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Abstract. We present a new algorithm to compute stable discrete

minimal surfaces bounded by a number of �xed or free boundary curves in R

3

,

S

3

and H

3

. The algorithm makes no restriction on the genus and can handle

singular triangulations. For a discrete harmonic map a conjugation process is

presented leading in case of minimal surfaces additionally to instable solutions

of the free boundary value problem for minimal surfaces. Symmetry properties

of boundary curves are respected during conjugation.

1. Introduction

The Problem of Plateau was a long standing problem in minimal surface theory.

It asks for the existence of a disk type minimal surface spanned by a given closed

boundary curve � in R

n

. The name honors the work of the Belgian physicist J.A.

Plateau, who did extensive experimental studies during the beginning of the 19th

century convincing the mathematicians of an a�rmative solution of the question. But

time had to pass until 1930 to create a theoretical proof: the use of the Weierstra�

representation formulas had failed as well as trying to minimize the area functional

A(f) =

Z




Jacobian(f)

in the class of parametric maps from a �xed disk-type domain 
 � R

2

f : 
! R

n

f(@
) = �:

Douglas [4] and Rado [11] at the same time had the ingenious idea not to minimize

the area functional directly but to minimize, in the later reformulation by Courant

[3], the Dirichlet integral

E

D

(f) =

1

2

Z




jrf j

2

:

1
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By this the symmetries of the problem were drastically reduced from the class of all

parameterizations to the class of all conformal parameterizations.

From the numerical point of view there exist a number of di�erent methods to

compute minimal surfaces, see for example [1], [2], [5], [13], [15], [16]. In this paper

we present a new algorithm by splitting the minimization process in a sequence of

steps computing harmonic maps on surfaces. We avoid using any two dimensional

parameter domain. We will also minimize w.r.t. variations of boundary points lying

on straight boundary lines, and points lying on free boundary curves restricted to

planes. Therefore the resulting discrete minimal surfaces may be extended along

boundary symmetry lines as discrete minimal surfaces.

Additionally we present for discrete harmonic maps an algorithm computing a

conjugate harmonic map. In case of a planar surface this leads exactly to the conjugate

minimal surface. If the image of a harmonic map has symmetry lines, then the

conjugate image will have the corresponding symmetry properties, see x2 Since for

minimal surfaces the identity map is harmonic we can compute its conjugate minimal

surface using the above algorithm.

In the following we mention twomajor approaches for computing minimal surfaces

in more detail since our algorithm is in some sense a mixture of both.

The �rst algorithm has its origin in the theoretical existence proofs of Douglas and

Rado, resp. the later formulation by Courant, and tries to imitate them numerically:

for a given curve � � R

3

this algorithm works on discrete surfaces parameterized

over the triangulated unit disk B. Starting with an initial parameterization

f : B ! R

3

f(@B) = �

one successively repeats a two component minimization step:

� minimize the Dirichlet energy E

D

(f) by varying points in image space

� minimize E

D

(f) by varying points of the discretization in the planar do-

main B.

In the following we will call the �rst step the "Dirichlet step" and the second

step the "conformal step", since it is used to make the map f conformal, see x2 for

more details. During the Dirichlet step a �xed parameter domain is assumed. The

numerical minimization of the Dirichlet integral is then a linear problem and straight

forward. But for the conformal step the di�erent algorithms vary, see e.g. Wohlrab

[16] and Hutchinson [6].

Varying points in the domain may be interpreted as variation of the metric to

make the map conformal. In the continuous case this would be accomplished by tak-

ing the induced metric, and the map would be immediately an isometry and therefore
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conformal. In the discrete case we even have the problem to de�ne conformality. For

example it is usually not possible to get a conformal map in the sense that angles in

corresponding domain and image triangles are the same, since the domain is at. It

remains that one can minimize the conformal energy but without hope of getting it

vanished.

Another approach to compute minimal surfaces is via mean curvature ow. Nu-

merically this is the most natural approach since the area is directly minimized by

letting the surface ow in normal direction with speed being the mean curvature of

the surface. This equals minimizing in direction of the area gradient. One di�erence

of this approach to the former one is that it only works in image space without having

a two dimensional parameter domain. Implementations of such algorithms are due to

Brakke [1] and Dziuk [5]. A drawback of this approach is that boundary points may

vary only orthogonal to the curve, and that singularities develop in general at thin

necks, even if the boundary curve is planar.

Our minimization algorithm combines aspects of both methods: it uses as the

fundamental minimization step the Dirichlet step from the �rst algorithm but in a

di�erent way: for a given boundary � and metrical surface M

i

we compute the next

surface M

i+1

as the minimizer of the Dirichlet functional

M

i+1

:= min

M

1

2

Z

M

i

jr(f : M

i

! M)j

2

.

Pay attention to the fact that we do not use a planar two-dimensional domain but

instead the most recent computed surface M

i

: Such a trick was also applied in com-

puting the mean curvature ow by Dziuk [5] to reduce numerical di�culties with the

Laplace operator.

Numerically we are left within each step with a linear problem of computing the

surfaceM

i+1

where the minimum of the quadratic function is attained. This new min-

imization method is faster than the �rst algorithm since the nonlinear conformal step

is completely skipped. It is no longer necessary to adapt the conformal structure of

the parameter domain because in each step we start with the conformal identity map.

This avoids also numerical inaccuracies arising from inaccurate conformal structures

in the domain.

Since we always step to the absolute minimum of the Dirichlet integral in each

iteration and do not move along the area gradient we proceed discrete also in time

direction. Compared to the mean curvature ow we have therefore less problems with

mean curvature type singularities arising e.g. at thin handles, see �g. 12, and we

have more exibility in moving points tangential to the boundary.

Additional to both theoretical algorithms we can handle in a natural way situa-



Computing Discrete Minimal Surfaces and Their Conjugates 4

tions where lines are joined by multiple surfaces, see �g. ??. Brakke's evolver can

handle these too.

For the numerical and graphical computations the authors used the mathematical

programming environment GRAPE developed at the Sonderforschungsbereich 256 at

the University of Bonn.

This work was done while the second author visited the Sonderforschungsbereich

288 in Berlin. He wants to thank the SFB for the hospitality he enjoyed.

The authors would like to thank U. Brehm for fruitful discussions.

2. General Setup

Before we start with the discrete situation let us review a few de�nitions and results

from the continuous case.

Let � = f�

1

,..,�

n

g be a collection of Jordan curves andM a surface with boundary

@M = �:

De�nition 1. M is a minimal surface i� for each point p 2 M one can choose a

small neighbourhood U(p) which has minimal area among other patches V having

the same boundary as U .

By this de�nition minimal surfaces are characterized by having locally least area

compared to small variations of the surface.

Let (N; h) and(M; g) be two Riemannian manifolds with metrics h and g, and let

f : 
 � N ! M

be a parameterization of a surface f(
) � M over a two dimensional domain sub-

manifold 
 � N . Then the area of f(
) is given by

A(f) =

Z




Jacobian(f)

and the Dirichlet energy of the map f is de�ned as

E

D

(f) =

1

2

Z




jrf j

2

g

;

where jrf j

2

g

= trace g(@f:; @f:), g indicating the metric to be used.

It is well known that

A(f(M)) � E

D

(f)
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with equality i� f is a conformal map. Following a proposal of Hutchinson [6] we will

call the di�erence

E

C

(f) = E

D

(f)-A(f(M))

the conformal energy of the map f . This is justi�ed by the observation that for

Euclidean (x; y)-domains

E

C

(f) =

1

2

Z




�

�

�D

90

f

x

� f

y

�

�

�

2

;

where D

90

is the 90

�

rotation in the oriented tangent plane, is a natural measure of

failure for a map to be conformal.

Minimal surfaces in three dimensional space forms M

3

(c) with constant curvature

c always come in a family of minimal surfaces. Let f : 
 ! M

2

� M

3

(c) be a

minimal immersion of a simply connected domain 
 into a three dimensional space

form. Then there exists the associated family

f

�

: 
! M

3

(c)

of isometric minimal immersions: let g be the by f induced metric on 
 and S the

Weingarten map de�ned by rf � S = rN with N being the normal map of the

surface. Using these data the maps f

�

are determined up to isometrics of M

3

(c) by

the geometric data (g

�

; S

�

) de�ned by

g

�

:= g

S

�

:= D

�

� S ;

(1)

where D

�

is rotation about the angle � in the oriented tangent planes of 
 . f

�

2

is

called the conjugate immersion of f , and f

�

= inversion(f) . See Lawson[9] for a

more detailed explanation.

Minimal surfaces in three dimensional space forms have a useful symmetry prop-

erty: if they contain a straight line, i.e. a geodesic ofM

3

(c) , then the minimal surface

is invariant under 180

�

rotation around this line, and if they meet a totally geodesic

plane in M

3

(c) orthogonally along an arc, then the minimal surface is invariant under

reection at this plane. These properties allow the construction of complete surfaces

from fundamental pieces bounded by symmetry lines.

The symmetry properties are also an essential tool for the existence proof called

conjugate surface construction: This construction, originally invented by Smyth [12]

for proving existence of three minimal patches in a given Euclidean tetrahedron, is

based on the fact that a straight line on a minimal surface corresponds to a planar

line of symmetry on the conjugate surface and vice versa. Minimal surfaces, which
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are cut by their symmetry planes in simply connected domains, have therefore a con-

jugate domain bounded by straight lines. To prove existence of the original piece one

can often reconstruct the conjugate polygonal contour using only knowledge about

the symmetry planes. Then e.g. the Morrey solution to the Plateau problem for the

polygonal contour proves existence of the conjugate patch and via conjugation also

of the patch bounded by symmetry planes which one was looking for. See Karcher [7]

for conjugate constructions in R

3

, Karcher, Pinkall, Sterling [8] in S

3

and Polthier

[10] in H

3

:

3. Discrete minimal surfaces

In this paragraph we de�ne discrete surfaces and analogs of other terms known from

the continuous case. We will see that especially the energy of a discrete map and its

derivative can be expressed in terms with geometric meaning.

De�nition 2. A discrete surface in a three dimensional space form is a topological

simplicial complex consisting of triangles. The triangles may be degenerated to a line

or a point.

De�nition 3. A discrete surface is (area-) minimal i� small perturbations of sur-

face vertices in a small region would increase the total area.

In the following we assume that the discrete surfaces lie in a vector space attached

with a constant metric. Let

f : (T

1

; g)! (T

2

; h)

be a map between two triangulations with metrics g and h and with the same un-

derlying topology, i.e. the abstract simplicial complexes of T

1

and T

2

are identical.

We assume that f is de�ned on the vertices and continued as a linear map into the

interior of the triangles. With this we de�ne:

De�nition 4. The energy of a map between discrete surfaces is the sum of the

energies of all linear triangular mappings

f

i

: (�

1;i

; g)! (�

2;i

; h);

where �

1;i

and �

2;i

are the i-th corresponding triangles from T

1

and T

2

mapped onto

each other by f

i

:

The energies of these atomic maps f

i

are given as in the continuous case. The f

i

are linear mappings between two triangles, and their energy E

D

(f

i

) is given by

E

D

(f

i

) =

1

2

Z

(�

i

;g)

jr

g

f

i

j

2

h

,
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where r

g

is the derivative operator w.r.t. the metric g and j�j

h

the norm in image

space w.r.t. the metric h:

It turns out that for a linear map f : �

1

! �

2

between triangles �

1

and �

2

exists

an explicit representation of E

D

(f) in terms of the angles of �

1

, i.e. its "conformal

structure", and the side lengths of �

2

:

Lemma 5. Let f be a linear map between two triangles �

1

and �

2

in two vector

spaces with constant metrics g and h. Then the Dirichlet energy of f is given by

E

D

(f) =

1

4

3

X

i=1

cot�

i

�

�

�

�

�!

a

i

�

�

�

2

h

, (2)

where �

i

are the angles of �

1

w.r.t the metric g and a

i

the corresponding side lengths

in �

2

w.r.t. the metric h. See �gure 1 for the notation.

Figure 1: Atomic linear map between two triangles

Proof. The linear map is de�ned by f(v) = a and f(w) = b and its Dirichlet

energy is given by

E

D

(f) =

1

2

Z

T

g

jrf j

2

h

=

1

2

Z

T

g

tr h(@f:; @f:)

We split f using two linear maps ' : T

e

! T

g

and  : T

e

! T

h

. ' resp.  

is given by mapping the unit base fe

1

; e

2

g to fv; wg resp. fa; bg on the standard

triangle T

e

enclosed by the unit base fe

1

; e

2

g in R

2

. Then we have f =  � '

�1

and

@f = @ � @'

�1

:

In the following the scalar products and norms are taken w.r.t the corresponding

metric, we therefore skip indicating it.
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It is:

t

@ � @ =

 

ha; ai ha; bi

ha; bi hb; bi

!

@'

�1

�

t

@'

�1

=

 

hw;wi � hv; wi

� hv; wi hv; vi

!

�

1

(det@')

2

Therefore we compute:

tr(

t

@f � @f) = tr(

t

@'

�1

�

t

@ � @ � @'

�1

)

= tr(

t

@ � @ � @'

�1

�

t

@'

�1

)

=

1

(det @')

2

� (ha; ai � hw;wi � 2 ha; bi � hv; wi+ hv; vi � hb; bi)

De�ning c := b� a we have �2 ha; bi = jcj

2

� jaj

2

� jbj

2

and continue with

=

1

(det @')

2

� ((hw;wi � hv; wi) jaj

2

+ (hv; vi � hv; wi) jbj

2

+ hv; wi jcj

2

)

=

1

det @'

� (

h�w;v�wi

det @'

jaj

2

+

hw�v;�vi

det @'

jbj

2

+

hv;wi

det@'

jcj

2

)

=

1

det @'

�

P

3

i=1

cot�

i

ja

i

j

2

For the last step we used the identities :

cos� =

hv; wi

jvj � jwj

, sin� =

det @'

jvj � jwj

.

Therefore we obtain:

E

D

(f) =

1

2

Z

T

g

tr h(

t

@f@f) =

1

2

Z

Te

tr h(

t

@f@f) det @'

�1

=

1

4

3

X

i=1

cot�

i

ja

i

j

2

h

(the additional factor

1

2

is the area of T

e

). 2

This representation is so natural that it should have appeared somewhere in the

literature, but the authors have not found a reference. Compare Wilson [15] for a

di�erent and less clear examination of the triangular Dirichlet energy. Our repre-

sentation immediately shows the conformal invariance of the Dirichlet energy w.r.t.

conformal changes of the domain metric, and the quadratic dependence on the side

lengths in image space.

As an immediate consequence we can now de�ne the Dirichlet energy of a map f

between two discrete surfaces as the sum of all energies on triangles:

E

D

(f) =

P

# triangles

i=1

E

D

(f

i

)

=

1

4

P

# edges

i=1

(cot�

i

+ cot�

i

) ja

i

j

2

:

(3)
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In the last representation we merged two terms corresponding to the same edge a

i

.

The angles �

i

and �

i

are the angles opposite to a

i

in the two adjacent triangles. For

boundary edges one term is assumed to be zero. Heuristically the representation may

be considered as the weighted sum of all edges lengths. The weights depend only on

the domain. By this interpretation the energy is concentrated on the edges as tension.

But be aware that the tension may be negative meaning that this edge acts with a

repelling force on his end points.

We will proof some further useful identities for planar triangles.

Figure 2: Notation for triangles

From �gure 2 we read (c

1

:= Pr(p)� q

1

, c

2

:= q

2

� Pr(p), c = c

1

+ c

2

= q

2

� q

1

)

cot� � h = �D

90

c

1

cot� � h = �D

90

c

2

a = h+ c

2

b = h� c

1

We now get immediately

cot�+ cot� =

jcj

jhj

(4)

and further

cot� � a + cot� � b = �D

90

c (5)

Computing formally the energy for the identity map of a triangle � with side lengths

a, b, c and angles �, �,  we obtain twice its area:

cot� � jaj

2

+ cot � � jbj

2

+ cot  � jcj

2

= 4 � area(�)

In the same way as in the continuous case we de�ne a discrete harmonic map:
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De�nition 6. A discrete harmonic map is a critical point for the Dirichlet energy

functional w.r.t. variations of interior surface vertices in image space. To include

symmetry properties into this de�nition we allow in some cases also variation of

boundary points:

� if a domain boundary segment and its corresponding image boundary segment

are straight lines, then the interior boundary points may vary along the straight

line in image space

� if both corresponding segments are planar symmetry curves restricted to planes

we allow variation of interior boundary points in the image plane. This models

also free boundary value problems

� in all other cases the image boundary points remain �xed.

The numerical condition for local harmonicity is explicitly given by di�erentiating

expression (3):

@

@p

E

D

(f) =

1

2

#neighbours of p

X

i=1

(cot�

i

+ cot�

i

)(p� q

i

) = 0 (6)

resp. p =

P

#neighbours of p

i=1

(cot�

i

+cot �

i

)q

i

P

#neighbours of p

i=1

cot�

i

+cot �

i

,

where q

i

runs through all points adjacent to p. If (6) is true for all interior points p

then f is a critical point for the discrete energy functional. The condition for points

on boundary symmetry lines is the same except that the full vertex star around a

point p has to be constructed corresponding to the symmetry properties.

We will now have a closer look at the procedure to compute the harmonic map

numerically. For simplicity we assume a Dirichlet Problem, i.e. a given triangulated

domain 
 and a �xed map f : @
 ! �; � a �xed polygonal contour, then looking

for a harmonic extension of f into the interior of 
. Solving problems with straight

boundary lines or free boundary value problems the boundary points may also move

but constraint to the current boundary condition.

Remark: 1. In the continuous case the extension is unique in Euclidean space. 2.

In practice our algorithm uses @
 = �:

Let P = (p

1

; :::; p

B

; p

B+1

; :::; p

B+I

) be a representation of f(
) with p

i

; i > B; an

interior vertex of f(
) and p

i

; i � B, a boundary vertex of f(
),: Then minimizing

E

D

(f) is a quadratic problem and has a unique solution. We write it therefore using

a quadratic form:
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E

D

(f) =

1

4

P

#edges

i=1

(cot�

i

+ cot �

i

) ja

i

j

2

=

1

8

P

#points

i=1

P

#neighbours of p

i

j=1

(cot�

ij

+ cot�

ij

) jp

i

� p

j

j

2

= P

t

� S � P

where S is the well known sti�ness matrix from �nite element theory. But instead

of having basis functions involved we have in our case explicit expressions for the

components of S :

S

ij

=

(

�

1

8

(cot�

ij

+ cot�

ij

) � id ; if i 6= j and p

i

is adjacent to p

j

0 , if i 6= j and p

i

is not adjacent to p

j

S

ii

=

P

p

j

=neighbour of p

i

(�S

ij

)

where id is the identity map of the ambient vector space. S is symmetric and positive

de�nite (0� P

t

� S � P , 0� E

D

(f) � area , P = 0):

The condition for a surface to attain the minimum of the Dirichlet energy while

keeping the boundary points �xed is given by: letting X = (p

1

; :::; p

B

; x

B+1

; :::; x

B+I

)

be an admissible surface (with �xed boundary points p

i

and free interior points x

i

)

and

~

X
= (0; :::; 0; x

B+1

; :::; x

B+I

) be an admissible variation direction we have

0 =

@

@

~

X

jX=P

E

D

(f) =

@

@

~

X

jX=P

X

t

� S �X = 2(0; :::; 0; id; :::; id) � S �X =: Q

with Q

i

=

(

0; i 2 [1; B]

2(

P

B

j=1

s

ij

p

j

+

P

B+I

j=B+1

s

ij

x

j

), i 2 [B + 1; B + I ]

:

The interior points x

i

can be computed using the linear system of equations:

Q

i

= 0, i 2 [B + 1; B + I ] :

Smooth harmonic maps de�ned on a planar domain are characterized by their

mean value property, which means that the center of a small circle is mapped to the

center of mass of the circle's image. This has as a consequence that the image of a

harmonic map lies inside the convex hull of its boundary. For discrete harmonic maps

a corresponding mean value property follows immediately from the local harmonicity

condition (6), see Wilson [15]:

Lemma 7. Let f be a discrete harmonic map de�ned on the points fq

i

g around a

point p. If the points fq

i

g form a regular planar polyhedron with center p, then f(p)

is the center of mass of ff(q

i

)g.

But this result does not hold in general for other planar or spatial domains. Nev-

ertheless we have a convex hull property for discrete harmonic maps as far as the

spatial domain consists only of acute triangles.
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Lemma 8. Let f be a discrete harmonic map de�ned on a spatial domain formed

by the points fq

i

g around a point p. If the triangles around p are all acute, then f(p)

lies in the convex hull of ff(q

i

)g.

Proof. From the local harmonicity condition (6) we see that p can be represented

as a linear combination of the points fq

i

g. Since all angles are acute, the weights of

the q

i

are in the interval (0; 1:), and p is a convex combination.

Lemma 9. Discrete minimal surfaces have the convex hull property, since they are

critical points of the area functional.

4. The Minimization Algorithm

In x3 we explained a method to compute a discrete harmonic map for an arbitrary

given triangulated domain and a given boundary con�guration � in image space. In

that method � was allowed to consist of a collection of curves, which might individ-

ually be marked as being �xed curves or as being straight or planar symmetry lines.

This would had the e�ect of additionally varying their boundary points w.r.t. these

constraints. We call two collections � and �

0

equivalent (`�`) i� both are identical

along �xed arcs and if there exists a one to one correspondence of vertices inside a

symmetry line resp. a symmetry plane.

Then our algorithm attacks the following problem:

Problem:. Given a boundary con�guration � and an initial discrete surfaceM

0

with @M

0

� �. Find a discrete locally area minimizing surface M

�

in the class

M = fM jM two dimensional simplicial complex of the same

combinatorial triangulation as M

0

with @M � �;

M may be extended across symmetry arcs of @M as a local minimizerg

The problem is formulated in a very restrictive way as e.g. we do not allow topology

changes for the moment. This constraint was made to simplify the description, see

x6 for a discussion of topology changes.

The algorithm:

1. take the initial surface M

0

with boundary @M

0

� � as the �rst approximation

of M , set i to 0.
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2. compute the next surface M

i+1

by solving the linear Dirichlet problem

min

M

1

2

Z

M

i

jr(f :M

i

! M)j

2

:

The condition for the minimum M

i+1

is given by (6).

3. set i to i+ 1 and continue with 2.

Remark: In practice we use the criteriumjarea(M

i

)� area(M

i+1

)j < � as a stop-

ping condition

Proposition 10. The algorithm converges to a solution of the problem, if no trian-

gles degenerate.

Proof. The condition "no triangles degenerate" means that we assume all tri-

angle angles for all surfaces of the sequence to be uniformly bounded away from 0 to

�. From the construction the sequences farea(M

i

)g andfE

D

(f

i

:M

i

! M

i+1

)g are

monotone decreasing:

area(M

i

) = E

D

(id

jM

i

) � E

D

(f

i

: M

i

!M

i+1

)

= area(M

i+1

) + E

C

(f

i

)

� E

D

(id

jM

i+1

) = area(M

i+1

)

If no triangles degenerate we minimize in a compact set of surfaces. Therefore a

subsequence of fM

i

g converges uniformly to a limit surface M , i.e. jM

i

�M j ! 0.

We now show that M is minimal: Let M be the above class of surfaces with the right

topology and de�ne

F

i

:M! R

F

i

(X) := E

D

(f

i

: M

i

! X)

F

i

is a quadratic function with minimum in M

i+1

, i.e.

rF

ijM

i+1

= 0:

Because of the degeneracy condition we have a uniform bound s

max

on the norm of

r

2

F

i

independent of i: Therefore

rF

ijM

i

= rF

ijM

i

�rF

ijM

i+1

= r

2

F

ij�

� jM

i

�M

i+1

j

2

and we obtain:

�

�

�rF

ijM

i

�

�

� � s

max

� jM

i

�M

i+1

j

2

:

Since we have M

i

! M it follows rF

ijM

i

! rF

M jM

= 0. rF

M jM

= 0 means that

M is a critical point for the energy function E

D

(f

i

: M ! X), i.e. M is stationary

point for the area functional.2
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5. The Conjugation Algorithm

One of the major problems conjugation algorithms have to deal with is that they have

to use inaccurate discrete data out of a minimization process as an approximation to

a smooth surface, since all known approaches try to simulate the procedure (1) of x2

for the smooth case.

The advantage of our method for discrete minimal surfaces, and far as the authors

know, the only method with reasonable results, is that we use the discrete data of the

minimization process directly to compute a discrete conjugate surface. The discrete

minimality condition (6) is simultaneously the integrability condition for the discrete

conjugate surface, which means that we loose no accuracy during the conjugation

process.

The algorithm is de�ned for a triangular graph M, which is a stationary critical

point for the area functional, but the algorithm may also be applied to harmonic

maps between two discrete surfaces. Such a graph maybe obtained by a minimization

procedure described in the previous paragraphs. Then for each vertex p we have the

minimality condition

@

@p

E

D

(f :M ! X 2M)

jX=M

=

1

2

#neighbours of p

X

i=1

(cot�

i

+ cot�

i

)(p� q

i

) = 0,

which means geometrically that the sum of the weighted edges emanating from p add

up to a closed polygon. This closed polygon is de�ned as the dual cell of the point p.

This works perfectly for interior points. For points along the boundary we distinguish

two case:

� If the point belongs to a planar or straight symmetry curve the whole neigh-

bourhood is uniquely determined by the symmetry properties and the algorithm

therefore works as for interior points.

� If a point p belongs to a non symmetric �xed boundary curve the construction

of a neighbourhood is usually not possible. We then assume the existence of a

neighbourhood such that all weighted edges sum up to zero. It is of no further

relevance how this strip around the boundary curve is de�ned since for the

conjugation algorithm it su�ces to know only two adjacent boundary vertices

of p and an edge from p into the interior of the surface.

So, how does the conjugation process work: consider a neighbourhood of a point

p on the discrete minimal surface as in �gure 3.

The identity map f of the discrete surface to itself is a discrete harmonic map by

the assumption. Restricted to a single triangle it is a smooth linear map. Conjugation

in the smooth case means rotating the one-form df of the map f in each tangent space.
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Figure 3: Neighbourhood around a Point

Here this operation is only de�ned on the smooth linear triangles, but along the edges

it results in discontinuities of the atomic one-forms. In spite of these discontinuities

the following de�nition makes sense:

We de�ne a global star operator acting on the di�erential df of f by

�df := df � J;

where J is the well-de�ned 90

�

rotation on the interior of each triangle.

The form �df is not closed globally, but it turns out that it can be integrated

along very special paths.

Consider two adjacent triangles in �gure 4, which may not necessarily be coplanar.

Let v be the vector emanating from point p to point q, let further M

1

, M

2

be

the centers of the circumcircles of the triangles T

1

, T

2

with w

1

, w

2

being the mid

perpendiculars w.r.t. the edge v. Then it is an elementary calculation that

w

1

= cot� � Jv

w

2

= cot � � Jv

where J is taken w.r.t. the appropriate triangle, and further

�df(w

1

) = � cot� � v

�df(w

2

) = � cot� � v.

This means �df is continuous across triangle edges when applied to vectors orthogo-

nally to the edges.
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Figure 4: Path between two adjacent triangles

We now integrate the one-form �df along the path ; consisting of the mid per-

pendiculars around a point p. This results in adding up all the weighted vectors and

we obtain

Z



�df = �

#neighbours of p

X

i=1

(cot�

i

+ cot�

i

)v

i

= 0.

Now we arrived at the most important point: The expression is exactly zero since it

is the condition for the initial triangulation of being minimal, i.e.

Theorem 11. The closeness condition for the dual one-form �df equals the mini-

mality condition for the initial triangulation f .

�df is therefore closed along such a path and in this way we obtain a dual cell for

each vertex p. Continuing we get a well-de�ned dual graph to the given minimizing

triangulation, see �gure 5. For each triangle we obtain a vertex of the dual graph

with three adjacent vertices. Every such four vertices lie in a plane since the three

triangle edges were coplanar.

We are further interested in a triangulation of the dual surface being topologi-

cally equivalent to the original triangulation because then the associated family of

the minimizing triangulation would also be de�ned. As remarked above this cannot

be canonically de�ned since the one-form �df is not globally closed. But we can

continue integrating the form canonically on the interior of each triangle. This gives
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Figure 5: Integrating along a path: Integrating the atomic one form �df along the

path , consisting of all mid perpendiculars around a vertex p on the minimizing

triangulation, gives the dual cell corresponding to p (for a clearer representation we

d

a dual complex of triangles which �t together on common basis points of their mid-

perpendiculars. A good approximation now for the center of each dual cell is taking

the mean of all triangle vertices lying inside the dual cell, see �gure 6.

In the case of a vertex q lying on a �xed boundary arc a whole neighbourhood

is usually not contractible. To conjugate such points we use information available

from the dual cell of an adjacent interior point. Look at �gure 6 and assume q

i

lies

on a �xed boundary arc, p being an adjacent interior point. Then by conjugating a

neighbourhood of p we automatically obtain f

�

i

(q

i

) which is an ideal candidate for the

dual point of q

i

.Compared to the conjugation of interior points this method di�ers

only in the fact that a �nal averaging is not possible.

Lemma 12. In the case of a planar initial triangulation this results in getting exactly

the conjugate minimal surface.

Proof. In the planar case the operator J is constant on the triangulation, there-

fore �df is globally closed on the triangulation T and being the di�erential of

f

�

= �J � f : T ! T

�

;

mapping the triangulation T on its conjugate triangulation T

�

, being the 90

�

-rotated

original triangulation T:
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Figure 6: Conjugating a Cell: Integrating the atomic one form �df inside the triangle

(p; q

i

; q

i+1

) leads to a well-de�ned triangle, whose mid perpendiculars are part of the

dual graph. The image f

�

(p) is de�ned as the mean of all f

�

i

(p):

A further property of the discrete conjugation method is given by the following

lemma.

Lemma 13. Straight lines resp. planar lines of symmetry of a minimizing triangu-

lation are mapped to planar symmetry lines resp. straight lines on the conjugate

triangulation.

Proof. Let p be a boundary point lying on the interior of a straight line l with

boundary neighbours q

1

and q

2

. The vertex star around p consists of the boundary

points q

1

and q

2

; of points in the interior of the surface and their reected images, see

�gure 7.

The dual cell is constructed by adding the weighted edges emanating from p in a

circular sequence. Let v be a vector emanating from p. It can be written as

v = ` + `

?

,

where `

?

denotes the component orthogonal to the line `. The corresponding vector

rot(v) is given by

rot(v) = `� `

?

:

We now start building the dual cell with the vector v

�

1

parallel to `, w.l.o.g putting

the center of v

�

1

into the origin. At its end point e we add the next vector v

�

and at
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Figure 7: Symmetry of the Conjugate Surface

its foot point f the vector �rot(v)

�

. The two new end points, also denoted with e

and f , are given by

e =

1

2

v

�

1

+ `+ `

?

f = �

1

2

v

�

1

� ` + `

?

:

From this it follows by induction that the dual cell is symmetric w.r.t. the plane

orthogonal to ` and going through the center of v

�

1

and v

�

2

.

In the same manner one proofs that planar symmetry lines are mapped to straight

lines.2

6. Topology Changes

In this chapter we discuss ongoing experiments with changing the connectivity of a

discrete surface during the minimization process. The aim of these experiments is to

be able to compute beyond singular situations, when the triangulation becomes de-

generate, and thereby compactifying the class of discrete surfaces occurring during the

minimization process. "Degenerate triangulation" means that triangle angles become

0 or �: This happens when the triangle shrinks to a line, i.e all three points becoming

collinear, or two or three vertices merge to a single point. From the theoretical point

of view these situations are not dangerous since the energy and its derivative of a

map of such a degenerate triangle to a non-degenerate would be in�nite. Therefore

the triangle would remain unchanged when continuing the iteration. The problems

occur only for the numerics when triangles start to degenerate.

But it turns out that one can go around these di�culties by having a closer look at

the degenerate situations. We consider the case where a vertex falls onto the opposite
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edge as a special case of the situation where two points merge.

Let A, B, C be a rectangular triangle as shown in �gure 8,

Figure 8: Degenerate Triangle

where the length
B;A

is normalized to unit length. Consider now the variation

of the energy for variable C and small �:

The energy is given by

E =

1

4

(cot� jB � Cj

2

+ cot(

�

2

� �))

and

@

@C

E =

1

2

cot�(C � B) =

1

2

�

C�B

jC�Bj

@

2

@C

2

E =

1

2

cot� � id

From this we have that movingC a little bit while � is very small would cost an in�nite

amount of energy. So once having a degenerate triangle it will remain degenerate

during further minimizations. The consequence for the numerical algorithm is that

we can compute beyond singular situations: once such a situation occurs we can

simply remove the singular triangle using the rules shown in �gure 9.

The total number of triangles is less or equal than before.
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7.

Figures

Figure 10: Constructing Karcher's Scherk surface with handle

Initial triangulation of a pentagon in �g. 10a with four straight and one planar

boundary. Boundary points may vary along straight arcs resp. planes. Figure 10b

shows the triangulation after some minimization steps. Applying the conjugation

algorithm leads to �g. 10c with four exactly planar and one exactly straight symmetry

line. Successive reection along symmetry lines leads to a fundamental domain for the

translation group of the complete minimal surface of Karcher. Re�ning was controlled

by using discrete curvature information of the discrete surface.
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Figure 11: Minimal surface with ends

The initial surfaces of the sequence are bounded by three straight lines meeting

at angles 60

�

and 90

�

; and a helicoidal arc having 90

�

angles with two straight lines.

The helicoidal arc is translated to in�nity during the sequence. The conjugate piece

consists of three planar symmetry lines and and eighth of a catenoidal end. It can

be reected to a minimal surface with cubical symmetry and six growing ends, which

approximates a complete minimal surface in the limit. The helicoidal arc in this

example is no symmetry line.
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Figure 12: Minimizing a drop-like surface

A drop-like initial surface bounded by a planar curve. One minimization step

leads directly to a planar surface, and therefore avoids a mean curvature ow type

singularity at the thin neck. This illustrates that the minimization algorithm proceeds

discrete also in time direction.
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Figure 13: The Goldschmidt solution

All minimization steps of a cylinder type initial surface. Between the Goldschmidt

solution and the �nal �gure an additional algorithm removing degenerate triangles

was applied.
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Figure 14: Minimizing the instable Trinoid

An example similar to �g. ?? with higher genus. An instable part of the trinoid

minimal surface of Jorge and Meeks was computed using the Weierstra� representa-

tion formula and then used as an initial surface for the minimization algorithm. The

same Goldschmidt type solution as in �g. ?? appears.
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Figure 15: Surface with higher genus

A one-parameter family of initial surfaces where the distance between both �gure-

eight boundary curves is varying. Depending on the height three situations appear

during the minimization procedure. Two extreme height values lead to two di�erent

singularities, once a singularity at the middle neck and once two singularities at

the two outer necks. For special height values a stable discrete minimal surfaces is

obtained in the limit. The initial surfaces were generated using the surface builder

module of GRAPE.
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Figure 16: Growing Karcher handles

This example illustrates the time dependent process of growing additional han-

dles out of existing minimal surfaces. For the O,C-TO surface of A. Schoen is no

representation formula known, its existence was proved by Karcher [7] as an inter-

mediate value argument using the conjugate surface construction, i.e. during the

process of growing handles exists one value at which the handles meet the existing

symmetry planes of the cube. The occurring extreme situations made it necessary to

re�ne adaptively during the deformation. Re�ning was controlled by using discrete

curvature information of the discrete surface.
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Figure 17: A non orientable minimal M�obius band

The algorithm handles non orientable surfaces since the dirichlet minimality con-

dition (6) is independent of the orientation.
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Figure 18: A Surface with triple line

A minimal con�guration with a singular triple line where three patches meet. Such

multiple lines are naturally covered by the algorithm since the dirichlet minimality

condition at a point (6) is a �nite sum of the weighted directions of all edges emenating

from a point. The weight of each edge is determined by all triangles, which may be

more than two, joining this edge.
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Figure 19: Examples of Smyth in a tetrahedron

An example corresponding to the �rst usage of the conjugate surface construction

by B. Smyth. A discrete minimal surface in a quadrilateral is conjugated to a patch

bounded by the four faces of a tetrahedron along planar symmetry lines. But this

patch is not a stable discrete minimal surface. Further minimization of this patch

while keeping the boundary curves restricted to the faces lets the patch degenerate

to an edge of the tetrahedron.
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Figure 20: Minimal Surface Con�guration in a Cube

A minimal con�guration bounded by the edges of a cube. The interior of the

surface contains triple lines where di�erent surface patches meet at an angle of 120

�

.


