : (57)Let us consider now a Lorentz-harmonic Chebyshev net in S2 generated bythe Gauss map Nn;m. The angles  between the arcs of the great circles in S2generated by the corresponding normals satisfy the following di�erence equation u +  d �  l �  r � 2 arg(1 + kle�i l) + 2 arg(1 + kre�i r ): (58)
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Figure 3: Diagonally oriented lattice20



Applications of the discrete sine-Gordon equation (57) extend beyond dif-ferential geometry. This equations can be considered over a �nite �eld. Acellular automaton with a Lax representation has been constructed in this wayin [7]. Equation (57), in contrast with (43), possesses a natural local Hamil-tonian structure. A quantum version of (57) has been derived in [9] based onresults of [24]. For further results on quantization of this and similar modelssee the contributions of Faddeev and Volkov [25], Kashaev and Reshetikhin[34], Kellendonk, Kutz and Seiler [36]. A Lagrangian formalism for the discretesine-Gordon equation is presented in the contribution of Kutz [38].3.5 Construction of discrete K-surfacesA simple geometrical method described below allows us to construct all discreteK-surfaces with periodic Gauss map. In particular, this class includes all discreteK-cylinders. One constructs these surfaces solving the Cauchy problem with aninitial stairway (see Fig.5) loopNn;m; Nn;m+1; Nn+1;m+1; : : : ; Nn+N;m+M = Nn;mon S2.All Nn;m; n;m 2 Z can be reconstructed using the property (53) of Nto be Lorentz-harmonic. Equation (53) uniquely determines Nn;m+1 by Nn;m;Nn+1;m; Nn+1;m+1Nn;m+1 = �Nn+1;m + < Nn+1;m; Nn;m +Nn+1;m+1 >(1+ < Nn;m; Nn+1;m+1 >) (Nn;m +Nn+1;m+1):Obviously, the N -loop remains closed under this evolution. Finally, the formulas(52) describe the corresponding discrete K-surface.Note that to obtain a cylinder one should kill the translational period ofthe immersion Fn;m = Fn+N;m+M . Besides cylinders one can construct by thismethod also discrete Amsler surfaces [28]. Geometrically, the discrete Amslersurfaces can be characterized by the condition that they contain two straightasymptotic lines. Analytically, this implies that the discrete sine-Gordon equa-tion reduces to a discrete version of the Painlev�e III equation.This simple geometrical method does not allow us to control the globalbehaviour of the surface in the direction of the evolution of the N -loop (forexample, to control the periodicity). Thus this method is inappropriate if onewants to construct, for example, compact discrete K-surfaces. Compact discreteK-surfaces were constructed in [11] using analytic methods of the �nite-gapintegration theory of equations (43, 55).The B�acklund transformation for discrete K-surfaces is of the same geometricand analytic nature as for the smooth surfaces with constant negative Gaussiancurvature and is discussed in [52], [11], [31].
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4 Discrete H-surfaces (constant mean curvaturesurfaces)4.1 Smooth constant mean curvature surfacesHere we present some fragments of the theory of smooth surfaces with constantmean curvature (CMC-surfaces), most of which are classical. For details see [5].Let F be a smooth surface in R3 andF : R ! R3a conformal parametrization of F . The fundamental forms are as follows:I = < dF; dF >= eudzd�z;II = � < dF; dN >== (Heu +Q+ �Q)dz2 + 2i(Q� �Q)dzd�z + (Heu �Q� �Q)d�z2;where z is a conformal coordinate, Q and H denote the Hopf di�erential andthe mean curvatureQ =< Fzz ; N >; < Fz�z; N >= 12Heu: (59)The Gauss-Codazzi equations have the following form:uz�z + 12H2eu � 2Q �Qe�u = 0;Q�z � 12Hzeu = 0:In the CMC case H = const the Hopf di�erential is holomorphic Q�z = 0. Inthe absence of umbilic points Q 6= 0, by a holomorphic change of coordinatesz ! ~z(z) the Hopf di�erential can be normalized to constant Q = const 6= 0.Similar to (26) the Gauss-Codazzi equations of CMC-surfaces are invariantwith respect to the transformationQ! �Q; �Q! ��1 �Q; j�j = 1:Every CMC-surface possesses a one parameter family of isometries preservingthe mean curvature. This �-family is called the associated family.A conformal frame of a CMC-surface with the Hopf di�erential �Q is givenby Fz = �ieu=2	̂�1� 0 01 0 � 	̂; F�z = �ieu=2	̂�1� 0 10 0 � 	̂; (60)N = 	̂�1k	̂;22



where 	̂(z; �z;�) satis�es 	̂z = U	̂; 	̂�z = V	̂;U = 0@ uz4 ��Qe�u=212Heu=2 �uz4 1A ; V = 0B@ �u�z4 �12Heu=21� �Qe�u=2 u�z4 1CA : (61)The Sym formula [4, 5] allows us to integrate (60,61).Theorem 5 Let 	̂(z; �z;� = e2it) be a solution of (60). Then �F and N , de�nedby the formulas�F = � 1H (	̂�1 @@t 	̂� i	̂�1�3	̂); N = �i	̂�1�3	̂describe a CMC-surface with the metric eu, the mean curvature H and the Hopfdi�erential e2itQ and its Gauss map.We also mention a well known fact, which can be easily checked.Proposition 2 The Gauss map N : R ! S2 of the CMC surface is harmonic,i.e. Nz�z = qN; q : R ! R:Having in mind a proper discretization as our goal, we will use (as in Chapter1) special parametrizations of the CMC surfaces. If the Hopf di�erential isnormalized to be real Q 2 R, then the preimages of the curvature lines arethe lines x = const and y = const in the parameter domain and one obtainsa conformal curvature line parametrization. Such a parametrization and thesurface, which admits it are called isothermic. This class of surfaces more generalthen CMC is also described and discretized within the frames of the theory ofintegrable systems. We come to this description later in Section 5.2.Thus, umbilic-free CMC surfaces are isothermic. Without loss of generalitywe normalize H = 1; Q = 12 : (62)It is a classical result that surfaces parallel to a CMC-surface and lying inthe normal direction at distances 1=(2H) and 1=H are of constant Gaussianand of constant mean curvature respectively. To describe them let us introducegauge equivalent frames	 = 0@ 1p� 00 p� 1A 	̂; �	 =  1� 00 � ! 	̂;where � = eit; � = �2:23



Theorem 6 The formulasF̂ = �	̂�1 @@t 	̂; F = �	�1 @@t	; �F = ��	�1 @@t �	 (63)describe 3 parallel surfaces F̂ ;F ; �F�F = F � N2 ; F̂ = F + N2 ; F̂ = �F +N;where N = 	�1k	is the Gauss map of �F . 9 The surfaces F̂ ; �F are of constant mean curvatureH = 1. The surface F is of constant Gaussian curvature K = 4. Variationof t preserves both principal curvatures of F̂ ;F ; �F ; for F̂ ; �F it is an isome-try, whereas for F the second fundamental form is preserved. For t = 0 theparametrization of F̂ ; �F is isothermic.This theorem can be proven by a direct computation [5] as well as the followingProposition 3 The surfaces F̂ and �F are dual isothermic surfaces.10In the normalized (62) isothermic coordinates the frame equations for 	become 	z = U	; 	�z = V	; (64)U = 12 0B@ � i2uy ��e�u=2 � 1�eu=2�eu=2 + 1�e�u=2 i2uy 1CA ; (65)V = 12 0B@ i2ux �i�e�u=2 + i�eu=2i�eu=2 � i�e�u=2 � i2ux 1CA :The matrices (65) belong to the loop algebragH [�] = f� : S1 ! su(2) : �(��) = �3�(�)�3gand 	 in (64) lies in the corresponding loop groupGH [�] = f� : S1 ! SU(2) : �(��) = �3�(�)�3g: (66)Here S1 is the set j�j = 1.9The Gauss maps of F̂ ;F ; �F coincide. To make the mean curvature of F positive oneshould change direction of the normal �N = �N .10For a de�nition of dual isothermic surfaces see Section 5.2.24



4.2 Discrete H-surfaces from a discrete Lax representa-tionLet us discretize the CMC surfaces exactly in the same way as we have dis-cretized the surfaces with constant negative Gausssian curvature in Section 3.Our goal is to de�ne a map � : Z2 ! GH [�];where GH [�] is the loop group (66), such that the matricesUn;m = �n+1;m��1n;m; Vn;m = �n;m+1��1n;m (67)depend on � in "the same way" as the elements (65) of the corresponding loopalgebra.A natural choice isU = 1� 0B@ a ��c� 1�f� �f + 1� �c �a 1CA ; (68)V = 1� 0B@ b ��d� 1�g��g + 1� �d �b 1CA ;where a; b; c; d; f; g are complex-valued �elds de�ned on the corresponding edges.� and � are chosen to normalize detU = detV = 1. If cd 6= 0; dg 6= 0 by adiagonal gauge transformation (40) one can normalizef = 1c ; g = 1d : (69)For �; � this implies�2 = �2 c�c + ��2 �cc + jaj2 + jcj2 + jcj�2;�2 = �2 d�d + ��2 �dd + jbj2 + jdj2 + jdj�2:In the sequel we basically make our calculations considering an elementaryquadrilateral. Sometimes we supress the arguments n;m of the functions ofn and m and denote increments and decrements of the discrete variables bysubscripts and overbars respectively, for example��12 = �2�1 = �n�1;m+1 �2 = �n;m+1 �12 = �21 = �n+1;m+1��1 = �n�1;m � = �n;m �1 = �n+1;mTo distinguish the �elds de�ned on edges and vertices we use di�erent notationsfor the matrices U ;V and their coe�cients 11 (see Fig.4)11U 0 = U2;V 0 = V1 identi�es these notations.25
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V V'Figure 4: NotationsU = Un;m; V = Vn;m; U 0 = Un;m+1; V = Vn+1;m:The singularities of the left-hand and right-hand side of the compatibilitycondition V 0U = U 0V ; (70)considered as functions of �, should coincide. Having in mind the smooth limitit is natural to assume that the zeroes of �(�) coincide with the zeroes of �0(�).This is equivalent to say that the zeroes of �n;m(�) are m-independent and thezeroes of �n;m(�) are n-independent. In particular this implies thatarg cn;m independent of m;arg dn;m independent of n: (71)Using � : Z2 ! GH [�] de�ned by (67, 68, 69, 71) one can de�ne 3 "parallel"discrete surfaces F̂ ;F ; �F by the Sym formulas (63). The nets F̂ ; �F constructedin this way can be treated as discrete conformal CMC nets. An analysis of thegeometric properties of these nets might be helpful in looking for a de�nition ofgeneral discrete conformal nets, which is still missing.The algebraic description allows us to specify our discrete CMC nets further.Taking into account the frame equations (74) in the isothermic parametrizationit is natural to perform the following additional reduction on the coe�cients ofU ;V : c is real-valued, d is purely imaginary. Later on we will show that thisconstraint is compatible with (70).Introducing on the edges the real valued �elds u; vc = u; d = iv;we have U = 1� 0B@ a ��u� 1�u�1�u�1 + 1�u �a 1CA ; (72)26



V = 1� 0B@ b �i�v + i�v�1i�v�1 � i�v �b 1CA ;�2 = �2 + ��2 + jaj2 + u2 + u�2; �2 = ��2 � ��2 + jbj2 + v2 + v�2:De�nition 10 (Algebraic de�nition of discrete H-surfaces). Let � : Z2 !GH [�] be a map with Un;m = �n+1;m��1n;m;Vn;m = �n;m+1��1n;m of the form(67). We call the nets given byF̂n;m = ���1n;m @@t�n;m + 12Nn;m; (73)�Fn;m = ���1n;m @@t�n;m � 12Nn;m; (74)Nn;m = ��1n;mk�n;m; � = eit; t = 0; (75)discrete H-surfaces (discrete isothermic CMC surfaces) and the central netFn;m = ���1n;m @@t�n;m (76)a discrete surface with constant positive Gaussian curvature. The Gauss mapof these surfaces de�ned at vertices is given by the formula (75):�Nn;m = Nn;m = �N̂n;m:Remark. In the next section we will show that in addition one can assumeu > 0; v > 0 in this algebraic de�nition of nets. This assumption is natural inview of the continuum limit (65).In the following sections we prove the existence of the surfaces de�ned aboveand study their geometric properties. The analysis of these geometric propertieswill provide us with natural geometric de�nitions of discrete isothermic anddiscrete H-surfaces.4.3 Compatibility conditionsThe compatibility conditions (70, 72) read as follows:uu0 = vv0; (77)b0a� a0b = i(u0v + v0u� 1u0v � 1v0u); (78)�bu0 � b0u = i(�av0 � a0v); (79)b0u0 � �bu = i(�av � a0v0): (80)The �rst of these equations can be resolved by introducing a function w atvertices: u = ww1; u0 = w2w12; v = ww2; v0 = w1w12: (81)27



Let us express a0; b0 using (79, 80)a0 = �aw1w2(w212 + w2) + i�b(w22w212 � w21w2)ww12(w21 + w22) ; (82)b0 = �bw1w2(w212 + w2) + i�a(w2w22 � w21w212)ww12(w21 + w22)and substitute these expressions into (78). The equation obtained can be re-solved with respect to w12:w212 = w2(jaj2w22 + jbj2w21 + 2Im(a�b)w1w2) + (w1w2 + w2w1 )2w2(w21 + w22)2 + jaj2w21 + jbj2w22 � 2Im(a�b)w1w2 : (83)The system (82,83) is invariant with respect to the transformationw ! sw; w12 ! sw12; w1 ! s�1w1; w2 ! s�1w2;which preserves u; v. Up to this transformation the systems (77-80) and (82,83) are equivalent.Similarly to Section 3.5 discrete H-surfaces can be constructed by solvingthe corresponding Cauchy problem for the system (82-83).Theorem 7 Given a periodic 12 stairway in Z2 (see Fig. 5) with positive w'sat its vertices and complex a's and b's de�ned at its horizontal and verticaledges respectively, there exists a unique solution of (82, 83) in the same class offunctions on all lattice w : Z2 ! R+; a; b : Z2 ! C.Proof. Consider an elementary quadrilateral with given w;w1; w2 > 0; a; b 2C. The numerator and denominator in (83) are both positive and this equationuniquely determines w12 > 0. After that, a0 and b0 are determined by (82). Onecan describe the evolution in the opposite direction similarly. This evolutiondetermine a unique global solution on all the lattice.Integrating the frame equations (67) we construct by (73, 74) discrete H-surfaces.4.4 Geometric properties of discrete H-surfacesProposition 4 The maps F̂ ; �F ;F : Z2 ! R3 and N : Z2 ! S2 de�ned by(73-76) are discrete C-surfaces in the sence of the narrow De�nition 5. Thecross-ratios of the elementary quadrilaterals of these surfaces are equal toQ(F̂ ; F̂1; F̂2; F̂12) = ��2�2 ; (84)Q( �F ; �F1; �F2; �F12) = ��2�2 ; (85)12The period can be in�nite. 28



Figure 5: Stairway in Z2Q(F; F1; F2; F12) = ��2�2 (u� u�1)(u0 � u0�1)(v + v�1)(v0 + v0�1) ;Q(N;N1; N2; N12) = � (u+ u�1)(u0 + u0�1)(v � v�1)(v0 � v0�1) ;where �2 = 2 + jaj2 + u2 + u�2; �2 = �2+]b]2 + v2 + v�2are independent of m and independent of n respectively: � = �0; � = �0.Proof. The proposition is proven by direct computation. We present it forF̂ . As in the smooth case let us introduce�̂ = 0@ p� 00 1p� 1A�:It satis�es �̂1 = Û�; �̂2 = V̂� withÛ = 1�  a ��u� u�1u�1 + 1�u �a ! ; V̂ = 1�  b �i�v + iv�1iv�1 � i�v �b ! :For the edges of F̂ = ��̂�1�̂tjt=0 we haveF̂1 � F̂ = �̂�1Û�1Ût�̂F̂2 � F̂ = �̂�1V̂�1V̂t�̂F̂12 � F̂1 = �̂�1Û�1V̂ 0�1V̂ 0tÛ�̂F̂12 � F̂2 = �̂�1V̂�1Û 0�1Û 0tV̂�̂:Considering the local geometry we can neglect the common rotation �̂�1 : : : �̂and set �̂ = I . Substituting these expressions into formula (20) for the cross-ratio and using the compatibility conditions (77) we obtainQ = (F̂ � F̂1)(F̂1 � F̂12)�1(F̂12 � F̂2)(F̂2 � F̂ )�1 =(Û�1)t(V̂ 0)�1t Û 0t((V̂�1t )�1: (86)29



For t = 0 the derivatives areÛt = �2iu� � 0 11 0 � = �(Û�1)t;V̂t = 2v� � 0 1�1 0 � = �(V̂�1)t:Finally, substituting these expressions into (86) and using (70) we prove the�rst formula of the proposition.Remark. The curvature lines of the three parallel smooth surfaces F̂ ;F ; �F(see Section 4.1) correspond. The property of the discrete surfaces F̂ ; F; �F tobe discrete C-surfaces may be regarded as a discrete analogue of this property.The next proposition follows directly from (73, 74).Proposition 5 The discrete H-surfaces F̂ and �F are in constant distancekF̂n;m � �Fn;mk = 1:In Section 5.2 we use the factorization property (84,85) of the cross-ratio tode�ne discrete isothermic surfaces.Proposition 6 The "parallel" discrete H-surfaces F̂ and �F are dual discreteisothermic surfaces F̂ = �F �:Proof. The corresponding edges of these surfaces are equal toF̂1 � F̂ = �2iu�2 ��1� u+ u�1 �aa �u� u�1 ��;�F1 � �F = 2iu�1�2 ��1� u+ u�1 �aa �u� u�1 ��;F̂2 � F̂ = �2iv�2 ��1� v � v�1 i�c�ic v�1 � v ��;�F2 � �F = �2iv�1�2 ��1� v � v�1 i�c�ic v�1 � v ��with the lengths kF̂1 � F̂k = 2u� ; k �F1 � �Fk = 2u�1� ;kF̂2 � F̂k = 2v� ; k �F2 � �Fk = 2v�1� :The edges are related by the formulas (98) for dual discrete isothermic surfaces.Also by direct computation one can prove30
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Figure 6: Elementary hexahedron of a pair of discrete H-surfacesProposition 7 The distances between the neighbouring vertices of the discreteH-surfaces F̂ and �F arekF̂1 � �Fk = k �F1 � F̂k = p�2 � 4� ;kF̂2 � �Fk = k �F2 � F̂k = p�2 + 4� : (87)Proposition 8 (i) An elementary hexahedron (F̂ ; F̂1; F̂12; F̂2; �F ; �F1; �F12; �F2) lieson a sphere.(ii) The quadrilaterals (F̂ ; F̂1; �F1; �F ) and (F̂ ; F̂2; �F2; �F ) are isosceles trapezoidsof two di�erent types (non-embedded and embedded) (see Fig. 6).(iii) De�ne the axis of the hexahedron as the straight line connecting the centersof the circles Ĉ and �C of the circular quadrilaterals (F̂ ; F̂1; F̂12; F̂2) and( �F ; �F1; �F12; �F2) respectively. The axis of the hexahedron is orthogonal tothe planes of both quadrilaterals.Proof. The �rst statement follows from the third one, (ii) follows from Propo-sitions 5, 7. To prove (iii) one should build the planes passing orhtogonallythrough the middle points of the edges of the quadrilaterals (F̂ ; F̂1; F̂12; F̂2) and( �F ; �F1; �F12; �F2). The axis of the hexahedron is the intersection line of theseplanes.Propositions 5, 6 suggest the following natural31



De�nition 11 (Geometric de�nition of discrete H-surfaces)A discrete isothermic surface F : Z2 ! R3 is called a discrete H-surfaces ifthere is a dual discrete isothermic surface F � : Z2 ! R3 in constant distancekFn;m � F �n;mk2 = 1H2 :Starting with this de�nition Hertrich-Jeromin, Ho�mann and Pinkall [32]derived geometrical properties as well as the Darboux transformation of discreteH-surfaces.4.5 A de�nition of the mean curvature for discrete isother-mic surfacesIt is desirable to give a geometric de�nition of discrete H-surfaces completelyin internal terms without refering to dual isothermic surfaces. In the presentsection we discuss the notion of the mean curvature function in the discretecase.Lemma 4 Let (x; y) 7! F (x; y) be a conformal immersion with the Gauss map(x; y) 7! N(x; y). The point S(x; y) is the center of the mean curvature sphere(central sphere) at the point F (x; y)S(x; y) = F (x; y) + 1HN(x; y)if for �! 0�2�1 kS(x; y)� F (x+ ��1; y)k2 + �1�2 kS(x; y)� F (x; y + ��2)k2 =( �1�2 + �2�1 )kS(x; y)� F (x; y)k2 + o(�2); (88)kS(x; y)� F (x; y + ��2)k = kS(x; y)� F (x; y � ��2)k+ o(�2);kS(x; y)� F (x+ ��1; y)k = kS(x; y)� F (x� ��1; y)k+ o(�2);Proof. Use the Taylor series expansionkS(x; y)� F (x+ ��1; y)k2 = ( 1H � �2�212 < Fxx; N >)2 + (kFxk��1)2 + o(�2)and the de�nition of the mean curvatureH = < Fxx + Fyy; N >2kFxk2 ; kFxk = kFyk:In the discrete case the relations (88) can be used as de�ning the center ofthe mean curvature sphere.
32



Lemma 5 Let F; F�1; F1; F�2; F2 be �ve neighboring points of a discrete surfaceF : Z2 ! R3 in general position13. For any �1; �2 there exists exactly one pointS, such that�2�1 kS � F1k2 + �1�2 kS � F2k2 = (�1�2 + �2�1 )kS � Fk2; (89)kS � F1k = kS � F�1k; kS � F2k = kS � F�2k: (90)Proof. Let l be the straight line for which the identities (90) are satis�edl = fP 2 R3 : kP � F1k = kP � F�1k; kP � F2k = kP � F�2kg:Make l a coordinate axis with an origin O. Let F? be the orthogonal projectionof F to l. To each point F we associate two coordinates (r; z) with the corres-ponding labels. Here r = kF � F?k > 0 is the distance of F from the axis andz 2 R is the axis coordinate of F : jzj = kF?k. Note that z1 = z�1; z2 = z�2. Inthese coordinates equations (89, 90) read as follows�2�1 ((x� z1)2 + r21) + �1�2 ((x � z2)2 + r22) = (�1�2 + �2�1 )(x � z)2;where (0; x) are the coordinates of S. This is a linear equation with respect tox 2x(�2�1 (z � z1) + �1�2 (z � z2)) = �2�1 (z2 � r21 � z21) + �1�2 (z2 � r22 � z22):In particular, x is in�nite if�22(z � z1) + �21(z � z2) = 0: (91)De�nition 12 Let F : Z2 ! R3 be a discrete isothermic surface (see Section5.2) with constant cross-ratio of elementary quadrilaterals��21�22 = Q(Fn;m; Fn+1;m; Fn+1;m+1; Fn;m+1):The point Sn;m of Lemma 5 is the center of the mean curvature sphere at thepoint Fn;m and Hn;m = 1kFn;m � Sn;mkis called the mean curvature at this point.Remark. In the geometrically most natural case �1 = �2 the center of themean curvature sphere is de�ned bykS � F1k2 + kS � F2k2 = 2kS � Fk2;kS � F1k = kS � F�1k; kS � F2k = kS � F�2k:13We assume that the planes equidistant from F1; F�1 and from F2; F�2 intersect.33



The mean curvature vanishes H = 0 if z = (z1 + z2)=2, i.e. if there existsa plane Pn;m (tangent plane) passing through the point Fn;m such that thepoints Fn�1;m; Fn+1;m; Fn;m�1; Fn;m+1 lie at the same distance from Pn;m andtwo pairs Fn�1;m; Fn+1;m and Fn;m�1; Fn;m+1 lie to the di�erent sides of Pn;m.For minimal surfaces (H = 0) in the general case �1 6= �2 formula (91)implies De�nition 20.Theorem 8 The discrete surfaces F̂ ; �F de�ned in Section 4.4 have constantmean curvature H = 1 in the sense of De�nition 12.Proof. According to (84) �1 = �; �2 = �. Substitution of (87) into (89) yieldsthe result.5 Other integrable nets5.1 Discrete O-systems (orthogonal coordinate systems)The de�nition of discrete C-surfaces in Section 2.3 allows a natural generaliza-tion to the 3-dimensional case, which gives a notion of discrete triply-orthogonalcoordinate systems. This generalization based on a "discretization" of the Dupintheorem (see below) was �rst suggested in [6].We recall that an orthogonal coordinate system in 3-dimensional Euclideanspace is an immersion F : U � R3 ! R3; (92)(u; v; w) 7! F (u; v; w):such that for all points of U the three vectors@F@u ; @F@v ; @F@wform an orthogonal basis.The notion of orthogonal coordinate systems belongs to conformal geometrybecause of the following obviousProperty 5 (M�obius invariance). Let F : U � R3 ! R3 be an orthogonalcoordinate system andM a M�obius transformation of Euclidean 3-space. Then~F �M � F : U � R3 ! R3 is also an orthogonal coordinate system.The general theory of these coordinate systems, developped in the end ofthe 19-th and the beginning of the 20-th sentury, as well as many concreteexamples, can be found in the fundamental book of Darboux [18] and in thebook by Bianchi [2]. A fundamental result in this theory is a theorem accordingto which the coordinate surfaces of a triply-orthogonal coordinate system crossalong their curvature lines. 34



Theorem 9 (Dupin). The immersion (92) forms a triply-orthogonal coordinatesystem i� for any point (u0; v0; w0) 2 U the three coordinate surfacesF (u0; v; w); F (u; v0; w); F (u; v; w0)are curvature line parametrized.This description can be discretized in a natural way using the notion ofdiscrete C-surface.De�nition 13 (Wide de�nition of discrete O-systems as circular lattices) Adiscrete orthogonal system is a mapF : Z3 ! R3; (93)(k; l;m) 7! F (k; l;m)all elementary quadrilaterals of which are inscribed in circles.One can give a more restrictiveDe�nition 14 (Narrow de�nition of discrete O-systems) A discrete orthogonalsystem is a map (93) such that all elementary quadrilaterals have negative cross-ratios Q(Fk;l;m; Fk+1;l;m; Fk+1;l+1;m; Fk;l+1;m) < 0;Q(Fk;l;m; Fk+1;l;m; Fk+1;l;m+1; Fk;l;m+1) < 0; (94)Q(Fk;l;m; Fk;l+1;m; Fk;l+1;m+1; Fk;l;m+1) < 0:Lemma 2 shows that (94) is equivalent to the requirement that the elemen-tary quadrilaterals are inscribed in circles and embedded (i.e. the opposite edgesof the quadrilaterals do not intersect).These de�nitions are M�obius invariant. Obviously, Theorem 9 also holds inthe discrete case.Corollary 4 For any point (k0; l0;m0) 2 Z3 of a discrete O-system (93) thethree coordinate surfacesF (k0; l;m); F (k; l0;m); F (k; l;m0)are discrete C-surfaces (in the sence of the wide and the narrow de�nitionsrespectively).We call the hexahedrons with vertices fFk;l;m; Fk+1;l;m; Fk+1;l+1;m; Fk;l+1;m;Fk;l;m+1; Fk+1;l;m+1; Fk+1;l+1;m+1; Fk;l+1;m+1g elementary hexahedrons. Let ussay also that an hexahedron with planar faces is embedded if all its faces areembedded.Corollary 5 Each elementary hexahedron of a discrete orthogonal system lieson a sphere (and is embedded in the case of the narrow de�nition).Proof. The circles C(Fk;l;m; Fk+1;l;m; Fk+1;l+1;m; Fk;l+1;m) and C(Fk;l;m;Fk+1;l;m; Fk+1;l;m; Fk;l;m+1) passing through the indicated points determine aunique sphere14 S containing them. The circle C(Fk;l;m; Fk;l+1;m; Fk;l+1;m+1,14A plane is a special case. 35



Fk;l;m+1) also lies on S since Fk;l;m; Fk;l+1;m; Fk;l;m+1 2 S: This implies Fk;l+1;m+1 2S: The same proof holds for all remaining points of the elementary hexahedron.We call a discrete orthogonal system non-degenerate if the spheres of neigh-bouring elementary hexahedrons are distinct.Theorem 10 F : Z3 � U ! R3 is a non-degenerate discrete O-system i� allits elementary hexahedrons lie on spheres. It is a discrete O-system in the senseof De�nition 14 i� the elementary hexahedrons are embedded.Proof. The spheres of two neighbouring elementary hexahedrons intersectalong a circle. The embeddedness is also obvious.Remark. This theorem can be used as a de�nition of discrete O-systems.Recently discrete orthogonal nets and their generalization - discrete conju-gate nets - have become a focus of interest in the theory of integrable systems(see the contribution of Doliwa and Santini in this volume and [15, 35, 22, 20]).In particular, Cie�sli�nski, Doliwa and Santini [15] have proven the followingTheorem 11 (Cauchy problem for discrete O-systems). A discrete O-system inthe sense of De�nition 13 is uniquely determined by its three coordinate surfacesF (0; �; �); F (�; 0; �); F (�; �; 0) : Z2 ! R3;which are discrete C-surfaces of De�nition 6.The proof is based onTheorem 12 (Miguel) [1]. LetF; F1; F2; F3; F12; F13; F23be seven points in Euclidean 3-space such that the vertices of each of the quadri-laterals (F; F1; F12; F2); (F; F1; F13; F3); (F; F2; F23; F3)are concircular and the corresponding circles do not coincide. Then the circlesgiven by the point triplesfF1; F12; F13g; fF2; F12; F23g; fF3; F13; F23gintersect at one point =: F123. In particular, all eight points lie on a sphere (seeFig. 7).It is easy to see that the embeddedness property is not necessarily preservedby the evolution described by the Miguel theorem. Therefore the Cauchy prob-lem of Cie�sli�nski, Doliwa and Santini may not have a solution if we stick to thenarrow De�nitions 5, 14.Algebraically, the same circular lattices have been obtained by Konopelchen-ko and Schief [35] as a special case of discrete conjugate nets (planar quadrilate-rals) by assuming a certain algebraic constraint inherited from the smooth case.36
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Figure 7: Miguel theoremBobenko and Hertrich-Jeromin described in [8] discrete O-systems as well asdiscrete Ribaucour sphere congruences in terms of the Cli�ord algebra usingthe spinor representation of the conformal group.Note that the dimension of the Euclidean space is not important for theconsiderations above. Exactly in the same way one can consider circular latticesof arbitrary dimension. Another generalization is given by O-systems in spacesof constant curvature, which can be obtained by stereographic projection fromthe circular lattices described above.5.2 Discrete I-surfaces (isothermic surfaces)Discrete isothermic surfaces are natural discrete analogues of isothermic sur-faces. The discrete I-surfaces as well as the discrete M-surfaces of the nextsection have been de�ned in our paper [12], where one should look for detailsand for missing proofs.An isothermic surface is a surface the curvature lines of which comprisein�nitesimal squares.De�nition 15 A conformal curvature line parametrization (x; y) 7! F (x; y) iscalled isothermic. For the fundamental forms this implies< dF; dF >= eu(dx2 + dy2); � < dF; dN >= eu(k1dx2 + k2dy2):A surface which admits isothermic coordinates is called isothermic.Let us mention two important geometric properties of isothermic surfaceswhich persist in the discrete case. Isothermic surfaces belong to conformalgeometry due toProperty 6 (M�obius invariance). Let F : R2 ! R3 be an isothermic immer-sion andM a M�obius transformation of Euclidean 3-space. Then ~F �M� F :R2 ! R3 is also isothermic. 37



Special Euclidean properties of isothermic surfaces are established inProperty 7 (Dual surface). Let F : R2 ! R3 be an isothermic immersion.Then the immersion F � : R2 ! R3 de�ned by the formulasF �x = �e�uFx; F �y = e�uFy (95)is isothermic. The Gauss maps of F and F � are antipodalN = �N�:The map F ! F � is an involution F �� = F and the fundamental forms of F �are as follows < dF �; dF � > = e�u(dx2 + dy2);� < dF �; dN� > = k1dx2 � k2dy2:De�nition 16 The immersion F � : R2 ! R3 de�ned above is called dual toF . Surfaces of revolution, quadrics, constant mean curvature surfaces withoutumbilics and Bonnet surfaces are isothermic. It is natural to de�ne discreteisothermic surfaces in such a way that this set includes the discrete H-surfacesof Section 4. We do this by postulating property (84) of discrete H-surfacesas a de�nition of discrete I-surfaces. Again as in many previous cases we havenarrow and wide de�nitions of discrete isothermic surfaces.De�nition 17 (Wide de�nition of discrete I-surfaces) A discrete isothermicsurface is a discrete C-surface F : Z2 ! R3 such that the cross-ratiosqn;m = Q(Fn;m; Fn+1;m; Fn+1;m+1; Fn;m+1)of elementary quadrilaterals are negative qn;m < 0 and satisfy the factorizationcondition qn;mqn+1;m+1 = qn+1;mqn;m+1: (96)Equivalently, the cross-ratio qn;m is a product of two factorsqn;m = ��2m�2n ; (97)where �n does not depend on m and �m not on n.A special case is a more geometricDe�nition 18 (Narrow de�nition of discrete I-surfaces) A discrete I-surfaceis a discrete C-surface for which all elementary quadrilaterals are conformalsquares, i.e. they have cross-ratio �1.The cross-ratio is M�obius invariant.38



Theorem 13 (M�obius invariance). Let F : Z2 ! R3 be a discrete isothermicsurface andM a M�obius transformation of Euclidean 3-space. Then ~F �M�F : Z2 ! R3 is also isothermic.Property 7 of smooth isothermic surfaces also persists in the discrete case.Theorem 14 (Dual discrete I-surface). Let F : Z2 ! R3 be a discrete isother-mic surface with cross-ratios (97). Then the discrete surface F � : Z2 ! R3de�ned (up to translation) by the formulasF �n+1;m � F �n;m = � 1�2n Fn+1;m � Fn;mkFn+1;m � Fn;mk2 ;F �n;m+1 � F �n;m+1 = 1�2m Fn;m+1 � Fn;mkFn;m+1 � Fn;mk2 : (98)is isothermic. The cross-ratios of the corresponding quadrilaterals of F and F �coincide Q(F �n;m; F �n+1;m; F �n+1;m+1; F �n;m+1) = ��2m�2n (99)The discretization based on the loop group description of isothermic sur-faces is very similar to the one of K- and H-surfaces. In the framework ofconformal geometry isothermic surfaces are described in terms of certain spherecongruences [3, 14]. The Lax representation of isothermic surfaces is given in4 dimensional matrices, because it is based on the spinor representation of theconformal group. It turns out that, as in the cases considered in Sections 3,4,this algebraic discretization provides us with the same de�nition (96) of discreteisothermic surfaces. The details of the loop group discretization as well as thecorresponding Sym formula can be found in [12].Remark. One can generalize the de�nition (96) to the case of discrete C-surfaces given by De�nition 5, i.e. assumingqn;m = �m�n 2 Ronly. These nets possess natural multi-dimensional generalizations which arespecial discrete orthogonal systems in the sense of De�nition 13.De�nition 19 A discrete I-system is a map F : Z3 ! R3 for whichQ(Fk;l;m; Fk+1;l;m; Fk+1;l+1;m; Fk;l+1;m) = �l�k ;Q(Fk;l;m; Fk+1;l;m; Fk+1;l;m+1; Fk;l;m+1) = 
m�k ;Q(Fk;l;m; Fk;l+1;m; Fk;l+1;m+1; Fk;l;m+1) = 
m�lholds with some �; �; 
 : Z! R. 39



All the coordinate surfaces of a discrete I-system are discrete I-surfaces. Adiscrete I-system is uniquely determined by its Cauchy dataF (�; 0; 0); F (0; �; 0); F (0; 0; �) : Z! R3; �; �; 
 : Z! R:A direct geometric proof of this is presented in the contribution by Hertrich-Jeromin, Ho�mann and Pinkall [32].5.3 Discrete M-surfaces (minimal isothermic surfaces)A special class of discrete H-surfaces is provided by discrete isothermic minimalsurfaces (discrete M-surfaces). Setting the mean curvature H of a discrete H-surface equal to zero (see the Remark at the end of Section 4.5) we obtain thefollowingDe�nition 20 Let F : Z2 ! R3 be a discrete I-surface with constant cross-ratio of elementary quadrilateralsQ(Fn;m; Fn+1;m; Fn+1;m+1; Fn;m+1) = ��2�2 :The surface F is called a discrete M-surface (minimal isothermic) if all the meancurvature spheres of De�nition 12 are planes. Equivalently, at each vertex Fn;mthere is a "normal" vector Nn;m such that15< Fn+1;m � Fn;m; Nn;m >=< Fn�1;m � Fn:m; Nn;m >= �n;m�2< Fn;m+1 � Fn;m; Nn;m >=< Fn;m�1 � Fn;m; Nn;m >= ��n;m�2 :Figure 8 visualises this de�nition in the special case of the narrow de�nition� = � = 1 of discrete I-surfaces.Investigating the dual isothermic surface one can show16 that F � lies on asphere and that for all points of a discrete M-surface �n;m = � is constant onU � Z2. The normalization � = 12 (100)implies that the sphere of F � has unit radius.Theorem 15 [12]. The following statements are equivalent:(i) F : Z2 ! R3 is a discrete isothermic minimal surface normalized by(100).(ii) The dual surface F � : Z2 ! R3 lies on a sphere and without loss ofgenerality one can assume that it coincides with the Gauss map NF � = N : Z2 ! S2:15As in Section 4.5 one can justify this formulas considering in�nitesimal curvature linequadrilaterals of minimal surfaces.16The proof is the same as the one presented in [12] for the case � = � = 1.40
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∆Figure 8: De�nition of discrete minimal isothermic surfacesThis theorem allows us to reduce the dimension of the problem and to paramet-rize discrete minimal surfaces by "holomorphic" data N . Indeed, applyingstereographic projection S2 ! C to N , we obtain a discrete isothermic net17g : Z2 ! C on the complex plane. The isothermic Gauss map N : Z2 ! S2 isthe stereographic projection of g(N1 + iN2; N3) = ( 2g1 + jgj2 ; jgj2 � 1jgj2 + 1): (101)It has the same cross-ratio as F(gn+1;m � gn;m)(gn;m+1 � gn+1;m+1)(gn+1;m+1 � gn+1;m)(gn;m � gn;m+1) = ��2�2 :gn;m are complex numbers here.Combining formulas (101) and (98) one gets an analogue of the Weierstrassrepresentation in the discrete case.Theorem 16 Let g : Z2 ! C be discrete conformal. Then the formulasFn+1;m � Fn;m =� 12�2Re� 1gn+1;m � gn;m (1� gn+1;mgn;m; i(1 + gn+1;mgn;m); gn+1;m + gn;m)�Fn;m+1 � Fn;m =12�2Re� 1gn;m+1 � gn;m (1� gn;m+1gn;m; i(1 + gn;m+1gn;m); gn;m+1 + gn;m)�describe a discrete minimal isothermic surface. All discrete minimal isothermicsurfaces are described in this way.17There are several reasons to call this net a discrete conformal mapping (see Section 6).One of these reasons is the discrete Weierstrass representation of Theorem 16.41



Discrete H-surfaces can also be parametrized in terms of discrete conformalmappings. This has been shown by Ho�mann [29] using a discrete version ofthe Dorfmeister-Pedit-Wu factorization method.Naturally we now come to investigation of the simplest integrable nets stud-ied in the present paper, which are6 Discrete conformal maps6.1 Discrete isothermic nets in CDe�nition 21 [10, 12] (Wide de�nition of discrete conformal maps) A discreteisothermic map in C f : Z2 ! R2 = Cis called discrete conformal.In this section we stick to the narrow De�nition 18qn;m = (fn;m � fn+1;m)(fn+1;m+1 � fn;m+1)(fn+1;m � fn+1;m+1)(fn;m+1 � fn;m) = �1 (102)of discrete isothermic nets.De�nition 21 is motivated by the following properties:� f :D � C! C is a (smooth) conformal (holomorphic or antiholomorphic)map if and only if 8(x; y) 2 Dlim�!0 q (f(x; y); f(x+ �; y); f(x+ �; y + �); f(x; y + �)) = �1:� De�nition 21 is M�obius invariant and the dual discrete conformal mapf�:Z2 ! C is de�ned (see Section 5.2) byf�n+1;m � f�n;m = � 1fn+1;m � fn;m ; f�n;m+1 � f�n;m = 1fn;m+1 � fn;m :(103)The smooth limit of this duality is(f�)0 = � 1f 0 ; (104)where f is holomorphic and f� is antiholomorphic.� Equation (102) is integrable. The Lax pair	n+1;m = Un;m	n;m 	n;m+1 = Vn;m	n;m (105)found by Nijho� and Capel (see the contribution of Nijho� [42]) is of theformUn;m = 0@ 1 �un;m�un;m 1 1A ; Vn;m = 0@ 1 �vn;m� �vn;m 1 1A ; (106)42



Figure 9: Two discrete conformal maps with close initial data n = 0;m = 0.the second lattice describes a discrete version of the holomorphic mapping z2=3.where un;m = fn+1;m � fn;m; vn;m = fn;m+1 � fn;m:De�nition 21 of a discrete conformal map as a discrete isothermic map istoo general for some purposes. For example, there clearly are isothermic netsf : Z2 ! C which are far (see Fig.9). from the behaviour of usual holomorphicmaps (We are thankful to Tim Ho�mann who produced these and all otherMathematica pictures of this section).Another class of maps f : Z2 ! C introduced by Schramm [49] has proper-ties that bring them much closer to the well known world of complex analysis.Schramm's maps can be viewed (in a sence to be made precise, see Section 6.4)as a subclass of all discrete isothermic nets in C.6.2 Discrete P-surfaces (nets with the parallelogram prop-erty)First we show that a discrete isothermic net F : Z2 ! R3 can (almost) bereconstructed from half of the points. Color the points as black and white ina checkerboard pattern and forget the white points. The black points form alattice in their own right. To investigate the property of this lattice, look ata black point and its four neighbouring faces (Fig. 10). Mapping the centralpoint to in�nity by an inversion, we see a quadrilateral of four white points andthe black points are the centers (recall that the cross-ratios qn;m are -1) of theedges of this quadrilateral.Obviously, these four black points form a parallelogram. We call this prop-erty of a net parallelogram property and a net possessing it P-net or discreteP-surface.
43
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Figure 10: Parallelogram propertyLemma 6� Both sublattices (black and white) of a discrete I-surface form P-nets.� A (black) lattice possesing the parallelogram property and an additional(white) point can be uniquelly extended to a discrete I-surface.Proof. The white quadrilateral in Fig.10 is uniquelly determined by one ofits vertices and the black parallelogram. Moreover, due to the parallelogramproperty the quadrilateral exists for any choice of this (white) vertex. By con-tinuation of this process one reconstructs the whole isothermic net.Remark. One can interprete the extension construction described above asa transformation of P-nets. Indeed, given such a (black) lattice, chose an arbi-trary (white) point, extend them to a discrete I-surface, delete original (black)sublattice. We end up with a new (white) P-net.6.3 Equations for cross-ratios of P-nets in CAs we have seen above, a discrete conformal map is almost determined by its(black) sublattice, which is a lattice in C with the parallelogram property. De-note the last lattice by z : Z2 ! C:To describe it algebraically let us introduce the cross-ratiossn;m = (zn+1;m � zn;m)(zn�1;m � zn+1;m+1)(zn+1;m+1 � zn+1;m)(zn;m � zn�1;m) ;tn;m = (zn;m+1 � zn;m)(zn+1;m � zn+1;m+1)(zn+1;m+1 � zn;m+1)(zn;m � zn+1;m) :44



Note that whereas the t's are cross-ratios of the lattice faces, the s's are cross-ratios of the corresponding parallelograms in Fig.10:s = (z1 � z)(z�1 � z2)(z2 � z1)(z � z�1) = w�1 � w2w2 � w1 :Here we use the notations of Section 4.4. It is natural to think about s's andt's as de�ned on vertices and faces of the lattice respectively.It is convenient to use the following graphical notations for these cross-ratios:
z1zt :=z2z�1 zz2 z1 z12s :=Figure 11: Graphical representation for cross-ratiosThe terms in the nominator and in the denominator of the cross-ratios aredenoted by solid and dashed lines respectively. The orientation of edges is cyclic.The parallelogram property can be reformulated in terms of the cross-ratio s.Lemma 7 The following symmetries of the cross-ratio are equivalent to thes = = ==parallelogram property of the lattice.This implies that under a �=2-rotation both cross-ratios s; t transform thesame way: s! 1s ; t! 1t : (107)In order to derive algebraic equations for s; t it is convenient to introduce onemore cross-ratio on the faces, which di�ers from t by a modular transformationT = 1=(1� t). = 11� tT :=Let us consider two horizontally neighboring faces and denote by tl; tr; su; sdthe cross-ratios associated to their faces and common vertices. The labels here45



denote the l(eft) and r(ight) faces and u(p) and d(own) common vertices ofthese faces (Fig.12). Do the same for vertical neighbours. Finally, consideringa quadrilateral with its four neighbouring quadrilaterals we denote their cross-ratios as it is shown in the third diagram of Fig.12.sl tutd srsusd tl tdtut trtrtlFigure 12: Labels in the identities (108) and (109)Lemma 8 The neighbouring cross-ratios of a P-net in C satisfy the followingidentities: susd = 1� tr1� tl ; srsl = 1� t�1u1� t�1d ; (108)t2 = (1� tr)(1� tl)(1� t�1u )(1� t�1d ) : (109)In these three equations the notations of the corresponding three diagrams ofFig.12 are used.Proof. Using the graphical notation for the cross-ratios one can immediatelysee (Fig. 13) that susd = TlTr :
Figure 13: Proof of the identity su=sd = Tl=TrSubstituting the de�nition of T we obtain the �rst of the identities (108).The second one follows from the transformation property (107). The system(108) is linear with respect to s. Eliminating s we obtain the compatibilitycondition (109).Equation (109) is the stationary (one discrete variable is excluded) 3D-Hirotaequation (for the 3D-Hirota equation see for example [37]).The description of Lemma 8 is conformal: M�obius equivalent lattices corre-spond to the same solution of (108, 109).46
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Figure 14: A well-posed Cauchy problem for system (108)Remark. A Cauchy problem.A canonical Cauchy problem for system (108) is obtained by prescribing son a vertical chain of lattice points and t on adjoining faces, that iss0;m; t0;m: (110)This is schematically indicated in Fig.14. Here, bullets and boxes representthe Cauchy data s0;m and t0;m respectively. Obviously, both s1;m (circles) andt�1;m (dashed boxes) may be calculated from the Cauchy data. It is evidentthat iterative application of this procedure uniquely determines the solution of(108).Conversely, a solution of (108) determines a P-net uniquelly up to M�obiustransformation. We summarize the results in the following (compare with [49])Theorem 17� The t and s invariants of a P-net in C satisfy the system (108).� Conversely, given a solution (s; t) to the system (108) there exists a P-netwith these s; t as the lattice invariants.� Two P-nets with the same invariants s; t di�er by a M�obius transforma-tion.� Suppose s; t satisfy (108). Then t satis�es the stationary 3D-Hirota equa-tion (109).� Conversely, suppose that t satis�es (109). Then there is a �eld s de�nedon vertices such that s and t together satisfy (108). Moreover, s is unique,up to multiplication by a complex constant.This theorem can be proven by considerations similar to those used abovefor the Cauchy problem. One starts with arbitrary 3 points (this ambiguitycorresponds to an arbitrary M�obius transformation of the lattice) and buildsthe whole lattice using the corresponding cross-ratios s; t. The symmetries of47



Figure 15: Schramm's constraintLemma 7 are required, therefore given s at some point and 3 points of the cor-responding "cross" the remaining 2 points are uniquely determined. Identities(108) guarantee the compatibility of the construction.Remark. Let us note that the last point of the theorem describes a one-parameter family (associated family) of lattices corresponding to the same so-lution of (109). The family parameter plays the role of the spectral parameter.6.4 Schramm's constraintOur �rst observation deals with general discrete P-surfaces in Euclidean 3-spaceF : Z2 ! R3. To each vertex F one can associate four circles C(1); C(2); C(3);C(4), determined by corresponding triples of points:F; F1; F2 2 C(1); F; F2; F�1 2 C(2); F; F�1; F�2 2 C(3); F; F�2; F1 2 C(4):The parallelogram property is equivalent to the condition that opposite circlestouch (with the same tangent line) each other. In Section 6.5 we study a specialclass of discrete P-nets in R3. Before doing that let us continue the investigationof a more simple case of P-nets in C, where we have the algebraic descriptionof the previous section in our disposal.The following lemma provides us with natural geometric and algebraic sub-classes of discrete P-nets in C.Proposition 9 The system (108) is compatible with the following constraints:� Circular constraint: t 2 R:� Circular orthogonal constraint: t 2 R and is 2 R:� Schramm's constraint: t < 0; is < 0.Geometrically the circular constraint is equivalent to the condition, that the ele-mentary quadrilaterals are circular. The orthogonal circular constraint impliesthat the circles intersect orthogonally. Schramm's constraint implies in additionto the previous two that the elementary quadrilaterals are embedded (the oppositeedges do not intersect) and the quadrilateral lattice is immersed.48



The last claim is clari�ed in Fig.15. Consider closed elementary quadrilater-als with the edges comprised by the corresponding arcs of neighbouring circles.These neighbouring quadrilaterals intersect only in their common vertices i�is < 0. It is natural to call a circular lattice satisfying this condition immersed.The (orthogonal) circular constraint is compatible even with the Cauchyproblem (108, 110): given real t0;m; is0;m the solution tn;m; isn;m of the Cauchyproblem is real for all n;m 2 Z. Note that in case of the circular constraintarg sn;m = conston the whole lattice.Schramm's constraint is more delicate (and also more interesting) to in-vestigate. Schramm has de�ned his circle patterns with combinatorics of thesquare grid [49] coming from questions in approximation theory. He has shownthat negative solutions t < 0 of equation (109) satisfy a maximum principle,which allows to prove global results. In particular he has proven [49] that theonly embedding of the whole Z2 is the standard circle pattern (where all circleshave constant radius). It terms of solutions of the Hirota equation (109) thisimplies that t � �1 is the only strictly negative solution on the whole latticet : Z2 ! R� = ft < 0g.We call discrete P-nets in C satisfying Schramm's constraint S-nets in C.In a wide version of this de�nition only circular and orthogonal constraints arerequired.It is possible to generalize Schramm's circle patterns replacing Z2 by a quad-graph (see Section 2.1). Instead of having four vertices on every circle, one allowsvarious numbers N of vertices (and as a consequence N neighbouring and Nhalf-neighbouring circles. It is natural to call [6] such a singular point a branchpoint of order N=4� 1.6.5 Discrete S-surfaces in R3 (Schramm isothermic sur-faces)The constraints of the previous section are too restrictive for discrete P-surfacesin R3. Indeed, it is easy to see that a discrete P-surface in R3 with circularquadrilaterals (discrete C-surface) must lie on a sphere S2. Identifying S2 withC we end up with a circular P-net in C of the already considered type.De�nition 22 A discrete P-surface is called orthogonal if all parallelograms de-�ned as in Fig.10 are rectangles. Equivalently, the circles C(1); : : : ; C(4) de�nedin the previous section intersect orthogonally C(i) ? C(i+1).Let us observe another possible characterization of circular orthogonal P-nets in C. A simple corollary of equations (108) is the followingLemma 9 An orthogonal P-net in C with one circular elementary quadrilateral(i.e. one real t0;0 2 R) is orthogonal circular, i.e. tn;m 2 R; 8n;m.49



S CS SkiteSFigure 16: Discrete S-surface and its central extensionThis lemma motivates to suggest the following generalization in the case ofspace nets.De�nition 23 A discrete S-surface is a discrete orthogonal P-surface F : Z2 !R3 for which half of the quadrilaterals, say those of the form(Fn;m; Fn+1;m; Fn+1;m+1; Fn;m+1) with18 n+m � 0 (111)are circular.Let us denote the circles of (111) by Cn;m and assume that other quadrilat-erals are non-circular, i.e. they uniquelly de�ne spheres Sn;m such thatFn;m; Fn+1;m; Fn+1;m+1; Fn;m+1 2 Sn;m with n+m � 1:In this generic case at each point Fn;m we have a pair of touching spheres anda pair of touching circles, which intersect these spheres orthogonally.A discrete S-surface can be described as a sphere packing with this property.Given a packing of touching spheres the C-circles are well de�ned, due to thefollowingLemma 10 Let S1; S2; S3; S4 be four spheres touching at the points P1 = S1 \S2; P2 = S2 \ S3; P3 = S3 \ S4; P4 = S4 \ S4: Then the points P1; P2; P3; P4 lieon a circle.Proposition 10 (Sphere packing de�nition of discrete S-surfaces). A discreteS-surface is described by a packing of touching spheres Sn;m (n+m � 1) suchthat the circles Cn;m (n+m � 0) de�ned in Lemma 10 cut them orthogonally.A natural subclass of these sphere packings are packings of mutually disjointtouching balls with orthogonal circles as in Proposition 10. This is a proper 3-dimensional generalization of Schramm's constraint.We have de�ned discrete P-surfaces as sublattices of discrete I-surfaces. Letus describe the reconversion process for discrete S-surfaces. Let us add to a18By a � 0 we denote a=0 (mod 2). 50



discrete S-surface the centers of the spheres S and of the circles C (Fig.16).Obviously, all elementary quadrilaterals of the extended lattice are kites. Inparticular, they are conformal squares (q = �1) and hence form a discrete I-surface. All the notions here exept the "kite form" are M�obius invariant. Thisimplies that the construction above holds for any choice of the "in�nity point".Indeed, chose an arbitrary point P1 2 R3 [ f1g. Re
ect it in all the spheresS and all the circles 19 C. We call the resulting extended lattice a centralextension. We have proven the �rst statement of the followingLemma 11 A central extension of a discrete S-surface is discrete isothermic.All isothermic extensions of a discrete S-surface are central extensions with somepoint P1 2 R3 [ f1g.Due to Lemma 6 an isothermic extension of a discrete P-surface is uniquelydetermined by one additional point. Take such a point, invert it in the corre-sponding sphere or circle to determine P1. The uniqueness implies that thecentral extension with P1 is the discrete I-surface we started with.The class of discrete I-surfaces which are central extensions with P1 = 1(i.e. with kite faces) is invariant with respect to the dualisation transformationof Theorem 14 (note that we are dealing with the narrow de�nition of discreteI-surfaces q = �1 and � = � = 1 in (98). This allows us to de�ne a dual discreteS-surface as follows:1. extend a discrete S-surface to kites (i.e. build the central extension withP1 =1,2. dualise the kites using (98),3. throw away the centers.Proposition 11 The dualization transformation described above applied to adiscrete S-surface F yields another discrete S-surface (which we call dual to F ).One should prove that the step 3 of the dualization procedure provides uswith an S-net. Central extensions with P1 =1 are characterized by the prop-erty that their faces are of the kite form and that the centers of touching spheresare collinear with the point of contact. Both these properties are preserved bythe transformation (98).Remark. The duality transformation preserves planarity of lattices, thereforeit is well de�ned for S-nets in C.6.6 Examples of discrete conformal mappingsKeeping in mind the relation to holomorphic mappings it is natural to look fordiscrete relatives of the simplest holomorphic functions.19The re
ection in C is de�ned as follows. Consider the sphere ~S passing through C andP1. Denote by SC the orthogonal sphere SC ? ~S containing C. Re
ect P1 in SC . Theimage lies on ~S. 51



Figure 17: Discrete conformal maps: EXP and S-EXP without and with circles.� Z:= discrete z Z(n;m) := n+ im:The standard lattice belongs to all classes considered in the present paper.� EXP:= discrete ezEXP
(n;m) := exp(2n arcsinh
 + 2im arcsin
); 
 2 Ris a discrete conformal map. The Schramm-exponent S-EXP is a little bit lesssymmetric (see Fig.17).� TANH:= discrete tanh zis a M�obius transformation of EXP (see [29]).� ZN+1 := discrete zN+1; N 2 Zis a discrete conformal mapping, obtained from the standard lattice by inter-twining the inversion 1=z and the dualization. 20 For the �rst one in this serieswe obtainZ(n;m) 1=z! 1Z(n;m) = 1n+ im ��! 13Z3(n;m) = 13((n+ im)3 � (n� im)) 1=z! : : :20It is natural to combine the dualization transformation (103) with complex conjugationto obtain maps close to holomorphic ones (compare with (104)). We denote this combinationby ��. 52



Figure 18: A sector and the whole lattice of the discrete conformal map Z3.The discrete conformal map Z3 = z3 � �z is close to the smooth z3. A sectorof this map as well as the whole lattice is presented in Fig.18.Remark. Since the lattices Z and 1/Z are both discrete conformal and S-nets one can build a similar sequence Z2N+1S in the Schramm class replacingthe transformation (103) we used above by the duality transformation of S-netsdescribed in Proposition 11.� Z
 := discrete z
; 0 < 
 < 2 (for details see [6]).Equation (102) can be supplemented with the following nonautonomous con-straint: 
fn;m = 2n (fn+1;m � fn;m)(fn;m � fn�1;m)fn+1;m � fn�1;m (112)+2m (fn;m+1 � fn;m)(fn;m � fn;m�1)fn;m+1 � fn;m�1 :Proposition 12 f : Z2 ! C is a solution to the system (102, 112) i� thereexists a solution to (105, 106), which satis�es the following di�erential equationin �: dd�	n;m = A	n;m; A = 1�A0 + 1�� 1A1 + 1�+ 1A�1; (113)where the matrices A0, A1, A�1 are as followsA0 = 0@ �
4 n un;mun�1;mun;m + un�1;m +m vn;mvn;m�1vn;m + vn;m�10 
4 1A ;A1 = mvn;m + vn;m�1 � vn;m vn;mvn;m�11 vn;m�1 �53



A�1 = nun;m + un�1;m � un;m un;m un�1;m1 un�1;m � :The constraint (112) is compatible with (102).In the case 
 = 1 the constraint (112) and the corresponding monodromyproblem (113) were obtained in [41] (see also the contribution of Nijho� [42]).Remark. The monodromy problem (113) coincides with the one of the Pain-lev�e VI equation [33], which shows that the system can be solved in terms ofthe Painlev�e transcendents.Let us assume 
 < 2 and denote Z2+ = f(n;m) 2 Z2:n;m � 0g. Motivatedby the asymtotics of the constraint (112) at n;m!1 and the propertiesz
(R+) 2 R+; z
(iR+) 2 e
�i=2R+;of the holomorphic z
 it is natural to give the following de�nition of the "discretez
" which we denote by Z
 .De�nition 24 Z
 :Z2 ! C is the solution of (102, 112) with initial conditionsZ
(0; 0) = 0; Z
(1; 0) = 1; Z
(0; 1) = e
�i=2:It is easy to see that Z
(n; 0) 2 R+; Z
(0;m) 2 e
�i=2R+; 8n;m 2 N.It is not di�cult to check that the discrete conformal map Z
 with 
 = 4=N ,N 2 N, N > 4 is a generalized Schramm circle pattern. (Recall that the centralpoints of the circles are also included). In this case the only branch point is atthe origin. We call the combinatorics of this pattern combinatorics of the planewith one branch point of order N=4� 1.In the discrete as well as in the smooth case (up to constant factor) one has(Z
)�� = Z2�
 :Conjecture 1� Z
 : Z2+ ! C is an embedding, i.e. di�erent open elementary quadrilater-als of the pattern Z
(Z2+) do not intersect.� Z
 is the only embedded discrete conformal map f : Z2+ ! C withf(0; 0) = 0; f(n; 0) 2 R+; f(0;m) 2 e
�i=2R+ 8n;m 2 N:� Up to a similarity Z4=N is the only embedded generalized Schramm circlepattern with the combinatorics of the plane with one branch point of orderN=4� 1.Computer experiments made by Tim Ho�mann con�rm the �rst conjectureof the list. The second lattice in Fig.9 is a sector of Z2=3.54
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