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Abstract. We describe algorithms that can be used to interactively construct (“de-
sign”) surfaces with constant negative curvature, in particularly those that touch a plane
along a closed curve and those exhibiting a cone point. Both smooth and discrete ver-
sions of the algorithms are given.
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1. Smooth K-surfaces
Here we give a brief introduction to the differential geometry of surfaces with constant
negative Gaussian curvature.

1.1. Overview
Surfaces with constant negative Gaussian curvature, known as K-surfaces, are a classi-
cal topic in differential geometry. One reason is that their intrinsic geometry provides a
model for the hyperbolic plane. The oldest example known is the so-called pseudosphere,
a certain surface of revolution with Gaussian curvature −1:

FIGURE 1. The pseudosphere
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Other surfaces of revolution with K = −1 come in two types as shown in the
pictures below. The first type looks like a series of barrels joined along cuspidal edges:

FIGURE 2. K-surface of revolution

The other type in addition exhibits singular points where the surface behaves like a
cone:

FIGURE 3. K-surface of revolution with cone points

By a theorem of Hilbert there is no complete immersed surface with constant neg-
ative Gaussian curvature in 3-space. Nevertheless, all the above surfaces can be parame-
trized by perfectly smooth maps. This is visible in the pictures from the fact that all
parameter curves (in fact they are asymptotic lines) extend as smooth curves through the
apparent singularities.

Later we will give a precise definition of the regularity conditions we impose on a
K-surface.

By Hilbert’s theorem, globally, singularities have to occur on a K-surface. Generi-
cally, they come in two types:

• cuspidal edges as in the pictures above,
• swallowtail points, where the cuspidal edges themselves exhibit cusps, as in the

picture below.
Cone points do not occur generically.
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FIGURE 4. Swallowtail singularity

1.2. The Gauss map of a K-surface
The Gauss map of a K-surface has the characterizing property that the images of the as-
ymptotic lines form a Chebyshev net on the 2-sphere. This means that in suitable asymp-
totic coordinates the Gauss images of the parameter lines are parametrized with constant
speed. Visually this implies that the parameter lines form “infinitesimally small parallel-
ograms” on the sphere.

FIGURE 5. Chebyshev net on S2

One way to state this property is that the Gauss map of a K-surface is a harmonic
map from the plane R

2 (endowed with a Lorentz metric where the coordinate lines are
lightlike) to the 2-sphere S2. Using arbitrary asypmptotic coordinates u, v this is equiva-
lent to the following partial differential equation (subscripts indicate partial derivatives):

N × Nuv = 0.

Switching the coordinates u, v to the coordinates

x = u + v,

t = u − v,
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one obtains another physical interpretation of the Gauss map of a K-surface. The above
PDE for N becomes

N × (Nxx − Ntt) = 0

and the images of the lines t = const therefore model the evolution of an elastic string on
the sphere S2. Think of the continuum limit of a sequence of massive balls coupled by
elastic rubber bands.

FIGURE 6. Elastic string on S2

In the physics literature such a string evolution on S2 is referred to as a solution of
the “non-linear σ-model”.

1.3. Reconstruction of a K-surface from its Gauss map
Using asymptotic coordinates u, v one can reconstruct a K-surface f from its Gauss map
N by solving the following ordinary differential equations:

fu = N × Nu,

fv = −N × Nv.

Using the x, t coordinates introduced above these equations become:

fx = N × Nt,

ft = N × Nx.

1.4. Precise definition of a K-surface
The most convenient way to give a precise definition of a (not nececessarily immersed)
K-surface is by using its Gauss map: A map f : R

2 7→ R
3 is called a K-surface if there

is a smooth map N : R
2 7→ S2 such that the formulas of the previous section apply and

• the partial derivatives Nu and Nv are nowhere vanishing.
• N × Nuv = 0.
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Since the second condition implies 〈Nu, Nu〉v = 0 and 〈Nv, Nv〉u = 0, it is enough to
ensure the first condition on some line u − v = const.

It is easy to see that the second condition is equivalent to the exitence of a map
f : R

2 7→ R
3 satifying (3) and (4), and the first condition is then equivalent to the map

(f, N) : R
2 7→ R

3 × S2 being an immersion.
By the formulas of the last section, all parameter lines of f in the u, v–coordinates

will be curves with non-vanishing derivative (wherever f is an immersion, these curves
will be asymptotic lines of f ).

2. Discrete K-surfaces
Here we explain the discrete differential geometry used to implement a polyhedral version
of K-surfaces [1, 2]. This should not just be considered as a numerical approximation to
the smooth constructions, but as geometrically interesting in its own right.

2.1. Definition
A map f : Z

2 7→ R
3 from the integer lattice into 3-space is called a discrete K-surface if

• The length |fn+1,m − fn,m| of a horizontal edge is independent of m.
• The length |fn,m+1 − fn,m| of a vertical edge is independent of n.
• Each vertex fn,m together with its four neighbors fn−1,m, fn+1,m, fn,m−1, fn,m+1

lies in some plane En,m.

fn,m−1

fn−1,m

fn+1,m

fnm

fn,m+1

FIGURE 7. To the definition of a discrete K-surface.

The first two properties mean that a discrete K-surface is composed out of “skew
parallelograms”, i.e., quadrilaterals in space where opposite sides have the same length
(without being planar). The third property ensures that we have a well defined normal
vector Nn,m at each vertex fn,m, given by the normal vector to the plane En,m. See the
pictures in the section on K-surfaces. The surfaces depicted there were, in reality, discrete
K-surfaces.
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FIGURE 8. To the initial zig-zag.

2.2. Properties of discrete K-surfaces
The Gauss map of a discrete K-surface is always a discrete Chebyshev net in the sense
that all quadrilaterals Nn,m, Nn+1,m, Nn+1,m+1, Nn,m+1 are spherical parallelograms
(they admit a 180◦-rotation that interchanges opposite points).

A discrete Chebyshev net is completely determined by giving initial data Nn,n (time
0) and Nn+1,n (time 1) for all integers n. We will refer to such initial data as an “initial zig-
zag”. By successively adding the missing fourth point of a spherical parallelogram (three
points of which already have been determined) one can reconstruct a discrete Chebyshev
net from an initial zig-zag uniquely.

2.3. Reconstruction of a discrete K-surface from its Gauss map
One can reconstruct a discrete K-surface f from its Gauss map N by solving the follow-
ing difference equation:

fn+1,m − fn,m = Nn,m × Nn+1,m,

fn,m+1 − fn,m = Nn,m+1 × Nn,m.

Here v × w denotes the cross-product of the vectors v and w.

3. K-surfaces with a cone point
3.1. Smooth case
A smooth K-surface f is said to have a cone point if a whole regular curve γ in the pa-
rameter domain is mapped to a fixed point. Since the asymptotic lines are always regular
by definition, in asymptotic coordinates u, v such a curve can never be tangent to a coor-
dinate line u = const or v = const. Hence, by passing to different asymptotic coordinates
we locally may assume that γ is equal to the x-axis in the coordinates

x = u + v,

t = u − v.

From the formulas describing the reconstruction of a K-surface from its Gauss map we
see that fx = 0 implies Nt = 0. This means that at time 0 the moving string on the 2-
sphere is at rest, i.e., all points have velocity zero. This is then the algorithm to construct
cylinders with constant negative Gaussian curvature that exhibit a cone point:
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• Place a closed elastic string x 7→ N(x, 0) on the 2-sphere and use it as initial data
with zero velocity for a string evolution N : R

2 7→ S2.
• Reconstruct the surface f from N as described in the section on the reconstruction

of a K-surface from its Gauss map.

3.2. Discrete case
It is now clear how to construct discrete K-surfaces with a cone point: According to the
section on Gauss maps of discrete K-surfaces one has to start with an initial zig-zag that
is stationary, i.e., a fixed point of its discrete evolution. This will occur if and only if every
point of the zig-zag at time 1 is situated exactly at the center of the spherical great circle
arc connecting the neighboring points at time 0.

In this case, the points at time −1 obtained by completing the parallelograms will
coincide with the corresponding points at time 1. Furthermore the whole Gauss map for
negative values of the time will be an exact copy of the Gauss map for positive times.

FIGURE 9. A discrete K-surface with a cone point.

FIGURE 10. Gauss map of a discrete K-surface with a cone point.
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4. K-surfaces with a planar strip
4.1. Smooth case
A smooth K-surface f is said to have a planar strip if a whole regular curve γ in the
parameter domain is mapped to a fixed point on the 2-sphere by its Gauss map N . Since
the asymptotic lines are always regular curves by definition, in asymptotic coordinates u,
v such a curve γ can never be tangent to a coordinate line u = const or v = const. Hence,
by passing to different asymptotic coordinates we locally may assume that γ is the x-axis
in the coordinates

x = u + v,

t = u − v.

From the formulas describing the reconstruction of a K-surface from its Gauss map we
see that N(x, 0) is a fixed point on S2. This is then the algorithm to construct cylinders
with constant negative Gaussian curvature with a planar strip:

• Place a closed elastic string in a totally collapsed state at some point on the 2-sphere,
provide arbitrary initial velocities Nt(x, 0) and use this as initial data for a string
evolution N : R

2 7→ S2.
• Reconstruct the surface f from N as described in the section on the reconstruction

of a K-surface from its Gauss map.

4.2. Discrete case
It now clear how to construct discrete K-surfaces with a planar strip: One has to start with
an initial zig-zag with all Nn,n equal to a fixed point a on S2.

FIGURE 11. A discrete K-surface with a planar strip.
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FIGURE 12. Gauss map of a discrete K-surface with a planar strip.

According to the section on the reconstruction of a discrete K-surface from its
Gauss map the corresponding points fn,n will then satisfy

fn+1,n − fn,n = a × Nn+1,n,

fn+1,m+1 − fn+1,n = a × Nn+1,n,

and therefore
fn+1,n+1 − fn,n = 2a × Nn+1,n.

To make a discrete K-surface that touches a plane with normal vector a along a prescribed
closed polygon γ1, . . . ,γm one therefore has to proceed as follows:

• Rotate the polygon by 90◦ around a and scale it so that all edge vectors γn+1 − γn

have length smaller than 2 (this leaves a free parameter for the construction).
• Project the scaled edge vectors (γn+1 − γn)/2 to the unit 2-sphere to obtain the

normal vectors N2,1, . . . , Nm+1,m.
• Set Nn,n = a for all n and use the defined normal vectors as an initial zig-zag for a

discrete Chebyshev net.
• Reconstruct the discrete K-surface f from its Gauss map N .

5. Software
Interactive Java webstart applications that implement the algorithms in this paper are
available at:

www.math.tu-berlin.de/geometrie/lab

The material in this paper is also included with these applications, under the help menu.
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