
To appear in the ACM SIGGRAPH conference proceedings

Filament-based smoke with vortex shedding and variational reconnection

Steffen Weißmann Ulrich Pinkall
TU Berlin

Abstract

Simulating fluids based on vortex filaments is highly attractive for
the creation of special effects because it gives artists full control over
the simulation using familiar tools like curve editors or the scripted
generation of new vortex filaments over time. Because filaments
offer a very compact description of fluid flow, real time applications
like games or virtual reality are also possible.

We present a complete model that includes moving obstacles with
vortex shedding, all represented as filaments. Due to variational
reconnection the long-time behavior of our method is excellent:
Energy and momentum stay constant within reasonable bounds and
computational complexity does not increase over time.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Physically based
modeling

Keywords: fluid simulation, vortex filaments, vortex shedding,
vortex reconnection, panel method

1 Introduction

Using vortex filaments as basic primitives for modeling fluid flow
provides the most efficient method to capture the complexity of
smoke with sparse data. This viewpoint was pioneered in [Ange-
lidis and Neyret 2005; Angelidis et al. 2006]. In [Pinkall et al.
2007; Weißmann and Pinkall 2009] substantial improvements of the
method were developed that yield an important increase in physical
realism as well as a reduction of the computational costs. In particu-
lar, discrete differential geometry and integrable systems were used
to obtain accurate simulations even with coarse polygonal filaments.

Vortex filaments provide a discretization of fluid dynamics where the
vorticity field is concentrated along closed curves. Realistic smoke
can be modeled using a small number of vortex filaments. The main
reason is that in the real world all vorticity comes to life as two-
dimensional vortex sheets in the boundary layers of obstacles. These
vortex sheets curl up into complicated one-dimensional structures,
the vortex filaments. Simulating these filaments directly provides an
extremely efficient way to model the whole flow.

We extend existing methods for long time stability and efficiency,
while we also include boundaries with vortex shedding (see Fig. 1).
Our approach gives special effects artists full control over the simu-
lation by modeling the geometry of the initial filaments. Obstacles
can be handled as triangular meshes. No Eulerian grid is required.
Our method is fast enough to simulate non-trivial scenarios in real
time, with a level of detail that easily exceeds the resolution that can

Figure 1: Flow around an ellipsoid with vortex shedding.

be achieved by grid-based simulations. In combination with GPU-
accelerated particle advection it can be used for computer games
and virtual environments.

1.1 Goals and contributions

Our goal is to develop an algorithm that allows vortex filament
simulations that (a) are plausible and efficient enough to run in
real time, (b) run stably over long simulation times, (c) can handle
static and moving obstacles including vortex shedding at boundaries.
We will validate our method on various scenarios including the
simulation of real experiments.

Hamiltonian formulation for thick vortex filaments: Conserva-
tion of energy is essential for the long-time stability and plausibility
of physical simulations. In Sec. 3 we give a formulation of filament
dynamics based on a Hamiltonian system. Compared to [Weißmann
and Pinkall 2009] we allow for filaments with different thickness and
work throughout with the correct velocity field. The Hamiltonian of
our system is indeed the kinetic energy. It is exactly preserved for
smooth filaments.

Variational model of vortex reconnection: Vortex filaments have
a strong tendency to develop hairpins [Chorin 1990; Chorin 1993],
which leads to an exponential increase in time of the number of
polygon edges needed in a numerical simulation. Chorin has shown
that a simple model of reconnection and hairpin removal leads to
accurate and efficient simulations of a vortex ring consisting of many
weak closed filaments. This criterion can however lead to alternating
reconnections. In Sec. 5 we propose a reconnection criterion based
on a variational principle. The key idea is to reduce the filament
length while staying as close as possible to the original flow. Our
reconnections decrease a certain functional and thus cannot lead to
alternating reconnections. At the same time our method improves
the overall geometry of the filaments.

1

To appear in the ACM SIGGRAPH conference proceedings

Boundary conditions and vortex shedding: Obstacles are impor-
tant not only to restrict the fluid domain, but also as a source of
vorticity (vortex shedding). In Sec. 4 we show how to include static
or moving obstacles into the simulation, by computing image vor-
ticity [Saffman 1992] as a vortex sheet on the obstacle. Our method
to compute the boundary layer is related to the standard 3D panel
method [Katz and Plotkin 2001], but our approach reduces the size
of the resulting linear system by a factor of two. In addition, we
represent the image vorticity as a collection of vortex filaments on
the surface of the obstacle. Vortex shedding is modeled by releasing
some of these filaments into the flow.

Explicit flux computation: The computation of normal flux in-
duced from a polygonal vortex filament through another polygon is
required both for obstacles and reconnection. Its explicit integration
(given in App. A) is new and also of interest for the numerics of
boundary integral equations [Sauter and Schwab 2004].

Validation: Vortex reconnection can be observed in experiments
with real vortex filaments: Two obliquely colliding vortex rings
can merge into one big filament that splits again into two separate
rings [Lim 1989]. Head-on collision of two vortex rings can result
in a reconnection that leads to many small vortex rings [Lim and
Nickels 1992]. For validation we demonstrate how our method
reproduces these real experiments (Fig. 8). We also simulate vortex
shedding behind a sphere and demonstrate the long-time robustness
of our method using a jet simulation.

2 Related work

Much work on 3D smoke simulations is based on Stam’s Stable
Fluids [Stam 1999], together with vorticity confinement [Fedkiw
et al. 2001]. We will not review the entire literature here and instead
refer to the course notes [Müller et al. 2008] and the references
therein. Despite their ongoing success, grid-based methods share
some fundamental problems: The whole fluid domain needs to be
discretized, which requires knowledge of the overall behavior of
the simulation in advance. Aliasing effects occur due to preferred
directions along the grid axes. The large number of grid cells needed
restricts the possible resolution, even when using sparse grids. Real-
time applications are only possible with coarse grids.

The importance of vorticity for the believability and detailed struc-
ture of flows has long been recognized as evidenced by the body of
work geared at ensuring that vorticity is not lost [Stam and Fiume
1993; Fedkiw et al. 2001; Neyret 2003; Selle et al. 2005; Kim et al.
2005; Elcott et al. 2007; Narain et al. 2008; Kim et al. 2008] or
even added in a user controlled way [Park and Kim 2005; Pfaff et al.
2009]. Simplicial fluids [Elcott et al. 2007] preserve circulation (and
thus vorticity) by construction. Still there is dissipation of energy
which can be avoided using variational integrators for fluids [Mullen
et al. 2009]. Nevertheless it is not possible to accurately resolve the
one- or two-dimensional structures of vorticity created at boundary
layers even with high-resolution meshes.

Mesh-free methods used in computer graphics are mostly based on
SPH [Stam and Fiume 1995; Desbrun and Gascuel 1996; Müller
et al. 2003; Becker and Teschner 2007; Yan et al. 2009] or vortex
particles. Inviscid flow like smoke is challenging for SPH. Vortex
particles [Park and Kim 2005] have difficulties in maintaining the
solenoidal property of the vorticity field, which requires the vortex
particles to align along closed loops. Vortex particles have also
been used with great success in hybrid approaches [Selle et al. 2005;
Chatelain et al. 2008; Pfaff et al. 2009].

The use of vortex filaments as basic primitives for modeling 3D
smoke was pioneered by Angelidis and Neyret [2005]. A more
physically based method was introduced in [Weißmann and Pinkall

2009] in combination with a discrete integrable system that com-
pensates for discretization errors inherent to the polygonal vortex
filament model. The excessive increase of filament length makes
long time simulations impossible, which has been addressed in [An-
gelidis et al. 2006] by filtering high frequencies from the filament
geometries. A physically motivated approach was introduced by
Chorin [Chorin 1990; Chorin 1993]: Hairpin removal and filament
reconnection. Chorin’s method was also used in [Bernard 2006;
Marzouk and Ghoniem 2007; Bernard 2009].

Real-time methods for 3D smoke simulation are mostly based on
Semi-Lagrangian methods using GPU techniques [Crane et al. 2007;
Kim 2008; Yang 2009]. Reductions to 2D [Rasmussen et al. 2003;
Krüger and Westermann 2005] have also been used to improve
performance. Model reduction [Treuille et al. 2006] can significantly
speed up simulations, but it requires extensive precomputations as
well as giant storage.

Vortex shedding from boundary layers has been modeled using vor-
tex particles: [Park and Kim 2005] compute the boundary layer
using the standard 3D panel method [Katz and Plotkin 2001]. [Pfaff
et al. 2009] determine the boundary layer directly from the laminar
flow computed using a grid. Filaments on the other hand are better
adapted than vortex particles to the coherent structures that emerge
anyway during vortex shedding. Therefore they can yield realistic
and detailed results with less computational effort.

3 Filament dynamics

Filament-based fluid simulation makes use of the vorticity formula-
tion of an ideal fluid: The time-dependent velocity field 𝑣 of the fluid
is determined by its vorticity field 𝜔 = curl 𝑣. Instead of computing
the evolution of 𝑣 directly, one computes the evolution of 𝜔. Given
𝜔, 𝑣 can be evaluated at arbitrary points. The vorticity field 𝜔 itself
is advected by the velocity field 𝑣 that it generates.

Realistic flows can be approximated very accurately by vortex fila-
ments, closed curves along which the vorticity field is concentrated.
Instead of having to track the evolution of a vorticity field 𝜔 on the
whole space, we only need to track the evolution of some closed
space curves. Therefore we do not need to discretize the whole fluid
domain, but just the space curves defining the vorticity field. As
discretizations of the vortex filaments we use polygons.

The basic algorithm of filament-based fluid simulation takes an
initial configuration of vortex filaments 𝛾 and computes the time
evolution of this configuration for time step Δ𝑡. Each of these
configurations 𝛾|𝑡0 , 𝛾|𝑡1 , . . . defines the velocity field 𝑣|𝑡𝑖 at time
𝑡𝑖. This sequence is used to advect a set of marker particles.

We emphasize that our smooth filament model is a Hamiltonian
system. This fact implies for free the conservation of energy and
momentum, which is extremely important for physical realism and
long-time robustness of the method.

3.1 Mathematical description

The velocity 𝑣 of an incompressible fluid in R3 (which is at rest
near infinity) can be uniquely reconstructed from its vorticity field
𝜔 = curl 𝑣 by the Biot-Savart formula:

𝑣𝜔(𝑥) =
1

4𝜋

∫︁
R3
𝜔(𝑧)× 𝑥− 𝑧

|𝑥− 𝑧|3 𝑑𝑧. (1)

The Euler equations of ideal fluid motion just say that 𝜔 is forward
advected by the velocity field it generates.

Let us now look at the situation where the vorticity 𝜔𝛾 of the fluid
is concentrated on a finite collection 𝛾 of closed oriented curves

2

To appear in the ACM SIGGRAPH conference proceedings

Figure 2: Vorticity and velocity field of a planar polygonal vortex
filament 𝛾, smoothed by 𝑆0.1. Left: Trajectories of 𝜔 = 𝑆0.1𝜔𝛾 .
Right: Level lines of |𝑣| of the generated velocity field 𝑣 = 𝑆0.1𝑣𝛾 .

𝛾𝑖 (the vortex filaments) in a delta-function like manner: Then the
generated velocity field (1) reduces to a sum of line integrals along
the filaments:

𝑣𝛾(𝑥) =
∑︁

𝑖

Γ𝑖

4𝜋

∮︁
𝛾′𝑖(𝑠)×

𝑥− 𝛾𝑖(𝑠)

|𝑥− 𝛾𝑖(𝑠)|3
𝑑𝑠.

Here Γ𝑖 denotes the strength of the filament 𝛾𝑖. It is the flux of vor-
ticity through any cross section of a tube surrounding the filament.
Γ𝑖 is constant along the filament, since the vorticity field is diver-
gence free. It is also constant in time by Kelvin’s theorem, because
it is the circulation of velocity around the filament (Γ𝑖 =

∮︀
⟨𝑣, 𝜂′𝑖⟩,

𝜂𝑖 a small loop around the tube).

A naive application of the general fact that vorticity is advected by
the velocity would then say that the filaments 𝛾𝑖 evolve by evaluating
the velocity field 𝑣𝛾 on the filament points:

𝛾𝑗(𝑠) = 𝑣𝛾(𝛾𝑗(𝑠)).

This is however problematic since 𝑣𝛾 is infinite on the curves 𝛾𝑖.
Any realistic model therefore has to consider filaments of a small
non-zero thickness instead of infinitely sharp ones. We achieve
this by spreading out the delta-function like vorticity by a suitable
smoothing operator: For any (possibly vector-valued) function 𝑓
and parameter 𝑎 define a smoothed version 𝑆𝑎𝑓 by the convolution

(𝑆𝑎𝑓)(𝑥) =
3𝑎2

4𝜋

∫︁
R3

𝑓(𝑦)√︀
𝑎2 + |𝑥− 𝑦|2 5 𝑑𝑦.

Roughly speaking, 𝑎 measures the distance over which delta func-
tions are spread out by 𝑆𝑎. Fig. 2 illustrates the effect of 𝑆𝑎 on
a sharp planar polygonal vortex filament. For our discussion it is
important to know that the smoothing operator 𝑆𝑎 has a square root√
𝑆𝑎 that is also given by convolution with a suitable kernel, see

[Sato 1999, Eq. (8.23)]. We do not have an explicit expression for√
𝑆𝑎 but later we will provide a good approximation.

Applying 𝑆𝑎 to the velocity field 𝑣𝛾 we obtain

(𝑆𝑎 𝑣𝛾)(𝑥) =
∑︁

𝑖

Γ𝑖

4𝜋

∮︁
𝛾′𝑖(𝑠)×

𝑥− 𝛾𝑖(𝑠)√︀
𝑎2 + |𝑥− 𝛾𝑖(𝑠)|2

3 𝑑𝑠, (2)

which is known as the Rosenhead-Moore formula. It turns out that
the corresponding evolution equation for filaments

�̇�𝑗(𝑠) =
∑︁

𝑖

Γ𝑖

4𝜋

∮︁
𝛾′𝑖(𝑠)×

𝛾𝑗(𝑠)− 𝛾𝑖(𝑠)√︀
𝑎2 + |𝛾𝑗(𝑠)− 𝛾𝑖(𝑠)|2

3 𝑑𝑠 (3)

is an excellent model for filament-based fluid simulation. It models
the evolution of a vorticity field that is obtained from smoothing
sharp filaments with

√
𝑆𝑎. This looks surprising at a first glance

(why
√
𝑆𝑎 instead of 𝑆𝑎?), but in fact the advection of filaments

involves two smoothing operations: First the singular vector field

generated by the infinitely sharp filaments is smoothed. Then this
vector field is averaged around filament points in order to approx-
imate the advection of the smoothed vorticity. The total effect of
both

√
𝑆𝑎 smoothing operations can be combined into smoothing

once with 𝑆𝑎.

Note however that a fluid evolving purely under Euler’s equation
cannot be represented exactly by a filament model: Any initially
radially symmetric vorticity around the filaments will deform and
lose its symmetry. Thus it can no longer be represented by filaments.

Nevertheless, system (3) evolves almost as under Euler’s equation,
but with the additional constraint that the vorticity field is always
obtained from smoothing sharp filaments with

√
𝑆𝑎. Even though

it is a slight modification of the original system, it still conserves
kinetic energy and momentum of the velocity field.

The physical interpretation of our filament model is obtained from
inspection of the underlying Hamiltonian system, given in [Marsden
and Weinstein 1983; Pinkall et al. 2007]: From the fact that 𝑆𝑎 has
a square root

√
𝑆𝑎 given as a convolution (thus being self-adjoint),

the Hamiltonian

𝐻𝑎(𝛾) =

∫︁
R3
⟨𝑆𝑎𝑣𝛾 , 𝑣𝛾⟩ =

∫︁
R3
⟨
√
𝑆𝑎𝑣𝛾 ,

√
𝑆𝑎𝑣𝛾⟩

turns out to be in fact the kinetic energy 𝑇 =
∫︀

R3 |
√
𝑆𝑎𝑣𝛾 |2 of the

velocity field
√
𝑆𝑎𝑣𝛾 . As a Hamiltonian system, both the kinetic

energy 𝑇 and the hydrodynamic momentum

𝑝(𝛾) =
1

2

∑︁
𝑖

Γ𝑖

∮︁
𝛾𝑖 × 𝛾′𝑖

are exactly preserved. The hydrodynamic momentum is proportional
to the standard definition of momentum

∫︀
R3

√
𝑆𝑎𝑣𝛾 , see [Saffman

1992].

𝐻𝑎 can also be computed using only integrals along filaments in-
stead of the whole space:

𝐻𝑎(𝛾) =
∑︁
𝑖,𝑗

Γ𝑖Γ𝑗

8𝜋

∮︁ ∮︁ ⟨𝛾′𝑖(𝑠), 𝛾′𝑗(𝑡)⟩√︀
𝑎2 + |𝛾𝑖(𝑠)− 𝛾𝑗(𝑡)|2

𝑑𝑠 𝑑𝑡.

This reveals its geometric interpretation, which is particularly im-
portant for obstacles (Sec. 4):

𝐻𝑎(𝛾) =
1

2

∑︁
𝑖

Γ𝑖 flux𝛾𝑖(𝑆𝑎 𝑣𝛾).

Here flux𝜂(𝑢) denotes the normal flux of the vector field 𝑢 through
a disc with boundary 𝜂. In App. A we show how to compute 𝐻𝑎(𝛾)
explicitly in the case of polygonal filaments.

Two problems remain to be solved: First, we do not have a good
algorithm to compute

√
𝑆𝑎 𝑣𝛾 , which would be the correct velocity

field for advecting point particles. If we had used the nicely com-
putable field 𝑆𝑎 𝑣𝛾 instead, we would have computed the velocity of
blurred particles (obtained by smoothing a delta function by

√
𝑆𝑎).

Second, the assumptions that all filaments are spread out by the
same amount seems restrictive. One would like to be able to handle
filaments with different thickness parameters 𝑎𝑖.

As a solution to both problems we propose to approximate 𝑆𝑎 by
the convolution 𝑆𝑎 with a suitable heat kernel

𝐾𝑎(𝑥, 𝑦) =
1

(
√
𝜋𝜆𝑎)3

𝑒−|𝑥−𝑦|2/(𝜆𝑎)2 .

The precise value of the constant 𝜆 does not matter for our argument,
nor is it important what type of approximation we use. What matters

3

To appear in the ACM SIGGRAPH conference proceedings

is only the way 𝐾𝑎 depends on 𝑎, which is obviously correct for
dimensional reasons. Then, using 𝑆𝑎 ≈ 𝑆𝑎 and the well known
formula (* denotes the convolution product)

𝑆𝑎 * 𝑆𝑏 = 𝑆√
𝑎2+𝑏2

we arrive at the approximations

𝑆𝑎 * 𝑆𝑏 ≈ 𝑆√
𝑎2+𝑏2

,
√
𝑆𝑎 ≈ 𝑆 𝑎√

2
,

√
𝑆𝑎 *

√
𝑆𝑏 ≈ 𝑆√︁

𝑎2+𝑏2
2

.
(4)

The proposed solution to the mentioned problems is therefore:

∙ Point particles are advected with the velocity field (2) with 𝑎2

replaced by 𝑎2
𝑖 /2.

∙ Filaments evolve according to the evolution equation (3) with
𝑎2 replaced by (𝑎2

𝑖 + 𝑎2
𝑗)/2.

This modification does not affect the excellent properties of the
system. It is still Hamiltonian and the kinetic energy is preserved up
to the error made by our approximation for

√︀
𝑆𝑎𝑖 *

√︀
𝑆𝑎𝑗 .

3.2 Numerical formulation

The basic numerical method for filament-based fluid simulation
that we are using was given in [Weißmann and Pinkall 2009]: We
replace the smooth filaments by polygons, then we advect each
polygon vertex 𝑥𝑗𝑘 (the 𝑘-th vertex of the polygon 𝛾𝑗) according to
the evolution equation (3) for filaments:

�̇�𝑗𝑘 = (𝑆𝑎𝑖𝑗𝑣𝛾)(𝑥𝑗𝑘). (5)

Here 𝑆𝑎𝑖𝑗𝑣𝛾 denotes the velocity field (2) with 𝑎2 replaced by (𝑎2
𝑖 +

𝑎2
𝑗)/2 as described above. 𝑆𝑎𝑖𝑗𝑣𝛾 is given as a sum of integrals over

the closed polygons 𝛾𝑖. Each integral can be evaluated explicitly
as a sum over the polygon edges. The explicit formula is given
in [Weißmann and Pinkall 2009]. The evolution equation for the
filament vertices (5) is a time-independent first order ODE, which
can be solved for given time step Δ𝑡 with an explicit ODE solver.
Given an initial configuration of polygonal vortex filaments 𝛾|𝑡0 ,
we obtain the next configuration 𝛾|𝑡1 , 𝑡1 = 𝑡0 + Δ𝑡 in the time
evolution of 𝛾 by numerical integration of the initial value problem

𝑥|𝑡1 = 𝑥|𝑡0 +

∫︁ Δ𝑡

0

(𝑆𝑎𝑖𝑗𝑣𝛾)(𝑥) 𝑑𝜏, 𝑥|𝜏=0 = 𝑥|𝑡0 .

Here we have used 𝑥 as short hand for 𝑥𝑗𝑘. However this evolution
is known to lead to discretization errors that stem from the fact that
adjacent edges do not contribute to the velocity field at a vertex. This
effect can be compensated using the doubly-discrete smoke ring flow,
a correction step that is applied before each numerical integration.
This step yields an important increase in the physical realism of
the simulation, especially for coarse polygons. The mathematical
description can be found in [Pinkall et al. 2007], the concrete imple-
mentation of the method is given in [Weißmann and Pinkall 2009].
Iteration of these two steps finally gives the evolution of the discrete
vortex filaments.

Figure 3: Vortex filaments that force a constant background flow to
be tangential to the bunny. Inside the velocity is almost zero. The
mesh has 678 vertices and 1352 facets.

4 Obstacles

Filament-based fluid simulation is not confined to any box contain-
ing a grid but takes place in unbounded space. This advantage is
at the same time a limitation since it is not clear how to treat obsta-
cles (walls, terrain, moving characters . . .). Here we explain how
to incorporate arbitrary moving obstacles. In fact there is a way
to replace obstacles dynamically by certain sets of closed vortex
filaments placed on the surface of the obstacles, as shown in Fig. 3.
These vortex filaments are given as level sets of a scalar function
on the obstacle surface. This makes our approach coherent in the
sense that the whole simulation is purely driven by filaments. More-
over, we gain the possibility to simulate vortex shedding by letting
some of these filaments diffuse away from the obstacles into the
surrounding flow.

4.1 Mathematical model

Consider an obstacle with smooth boundary 𝑀 and a fluid velocity
field 𝑣 that has a scalar potential near𝑀 . For instance, 𝑣 can include
velocity generated by vortex filaments but also background flow and
rigid motion of the obstacle. Now we can construct a vortex sheet on
𝑀 in such a way that the velocity field 𝑣𝑀 generated by the vortex
sheet compensates the normal component of 𝑣: The superimposition
of 𝑣 and 𝑣𝑀 makes the fluid flow around the obstacle, i.e., 𝑣 + 𝑣𝑀

is tangent to 𝑀 .

This vortex sheet is defined by a scalar function 𝑓 on 𝑀 and the
velocity field that it generates is

𝑣𝑀 (𝑝) =
1

4𝜋

∫︁
𝑀

(𝑁 × grad 𝑓)(𝑞)× 𝑝− 𝑞

|𝑝− 𝑞|3 𝑑𝑞. (6)

Here 𝑑𝑞 denotes the area element of 𝑀 . Note that grad 𝑓 is tangent
to 𝑀 and therefore 𝑁 × grad 𝑓 is grad 𝑓 rotated by 90∘ around 𝑁 .

The function 𝑓 on 𝑀 is determined uniquely (up to a constant) by
the condition that the normal component of the velocity field 𝑣𝑀

given by Eq. (6) cancels the normal component of 𝑣:

⟨𝑣(𝑞), 𝑁(𝑞)⟩+ ⟨𝑣𝑀 (𝑞), 𝑁(𝑞)⟩ = 0. (7)

The vortex sheet on 𝑀 obtained in this way is called the image
vorticity [Saffman 1992].

Comparison of the sheet velocity field (6) with the Biot-Savart
law (1) reveals that the vorticity 𝜔𝑀 of the sheet is concentrated
along the vector field 𝜅 = 𝑁 × grad 𝑓 on 𝑀 . The field lines of 𝜅
are precisely the level lines of 𝑓 , since grad 𝑓 is perpendicular to
these level lines. From this observation it is intuitively clear that the
vortex sheet can be approximated by a choice of certain level lines
as filaments with appropriate strength. We will now deduce how to
choose these levels and their strengths.

4

To appear in the ACM SIGGRAPH conference proceedings

Near a point 𝑞 ∈𝑀 where grad 𝑓 does not vanish one can introduce
coordinates (𝑠, 𝑓) where 𝑓 itself is one of the coordinate functions
and 𝑠 provides an arclength parameter on each level line of 𝑓 . Then
in these coordinates

𝜕𝑞

𝜕𝑠
=
𝑁 × grad 𝑓

| grad 𝑓 | , 𝑑𝑠 𝑑𝑓 = | grad 𝑓 | 𝑑𝑞

and the integral in Eq. (6) can be expressed locally as∫︁
𝜕𝑞

𝜕𝑠
× (𝑝− 𝑞)/|𝑝− 𝑞|3𝑑𝑠 𝑑𝑓.

This local information leads to the following global picture: Let 𝑦
be a regular value of 𝑓 . Then the preimage 𝑓−1(𝑦) is the union of
finitely many closed level lines 𝛾1, . . . , 𝛾𝑛 on 𝑀 . Let us denote by
𝑣𝑦 the velocity field generated by 𝛾1, . . . , 𝛾𝑛 considered as vortex
filaments of unit strength. Then 𝑣𝑀 can also be computed as

𝑣𝑀 =

∫︁ ∞

−∞
𝑣𝑦 𝑑𝑦.

This integral can now be conveniently approximated by summing
up the values of 𝑣𝑦 at equidistant samples with distance Γ > 0:

𝑣𝑀 ≈
∞∑︁

𝑖=−∞

Γ 𝑣𝑖Γ = 𝑣𝛾𝑀 .

Here Γ 𝑣𝑖Γ denotes the velocity field generated by the preimage
𝑓−1(𝑖Γ) as vortex filaments of strength Γ. Most of the preimages
will be empty, but for 𝑖Γ in the range of 𝑓 it is a finite set of closed
level lines on 𝑀 . Thus we obtain a finite set of vortex filaments
with strength Γ generating a velocity field 𝑣𝛾𝑀 that approximates
𝑣𝑀 . In the limit Γ → 0 we obtain the original velocity field 𝑣𝑀 .

Depending on the value chosen for Γ we either obtain a larger num-
ber of weak filaments (for small Γ) or a smaller number of strong fil-
aments (for larger Γ). The quality of the approximation 𝑣𝑀 ≈ 𝑣𝛾𝑀

increases with smaller Γ. In our application Γ needs to be chosen
such that the approximation is sufficiently accurate while the number
of filaments is small.

4.2 Polygonal discretization

For the discretization we assume that the surface of the obstacle is
given as a polygonal mesh𝑀 . First we approximate 𝑓 by a function
that it is constant on the facets 𝜑𝑖 of 𝑀 . Consider such a function
𝑓 with values 𝑓𝑖 on the facets: The gradient of 𝑓 is concentrated
in a singular way between adjacent facets, i.e., on the edge graph
of the mesh. Thus, by a 90∘ rotation, the vorticity of the sheet is
concentrated along the edges, and the strength of an edge 𝑒𝑖𝑗 (be-
tween the facets 𝜑𝑖 and 𝜑𝑗) is the difference 𝑓𝑗 − 𝑓𝑖. Therefore, the
vortex sheet in this case is obtained by superimposing the boundary
polygons 𝜂𝑖 of the facets 𝜑𝑖 as vortex filaments of strength 𝑓𝑖. At
each vertex the sum of the strengths satisfies Kirchhoff’s law, i.e.,
incoming intensity equals outgoing intensity. This reflects the fact
that the vorticity field is divergence free. Thus we have discretized
the vorticity in the boundary layer of𝑀 as a “divergence free vector
field” concentrated on the edge graph of 𝑀 . This fits in with the
philosophy of discrete exterior calculus [Desbrun et al. 2008].

Now we smooth the singular vorticity on the edge graph with thick-
ness parameter 𝑎. This corresponds to a non-zero thickness of the
boundary layer. Eq. (7) turns into a linear system, stating that the
total normal flux through each 𝜑𝑖 is zero:∑︁

𝑗

𝑓𝑗 flux𝜂𝑖(𝑆𝑎𝑣𝜂𝑗)⏟ ⏞
𝑎𝑖𝑗

= − flux𝜂𝑖(𝑣)⏟ ⏞
𝑔𝑖

. (8)

Figure 4: Filament approximation of vortex sheets: The piecewise
constant 𝑓 on the dual mesh gives vorticity on the edge graph (left).
𝑓 linearly interpolated on the primal triangle mesh yields vorticity
along level lines (right).

The matrix entry 𝑎𝑖𝑗 is the normal flux through 𝜑𝑖 of the velocity
field induced by the boundary polygon 𝜂𝑗 as a unit strength vortex
filament of thickness 𝑎 (App. A). Since each edge participates with
opposite orientation in two faces, turning on all faces with the same
vorticity has no effect at all. So the vector {1, . . . , 1} lies in the
kernel of the matrix 𝐴 = (𝑎𝑖𝑗), and in fact it spans the kernel for
connected obstacles. By Stokes’ theorem the total flux

∑︀
𝑗 𝑎𝑖,𝑗 van-

ishes, so the range of𝐴 is the orthogonal complement of {1, . . . , 1}.
Fortunately, for the same reason also the right hand of Eq. (8) lies
in this space, so the linear system has a unique solution.

For a static obstacle the matrix 𝐴 can be precomputed and prefac-
tored, so the main computational cost during the simulation is the
repeated evaluation of the right hand side 𝑦 in Eq. (8).

For a single rigidly moving obstacle the only change is that we have
to add to the right hand side 𝑔𝑖 the flux through 𝜑𝑖 resulting from
the rigid motion (App. B). This adds only little to the total cost.
On the other hand, for several obstacles moving independently, the
off-diagonal blocks in the matrix 𝐴 correspond to the interaction of
different obstacles. These need to be recomputed continuously.

Note that the flow we generate is not perfectly tangent to the original
triangle mesh, but the net flux of the flow through each face vanishes.

The piecewise constant 𝑓 on the facets 𝜑𝑖 determines a vortex sheet
whose vorticity is concentrated on the edge graph of 𝑀 . To approx-
imate such a sheet by filaments as for smooth obstacles, we need a
smoothed version 𝑓 of 𝑓 . We obtain 𝑓 by linear interpolation of a
function 𝑓 that has values on the vertices of 𝑀 . This 𝑓 is obtained
directly from the dual mesh 𝑀* of 𝑀 : Compute 𝑓 as described
above for the dual facets 𝜑*𝑖 and take it as a function 𝑓 on the pri-
mal vertices. If 𝑀 is a triangle mesh (which we assume), we can
interpolate 𝑓 to a function 𝑓 that is linear on the triangles. The level
sets 𝑓−1(𝑖Γ) are then polygons lying on 𝑀 , as shown in Fig. 4.

For convincing results the distance between subsequent levels should
match the sheet thickness 𝑎. When the distance between subsequent
levels is too big, the flow does not follow the obstacle surface prop-
erly, wavy motion along the surface occurs. The distance depends
on both the velocity field 𝑣 and the level spacing Γ. Depending on
the scenario Γ has to be chosen properly.

4.3 Vortex shedding

Vortex shedding occurs when the boundary layer diffuses away from
the obstacle due to viscosity and is subsequently swept along with
the fluid. Even in the limit of zero viscosity this effect cannot be
discarded. It is well-known that the shed vortex sheets quickly roll
up into one-dimensional core structures [Greengard and Anderson
1988; Rockliff et al. 2000]. Thus separation effectively happens
in chunks of thick vortex filaments. This is in fact the key reason
why filament-based smoke simulation is so strikingly effective in
modeling natural phenomena.

5

To appear in the ACM SIGGRAPH conference proceedings

The filament discretization of vortex sheets enables us to directly
model vortex shedding: By releasing filaments into the flow. After
a fixed time delay, one or more vortex filaments of 𝛾𝑀 are added
to the set of filaments 𝛾. Before releasing a filament, we apply an
offset of length 𝑎/2 in normal direction of the obstacle.

Our experiments show that the behavior of the simulation is surpris-
ingly indifferent to the particular choice of filaments we choose to
release into the flow. This is because the released filaments approxi-
mately slide downstream along the obstacle, taking successively the
position of other levels we could have chosen. In the beginning of a
simulation, the released filaments start to substantially move away
from the obstacle only near downstream stagnation points. Later
on the influence of the already shed filaments makes newly shed
filaments depart from the obstacle at also earlier stages. As long
as the released filaments enclose the major downstream stagnation
points (local minima of the function 𝑓) we obtain realistic wakes
behind the obstacles. In practice we choose all filaments that are
closest to the local minima of 𝑓 .

5 Variational reconnection

As has been observed by Chorin [1990; 1993], filament-based mod-
eling of fluids runs into a fundamental problem: nearby portions of
filaments that are approximately anti-parallel attract each other and
form long stretches where two oppositely oriented filament pieces
nearly coincide with opposite orientation. The effects of these por-
tions of the filaments on the overall flow approximately cancel out,
so they could safely be removed from the computation. The prob-
lem is made worse by the fact that in the long run these unnecessary
double strands of filaments get stretched and convoluted by the flow
which leads to an exponential increase in the number of polygon
edges needed to capture the geometric complexity of the filaments.

The solution to this problem is to eliminate almost anti-parallel
nearby portions of filaments by changing the filament topology. This
process is called vortex reconnection. In his seminal papers on this
subject Chorin [1990; 1993] used many weak filaments to model
a fluid with spread-out vorticity. He decides whether to reconnect
a pair of polygon edges using a geometric criterion based on the
distance between the edges and their directions. He only allows one
reconnection per filament and time step since iterative computation
of all reconnections is not guaranteed to terminate: Back and forth
reconnection is possible.

We propose a variational approach: Given a configuration 𝛾 of
filaments that need reconnection we determine a new configuration
𝜂 optimally matching the two following objectives:

∙ The velocity field generated by 𝜂 should be as close as possible
to the one generated by 𝛾.

∙ The total length of 𝜂 should be as small as possible.

Let us look at the situation where two of the filaments 𝛾𝑖 get close
to each other in such a way that reconnection is desirable. Then
both filaments necessarily must have the same strength Γ, otherwise
the construction would lead to a vorticity graph (like on the edge
graph of an obstacle). Moreover, since filaments with a thickness
varying along the filament are not an option for us, we assume that
both filaments have the same thickness 𝑎. For a configuration with
different thicknesses and strengths reconnections are computed for
each subset of filaments with same strength and thickness. The
reconnection could also take place between different portions of the
same filament, so for simplicity we think of the two filaments as a
possibly disconnected single filament 𝛾𝑖. If we change 𝛾𝑖 into a new
configuration and keep all the other filaments not participating in
the reconnection the same, the difference in the generated velocity

Figure 5: Variational reconnection. Two nearby filaments are recon-
nected to one single filament. Variation of the reconnected filament
according to grad𝐹 significantly improves the geometry.

field will be just the velocity field generated by 𝜂𝑖 − 𝛾𝑖. Here −𝛾𝑖

denotes the filament 𝛾𝑖 with the reversed orientation. This means
that we can ignore the other filaments and assume without loss
of generality that there is only one filament (possibly having two
connected components). So henceforth we drop the index 𝑖. As a
measure of closeness 𝑑(𝜂, 𝛾) between the velocity fields generated
by the two configurations 𝜂 and 𝛾 we use the𝐿2-norm of the velocity
field generated by 𝜂 − 𝛾:

𝑑2(𝜂, 𝛾) =

∫︁
R3
|
√
𝑆𝑎 𝑣𝜂−𝛾 |2.

Denoting the length of 𝜂 by 𝐿(𝜂) we then want to minimize

𝐹 (𝜂) = 𝜆Γ𝐿(𝜂) + 𝑑(𝜂, 𝛾). (9)

Here 𝜆 is a constant parameter that still is to be determined. Setting
𝜆 to zero would lead to the original configuration 𝛾 as the absolute
minimum of the functional (9). 𝜆 > 0 means that we try to reduce
the length of 𝜂 while still trying to remain close to 𝛾. The use of the
non-smooth functional 𝑑 (instead of 𝑑2) comes from the fact that
we want to model discontinuous changes. The situation is similar to
dry friction, where sliding down a slope only occurs when it is steep
enough.

A further use of the functional (9) can be to improve the filament
geometry after reconnection by numerically minimizing 𝐹 to mend
the geometric artifacts created by connecting polygon points in a
different way. This is shown in Fig. 5. We see this as an optional
step in the algorithm that can be omitted when simulation speed is
the main issue.

Our main use of the Functional 𝐹 is that it provides a unified cri-
terion for deciding whether or not reconnection or hairpin removal
should be performed between portions of a (possibly disconnected)
filament. The goal is to reconnect whenever reconnection results in
a lower value of the functional 𝐹 , i.e., 𝐹 (𝜂) < 𝐹 (𝛾). The velocity
field induced by the difference of the two configurations 𝜂 − 𝛾 is
equivalent to the field induced by a single closed filament 𝛿:

𝛾 𝛿 𝜂

Let us denote the four segments of 𝛿 by 𝛿𝑡, 𝛿𝑏, 𝛿𝑙, 𝛿𝑟 (top, bottom,
left, right) and compute

𝐹 (𝜂)− 𝐹 (𝛾) =

= 𝜆Γ(𝐿(𝜂)− 𝐿(𝛾)) +

√︃∫︁
R3
|
√
𝑆𝑎 𝑣𝛿|2

= 𝜆Γ(𝐿(𝛿𝑡) + 𝐿(𝛿𝑏)− 𝐿(𝛿𝑙)− 𝐿(𝛿𝑟)) + Γ
√︀

flux𝛿(𝑆𝑎𝑣𝛿).

Thus we reconnect whenever

𝐿(𝛿𝑡) + 𝐿(𝛿𝑏)− 𝐿(𝛿𝑙)− 𝐿(𝛿𝑟) +
√︀

flux𝛿(𝑆𝑎𝑣𝛿)/𝜆 < 0. (10)

6

To appear in the ACM SIGGRAPH conference proceedings

Figure 6: Simulation of a jet. Without reconnection we end up with
2560 edges after 600 simulation steps in contrast to 882 edges with
reconnection. Note the almost identical structure of the particle
evolutions with and without reconnections.

This criterion provides a unified approach both to reconnection and
to hairpin removal. For polygonal filaments this specializes to the
following: For two edges 𝑒𝑙 = (𝑥1, 𝑥2), 𝑒𝑟 = (𝑥3, 𝑥4), the corre-
sponding filament 𝛿 is the quadrilateral with vertices 𝑥1, 𝑥2, 𝑥3, 𝑥4.
We reconnect the two edges when Eq. (10) is satisfied.

In the special case that two adjacent edges (with zero or one inter-
mediate edges) are reconnected, one obtains a degenerated filament
consisting of one or two vertices. Such a filament does not generate
any velocity and is therefore discarded. The reconnection is then in
fact a hairpin removal [Chorin 1993].

Note that our criterion implies that reconnection can only occur
when the distance between the two edges is smaller than the edge
length. Thus, for short edges (shorter than 𝑎), one has to consider
not only single edges but polygon segments consisting of several
consecutive edges. We avoid these additional calculations by main-
taining a roughly uniform edge length using adaptive subdivision of
the polygons.

Although reconnection does change energy and momentum, our
experiments show that in typical situations these changes occur
in a way that is sufficiently random to not cause any systematic
drift. Visually the results are very similar to simulations without
reconnection, see Fig. 6.

6 Implementation

The central task of filament-based fluid simulation is to compute
the evolution of an initial configuration of filaments. In each step,
the filament configuration defines a vector field on R3 via the Biot-
Savart law (2). The evolution thus gives a time-dependent vector
field which is used to advect marker particles. For our implemen-
tation we use the basic simulation method described in Sec. 3.2
and extend it with our enhancements for obstacles, vortex shedding
and reconnection. Each simulation step of the filament evolution
consists of the sub steps:

(a) Apply doubly-discrete smoke ring evolution to compensate
discretization errors [Weißmann and Pinkall 2009].

(b) Advect filaments according to the evolution equation (11) for
time step Δ𝑡.

(c) Add shed vortex filaments from obstacles.

(d) Drop edges that are too short and subdivide long edges.

(e) Reconnect all edge pairs that fulfill the criterion (10).

(f) Drop degenerate filaments (with less than 3 vertices).

Edge removal is realized by collapsing short edges to their center
point. For subdivision we use cubic interpolation. To avoid compar-
ing all edge pairs in (e) we use spatial hashing.

6.1 Filament advection with obstacles

Filament advection is a first-order ODE �̇� = 𝐹 (𝑡, 𝑥), where 𝑡 is
time and 𝑥 the vector of filament vertices, compare with Sec. 3.2.
In case of a moving obstacle the ODE is time-dependent. 𝐹 is
evaluated as follows: 𝑡 defines the current obstacle pose, the filament
vertex vector 𝑥 defines the current filament set 𝛾. Together with
obstacle motion and possibly a background flow 𝑣𝐵 the filaments 𝛾
determine a set of image vortex filaments 𝛾𝑀 on the obstacle. 𝐹 is
then given as the background flow 𝑣𝐵 combined with the velocity
field generated by the filaments 𝛾 ∪ 𝛾𝑀 :

�̇�𝑖 = 𝑣𝐵(𝑥𝑖) + (𝑆𝑎𝑖𝑗𝑣𝛾∪𝛾𝑀)(𝑥𝑖). (11)

Evaluating the right-hand side of Eq. (11) amounts to

(a) compute image vorticity filaments 𝛾𝑀 on the obstacle,

(b) evaluate the background flow 𝑣𝐵 and the velocity field induced
by 𝛾 ∪ 𝛾𝑀 at the vertex positions 𝑥𝑖, see Eq. (5).

The filaments 𝛾𝑀 are obtained as follows:

∙ For the dual faces of the triangulated obstacle surface 𝑀 com-
pute the normal flux 𝑔 from the velocity field induced by the
vortex filaments 𝛾, from background flow, and from rigid mo-
tion of the obstacle.

∙ Solve the linear system 𝐴𝑓 = 𝑔. 𝐴 is the precomputed obsta-
cle matrix for the dual mesh 𝑀*. To solve the linear system
we replace the matrix 𝐴 = (𝑎𝑖𝑗) by 𝐴 = (𝑎𝑖𝑗 + 𝜖), which has
full rank and yields the solution for the original system.

∙ Take 𝑓 as a function on the primal vertices and denote by 𝑓
its piecewise linear interpolation on the triangles. Determine
all level sets 𝑓−1(𝑖Γ) with 𝑖Γ ∈ [𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥]. Each level set
consists of one or more closed polygons lying on 𝑀 .

∙ Add each polygon as a vortex filament with strength Γ to the
set of image vorticity filaments 𝛾𝑀 .

To compute the normal flux of velocity (required for the entries of
the obstacle matrix 𝐴 as well as for the right hand side 𝑔), we use
analytical evaluation for nearby filaments and one point quadrature
for far away filaments (see App. A). Rigid motion flux is computed
as described in App. B.

To determine the closed level sets we represent the triangle mesh 𝑀
using a half-edge data structure [Weiler 1985].

To advect the filament vertices we solve the ODE (11) for time step
Δ𝑡 using either standard Runge-Kutta with fixed step size (RK2 or
RK4) or a more sophisticated explicit solver when high accuracy is
required. For instance the colliding vortex filaments shown in Sec. 7
were computed using a Dormand-Prince 5/4 solver [Dormand and
Prince 1980].

6.2 Parallelization

Evaluating the velocity field (and also the flux) becomes expensive
for a large number of filament edges. Nevertheless we achieve ex-
cellent performance even for complex scenarios via parallelization.
Our implementation uses jReality [Weißmann et al. 2009] for ren-
dering and interaction. Particle advection via a GLSL shader is
integrated into the rendering pipeline. After each simulation step
the current set of filament edges (from 𝛾 and 𝛾𝑀) is transferred to

7

To appear in the ACM SIGGRAPH conference proceedings

Figure 7: Number of edges used to simulate a jet (Fig. 6). Circular
filaments are added at a fixed rate at the orifice, thus the total num-
ber of edges added to the simulation grows linearly (blue). Without
reconnection, the number of edges grows exponentially fast due to
subdivision (red). With variational reconnection, the number of
edges grows slowly (depending on 𝜆) and long time simulations are
possible.

the GPU, and particles are advected for the current time step using
the mid-point scheme. CUDA is used to achieve interactive rates for
scenarios with many filament edges and obstacles: The evaluations
of the velocity field at filament vertices (Eq. (11)) and the flux evalu-
ations through the obstacle facets (the RHS of Eq. (8)) are computed
simultaneously for different vertices/facets.

7 Results and Discussion

We have chosen three different scenarios to demonstrate physical
accuracy, plausibility, long-time stability and performance of our
method.

Colliding vortex rings: We compare physical experiments of
colliding vortex rings [Lim and Nickels 1992; Lim 1989] with our
simulation. Videos of the real experiments can be found on youtube
(head-on, oblique). Both scenarios work out-of-the-box with our
simulator, fast enough to run with 65,536 particles at 25 fps. The
oblique collision (Fig. 8, top) was computed this way. For the head-
on collision (Fig. 8, bottom) though we had to use a 40 times smaller
time-step because we had to trace particles in a very thin tube around
the filaments. The mid-point scheme used for particle advection had
difficulties keeping the particles close to the filaments when using
large time-steps. The initial filaments are regular 16-gons, with each
edge split into two segments by linear interpolation. This accounts
for the 16-fold symmetry of the result. Lim reports that the number
of small filaments that emerge from the collision varies from run to
run. Both in our simulation and in the experiments slight deviations
of the initial filaments from being round determine which frequency
will dominate in the end.

Long-time jet simulation: We compare the number of edges
required to simulate a jet with and without reconnection. A jet is
simulated by repeatedly emitting new circular filaments at a fixed
but slightly distorted position, to break symmetry. Fig. 6 shows the
the simulations after 600 steps. We add a new filament (consisting
of 16 edges) every 20th iteration, i.e., the number of edges added to
the simulation grows linear over time (blue graph in Fig. 7). Without
reconnection, the number of polygon edges increases exponentially

Figure 8: Oblique and head-on collision of two vortex rings. Com-
parison with real experiments by T. T. Lim, with permission.

8

http://www.youtube.com/watch?v=XJk8ijAUCiI
http://www.youtube.com/watch?v=XVOIzg9A3no

To appear in the ACM SIGGRAPH conference proceedings

Figure 9: Wake behind a sphere. Comparison of a photo by
Henri Werlé (colors inverted) with our simulation. Reproduced
with permission of ONERA, The French Aerospace Lab.

Figure 10: Different wake patterns behind a sphere. The simula-
tions differ only in the rate at which image vorticity filaments are
released into the flow. Note the transition to turbulence from right
to left.

fast due to subdivision (red graph), which makes long-time simula-
tions impractical. With reconnection (green graphs) we can easily
achieve sub-linear growth, depending on the particular value of 𝜆.
Thus we are able to simulate over arbitrary long simulation times
without explosion of computational costs.

Wake behind a sphere: Using our method for vortex shedding
we achieve realistic wakes behind objects, as shown for an ellipsoid
in Fig. 1. The wake behind a sphere from our simulation is compared
to a photograph of an experiment by Henri Werlé [Dyke 1982] in
Fig. 9. Different wake patterns (Fig. 10) can be achieved by varying
the amount of vorticity shed into the flow.

Performance: The method does not scale nicely with the number
of filament edges and marker particles, because each evaluation of
the velocity field requires summation over all filament edges. Nev-
ertheless we achieve good performance even for complex scenarios
using parallelization (Sec. 6.2): All of the figures included in this
paper are frames from simulations running at about 1 fps on our
test machine (Core 2 Extreme CPU X9650 3.00GHz, GeForce 8800
Ultra), using 1,048,576 marker particles. Animations that are less
optimized for quality but still detailed and plausible (i.e., with less
particles) easily run at 20 fps or more. Note in particular that the
filament simulations without particles always run at interactive rates.
Since the filaments contain all information of the fluid motion, ef-
fects designers can work with a real time tool that shows the full
information of the fluid motion with a moderate amount of particles.

8 Conclusion and outlook

Our method allows the simulation of 3D fluid flow around obsta-
cles with vortex shedding. It is fast enough to run at interactive
rates while achieving resolutions that are challenging for previous
methods. Long-time simulations are possible through the use of re-
connection, which keeps the number of filament edges low. Our new
reconnection criterion is based on a variational principle, which also
improves the overall geometry of the filaments. We have validated
our implementation by reproducing real experiments of colliding
vortex rings and realistic wakes behind objects. We emphasize that
the algorithm is sufficiently robust and efficient to be used as an
interactive tool for effects artists and in game engines.

Further work is needed to make large scenes tractable: LOD is
needed to speed up velocity field evaluations. This will make the
method scale much better with the number of marker particles and
the number of filament edges. For scenes containing many moving
obstacles some hierarchical scheme is required, e.g., hierarchical
matrices [Börm et al. 2003]. A model for vorticity creation due to
buoyancy is required to simulate the turbulent motion of hot gas.
Forces exerted by the fluid on movable obstacles can be simulated
via virtual momentum [Saffman 1992]. Furthermore, we want to
find ways to handle free surfaces using filaments. This would enable
us to simulate water with an interface to air.

Acknowledgment This work was supported by the DFG Research Center
Matheon. Tee Tai Lim gave permission to use shots from his videos of
colliding vortex rings (Fig. 8). ONERA, The French Aerospace Lab, allowed
us to reproduce the photo by Henri Werlé (Fig. 9). We are gratefully indebted
to Peter Schröder for his support. Special thanks to John M. Sullivan and
Boris Springborn for proofreading and discussions.

References

ANGELIDIS, A., AND NEYRET, F. 2005. Simulation of Smoke
based on Vortex Filament Primitives. In Proc. Symp. Comp.
Anim., 87–96.

ANGELIDIS, A., NEYRET, F., SINGH, K., AND
NOWROUZEZAHRAI, D. 2006. A controllable, fast and
stable basis for vortex based smoke simulation. In Proc. Symp.
Comp. Anim., 25–32.

ANGELIDIS, A. 2004. Hexanions: 6d Space for Twists. Tech. rep.,
University of Otago, November.

BECKER, M., AND TESCHNER, M. 2007. Weakly compressible
SPH for free surface flows. In Proc. Symp. Comp. Anim., 209–
217.

BERNARD, P. S. 2006. Turbulent flow properties of large-scale
vortex systems. Proc. Natl. Acad. Sci. USA.

BERNARD, P. S. 2009. Vortex filament simulation of the turbulent
coflowing jet. Phys. Fluids 21.

BÖRM, S., GRASEDYCK, L., AND HACKBUSCH, W. 2003. Hier-
archical Matrices. Lecture Notes. MPI MIS.

CHATELAIN, P., CURIONI, A., BERGDORF, M., ROSSINELLI, D.,
ANDREONI, W., AND KOUMOUTSAKOS, P. 2008. Billion vortex
particle direct numerical simulations of aircraft wakes. Comput.
Methods Appl. Mech. Engrg. 197, 1296–1304.

CHORIN, A. J. 1990. Hairpin removal in vortex interactions. J.
Comput. Phys. 91, 1, 1–21.

CHORIN, A. J. 1993. Hairpin Removal in Vortex Interactions II. J.
Comput. Phys. 107, 1, 1–9.

9

http://www.mis.mpg.de/publications/other-series/ln/lecturenote-2103.html
http://www.mis.mpg.de/publications/other-series/ln/lecturenote-2103.html

To appear in the ACM SIGGRAPH conference proceedings

CRANE, K., LLAMAS, I., AND TARIQ, S. 2007. GPU Gems 3
- Real-Time Simulation and Rendering of 3D Fluids. Addison-
Wesley, ch. 30, 633–673.

DESBRUN, M., AND GASCUEL, M.-P. 1996. Smoothed particles: a
new paradigm for animating highly deformable bodies. In Symp.
on Computer animation and simulation, Springer, 61–76.

DESBRUN, M., KANSO, E., AND TONG, Y. 2008. Discrete Differ-
ential Forms for Computational Modeling. In Discrete Differen-
tial Geometry, vol. 38 of Oberwolfach Seminars. Birkhäuser.

DORMAND, J. R., AND PRINCE, P. J. 1980. A family of embedded
Runge-Kutta formulae. Journal of Computational and Applied
Mathematics 6, 1, 19–26.

DYKE, M. V. 1982. An album of fluid motion. The parabolic Press,
Stanford.

ELCOTT, S., TONG, Y., KANSO, E., SCHRÖDER, P., AND DES-
BRUN, M. 2007. Stable, circulation-preserving, simplicial fluids.
ACM Trans. Graph. 26, 1.

FEDKIW, R., STAM, J., AND JENSEN, H. W. 2001. Visual simula-
tion of smoke. In Proc. ACM/SIGGRAPH Conf., 15–22.

GREENGARD, C., AND ANDERSON, C. R., Eds. 1988. Vortex
Methods, vol. 1360 of Lecture Notes in Mathematics. Springer.

KATZ, J., AND PLOTKIN, A. 2001. Low-Speed Aerodynamics, 2 ed.
No. 13 in Cambridge aerospace series. Cambridge Univ. Press.

KIM, B., LIU, Y., LLAMAS, I., AND ROSSIGNAC, J. 2005. Flow-
Fixer: Using BFECC for Fluid Simulation. In Proc. EG Workshop
on Natural Phenomena, E. Galin and P. Poulin, Eds.

KIM, T., THÜREY, N., JAMES, D., AND GROSS, M. 2008. Wavelet
turbulence for fluid simulation. In Proc. ACM/SIGGRAPH Conf.,
1–6.

KIM, T. 2008. Hardware-aware analysis and optimization of stable
fluids. In Proc. I3D Symp., 99–106.

KRÜGER, J., AND WESTERMANN, R. 2005. GPU Simulation
and Rendering of Volumetric Effects for Computer Games and
Virtual Environments. Comp. Graph. Forum 24, 3.

LIM, T. T., AND NICKELS, T. B. 1992. Instability and reconnection
in the head-on collision of two vortex rings. Nature 357, 225–
227.

LIM, T. T. 1989. An experimental study of a vortex ring interacting
with an inclined wall. Experiments in Fluids 7, 7 (July), 453–463.

MARSDEN, J., AND WEINSTEIN, A. 1983. Coadjoint orbits, vor-
tices, and Clebsch variables for incompressible fluids. Physica
7D, 305–323.

MARZOUK, Y. M., AND GHONIEM, A. F. 2007. Vorticity structure
and evolution in a transverse jet. J. Fluid Mech. 575, 267–305.

MULLEN, P., CRANE, K., PAVLOV, D., TONG, Y., AND DESBRUN,
M. 2009. Energy-preserving Integrators for Fluid Animation.
Proc. ACM/SIGGRAPH Conf. 28, 3.

MÜLLER, M., CHARYPAR, D., AND GROSS, M. 2003. Particle-
based fluid simulation for interactive applications. In Proc. Symp.
Comp. Anim., 154–159.

MÜLLER, M., STAM, J., JAMES, D., AND THÜREY, N. 2008. Real
time physics: class notes. In ACM/SIGGRAPH classes, 1–90.

NARAIN, R., SEWALL, J., CARLSON, M., AND LIN, M. C. 2008.
Fast animation of turbulence using energy transport and procedu-
ral synthesis. ACM Trans. Graph. 27, 5, 1–8.

NEYRET, F. 2003. Advected Textures. In Proc. Symp. Comp. Anim.

PARK, S. I., AND KIM, M. J. 2005. Vortex fluid for gaseous
phenomena. In Proc. Symp. Comp. Anim., 261–270.

PFAFF, T., THUEREY, N., SELLE, A., AND GROSS, M. 2009.
Synthetic turbulence using artificial boundary layers. In Proc.
ACM/SIGGRAPH Asia Conf., 1–10.

PINKALL, U., SPRINGBORN, B., AND WEISSMANN, S. 2007. A
new doubly discrete analogue of smoke ring flow and the real
time simulation of fluid flow. J. Phys. A: Math. Theor. 40, 42,
12563–12576.

RASMUSSEN, N., NGUYEN, D. Q., GEIGER, W., AND FEDKIW,
R. 2003. Smoke simulation for large scale phenomena. ACM
Trans. Graph. 22, 3, 703–707.

ROCKLIFF, S. H. L., PETER RYAL VOKE, AND NICOLE JACQUE-
LINE. 2000. Three-Dimensional Vortices of a Spatially Develop-
ing Plane Jet. International Journal of Fluid Dynamics 4, 1–+.

SAFFMAN, P. G. 1992. Vortex Dynamics. Cambridge University
Press, Cambridge.

SATO, K. 1999. Lévy Processes and Infinitely Divisible Distribu-
tions. Cambridge University Press.

SAUTER, S., AND SCHWAB, C. 2004. Randelementmethoden.
Vieweg+Teubner.

SELLE, A., RASMUSSEN, N., AND FEDKIW, R. 2005. A vortex
particle method for smoke, water and explosions. ACM Trans.
Graph. 24, 3, 910–914.

STAM, J., AND FIUME, E. 1993. Turbulent wind fields for gaseous
phenomena. In Proc. ACM/SIGGRAPH Conf., 369–376.

STAM, J., AND FIUME, E. 1995. Depicting fire and other gaseous
phenomena using diffusion processes. In Proc. ACM/SIGGRAPH
Conf., 129–136.

STAM, J. 1999. Stable fluids. In Proc. ACM/SIGGRAPH Conf.,
121–128.

TREUILLE, A., LEWIS, A., AND POPOVIĆ, Z. 2006. Model
reduction for real-time fluids. ACM Trans. Graph. 25, 3, 826–
834.

WEILER, K. 1985. Edge-Based Data Structures for Solid Model-
ing in Curved-Surface Environments. Computer Graphics and
Applications, IEEE 5, 1 (Jan.), 21–40.

WEISSMANN, S., AND PINKALL, U. 2009. Real-time interactive
simulation of smoke using discrete integrable vortex filaments.
In Proc. Vir. Real., Inter. & Phys. Sim., 1–10.

WEISSMANN, S., GUNN, C., BRINKMANN, P., HOFFMANN, T.,
AND PINKALL, U. 2009. jReality. In Proc. ACM/MM Conf.,
927–928.

YAN, H., WANG, Z., HE, J., CHEN, X., WANG, C., AND PENG, Q.
2009. Real-time fluid simulation with adaptive SPH. Computer
Animation and Virtual Worlds 20, 2–3, 417–426.

YANG, Q. 2009. Real-time simulation of 3D smoke based on
Navier-Stokes equation. W. Trans. on Comp. 8, 1, 103–112.

10

http://geometry.caltech.edu/pubs/DKT05.pdf
http://geometry.caltech.edu/pubs/DKT05.pdf

To appear in the ACM SIGGRAPH conference proceedings

A Flux evaluation

For two polygons 𝛾 and 𝜂 we need to compute the normal flux of
the velocity field 𝑆𝑎𝑣𝛾 (generated by 𝛾) through a disk 𝐷 with
boundary 𝜕𝐷 = 𝜂:

flux𝜂(𝑆𝑎𝑣𝛾) =

∫︁
𝐷

⟨𝑆𝑎𝑣𝛾 , 𝑁⟩ 𝑑𝐴.

Here 𝑁 denotes the surface normal and 𝑑𝐴 the area element. When
the distance between the two filaments 𝜂 and 𝛾 is large we can
approximate the flux by a simple one point quadrature (App. A.2).
For nearby filaments the velocity field becomes almost singular, here
the explicit formula (App. A.1) is needed. This is most significant
for the self-flux flux𝜂(𝑆𝑎𝑣𝜂), which occurs in the diagonal entries of
the obstacle matrix (Eq. (8)) and in the reconnection criterion (10).

A.1 Analytic evaluation

The vector potential 𝜓𝛾 of velocity field 𝑆𝑎𝑣𝛾 generated by a single
smoke ring 𝛾 with unit strength Γ = 1 is

𝜓𝛾(𝑥) =
1

4𝜋

∮︁
𝛾′(𝑠)√︁

𝑎2 + |𝑥− 𝛾(𝑠)|2
𝑑𝑠,

and we can apply Stokes’ theorem in order to compute the flux
through a disk bounded by 𝜂:

flux𝜂(𝑆𝑎𝑣𝛾) =

∮︁
𝜂

⟨𝜓𝛾 , 𝜂
′(𝑡)⟩ 𝑑𝑡.

Let us denote the polygon edges by 𝑙𝑖𝑆𝑖 = 𝛾𝑖+1 − 𝛾𝑖 and 𝐿𝑗𝑇𝑗 =
𝜂𝑗+1 − 𝜂𝑗 , with unit vectors 𝑆𝑖 and 𝑇𝑗 . Then,

flux𝜂(𝑆𝑎𝑣𝛾) =

=
∑︁
𝑖,𝑗

⟨𝑆𝑖, 𝑇𝑗⟩
4𝜋

∫︁ 𝑙𝑖

0

∫︁ 𝐿𝑗

0

𝑑𝑠 𝑑𝑡√︁
𝑎2 + |(𝜂𝑖 − 𝛾𝑖) + 𝑡𝑇𝑗 − 𝑠𝑆𝑖|2

and we have to compute

𝑓 =

∫︁ 𝑙

0

∫︁ 𝐿

0

𝑑𝑠 𝑑𝑡√︁
𝑎2 + |𝑝+ 𝑡𝑇 − 𝑠𝑆|2

(12)

for each pair of edges. We make use of the fact that the
quadratic polynomial |𝑝+ 𝑡𝑇 − 𝑠𝑆|2 − |𝑝|2 defines a positive defi-
nite quadratic form 𝑟 on the 𝑠, 𝑡-plane, given that 𝑆 and 𝑇 are not
collinear (in this special case we obtain a much simpler formula
which we will derive later). Computing the principal axes of 𝑟 we
obtain

𝑓 =

∫︁
𝑀(�)

1

| det𝐺|
1√

𝐾2 + 𝑟2
, � = [0, 𝐿]× [0, 𝑙]

where 𝑀 is the affine map

𝑀 :
(︁𝑠
𝑡

)︁
↦→ 𝐺

(︁𝑠
𝑡

)︁
+𝐻,

𝐺 =
1

2

(︂
|𝑆 − 𝑇 | |𝑆 − 𝑇 |
|𝑆 + 𝑇 | − |𝑆 + 𝑇 |

)︂
, 𝐻 = −

(︃
⟨𝑝, 𝑆−𝑇

|𝑆−𝑇 | ⟩
⟨𝑝, 𝑆+𝑇

|𝑆+𝑇 | ⟩

)︃
.

Here 𝐻 is the projection of 𝑝 onto the span of 𝑆 and 𝑇 , 𝐾2 =
𝑎2 + |𝑝−𝐻|2 and det𝐺 = − sin𝛼, where 𝛼 ∈ [0, 𝜋] is the angle
between 𝑆 and 𝑇 .

We rephrase 𝑓 as integration of the two-form 𝑑𝑢 ∧ 𝑑𝑣/
√
𝐾2 + 𝑟2

and apply Stokes’ Theorem. Let us denote the corners and edges of
the parallelogram 𝑀(�) by 𝐴𝑖 and ℓ𝑖𝐵𝑖 = 𝐴𝑖+1 −𝐴𝑖. Then

𝑓 =
1

det𝐺

∫︁
𝑀(�)

𝑑𝑢 ∧ 𝑑𝑣√
𝐾2 + 𝑟2

=
1

det𝐺

∫︁
𝜕𝑀(�)

𝑢𝑑𝑣 − 𝑣𝑑𝑢√
𝐾2 + 𝑟2 +𝐾

=
1

det𝐺

∑︁
𝑖=1...4

∫︁ ℓ𝑖

0

⟨𝐴𝑖 + 𝜉𝐵𝑖, 𝐽𝐵𝑖⟩ 𝑑𝜉√︀
𝐾2 + |𝐴𝑖 + 𝜉𝐵𝑖|2 +𝐾

=
∑︁

𝑖=1...4

det (𝐴𝑖, 𝐵𝑖)

det𝐺

∫︁ ℓ𝑖

0

𝑑𝜉√︀
𝐾2 + |𝐴𝑖 + 𝜉𝐵𝑖|2 +𝐾

.

For small det𝐺 this formula can cause numerical issues that can be
controlled by means of the right factorization depending on whether
𝑆 → 𝑇 or 𝑆 → −𝑇 . It remains to find an anti-derivative of

1

𝐾 +
√︁
𝐾2 + |𝐴𝑖 + 𝜉𝐵𝑖|2

=
1

𝐾 +
√︀
𝐾2 + 𝑃 (𝜉)⏟ ⏞

𝑄(𝜉)

.

Rewrite the quadratic polynomial 𝑃 (𝜉) as (𝜉 + 𝐶)2 + 𝐷2, with
𝐶 = ⟨𝐴,𝐵⟩ and 𝐷2 = |𝐴|2 − ⟨𝐴,𝐵⟩2. For 𝐷 > 0 an anti-
derivative is given by

𝐾

𝐷

(︂
atan

𝐷

𝐶 + 𝜉
− atan

𝐷𝑄(𝜉)

𝐾(𝐶 + 𝜉)

)︂
+ log (𝐶 + 𝜉 +𝑄(𝜉)) ,

which reduces in the limit 𝐷 → 0 to

− 𝐶 + 𝜉

𝐾 +𝑄(𝜉)
+ log (𝐶 + 𝜉 +𝑄(𝜉)) .

Parallel edges: For the case that 𝑆 = ±𝑇 , the contribution of a
single edge pair (Eq. (12)) becomes

𝑓 =

∫︁ 𝑙

0

∫︁ 𝐿

0

𝑑𝑠 𝑑𝑡√︁
𝐾2 + ((𝑡∓ 𝑠) + ⟨𝑝, 𝑇 ⟩)2

,

with 𝐾2 = 𝑎2 + |𝑝|2 − ⟨𝑝, 𝑇 ⟩2 ≥ 𝑎2. Here an anti-derivative is
given by

±
(︁√︀

𝐾2 +𝑋2 −𝑋 log
(︁
𝑋 +

√︀
𝐾2 +𝑋2

)︁)︁
,

where we have used 𝑋 as short hand for ⟨𝑝, 𝑇 ⟩+ (𝑡∓ 𝑠).

A.2 One point quadrature

Given that 𝑆𝑎𝑣𝛾 is generated by a vortex filament that is far away
from 𝐷, 𝑆𝑎𝑣𝛾 is approximately constant over the whole disk. Let
𝜂1, . . . , 𝜂𝑚 be the vertices of 𝜂. We use the approximation

𝑐𝜂 =
1

𝑚

∑︁
𝜂𝑖,

𝐼𝜂 =
1

2

∑︁
𝜂𝑖 × 𝜂𝑖+1,

flux𝜂(𝑆𝑎𝑣𝛾) ≈ ⟨(𝑆𝑎𝑣𝛾) (𝑐𝜂), 𝐼𝜂⟩.

11

To appear in the ACM SIGGRAPH conference proceedings

B Flux from rigid motion

We assume that the rigid motion 𝑔 is a screw motion over the current
time step Δ𝑡. It is determined by an element �̇� = (𝜃𝜔, ℎ𝜔−𝜃𝜔×𝑐)
in the Lie algebra 𝑠𝑒(3) of the Lie group 𝑆𝐸(3) of rigid motions.
The flux through the polygon 𝜂 with vertices 𝜂𝑖 is given by

flux𝜂(�̇�) =
1

Δ𝑡
(⟨𝐴𝜂, 𝜃𝜔⟩+ ⟨𝐼𝜂, ℎ𝜔 − 𝜃𝜔 × 𝑐⟩) ,

where

𝐼𝜂 =
1

2

∑︁
𝜂𝑖 × 𝜂𝑖+1,

𝐴𝜂 =
∑︁ 𝜂𝑖 − 𝜂𝑖+1

2

(︂
|𝜂𝑖+1 − 𝜂𝑖|2

3
+ ⟨𝜂𝑖, 𝜂𝑖+1⟩

)︂
.

To determine 𝜃, ℎ, 𝜔 and 𝜃𝜔 × 𝑐 we assume that the initial obstacle
pose is the identity, and its final pose (after the time step) is given
as a rotation matrix 𝑅 together with a translation vector 𝑇 (see
also [Angelidis 2004]). Then 𝜃𝜔 is obtained from

𝑅−𝑅𝑇 = 2 sin(𝜃)𝜔,

where the anti-symmetric 3× 3-matrices are identified with R3. We
further know that the translation vector is given by 𝑇 = 𝑐−𝑅𝑐+ℎ𝜔
with 𝑐 ⊥ 𝜔, 𝑅𝑐 ⊥ 𝜔. This yields ℎ = ⟨𝑇, 𝜔⟩.

Denoting a rotation with axis 𝛼 and rotation angle |𝛼| by 𝑅𝛼 we
finally obtain

−𝜃𝜔 × 𝑐 =
𝜃

2 sin 𝜃
2

𝑅− 𝜃
2 𝜔(𝑅𝑐− 𝑐).

12

	Introduction
	Goals and contributions

	Related work
	Filament dynamics
	Mathematical description
	Numerical formulation

	Obstacles
	Mathematical model
	Polygonal discretization
	Vortex shedding

	Variational reconnection
	Implementation
	Filament advection with obstacles
	Parallelization

	Results and Discussion
	Conclusion and outlook
	Flux evaluation
	Analytic evaluation
	One point quadrature

	Flux from rigid motion

