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Abstract

Reducing traffic congestion via toll pricing has been a central topic in the operations re-
search and transportation literature and, recently, it has been implemented in several cities
all over the world. Since in practice it is not feasible to impose tolls on every edge of a
given traffic network, we study the resulting mathematical problem of computing tolls on
a predefined subset of edges of the network so as to minimize the total travel time of the
induced equilibrium flow. We first present an analytical study for the special case of paral-
lel edge networks highlighting the intrinsic complexity and non-convexity of the resulting
optimization problem. We then present algorithms for general networks for which we sys-
tematically test the solution quality for large-scale network instances. Finally we discuss
the related optimization problem of computing tolls subject to a cardinality constraint on
the number of edges that have tolls.

1 Introduction
Today’s traffic situations in large cities are still far from being satisfactory. Traffic jams at rush
hour or at special events (sport or music events) occur frequently and drivers suffer from in-
creased total travel times. Moreover, traffic congestion significantly increases exhaust gas pollu-
tion. The situation is particularly dramatic in the rising mega-cities in Asia and South-America.
The traffic volume in China, for instance, has increased in 2005 by 15% and is expected to grow
faster in the next years [20], making good network planing and traffic control indispensable. It is
a well known fact that selfish behavior of traffic participants is one of the main reasons that leads
to inefficient traffic situations [7, 14]. Since every traffic participant solely aims at minimizing
her individual travel time, the overall outcome is less efficient, e.g., in terms of the total average
travel time, than when everybody would have been routed according to a centrally coordinated
scheme.

Modeling selfish behavior in traffic networks has been a central topic in the operations
research and transportation literature for decades, see Beckmann et al. [4] and Sheffi [33].
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The classical theory of selfish behavior in traffic networks started with the traffic model of
Wardrop [40]. The basic idea is to model the interaction among the selfish network users as
a non-cooperative game. We are given a directed graph with latency functions on the edges
and a set of origin-destination pairs, called commodities. Every commodity is associated with
a demand, which specifies the rate of flow that needs to be sent from the respective origin to
the destination. In the non-atomic variant, every demand represents a continuum of agents, each
controlling an infinitesimal amount of flow. The latency that an agent experiences when travers-
ing an edge is given by a (non-decreasing) function of the total flow on that edge. Agents are
assumed to act selfishly and route their flow along a minimum-latency path from their origin
to their destination. A solution in which no agent can switch to a path with smaller travel time
corresponds to a Wardrop equilibrium [11, 40]. It is well known that a Wardrop flow in general
does not minimize the total travel time; or said differently, selfish behavior may cause a perfor-
mance degradation in the network. Koutsoupias and Papadimitriou [26] introduced a measure to
quantify the inefficiency of equilibria which is now known as the price of anarchy. It is defined
as the worst-case ratio of the cost of an equilibrium over the cost of a system optimum (also
called social optimum). By now, the price of anarchy is well understood for specific classes of
latency functions (affine latencies or polynomial latencies with non-negative coefficients), see
Roughgarden and Tardos [32], Roughgarden [30] and Correa et al. [10]. Despite the bounds
for specific classes of latency functions, the price of anarchy is unbounded for general latency
functions even on networks of parallel edges [32].

Due to this large efficiency loss, researchers have proposed congestion pricing strategies for
over 80 years, see Pigou [29] and Beckmann et al. [4]. The basic idea is to impose tolls on
network edges that guarantee that the selfish outcome corresponds to a predetermined routing
scheme, e.g., one that minimizes the total average travel time. Assuming that one can possibly
collect tolls on every edge of the network and that the value of time is the same for all users, it
is a classical result in the economic theory of transportation that tolls equal to the marginal edge
cost of the system optimal solution (marginal cost pricing) induce a socially optimal equilibrium
flow [4].

Over the last decades, congestion pricing strategies have been implemented in various cities.
Examples include London [38] (London congestion charge), Stockholm [37], Bergen [39], and
Singapore [34] (Electronic Road Pricing). All these applications have in common that only des-
ignated areas of the transport network are amenable to tolls. In London [38] and Stockholm [37],
a congestion fee is charged only for access to the center of the city. Bergen [39] implemented
a toll ring where congestion fees are charged. These features makes the application of classical
marginal cost pricing impossible.

Since in practice it may not be feasible to impose tolls on every edge of a given traffic net-
work, we study in this article the resulting mathematical problem of computing tolls on a prede-
fined subset of edges of the network so as to minimize the travel time of the induced equilibrium
flow. We first present an analytical study for the special case of networks consisting of parallel
edges that highlights the intrinsic complexity and non-convexity of the resulting optimization
problem. We also present algorithms for general networks and test the quality of our algorithms
on large-scale networks. We finally discuss the related optimization problem of computing tolls
subject to a cardinality constraint on the number of tollable edges.
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1.1 Related Work

Already in 1920, Pigou [29] suggested that, in order to obtain a system optimal traffic pattern,
vehicles should be charged tolls equal to the difference between marginal social and marginal
private cost (marginal cost pricing). The theoretical foundation of marginal cost pricing has
been further explored by many researchers, see for example Knight [25], Beckmann et al. [4]
and Smith [35]. Bergendorff et al. [5], Hearn and Ramana [21] and Larsson and Patriksson [27]
showed that the set of feasible edge toll vectors supporting a system optimal flow as a user
equilibrium can be characterized by a non-empty polyhedron expressed in terms of a system of
linear inequalities and equations. Hearn and Ramana [21] also studied secondary optimization
problems that minimize or maximize a toll dependent function over the toll polyhedron. Dial [12,
13] and Bai et al. [1] proposed efficient algorithms for computing tolls in the toll-polyhedron
that minimize the total revenue collected from the users. Bai and Rubin [3] and Bai et al. [2]
developed algorithms for computing tolls in the toll-polyhedron so as to minimize the number
of tolled edges.

Cole et al. [9] considered the case of heterogeneous users, in which users value latency and
monetary cost differently. For single-commodity networks, they showed the existence of tolls
that induce an optimal flow as a Wardrop flow. Using a mathematical programming approach,
Fleischer et al. [17], Karakostas and Kolliopoulos [24], and Yang and Huang [41] proved that
there are tolls inducing an optimal flow for heterogeneous users even in general networks. The
resulting mathematical program also yields a characterization of equilibrium flows that can be
enforced by tolls. Swamy [36] and Yang and Zhang [42] proved the existence of optimal tolls
for the atomic splittable model with fixed demands.

Hoefer et al. [22] studied the problem of finding optimal tolls on a subset of edges of a
network. They showed that it is NP-hard to compute optimal tolls in a 2-commodity network
even if all latency functions are linear. For a network of parallel edges with linear latencies, they
gave a polynomial algorithm for computing optimal tolls.

1.2 Results and Paper Outline

We study the problem of computing tolls on a given subset of network edges so as to minimize
the total travel time of the induced equilibrium flow. Our contribution can be summarized as
follows.

After introducing the basic model in Section 2, we consider single-commodity networks
consisting of parallel edges in Section 3. This setting describes situations in which access roads
to the central district of a city are the bottlenecks for the inbound or outbound traffic. These roads
may be either tollable (bridges or highways) or non-tollable and the goal is to devise tolls so as
to minimize congestion on the bottleneck edges. Another application arises when a highway
is divided into tollable and non-tollable lanes (as in Tel Aviv [28]). We devise an algorithm
that approximates an optimal solution within an additive error of ε > 0. Our algorithm runs in
poly(m,K, κ, d, 1/ε)-time, where m denotes the number of edges, K is an upper bound on the
latency functions, κ is a common Lipschitz constant of the latency functions, their derivatives,
and inverse functions, d is the flow demand, and ε is the precision. Note that previously, a
polynomial algorithm was known only for affine latencies [22].
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The running time of our algorithm proposed in Section 3 is only quasi-polynomial, as it
depends linearly on K, κ and d. Section 4 is devoted to the design of a polynomial algo-
rithm. We identify conditions on the latency functions guaranteeing that the objective function
is a piecewise convex function (with a polynomial number of breakpoints) of the total demand
that is routed along the toll-free edges. We use this convexity property to devise a polyno-
mial algorithm that approximates the optimal objective value within a precision ε > 0 in time
poly(m, log K, log κ, log d, log 1/ε). We demonstrate that our conditions on the latency functions
are satisfied by practically relevant functions such as the popular M/M/1-latency functions aris-
ing in queuing networks [6] or certain polynomials with non-negative coefficients that can be
used for modeling latency functions in transportation networks [33].

In Section 5 we turn to the design of algorithms that work for general networks. Given the
complexity of the toll problem even on networks of parallel edges, we consider only heuristics.
We present three algorithms that are inspired by the gradient descent method. They iteratively
increase the toll on those feasible edges on which the edge flow of the current Wardrop flow
exceeds the system optimal edge flow, and they decrease the tolls otherwise. The rationale
behind this iterative process is to follow a solution trajectory along a gradient descent direction of
the objective function. We provide a computational study evaluating the quality and convergence
behavior of our algorithms on large-scale network instances. It turns out that for most test
instances, already a small number of tollable edges suffices to significantly reduce the total
travel time.

Finally, Section 6 is devoted to the problem of actually selecting the set of edges on which
tolls are imposed. We introduce the cardinality constrained toll problem, where the objective is
to compute tolls subject to a cardinality constraint on the set of tollable edges so as to minimize
the travel time of the induced equilibrium flow. We prove that this optimization problem is
strongly NP-hard and inapproximable by any constant c ≥ 1, unless P = NP. We then present
a computational study for several edge subset selection algorithms in combination with our
algorithms for computing tolls on the selected edges. On most of the test instances, our combined
algorithms perform very well and significantly reduce the overall travel time already for small
cardinalities.

2 Preliminaries
A standard way to model the selfish behavior of traffic participants is by means of a non-
atomic network routing game. We are given a directed network G = (V, E) and k commodities
(s1, t1), . . . , (sk, tk) ∈ V × V . Let n and m denote the number of vertices and edges in G, respec-
tively. Additionally, we are given a demand di > 0 for every commodity i ∈ {1, . . . , k} which
specifies the amount of flow that must be routed from the origin si to the destination ti. Let Pi
be the set of all (simple) directed (si, ti)-paths in G and define P =

⋃k
i=1 Pi. It is convenient

to express a flow as a function f : P → R≥0 that assigns to every path P ∈ P a non-negative
flow-value fP that is routed along P. A flow f is feasible (with respect to d = (d1, . . . , dk)) if di
units of flow are routed from si to ti for every i ∈ {1, . . . , k}, i.e.,

∑

P∈Pi fP = di. For a given flow
f , we define the flow on an edge e ∈ E as fe =

∑

P&e fP. Every edge e ∈ E has a nonnegative,
increasing, convex and differentiable latency function #e : R≥0 → R≥0. The latency #P( f ) of a
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path P with respect to a flow f is defined as the sum of the latencies of the edges in the path, i.e.,
#P( f ) =

∑

e∈P #e( fe).
The total cost of a flow f is defined as C( f ) =

∑

P∈P fP#P( f ) or, equivalently, C( f ) =
∑

e∈E fe#e( fe). A feasible flow of minimum total cost is called optimal and denoted by f ∗. A
feasible flow f is a Wardrop equilibrium (or simply an equilibrium flow) if

#P( f ) ≤ #P′( f ) for all i ∈ {1, . . . , k} and P, P′ ∈ Pi with fP > 0. (1)

For every commodity, the latency of every path that carries a positive amount of flow is mini-
mum. This implies that all flow carrying (si, ti)-paths have equal latency. Under the assumption
that all latency functions are convex, the cost of a Wardrop equilibrium is unique (see e.g. [32]).
The price of anarchy is defined as the worst-case ratio (over all instances) of the cost of a
Wardrop equilibrium f and the cost of an optimal flow f ∗, i.e., C( f )/C( f ∗). It is well-known
(see [32]) that the price of anarchy is unbounded for general convex latency functions even on
parallel edge networks.

Network tolls are an efficient means to reduce the price of anarchy in network routing games.
Intuitively, every (non-atomic) player that traverses edge e ∈ E experiences, besides the latency
#e( fe), an additional (non-negative) toll τe. Because in practice, it might not be feasible to impose
a toll on every edge of the network in practice, we introduce the toll problem with support
constraints. An instance Is of this problem is a tuple Is = (G, d, #, T ), where G = (V, E) is a
directed network with k commodities, di, i ∈ {1, . . . , k} are the corresponding demands, #e, e ∈ E
is the latency function of edge e, and T ! E is the set of edges on which tolls can be imposed.
A non-negative vector τ = (τe)e∈E with the property that τe = 0 for all e ∈ E \ T will be called a
feasible toll vector for Is. Every toll vector τ induces a unique Wardrop equilibrium f τ satisfying
#P( f τ)+

∑

e∈P τe ≤ #P′( f τ)+
∑

e∈P′ τe for all i ∈ {1, . . . , k}, P, P′ ∈ Pi with fP > 0. A toll vector τ∗
will be called optimal for Is if C( f τ∗) ≤ C( f ν) for all feasible toll vectors ν. We also consider the
toll problem with cardinality constraints. Here, we are given a tuple Ic = (G, d, #, b), whereG, d,
and # are defined as above but b ∈ N is a cardinality bound on the set of edges that may have
tolls. A non-negative vector τ = (τe)e∈E is a feasible toll vector for Ic if |{e ∈ E : τe > 0}| ≤ b.

3 A Pseudo-Polynomial Algorithm for Parallel Edges
We first consider toll problems with support constraints for parallel edge networks. Parallel
edges model situations in which access roads to the central district of a city are the bottlenecks
for the inbound or outbound traffic. In such a situation, access roads may be either tollable
(bridges or highways) or non-tollable and the goal is to devise tolls so as minimize congestion
on the bottleneck edges, see Figure 1 (a). Very recently, in the area of Tel Aviv a fast lane on
highways has been opened. While the use of the regular lanes is not charged, the toll on the
fast lane is adapted to the traffic on that lane so as to guarantee a speed of 70 km/h [28]. The
problem of finding the socially optimal toll on the fast lane can be formulated as a toll problem
with support constraints on parallel edges (Figure 1 (b)). Parallel edges also model scheduling
problems involving selfish players [31]. Our model includes the case where only some machines
(edges) are allowed to charge tolls.
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(a) Modeling of outbound traffic as flow on a
parallel edge graph. Edges with bridges are as-
sumed to be tollable.

lanes with toll lanes without toll

(b) Highway with four lanes, two of which are
with tolls.

Figure 1: Two applications of parallel edge graphs in traffic models.

It is not hard to see that there are instances involving quadratic latency functions with non-
negative rational coefficients for which the optimal toll vector is unique and irrational. Therefore,
we focus on efficiently computing ε-approximate toll vectors. That is, for given ε > 0 we want
to compute in polynomial time a toll vector τ∗ε with C( f τ∗ε) ≤ C( f ν) + ε for all toll vectors ν.
We first show that this problem can be reduced to a one-dimensional optimization problem in
terms of the demand that is routed over the non-tollable edges. We will solve this problem by
discretizing the demand interval. For a given demand value, the main difficulty of this approach
stems from approximating the objective value, which itself is defined via optimal solutions of
two related optimization problems defined below.

3.1 Problem Parameterization

An instance of the toll problem with support constraints on parallel edge networks is given by a
tuple Is = (G, d, #, T ), where the graph G = (V, E) has only two nodes s, t ∈ V and every edge
e ∈ E goes from s to t. Since there is only one commodity starting in s and ending in t, we will
denote the demand of this commodity by d. The set E \ T of non-tollable edges will be denoted
by N. In addition to the assumption that every latency function is non-negative, increasing,
convex and differentiable, we make the following assumptions on the latency functions.

Assumption 3.1 (Lipschitz assumption). For every edge e ∈ E, the latency function #e, its
derivative #′e and its inverse function #−1

e are Lipschitz continuous with constant κ ∈ N. More
formally, there is κ ∈ N such that

#e(y) − #e(x) ≤ κ(y − x), #′e(y) − #′e(x) ≤ κ(y − x), #−1
e (y) − #−1

e (x) ≤ κ(y − x),

for all e ∈ E and for all 0 ≤ x < y ≤ d.
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Note that this assumption implies that 1/κ ≤ #′e(x) ≤ κ for all e ∈ E and x ∈ [0, d]. In
addition, we assume that the latencies are bounded.

Assumption 3.2. There is K ∈ N such that #e(d) ≤ K for all e ∈ E.

These assumptions are satisfied by a large class of latency functions. For example, every
convex and twice continuously differentiable function #e : [0, d] → R≥0 with #′e(0) > 0 satisfies
Assumptions 3.1 and 3.2. To see this, note that because #′′ is continuous, it attains its maximum
on [0, d]. Let

κ = max
{

max
x∈[0,d]

#′′e (x), 1/#′e(0), #′e(d)
}

.

Then, #, #′ and #−1 are Lipschitz continuous with constant κ. In addition, Assumption 3.2 is
satisfied for K = #e(d).

Remark 3.3. All our results in this section continue to hold for instances with convex and twice
continuously latencies with #′e(0) > 0 for all e ∈ E, where each edge e ∈ E has a capacity
ce ∈ R>0 and #e(x) → ∞ for x → ce. To see this, note that if d ≥

∑

e∈E ce, there is no feasible
flow vector with finite cost, thus, we may assume that

∑

e∈E ce > d. Let

fe = max
{

0, ce −
∑

e∈E ce − d
|E|

}

and let M = maxe∈E: fe>0 #e( fe). Then, dM is an upper bound on the cost of a Wardrop equi-
librium on E and, hence, an upper bound on C( f τ∗ ). Let e ∈ E with fe > 0 be arbitrary. By
construction, we have #e( fe) fe ≤ M fe ≤ dM. As #e( fe) fe → ∞ for fe → ce, there is  fe ∈ [ fe, ce)
with #e(  fe)  fe = dM. Thus, we know that any flow f with fe >  fe has cost larger than C( f τ∗ ).
As a consequence, we may effectively restrict the latency functions to the domain [0,  fe]. The
restricted latency functions  #e : [0,  fe]→ R≥0 then satisfy Assumptions 3.1 and 3.2.

It follows that important classes of latency functions such as M/M/1 functions used in queue-
ing networks or latency functions used by the Bureau of Public Roads [8] satisfy the above as-
sumptions. For dN , dT ∈ [0, d], we call a pair (dN , dT ) a demand distribution if dN + dT = d.
A demand distribution is called optimal if there is an optimal toll vector τ∗ such that the corre-
sponding equilibrium flow f τ∗ satisfies

∑

e∈N f τ∗e = dN and
∑

e∈T f τ
∗

e = dT . The following lemma
has already been proven by Hoefer et al. [22] for the special case of affine latencies.

Lemma 3.4. Let (dN , dT ) be an optimal demand distribution. Then there exists an optimal flow
f τ∗ such that f τ∗N = ( f τ∗e )e∈N is a Wardrop equilibrium on N with demand dN and f τ∗T = ( f τ∗e )e∈T
solves

min
∑

e∈T #e( fe) fe
s.t.

∑

e∈T fe = dT (Flow demand)
#e( fe) ≤ L(dN) for all e ∈ T with fe > 0, (Latency restriction)

(2)

where L(dN) denotes the common latency of all flow-carrying edges in N. An optimal toll vector
τ∗ is given by τ∗e = L(dN) − #e( f τ

∗

e ) for all e ∈ T with f τ∗e > 0 and τe = 0, otherwise.
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Proof. Let (dN , dT ) be an optimal demand distribution. This implies that there is an optimal toll
vector τ∗ and an induced optimal equilibrium flow f τ∗ with the property that

∑

e∈N f τ∗e = dN
and

∑

e∈T f τ
∗

e = dT . Since τ∗e = 0 for all e ∈ N, the flow f τ∗N constitutes a Wardrop equilibrium
on N. Thus, there is a constant L(dN) such that #e( f τ

∗

e ) = L(dN) for all e ∈ N with f τ∗e > 0.
Being in equilibrium, the optimal flow f τ∗ also fulfills #e( f τ

∗

e ) ≤ L(dN) for all e ∈ T with
f τ∗e > 0. Furthermore, since the demand distribution (dN , dT ) is optimal, the flow f τ∗T minimizes
∑

e∈T #e( fe) fe. We derive that f τ∗T is a solution of (2). The optimal flow f τ∗ is induced by the
tolls τ∗e = L(dN) − #e

(

f τ∗e
)

for all e ∈ T with f τ∗e > 0 and τ∗e = 0, otherwise. !

So far, we observed that the problem of finding optimal tolls essentially reduces to the prob-
lem of finding an optimal demand distribution (dN , dT ). Since f τ∗N is a Wardrop equilibrium on
the non-tollable edges N, every edge e ∈ N that carries flow has a unique latency #e( f τ

∗

e ) = L(dN).
The total social cost of the non-tollable edges then writes as CN(dN) = L(dN)dN , where we de-
fine L(0) = mine∈N #e(0). Moreover, for dT ∈ [0, d] and L ∈ R≥0, let us denote by FT

(

dT , L
)

the
set of flows on T with demand dT for which the latencies of the used edges are bounded by L,
that is,

FT
(

dT , L
)

=
{

fT ≥ 0 :
∑

e∈T
fe = dT and #e( fe) ≤ L for all e ∈ T with fe > 0

}

.

In addition, let CT (dT ) = min fT∈FT (dT ,L(d−dT ))C( fT ) be the optimal cost of the tollable edges
when routing a demand of dT = d − dN . Then, an optimal demand distribution and hence an
optimal toll vector can be found solving the following one-dimensional optimization problem

min CN(dN) +CT (d − dN)
s.t. dN ∈ [dmin, d], (3)

where dmin = min
{

dN ∈ [0, d] : FT (dT , L(dN)) ! ∅
}

. We will call the function CE : [dmin, d],
dN ,→ CN(dN) + CT (dN) the combined cost function. By construction, for every dN ∈ [dmin, d]
there is a toll vector τ with

∑

e∈N f τe = dN and C( f τ) = CE(dN). In the next section, we will show
how to solve (3) approximately by discretizing the demand interval [dmin, d].

3.2 Discretizing the Demand Interval

In light of Lemma 3.4, for a given ε > 0 we are interested in computing a demand dN ∈ [dmin, d]
with CE(dN) ≤ CE(d′N) + ε for all d′N ∈ [dmin, d]. We will solve this problem by discretizing
the demand interval [dmin, d] with a sufficiently small step size δ > 0 and by approximating the
combined cost function in every subinterval with a sufficiently small error. In order to define the
proper step size, we need to calculate the Lipschitz constant of the combined cost function.

Lemma 3.5. The combined cost function CE is Lipschitz continuous with constant |E|2κ2(K+κd).

Proof. We first show that CN(dN) = L(dN) dN is Lipschitz continuous with constant K + κd on
[0, d]. Let e0 ∈ arg mine∈N #e(0). Then, e0 carries flow for all values of dN ∈ (0, d]. For e ∈ N
we denote by fe(dN) the flow on e when a total demand of dN is sent over the non-tollable edges.
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We have
∑

e∈N fe(dN) = dN , and, thus,
∑

e∈N f ′e (dN) = 1. As f ′e (dN) ≥ 0, we obtain in particular
f ′e (dN) ≤ 1 for all e ∈ N and dN ∈ [0, d]. For all 0 ≤ dN < d′N ≤ d, we calculate

CN(d′N) −CN(dN) = #e0

(

fe0 (d′N)
)

d′N − #e0

(

fe0(dN)
)

dN
= #e0

(

fe0 (d′N)
)

d′N − #e0

(

fe0(d′N)
)

dN + #e0

(

fe0 (d′N)
)

dN − #e0

(

fe0 (dN)
)

dN
≤ K(d′N − dN) + κd

(

fe(d′N) − fe(dN)
)

≤ (K + κd)(d′N − dN),

where we use fe(d′N) − fe(dN) ≤ maxξ∈[dN ,d′N ] f ′e (ξ)(d′N − dN) ≤ d′N − dN .
We now turn to the proof of the Lipschitz continuity of CT (dT ). For dT ∈ [0, d − dmin] and

e ∈ T let fe(dT ) denote the flow on edge e when a total demand of dT is sent over the tollable
edges. Note that for every e ∈ T , the flow fe(dT ) is increasing in dT unless the latency restriction
#e( fe(dT )) ≤ L(d−dT ) becomes tight. When an edge is tight at dT , it is also tight for all d′T > dT .
In particular, the flow of a tight edge e equals fe(dT ) = #−1

e
(

L(d − dT )
)

. It is a useful observation,
that L(dN) as a function of dN is Lipschitz continuous with constant κ. To see this, note that
L′(dN) = #′e0( fe0 (dN)) f ′e0 (dN) ≤ κ for all dN ∈ [dmin, d]. Thus, when increasing the flow sent
over the tollable edges from dT to d′T > dT , the flow released by the tight edges can be bounded
by

∑

e∈T

(

#−1
e

(

L(d − dT )
)

− #−1
e

(

L(d − d′T )
)

)

≤
∑

e∈T
κ
(

L(d − dT ) − L(d − d′T )
)

≤
∑

e∈T
κ2

(

d − dT − (d − d′T )
)

≤ (|E| − 1) κ2(d′T − dT ),

where we use T ! E. Let dT , d′T ∈ [0, d − dmin] with d′T > dT and let e ∈ T be an edge that is not
tight at dT , i.e., #e( fe(dT )) < L(d − dT ). Since we can bound the flow released by the edges that
become tight in [dT , d′T ], the inequality fe(d′T ) ≤ |E| κ2(d′T − dT ) + fe(dT ) holds. We obtain

CT (d′T ) −CT (dT ) =
∑

e∈T
#e( fe(d′T )) fe(d′T ) −

∑

e∈T
#e( fe(dT )) fe(dT ))

≤
∑

e∈T

(

#e
(

fe(dT ) + |E|κ2(d′T − dT )
)(

fe(dT ) + |E|κ2(d′T − dT )
)

− #e
(

fe(dT )
)

fe(dT )
)

=
∑

e∈T

(

#e
(

fe(dT ) + |E|κ2(d′T − dT )
)(

|E|κ2(d′T − dT )
)

+ #e
(

fe(dT ) + |E|κ2(d′T − dT )
)

fe(dT ) − #e
(

fe(dT )
)

fe(dT )
)

≤ κ2(|E| − 1)|E|K(d′T − dT ) + κ3d(|E| − 1)|E|(d′T − dT ) = (K + κd)(|E| − 1)|E|(d′T − dT )κ2,

for all 0 ≤ dT < d′T ≤ d−dmin. Together with the estimations for CN we obtain that the Lipschitz
constant of CE does not exceed |E|2κ2(K + kd). !

The Lipschitz assumptions on the latencies and their inverse are necessary in the sense that
if one of these assumptions is dropped, then there are instances for which the combined cost
function is not Lipschitz continuous.

9



As a corollary of this result, we obtain that it suffices to calculate the combined cost function
for a polynomial number of sampling points in order to get a good approximation of its max-
imum. In the remainder of this section, we will show how to approximately calculate CN(dN)
and CT (dT ).

Approximating CN(dN). We first focus on the computation of the cost of the non-tollable
edges. In order to approximate their total cost, we are interested in calculating an ε-approximate
Wardrop equilibrium on N with demand dN , which we define below for the special case of
parallel edges.

Definition 3.6 (ε-approximate Wardrop equilibrium). For ε > 0, a flow f is called an ε-
approximate Wardrop equilibrium, if #e( fe) ≤ #e′( fe′) + ε for all e, e′ ∈ E with fe > 0.

As shown by Beckmann et al. [4], the problem of computing a Wardrop equilibrium with
given demand in general networks can be reformulated as a convex optimization problem and
hence can be solved within arbitrary precision by the ellipsoid method. However, the approxi-
mate computation of a Wardrop equilibrium with the Ellipsoid method does not necessarily give
an ε-approximate Wardrop equilibrium, see the discussion in [15]. We here devise a combina-
torial algorithm that computes an ε-approximate Wardrop equilibrium and runs in polynomial
time.

Our first observation is that the common latency L of all flow carrying edges in a Wardrop
equilibrium with demand d lies between L− = mine∈E #e(0) and L+ = mine∈E #e(0) + κd, where
the upper bound is due to the joint Lipschitz constant κ of all latency functions. The main
algorithmic idea for the computation of an ε-approximate Wardrop equilibrium is to guess the
correct value of L via a binary search between L− and L+. For a given value of L, we compute
for every edge e ∈ E a flow value fe so that the induced latency #e( fe) approximately matches
the common latency L, that is, we approximate #−1

e (L). This can be done with binary search of
the flow value fe in the interval [0, d]. When the sum of the flow values approximately matches
the demand dN , we have computed an approximate Wardrop equilibrium. The details of this
procedure can be found in Algorithm 1.

Proposition 3.7. Algorithm 1 terminates in time poly(|N|, log κ, log dN , log 1/ε) and computes
an ε-approximate Wardrop equilibrium on N with demand dN.

Proof. If dN ≤ ε
2κ , one can simply compute an ε-approximate Wardrop equilibrium by assigning

the total demand to the edge with the lowest offset cost. So we assume throughout this proof
that dN > ε

2κ .
We start showing that Algorithm 1 terminates in time poly(|N|, log κ, log dN , log 1/ε). Since

a Wardrop equilibrium always exist (cf. Beckmann et al. [4]), there are  L ∈ [L−, L+] and a
flow gN with demand dN such that #e(ge) =  L for all e ∈ N with ge > 0. We claim that
 L ∈ [L−, L+] is an invariant during the run of the algorithm. This is obviously true when the
algorithm starts. To see that this property is preserved in each iteration of the algorithm, let
Li−, Li+, Li and f ie denote the values of L−, L+, L, and fe after the i-th iteration. Suppose that the
invariant is satisfied after the (i − 1)-st iteration and consider the i-th iteration. We distinguish
two cases. If d′ =

∑

e∈N f ie < dN , then, there is an edge e ∈ N with f ie < ge and, thus, also

10



Algorithm 1: Computation of an ε-approximate Wardrop equilibrium on parallel edges.
Input: Latency functions (#e)e∈N with Lipschitz constant κ, demand dN , accuracy ε.
Output: ε-approximate Wardrop equilibrium f .
L− ← mine∈N #e(0), L+ ← L− + κd, d′ ← 0;1
while d′ " [dN , dN + ε2κ ] do2

L← L+−L−
2 ;3

foreach e ∈ N do fe ← 0, if #e(0) ≥ L, and fe ∈ [#−1
e (L), #−1

e (L) + ε
4κ3 |N| ], otherwise;4

d′ ←
∑

e∈N fe;5
if d′ > dN + ε2κ then L+ ← L;6
if d′ < dN then L− ← L;7

end8
Choose some edges N′ ⊆ N and reduce the flow on them in total by d′ − dN ;9

#e( f ie) < #e(ge) =  L. Using f ie ∈ [#−1
e (Li), #−1

e (Li) + ε
4κ3 |N| ] and the Lipschitz continuity of #e, we

obtain Li ≤ #e( f ie) ≤ Li + ε
4κ2|N| . Hence, Li <  L and since we set Li− = Li in line 7, we also have

 L ∈ [Li−, Li+].
If, on the other hand,

∑

e∈E f ie > dN + ε2κ , then by the pigeon hole principle, there is at least
one edge e ∈ N with f ie > ge + ε

2κ|N| . Hence, #e( f ie) > #e(ge + ε
2κ|N| ) ≥ #e(ge) +

ε
2κ2 |N| ≥

 L + ε
2κ2 |N| .

Together with Li ≤ #e( f ie) ≤ Li + ε
4κ2 |N| , we obtain Li ≥  L + ε

4κ2 |N| . As we set Li+ = Li in line 6,
we have  L ∈ [Li−, Li+], as claimed.

We now show that the algorithm terminates for any L ∈ [  L,  L + ε
4κ2 |N| ]. Suppose that in the

i-th iteration, we have Li ∈ [  L,  L + ε
4κ2 |N| ]. For the flow f iN with f ie ∈ [#−1

e (Li), #−1
e (Li)+ ε

4κ3 |N| ] for
all e ∈ N, we get

f ie ≤ #−1
e (L) + ε

4κ3 |N|
≤ #−1

e
(

 L + ε

4κ2 |N|
)

+
ε

4κ3|N|
≤ ge +

ε

2κ|N|

for all e ∈ N with fe > 0 using that #−1
e is Lipschitz continuous with constant κ. Therefore,

dN ≤
∑

e∈N f ie ≤ dN + ε2κ and we derive that the while loop is left.
To bound the number of iterations, note that L0

− = mine∈N #e(0) and L0
+ = L− + κd, thus,

L0
+ − L0

− = κd. In each iteration, the length of the interval Li+ − Li− is halved, therefore Li+ − Li− =
κdN / 2i. Because of the above invariant, we have [  L,  L + ε

4κ2 |N| ] ⊆ [Li−, Li+] in each iteration of
the algorithm. Thus, the binary search stops at the latest when Li+ − Li− ≤ ε

4κ2 |N| , that is, after at
most /log(4κ3dN |N| / ε)0 iterations. Each iteration involves a binary search for each edge, thus
the total time complexity is in poly(|N|, log κ, log dN , log 1/ε).

We proceed showing that the thus computed flow constitutes an ε-Wardrop equilibrium. To
this end, note that fe ∈ [#−1

e (L), #−1
e (L) + ε

4κ3 |N| ) for all e ∈ N with fe > 0, and #e(0) > L for all
e ∈ N with fe = 0 when the while loop is left. The final normalization in line 9 reduces the
flow on edges e′ ∈ N′ by at most ε2κ , thus, the latency of every edge e′ ∈ N′ is at least L − ε2 .
Let e ∈ N \ N′ with fe > 0 be arbitrary. Then, L ≤ #e′( fe′ ) ≤ L + ε

4κ2 |N| . Using that the latency
of every other edge is at least L − ε2 , we have established that f is an ε-approximate Wardrop
equilibrium. !
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The runtime poly(|N|, log κ, log dN , log 1/ε) of Algorithm 1 is a fundamental improvement
compared to the algorithm proposed by Fabrikant et al. [15] which runs on arbitrary single-
commodity networks but requires time poly(|N|, κ, dN , 1/ε). Moreover, the authors consider a
slightly weaker notion of ε-approximate Wardrop equilibria. We continue showing that the cost
of an ε-approximate Wardrop equilibrium is indeed an approximation of the cost of the exact
Wardrop equilibrium.

Proposition 3.8. Let g and f be a Wardrop equilibrium and an ε-approximate Wardrop equilib-
rium on N with demand dN, respectively. Then, C(g) − εdN ≤ C( f ) ≤ C(g) + εdN.

Proof. Since
∑

e∈N fe =
∑

e∈N ge = dN , there is an edge e′ ∈ N with ge′ > 0 and ge′ ≥ fe′ and an
edge e′′ ∈ N with fe′′ > 0 and fe′′ ≥ ge′′ . We obtain

C( f ) =
∑

e∈N
#e( fe) fe ≤ (#e′( fe′) + ε)dN ≤ #e′(ge′ )dN + εdN = C(g) + εdN ,

C( f ) =
∑

e∈N
#e( fe) fe ≥ (#e′′ ( fe′′) − ε)dN ≥ #e′′ (ge′′ )dN − εdN = C(g) − εdN ,

which proves the result. !

As a corollary of this result, we can calculate a flow fN on N with C( fN) − εdN ≤ CWE ≤

C( fN) − εdN in poly(|N|, log κ, log dN , log 1/ε) time, where CWE is the cost of the Wardrop equi-
librium. Using that the common latency L of the flow carrying edges in the Wardrop equilibrium
fulfills the equation L = C / dN , we can compute the common latency with an additive error of
ε.

Approximating CT (dT ). In this section, we show how to approximately compute for given
dN ∈ [dmin, d] the cost of the optimal flow on T with demand dT = d − dN that obeys the latency
restriction #e( fe) ≤ L(dN) for all e ∈ T . That is, for a given demand distribution (dN , dT ) we find
an approximate solution of min fT∈FT (dT ,L(d−dT ))C( fT ). Since the demand distribution is fixed, we
will use the L as shorthand for L(dN) in the sequel.

It is well known that a flow is an optimal solution of the problem min fT∈FT (dT ,∞)C( fT ) with-
out latency restriction if and only if it is at Wardrop equilibrium with respect to the marginal
edge latencies #∗e defined as #∗e( fe) = #e( fe) + #′e( fe) fe for all fe ≥ 0 and all e ∈ E, see Beck-
mann et al. [4] and Roughgarden and Tardos [32]. In particular, in an optimal solution, the
marginal latencies of all flow carrying edges are equal. As the problem min fT∈FT (dT ,L)C( fT ) with
latency restriction remains a convex program, we obtain the following necessary and sufficient
conditions (KKT conditions) for an optimal solution.

Lemma 3.9. fT is an optimal solution of min fT∈FT (dT ,L)C( fT ) if and only if there is L∗ ∈R≥0 with

1. #∗e( fe) = L∗ for all e ∈ T with fe > 0 and #e( fe) < L,

2. #∗e( fe) ≤ L∗ for all e ∈ T with fe > 0 and #e( fe) = L,

3. #∗e( fe) ≥ L∗ for all e ∈ T with fe = 0.
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Algorithm 2: Computation of an approximate solution of min fT∈FT (dT ,L)C( fT ).
Input: Marginal cost functions (#∗e)e∈T with Lipschitz constant κ∗ and bound L,

demand dT , accuracy ε.
Output: Approximate solution of min fT∈FT (dT ,L)C( fT ).
L∗− ← mine∈T #∗e(0), L∗+ ← L∗− + 2κ∗dT , d′ ← 0;1
while d′ " [

dT − ε
2κ∗ , dT

] do2

L∗ ← L∗+−L∗−
2 ;3

 T ← ∅; // almost tight edges for latency bound L∗4
foreach e ∈ T do5
if #∗e(0) < L∗ then6

Find x ∈
[

(#∗e)−1(L∗) − ε
2κ3∗ |T |
, (#∗e)−1(L∗)

]

and set fe ← x;7

if #e( fe) > L − ε
4κ3∗ |T |

then8
 T ←  T ∪ {e};9
Find x with L − ε

2κ3∗ |T |
< #e(x) ≤ L − ε

4κ3∗ |T |
and set fe ← x;10

end11

else12
fe ← 0;13

end14

end15
d′ ←

∑

e∈T fe;16
if d′ > dT then L∗+ ← L∗;17
if d′ < dT − ε

2κ∗ then L
∗
− ← L∗;18

end19
Distribute the remaining dT − d′ units of flow on the edges e ∈ T \  T such that20
fe ≤ L − ε

4κ3∗ |T |
for all e ∈ T \  T ;

Our basic algorithmic idea is similar to that of Algorithm 1; we use binary search to find
L∗ such that the above optimality conditions are almost satisfied. There is, however, a subtle
difficulty as the common latency L belongs to the input of the definition of CT , while we are
only able to compute an approximate value for L. We resolve this difficulty by satisfying the
latency restriction #e( fe) ≤ L with some gap to be specified later. Note that, since the latency
functions and their derivatives are Lipschitz continuous with constant κ, the marginal latency
functions are Lipschitz continuous with constant κ∗ = (2 + d)κ. To see this, note that

|#∗e(x) − #∗e(y)| ≤ |#e(x) − #e(y)| + |#′e(x)x − #′e(x)y + #′e(x)y − #′e(y)y| ≤ 2κ|x − y| + dκ|x − y|.

We proceed proving correctness of Algorithm 2.

Proposition 3.10. If FT (dT , L− ε
2κ3∗ |T |

) ! ∅, Algorithm 2 terminates in time poly(|T |, log κ, log dT ,
log 1/ε) and computes a flow fT ∈ FT (dT , L − ε

4κ3∗ |T |
) with social cost C( fT ) ≤ Copt + εdT , where

Copt = mingT∈FT (dT ,L)C(gT ).
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Proof. We first show the claimed runtime. Using Lemma 3.9, there are  L∗ ∈ [L∗−, L∗+] and an
optimal solution gT satisfying #∗e(ge) =  L∗ for all e ∈ T with ge > 0 and #e(ge) < L, #∗e(ge) ≤  L∗
for all e ∈ T with ge > 0 and #e(ge) = L, and #∗e(ge) ≥  L∗ for all e ∈ T with ge = 0. We claim
that  L∗ ∈ [L∗−, L∗+] is an invariant during the run of the algorithm. This is obviously true before
the first iteration. We denote by L∗i− , L∗i+ , L∗i, f ie,  T i the values of L∗−, L∗+, L∗, fe,  T after the i-th
iteration. Let us assume that  L∗ ∈ [L∗i−1

− , L∗i−1
+ ]. For the i-th iteration, we distinguish two cases.

If d′ =
∑

e∈T f ie > dT , then there is an edge e ∈ T with f ie > ge > 0. Using that the marginal cost
functions are non-decreasing, we have L∗i−1 ≥ #∗e( fe) ≥ #∗e(ge) ≥  L∗. As we set L∗i+ = L∗i−1 in
line 17, the invariant remains valid after the i-th iteration.

If, on the other hand, we have d′ =
∑

e∈T f ie < dT − ε
2κ∗ , there is e ∈ T with f ie < ge − ε

2κ∗|T |
and thus #e( f ie) < #e(ge) − ε

2κ∗κ|T | < #e(ge) −
ε

2κ2∗ |T |
. This implies in particular that e "  T i since

#e( f ie) < #e(ge) − ε
2κ2∗ |T |

≤ L − ε
2κ2∗ |T |

. As e "  T i, we have fe ∈ [(#∗e)−1(L∗) − ε
2κ3∗ |T |
, (#∗e)−1(L∗)],

and thus, L∗ − ε
2κ2∗ |T |

≤ #∗e( fe) ≤ L∗. We obtain L∗ ≤ #∗e( fe) + ε
2κ2∗ |T |

< #∗e(ge) ≤  L∗. As we set
L∗i− = L∗i−1 in line 18, the invariant remains valid after the i-th iteration.

We proceed showing that the algorithm terminates for any L∗ ∈ [  L∗ − ε
4κ2∗ |T |
,  L∗]. To this end,

suppose that L∗i ∈ [  L∗ − ε
4κ2∗ |T |
,  L∗] is arbitrary in the i-th iteration. For the flow f ie on edge e, we

calculate

f ie ≥ (#∗e)−1(L∗) −
ε

4κ3∗ |T |
≥ (#∗e)−1

(

 L∗ −
ε

4κ2∗ |T |

)

−
ε

4κ3∗ |T |
≥ ge −

ε

2κ∗|T |

for all e ∈ T \  T with fe > 0. Moreover, for all e ∈  T , we obtain fe > L− ε
2κ3∗ |T |

≥ ge− ε
2κ3∗ |T |

. Hence,
dT ≥

∑

e∈T fe ≥ dT − ε
2κ∗ and the algorithm terminates. Analogously to the proof of Theorem 3.7,

this observation proves the number of iterations is in poly(log κ, log dT , log 1/ε). Since each
iteration requires binary searches for every edge, the total time complexity of Algorithm 2 is in
poly(|T |, log κ, log dT , log 1/ε).

It remains to show that fT approximates Copt with the claimed precision. First, note that
the final redistribution of flows in line 20 is feasible as we require FT (dT , L − ε

2κ3∗ |T |
) ! ∅ and

as all edges e ∈  T carry more flow than in each solution gT ∈ FT (dT , L − ε
2κ3∗ |T |

). Thus, at
termination we obtain a constant L∗ and a flow fT with demand dT that satisfies the inequalities
L∗− ε

2κ3∗ |T |
≤ #∗e( fe) ≤ L∗+ ε2 , if e ∈ T \  T , and #∗e( fe) < L∗, if e ∈  T . We will show that fT is optimal

with respect to some shifted latencies. To this end, we define L̃∗ = L∗ + ε2 . Furthermore, we set
δe = L̃∗ − #∗e( fe) for all e ∈ T \  T and δe = L − #e( fe) for all e ∈  T , and define #̃e( fe) = #e( fe) + δe
for all e ∈ T with fe > 0.

By construction, we have 0 < δe ≤ ε for all e ∈ E. In addition, we obtain #̃∗e( fe) = #̃e( fe) +
fe#′e( fe) = L̃∗ for all e ∈ T \  T and #̃∗e( fe) ≤ L̃∗ for all e ∈  T . Thus, f minimizes

∑

e∈E #̃e( fe) fe
under the constraints

∑

e∈E fe = dT and #e( fe) ≤ L. Then,

Copt = min
gT∈FT (dT ,L)

∑

e∈E
(#̃e(ge) − δe)ge ≥ min

gT∈FT (dT ,L)

∑

e∈E
#̃e(ge)ge − εdT = C( f ) − εdT ,

as claimed. !
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Approximating CE(dN). We are now ready to combine Algorithms 1 and 2 in order to approx-
imate the combined cost function CE(dN) for fixed dN . We proceed by providing an algorithm
that takes ε̃ > 0 as input, runs in time poly(|E|, log κ, log d, log 1/ε̃) and computes CE(dN) for
any dN ∈ [dmin +

ε̃
8dκ2∗
, d] with an additive error of 9

32 ε̃.

Lemma 3.11. For any ε̃ > 0 and dN ∈
[

dmin +
ε̃

8dk2
∗
, d

]

one can compute flows fN and fT with

1. C( fN) +C( fT ) ≤ CE(dN) + 9
32 ε̃,

2. #e( fe) ≤ #e′( fe′ ) for all e ∈ T with fe > 0 and e′ ∈ N,

3. #e( fe) ≤ #e′( fe′ ) + ε̃
32dκ3∗ |T |

for all e, e′ ∈ N with fe > 0,

in time poly(|E|, log κ, log d, log 1/ε̃).

Proof. Using Algorithm 1, we compute an ε̃
32dκ3∗ |T |

-approximate Wardrop equilibrium fN on the
non-tollable edges e ∈ N with demand dN in time poly(|N|, log κ, log dN , log 1/ε̃). As we have
shown in Proposition 3.8, C( fN) − ε̃dN

32dκ3∗ |T |
≤ C(gN) ≤ C( fN) + ε̃dN

32dκ3∗ |T |
, where C(gN) is the cost

of a Wardrop equilibrium with the same demand. In particular, the common latency L of the
Wardrop equilibrium gN satisfies the inequalities

C( fN)
dN

−
ε̃

32dκ3∗ |T |
≤ L ≤

C( fN)
dN

+
ε̃

32dκ3∗ |T |
.

We define L̃ = C( fN )
dN +

ε̃
32dκ3∗ |T |

and obtain L ∈
[

L̃ − ε̃
16dκ3∗ |T |

, L̃
]

. By definition of dmin, we have
FT (d − dmin, L(dmin)) ! ∅. Let gT ∈ FT (d − dmin, L(dmin)) and consider the flow g̃T defined as
g̃e = max

{

0, ge − ε̃
8dκ2∗ |T |

}

for all e ∈ T . Then,

#e( fe) ≤ L(dmin) −
ε̃

8dκκ2∗ |T |
≤ L(dmin) −

ε̃

8dκ3∗ |T |

for all e ∈ T with fe > 0. We derive that for dN ≥ dmin +
ε̃

8dκ2∗
, the set of flows FT (dN , L(dN) −

ε̃
8dk3

∗ |T |
) is non-empty as well. Thus, when we call Algorithm 2 with accuracy ε̃

4d and latency
restriction L̃ it returns a flow fT that satisfies fT ∈ FT (dT , L̃ − ε̃

16dκ3∗ |T |
) ⊆ FT (dT , L) and is thus

also feasible with respect to the latency restriction L(dN) of the exact Wardrop equilibrium. In
addition, fT approximates the minimum cost of a flow gT ∈ FT (dT , L̃) with an additive error of ε̃4
(see Proposition 3.10). Thus, the total error when computing CE(dN) is at most ε̃

32dκ3∗ |T |
+ ε̃4 ≤

9ε̃
32

and 1. follows. To see 2., note that by construction #e( fe) ≤ L̃− ε̃
16dκ3∗ |T |

for all e ∈ T with fe > 0.
Moreover, since L̃ − ε̃

32dκ3∗ |T |
≤ #e′( fe′) + ε̃

32dκ3∗ |T |
for all e′ ∈ N, we have #e( fe) ≤ #e′( fe′) for

all e ∈ N with fe > 0. The third claim follows from the fact that fN is an ε̃
32dκ3∗ |T |

-approximate
Wardrop equilibrium. !

We are now ready to state the main result of this section.
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Theorem 3.12. Let Is = (G, d, #, T ) be an instance of the toll problem with support constraints,
where G is a network of parallel edges. Then, one can compute a toll vector τ with C( f τ) ≤
C( f τ∗) + ε in time poly(|E|,K, κ, d, 1/ε).

Proof. Let ε̃ = ε
|E|2(K+κd) , δ =

ε
2|E|2κ2(K+κd) and define the k-th sampling point as xk = kδ for k ∈

{0, . . . , /d/δ0}. Referring to Lemma 3.11, for every sampling point xk ≥ dmin +
ε̃

8dκ2∗
, we can ap-

proximate the combined cost function CE(xk) with an additive error of at most 9
32 ε̃ in polynomial

time. Let C̃E(xk) denote the result of these computations and let k∗ = arg mink∈{0,...,/d/δ0} C̃E(xk)
be the index of the sampling point that minimizes C̃E. Moreover, let x∗ = arg minx∈[dmin ,d]CE(x).
Clearly, there is a sampling point x j with |x j − x∗| ≤ max

{ δ
2 ,

ε̃
8dκ2∗

}

. By the choice of ε̃ and δ, we
get CE(x j) ≤ CE(x∗)+ ε4 . Since C̃E approximates CE with an additive error of at most 9

32 ε̃ ≤
9
32ε,

we have

C̃E(xk∗ ) ≤ C̃E(x j) ≤ CE(x j) +
9

32
ε ≤ CE(x∗) +

17
32
ε.

Moreover, the flows fN and fT used in Lemma 3.11 to calculate C̃E(xk∗ ) satisfy the inequalities
#e( fe) ≤ #e′( fe′) for all e ∈ T with fe > 0 and e′ ∈ N, and #e( fe) ≤ #e′( fe′ ) + ε̃

32dκ3∗ |T |
for all

e, e′ ∈ N with fe > 0. We define #min = mine∈N: fe>0
{

#e( fe)
}

and set τe = #min− #e( fe) for all e ∈ T
and τe = 0, otherwise. Using the properties of fN and fT shown in Lemma 3.11, we have τe ≥ 0
for all e ∈ E and

#e( fe) + τe ≤#e′( fe′) + τe′ for all e ∈ T, e′ ∈ N with fe > 0,

#e( fe) + τe ≤#e′( fe′) + τe′ +
ε̃

32dκ3∗ |T |
for all e, e′ ∈ N with fe > 0.

Let gτ denote the Wardrop equilibrium corresponding to toll vector τ. Then, C(gτ) ≤ C̃E(xk∗ ) +
ε̃

32κ3∗ |T |
. Finally, we obtain C(gτ) ≤ CE(x∗) + 18

32ε < C( f τ∗) + ε. !

4 A Polynomial Algorithm for Parallel Edges
In the previous section, we have solved the one-dimensional search problem (3) by discretizing
the demand interval uniformly. This procedure leads to a runtime that is polynomial in K, κ
and d and, thus, exponential in the encoding length of these parameters. In this section, we
derive a condition on the latency functions that guarantees that the combined cost function CE is
piecewise convex with at most |E| breakpoints on [dmin, d]. We will use this convexity property to
derive a polynomial algorithm based on binary search on the demand interval (giving a runtime
polynomial in log K, log κ, and log d).

4.1 Piecewise Convexity of the Combined Cost Function

In this section, we will derive a condition that guarantees that the combined cost function CE
is piecewise convex on [dmin, d]. We start with an example showing that the common latency
function function L and hence also the cost of the non-tollable edges can be non-convex.
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Figure 2: Common latency and cost of the non-tollable edges of the network considered in Example 4.1.

Example 4.1. Consider the instance Is = (G, d, #, T ) of the toll problem with support con-
straints, where G is a graph of parallel edges with only two non-tollable edges E = {a, b}. The
latencies are set to #a(x) = 4x2 and #b(x) = x2 + 1, respectively. We observe that for dN ≤ 1 / 2
only the first edge is used by the equilibrium flow. For dN > 1 / 2 both edges carry flow such that
the equation 4 f 2

a (dN) = f 2
b (dN) + 1 holds. Using fa(dN) + fb(dN) = dN and solving for fb(dN)

gives fa(dN) = dN− fb(dN) and fb(dN) = 4dN / 3−(4d2
N / 9+1 / 3)1 / 2 for d ≥ 1 / 2. The common

latency function L, thus, equals

L(dN) =



















4d2
N , if dN ≤ 1 / 2

20
9 d

2
N −

8
3dN

√

4
9d

2
N +

1
3 +

4
3 , if dN > 1 / 2.

The common latency functions L and the cost of the non-tollable edges CN are shown in Figure 2.

While Example 4.1 illustrates that the cost of the non-tollable edges need not be convex even
if all latencies are quadratic, we remark that the non-convexity is due to a single breakpoint,
where a new edge starts to carry flow. Formally, for each edge e ∈ N the breakpoint deN of edge
e is defined as deN = max{dN ∈ [0, d] : fe(dN) = 0}.

Lemma 4.2. The breakpoint of any e ∈ N fulfills deN =
∑

e′∈E:#e′ (0)<#e(0) #
−1
e′

(

#e(0)
)

.

Proof. For a contradiction, assume that there is e ∈ N with deN !
∑

e′∈E:#e′ (0)<#e(0) #
−1
e′

(

#e(0)
)

. We
first consider the case deN <

∑

e′∈E:#e′ (0)<#e(0) #
−1
e′

(

#e(0)
)

. Fix dN ∈
(

deN ,
∑

e′∈E:#e′ (0)<#e(0) #
−1
e′

(

#e(0)
))

arbitrarily. As dN > deN we have fe(dN) > 0. Moreover, since dN <
∑

e′∈E:#e′ (0)<#e(0) #
−1
e′ (#e(0))

and latencies are strictly increasing (cf. Assumption 3.1), there is at least one edge e′ ∈ N with
#e′(0) < #e(0) and #e′( fe′) < #e(0), which contradicts the Wardrop equilibrium conditions.

For the second case, assume deN >
∑

e′∈E:#e′ (0)<#e(0) #
−1
e′

(

#e(0)
)

. For an arbitrary demand
dN ∈

(∑

e′∈E:#e′ (0)<#e(0) #
−1
e′

(

#e(0)
)

, deN], we have fe(dN) = 0. Since latency functions are strictly
increasing, there is an edge e′ ! e with #e′( fe′ ) > #e(0), which again contradicts the equilibrium
conditions. !
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If two edges e, e′ ∈ N have the same latency offset values, that is #e(0) = #e′(0), then their
breakpoints are equal. In particular, there are at most |N| distinct breakpoints. In the following,
we let N = {e1, . . . , e|N|} and assume that the edges of N are ordered according to their latency
offsets, that is, #e1 (0) ≤ . . . #e|N|(0). This implies in particular that de1

N ≤ · · · ≤ d
e|N|
N .

Note that using Lemma 4.2 we can compute the breakpoints with an additive error of ε in
time poly(log d, log 1/ε) using binary search. We proceed showing that the accumulated cost
CN(dN) = L(dN) dN of the flow on the non-tollable edges is a convex function of dN between
two neighboring breakpoints. To this end, we first show the following result.

Lemma 4.3. For every i ∈ {1, . . . , |N| − 1}, the common latency function L : [0, d] → R≥0 is
convex on [deiN , d

ei+1
N ].

Proof. Note that by the definition of breakpoints, the set of edges that carry a positive amount of
flow is constant on (deiN , d

ei+1
N ]. We claim that for dN ∈ [deiN , d

ei+1
N ], the flow fe(dN) on edge e ∈ N

is described by the following system of differential equations:

f ′e (dN) =
1 / #′e

(

fe(dN)
)

∑

a∈Ni+1 1 / #′a
(

fa(dN)
) , for all e ∈ Ni+1, (4)

f ′e (dN) = 0, for all e ∈ N \ Ni+1, (5)

where Ni+1 = {e ∈ E : fe(dei+1
N ) > 0}. The initial values fe(deiN) of the above system of differential

equations are given by the unique Wardrop equilibrium flow with demand deiN . Note that #′e(x) ≥
1/κ since we assume that #−1

e is Lipschitz continuous with constant κ; therefore the right hand
sides of equations (4) and (5) are well-defined, continuous in dN and bounded between 0 and 1
for all dN ∈ [deiN , d

ei+1
N ]. Thus, the system (4)-(5) has a solution fe : [deiN , d

ei+1
N ]→ R≥0.

We argue that the solution fN of the system (4)-(5) constitutes a Wardrop equilibrium flow
with demand dN . We first show that

∑

e∈N fe(dN) = dN for all dN ∈ [0, 1]. To see this, note that
∑

e∈N fe(0) = 0 by definition and that
∑

e∈N f ′e (dN) = 1 for all dN ∈ [0, 1]. It remains to show
that #e( fe(dN)) = #e′( fe′(dN)) for all dN ∈ [0, 1] and all e, e′ ∈ N with fe(dN) > 0, fe′ (dN) > 0.
Consider the function he,e′ : [deiN , d

ei+1
N ] → R defined as he,e′(dN) = #e( fe(dN)) − #e′( fe′(dN)).

Deriving h we obtain h′(dN) = #′e( fe(dN)) f ′e (dN)− #′e′( fe′(dN)) f ′e′ (dN) = 0 for all dN ∈ [deiN , d
ei+1
N ],

where we use that f is a solution of the system (4)-(5). We conclude that h is constant. Clearly,
for dN = 0 no edge carries flow. This implies together with the observation that he,e′ is constant
that #e( fe(dN)) = #e′( fe′ (dN)) for all dN ∈ [0, 1] and e, e′ ∈ N with fe(dN) > 0 and fe′(dN) > 0.

We calculate that L′(dN) = #′( fe(dN)) · f ′e (dN) = 1 /
(∑

a∈Ni+1
1

#′a( fa(dN ))
)

and obtain

L′′(dN) = − 1
(

∑

a∈Ni+1
1

#′a( fa(dN ))

)2 ·
∑

b∈Ni+1

−
#′′b ( fb(dN) f ′b(dN)

(

#′b( fb(dN)
)2 =

∑

b∈Ni+1

f ′b(dN)3#′′b ( fb(dN)),

which is non-negative for every dN ∈ [deiN , d
ei+1
N ]. !

It follows that CN(dN) = L(dN) dN is convex in dN . Thus, the cost accumulated on the non-
tollable edges is convex in dN between successive breakpoints. Such a result does not hold in
general for the cost on the tollable edges as we will show in the following example.
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Figure 3: (a) Flow on edge a, (b) Cost on the non-tollable edges (dotted), cost on the tollable edges (dashed), and
combined cost (solid) of the instance considered in Example 4.4, (c) zooms into the region of non-convexity.

Example 4.4. Consider the instance Is = (G, d, #, T ) on the network G of three parallel edges
with demand d = 1. Only the first edge e with latency #e(x) = x2 + 1 is non-tollable. The latency
functions of the other two (tollable) edges equal #a(x) = x/23+1 and #b(x) = x, respectively. An
optimal flow with demand 1− dN satisfies 2 fb = (2/23) fa + 1, if fa > 0 and fb > 0. We conclude
that fa = 0 for dN ≥ 1/2. For dN < 1/2, we obtain the equation fa(dN) = 23

48 −
46
48dN. Since

L(dN) − #a(dN) = d2
N +

2
48 x −

1
48 = (dN − 1

8 )(dN + 1
6 ), the latency restriction of edge a becomes

tight for dN ≤ 1
6 . This implies that fa(dN) = #−1

a (#e(dN)) = 23d2
N for dN <

1
8 . Thus, the optimal

flows equal

fe(dN) = dN , fa(dN) =



























23d2
N , if 0 ≤ dN < 1/8,

23/48 − 46dN/48, if 1/8 ≤ dN < 1/2
0, if 1/2 ≤ dN ,

, fb(dN) = 1 − dN − fa.

The combined cost as a function of dN equals

CT (dN) =



























(d2
N + 1)dN + 23d2

N(d2
N + 1) + (1 − dN − 23d2

N )2, if dN ≤ 1/8,
(d2
N + 1)dN + ( 23

48 −
46
48dN)( 49

48 −
2
48dN) + ( 25

48 −
2

48dN)2, if 1/8 ≤ dN < 1/2,
(d2
N + 1)dN + (1 − dN)2, if 1/2 ≤ dN .

This function is depicted in Figure 3. Clearly, neither the cost of the tollable edges nor the
combined cost function are convex for small values of dN.

In light of Example 4.4, we are interested in providing general conditions ensuring piecewise
convexity of the cost of the tollable edges (and thus also the combined cost function). Before
we give an abstract sufficient condition for (piecewise) convexity below, we first explain the
non-convexity arising in Example 4.4. By decreasing dN , at some point a formerly attractive
edge e becomes tight and starts loosing flow according to fe(dN) = #−1

e (L(dN)). If the function
#−1
e (L(dN)) is convex, the total flow of non-tight edges grows sublinearly resulting in concave

cost (see Fig. 3 for an illustration of this effect). To resolve this issue, we introduce an additional
property defined below.
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Definition 4.5. An instance Is = (G, d, #, T ) of the toll problem with support constraint satisfies
the inverse concavity property if #−1

e (L(dN )) is concave in dN for all e ∈ T.

In the following lemma, we prove that the inverse concavity property is sufficient for the
convexity of CT (1 − dN).

Lemma 4.6. Let Is be an instance of the toll problem with support constraints that satisfies the
inverse concavity property. Then, CT (1 − dN) is convex in dN.

Proof. We show that the cost of the solution of the convex optimization problem CT (dN) =
min fT∈FT (1−dN ,L(dN ))C( fT ) is convex in dN . Clearly, the objective

∑

e∈T #e( fe) fe is convex in f .
Referring to the work of Fiacco and Kyparisis [16, Prop.2.1] it is sufficient to show that the set
of flows FT

(

1 − dN , L(dN)
)

is convex in dN , that is,

λFT
(

1−dN , L(dN)
)

+ (1−λ)FT
(

1−∆N , L(∆N)
)

⊆ FT
(

1−λdN − (1−λ)∆N , L(λdN + (1−λ)∆N
)

for all dN ,∆N ∈ [0, 1] and all λ ∈ (0, 1). To see this, let fT ∈ FT (1 − dN , L(dN)) and let
gT ∈ FT (1 − ∆N , L(∆N)). In particular,

∑

e∈T fe = 1 − dN ,
∑

e∈T ge = 1 − ∆N , which implies that
∑

e∈T λ fe + (1 − λ)ge = 1 − λdN − (1 − λ)∆N .
Let e ∈ T be arbitrary and let us first assume that fe > 0 and ge > 0. Then, #e( fe) ≤ L(dN)

and #e(ge) ≤ L(∆N). Thus, fe ≤ #−1
e (L(dN)) and ge ≤ #−1

e (L(dN )), and we obtain

λ fe + (1 − λ)ge ≤ λ#−1
e (L(dN)) + (1 − λ)#−1

e (L(∆N)) ≤ #−1
e

(

L(λdN + (1 − λ)∆N))
)

,

where we use the concavity of #−1
e (L(·)).

If fe = ge = 0, then also λ fe + (1 − λ)ge = 0 and there is nothing left to show. So let us
finally assume that fe > 0 and ge = 0. We have λ fe + (1 − λ) · 0 ≤ λ#−1

e (L(dN )) which implies
λ fe + (1 − λ)ge ≤ #−1

e (L(λdN)) ≤ #−1
e (L(λdN + (1 − λ)∆N)), where we again use the concavity of

#−1
e (L(·)). !

As a corollary of this result, we obtain a polynomial algorithm that solves the toll problem
with support constraints for instances in which the graph has only parallel edges and satisfies the
inverse concavity property.

Algorithm 3: Binary Search on [ueiN , l
ei+1
N ]

Input: interval [ueiN , l
ei+1
N ], convex combined cost function CE, accuracy ε̃, precision δ

Output: x0 ∈ [ueiN , l
ei+1
N ] with CE(x0) ≤ CE(x∗) + ε̃2

x0 ← ueiN , x1 ← lei+1
N , k ← 0;1

repeat2

x1/2 ←
x0+x1

2 , x1/4 ←
x0+x1/2

2 , x3/4 ←
x1/2+x1

2 , k ← k + 1;3
compute ε̃

2k+5 -approximations C̃E(x0), C̃E(x1/4), . . . , C̃E(x1) of4
CE(x0),CE(x1/4), . . . ,CE(x1);
choose j = arg mini=0,1/4,...,1 C̃E(xi), and set x0 ← xmax{ j−1/4,0}, x1 ← xmin{ j+1/4,1};5

until |x0 − x1| < δ ;6
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Theorem 4.7. Let Is = (G, d, #, T ) be an instance of the toll problem with support constraints,
where G is a graph of parallel edges that satisfies the inverse concavity property. Then, one can
compute a toll vector τ with C( f τ) ≤ C( f τ∗ ) + ε in time poly(|E|, log K, log κ, log d, log 1/ε).

Proof. Let ε̃ = ε
|E|2(K+κd) and let δ = ε̃

4|E|2κ2(K+κd) . Using the formula shown in Lemma 4.2, for
every breakpoint deN , e ∈ N we calculate a lower bound leN ∈ [deN − δ, d

e
N] and an upper bound

ueN ∈ [deN +
ε̃

8dκ2∗
, deN + δ] in time poly(log |E|, log K, log κ, log d, log 1/ε). Let ei, ei+1 ∈ N be such

that deiN < d
ei+1
N and there is no other breakpoint between them. Lemmas 4.3 and 4.6 establish that

the combined cost function CE is convex between deiN and dei+1
N , thus, CE is also convex between

ueiN and lei+1
N . Note that since ueN > d

e
N ≥ dmin, for every ε̃′ ≤ ε̃, we can use Lemma 3.11 to ap-

proximate CE with additive error 9
32 ε̃
′ < ε̃′. We will use this idea to minimize CE approximately

with the binary search procedure shown in Algorithm 3. We claim that CE(x0) ≤ CE(xei ) + ε̃/2
at termination of Algorithm 3, where xei = arg min

{

CE(x) : x ∈ [ueiN , l
ei+1
N ]

}

. To prove this result,
let xk0, x

k
1/4, x

k
1/2, x

k
3/4, x

k
1 denote the values of x0, x1/4, x1/2, x3/4, x1 when line 3 of Algorithm 3

is visited the k-th time. Since xk1 − x
k
0 ≤ (xk−1

1 − xk−1
0 )/2, the algorithm terminates, thus, there

is T ∈ N such that line 3 is visited exactly T times. We first show by complete induction that
for each k ∈ {1, . . . , T } there is x̃k ∈ [xk0, x

k
1] such that CE(x̃k) ≤ CE(xei ) + (1 − 1

2k ) ε̃4 . This is
obviously true for the first time where line 3 is visited. Let us assume that the statement holds
for fixed k ∈ N. We will show that minx∈[xk+1

0 ,x
k+1
1 ]CE(x) ≤ CE(xei ) +

(

1 − 1
2k+1

) ε̃
4 . We show this

claim only for the case that C̃E(xk1/2) ≤ min
{

C̃E(xk0), C̃E(xk1/4), C̃E(xk3/4), C̃E(xk1)
}

, the other four
cases are similar. We have CE(xk1/2) ≤ min

{

CE(xk0,CE(xk1/4),CE(xk3/4,CE(xk1))
}

+ ε
2k+4 , as C̃E is

an ε̃
2k+5 -approximation of CE. Using the convexity of CE, we obtain CE(x) ≥ CE(xk1/2) + ε̃

2k+4 for
all x ∈ [xk0, x

k
1]. Note that xk+1

0 = xk1/4 and xk+1
1 = xk3/4. Thus,

min
x∈[xk+1

0 ,x
k+1
1 ]

CE(x) = min
x∈[xk1/4 ,x

k
3/4]
CE(x) ≤ min

x∈[xk0 ,x
k
1]
+
ε̃

2k+3

≤ CE(xei ) +
(

1 −
1
2k

) ε̃

4
+
ε̃

2k+3 = CE(xei ) +
(

1 −
1

2k+1

) ε̃

4
,

where the second inequality follows from the induction hypothesis. For the final iteration T , we
obtain |CE(x̃T ) − CE(xT0 )| ≤ ε̃/4 by the Lipschitz constant of CE proven in Lemma 3.5. Thus,
CE(xT0 ) ≤ CE(xei ) + ε̃/2.

Using that ueN−d
e
N < δ and deN− l

e
N < δ for all e ∈ N, we obtain CE(xT0 ) ≤ CE(x∗)+ 3

4 ε̃, where
x∗ = arg minx∈[deiN ,d

ei+1
N ]CE(x). Moreover, as C̃E(xT0 ) is an 2−T−5ε̃-approximation on CE(xT0 ), we

have C̃E(xT0 ) ≤ CE(x∗) + 3
4 ε̃ + 2−5ε̃. Referring to Lemma 3.11, the flows fT and fN used to

compute C̃E(xT0 ) satisfy #e( fe) ≤ #e′( fe′) for all e ∈ T with fe > 0 and e′ ∈ N and #e( fe) ≤
#e′( fe′)+ 1

26 ·
ε̃

32dk3
∗ |T |

. We define #min = mine∈N: fe>0
{

#e( fe)
}

and set τe = #min − #e( fe) for all e ∈ T
and τe = 0, otherwise. Applying the same arguments as in the proof of Theorem 3.12 that the
Wardrop equilibrium gτ induced by τ satisfies the inequality

C(gτ) ≤ CE(x∗) +
3
4
ε̃ + 2−4ε̃.
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Finally, computing the toll vector τ between every two consecutive breakpoints and taking the
one that gives the best approximation on the combined cost function establishes the result.

It is left to show that the computation of the ε-optimal toll vector can be done in time
poly(|E|, log K, log κ, log d, log 1/ε). Note that we need at most |E| binary searches between deiN
and dei+1

N and that for each binary search with Algorithm 3 a logarithmic number of iterations suf-
fice. Thus, in each binary search we have 1/ε̃ ∈ poly(|E|,K, κ, d, 1/ε). Referring to Lemma 3.11,
each approximation of CE can be done in time poly(|E|, log K, log κ, log d, log 1/ε). This ob-
servation together with the fact that we call Algorithm 3 at most |E| times gives the claimed
runtime. !

Remark 4.8. Along the same lines we obtain that CE(1 − dN) is piecewise convex with poly-
nomially many breakpoints as long as #−1

e (L(dN)) is piecewise concave with polynomially many
breakpoints for all e ∈ T. We will refer to this weaker condition as the piecewise inverse con-
cavity property.

4.2 Instances with the Piecewise Inverse Concavity Property

We proceed identifying sets of cost functions L such that every instance I = (G, d, #, T ) with
#e ∈ L for all e ∈ E satisfies the piecewise inverse concavity property. To this end, let h : R≥0 →

R be a convex, strictly increasing and twice differentiable function, and define

L(h) =
{

# : R≥0 → R≥0 : #(x) = h(αx + β) for all x ≥ 0, where α > 0, β ≥ 0
}

.

Theorem 4.9. Let h : R≥0 → R be a convex, strictly increasing and twice differentiable function
and let Is = (G, d, #, T ) be an instance of the toll problem with support constraints, where G is
a graph of parallel edges and #e ∈ L(h) for all e ∈ E. Then, I satisfies the piecewise inverse
concavity property.

Proof. It suffices to prove that #−1
e (L(dN)) is piecewise concave for all e ∈ T . In fact, we will

show that #−1
e (L(dN)) is concave between two neighbored breakpoints deiN < d

ei+1
N , ei, ei+1 ∈ N.

By definition, the set of non-tollable edges that carry flow is constant on (deiN , d
ei+1
N ]. We will

denote this set by Ni+1. Referring to Lemma 4.3, the flow of edge e ∈ Ni+1 as a function of dN is
described by the differential equation

f ′e (dN) =
1/#′e( fe(dN))

∑

e′∈Ni+1 1 / #′e′ ( fe′(dN))
=

1 /
(

h′(αe fe(dN) + βe)αe
)

∑

e′∈Ni+1 1 /
(

h′(αe′ fe′(dN) + βe′)αe′
) . (6)

Since h is strictly increasing, the equilibrium condition h
(

αe fe(dN) + βe
)

= h
(

αe′ fe′(dN) + βe′
)

implies αe fe(dN) + βe = αe′ fe′(dN) + βe′ for all e, e′ ∈ Ni+1 and all dn ∈ [deiN , d
ei+1
N ]. Together

with (6), we obtain f ′e′(dN) =
(∑

e∈Ni+1 αe′ /αe
)−1 for all e′ ∈ Ni+1. Thus, the flow of every edge

e′ ∈ Ni+1 is linear in dN for dN ∈ [deiN , d
ei+1
N ]. Now, consider an arbitrary tollable edge e ∈ T .

Since #e ∈ L(h), we can find αe, βe′ ≥ 0 such that #e(x) = h(αex + βe) for all x ≥ 0. This implies
that #−1

e (y) = (h−1(y) − βe) /αe. We have established

#−1
e (L(dN)) = #−1

e (#e′( fe′ (dN)) = h−1(h(αe′ fe′(dN) + βe)) − βe
αe

=
αe′ fe′(x) + βe′ − βe

αe
,

where e′ ∈ Nk+1 is arbitrary. Since fe′ is linear, the function #−1
e (L(dN)) is linear as well. !
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Figure 4: Cost functions frequently used in the transportation literature. (a) M/M/1 function with parameters te = 0.2
and ue = 1. (b) Plotted with solid line BPR function #e with parameters te = 0.2, ue = 0.5, and be = 1; in dashed line
the same function with te = 0.4. The dotted function shows a latency in L(#e) with free flow travel time 0.4.

As an application of this result, we show that two important classes of functions considered
in the networking and transportation literature (cf. Sheffi [33]) satisfy the assumptions of Theo-
rem 4.9. The important class of M/M/1 functions is defined in terms of the free flow travel time
te > 0 and a positive capacity ue > 0. The latency is then given as #e(x) = teue

ue−x , see Figure 4
(a). Let Is = (G, d, #, T ) be an instance of the toll problem with support constraints, where all
latencies are M/M/1 functions, possibly with edge-specific free flow travel times and capacities.
It is not hard to see that {#e : e ∈ E} ⊆ L(h), where h(x) = 1 / (  T − x) and  T = maxe∈E 1 / te.
Thus, any instance of the toll problem with support constraints with M/M/1 latency functions
has the piecewise inverse concavity property. Note that we can effectively bound the flows on
every edge in order to obtain a finite Lipschitz constant and a bound on the latencies as required
in Assumptions 3.1 and 3.2, see the discussion in Remark 3.3.

Another important class of latency functions are the Bureau of Public Roads (BPR) functions
defined as #e(x) = te ·

(

1 + be ·
( x
ue

)4)
= te + tebe

u4
e
x4, where be > 0 is an edge-specific bias, see [8].

It is not possible to find a function h such that the set of BPR functions is contained in L(h).
However, with the choice h(x) = #e for some edge e ∈ E we obtain the freedom of choosing the
latencies of the other edges within the set L(h) = {# : R≥0 → R≥0 : #(x) = (αx + β)4,α, β ≥ 0},
which allows the modeling of edge-specific latency offsets (also called free flow travel times),
see Figure 4 (b). Thus, with slight restrictions on the choice of the bias and capacity, also BPR
functions have the piecewise inverse concavity property.

5 Algorithms for General Networks
In this section, we consider the problem of computing tolls on predefined subsets of a multi-
commodity network. Multi-commodity instances model arbitrary traffic distributions over a
given traffic network. The algorithmic approach that we used for parallel edge instances breaks
down for the multi-commodity case. In fact, there is no hope for a polynomial time algorithm as
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Algorithm 4: Marginal Cost Toll Computation Algorithm (MCT)
Input: instance I = (G, d, #, T ), minimum toll change ∆
Output: toll vector τ = (τe)e∈T
f ∗ ←system optimum flow, τ(1)

e ← #
′
e( f ∗e ) f ∗e for all e ∈ T , i← 1, c← 1;1

repeat2
f τ ←Wardrop equilibrium flow with tolls τ(i);3
foreach e ∈ T do4

if f τe > f ∗e then τ
(i+1)
e ← τ

(i)
e + c · #′e( f τe ) f τe ;5

if f τe < f ∗e then τ
(i+1)
e ← max

{

0, τ(i)e −
∣

∣

∣τ
(i)
e − τ

(i−1)
e

∣

∣

∣

}

;6

end7
i← i + 1, c← c · 0.98

until maxe∈T
∣

∣

∣τ
(i)
e − τ

(i−1)
e

∣

∣

∣ < ∆ ;9

Hoefer et al. [22] proved that the resulting problem is NP-hard even for instances with only two
commodities and affine latencies.

In view of this intrinsic hardness, we present in this section three heuristic descent algorithms
(for which we do not prove a worst-case performance guarantee) that compute network tolls on
a predefined subset of edges of a given instance. These algorithms are based on the algorithmic
idea to iteratively increase the toll on those edges e ∈ T on which the edge flow of the current
Wardrop flow exceeds the system optimal edge flow and to decrease the tolls of edges on which
it is smaller. The rationale behind this iterative process is to follow a solution trajectory along
a gradient descent direction of the objective function. For our algorithms we need to compute
a system optimal flow once. In every iteration we then compute a Wardrop equilibrium with
respect to the current toll vector. The algorithms (specified below) differ in their specific rules
how to adopt the tolls. We will discuss their differences in terms of convergence behavior and
solution quality in the subsequent paragraphs.

Marginal Cost Toll Computation Algorithm (MCT). This algorithm initializes the toll val-
ues according to the marginal cost pricing strategy, that is τe = #′e( f ∗e ) f ∗e for all e ∈ T . Given
this initial toll vector, we compute a Wardrop equilibrium. If an edge carries more flow in equi-
librium than in the system optimum, the algorithm increases the currently imposed tolls by the
marginal cost of the current equilibrium flow on that edge. The actual value by which the toll is
increased is multiplied by a cooling factor c which decreases exponentially over time ensuring
convergence of the algorithm. If the edge carries more flow in equilibrium than in the system
optimum, then the absolute difference between the old tolls and new ones is subtracted. Due
to the cooling factor c the toll changes vanish over the iterations and the algorithm finally stops
when the maximum toll change over all edges is less than a predefined limit ∆. A description of
the algorithm is given in Algorithm 4.

Exponential Marginal Cost Difference Toll Computation Algorithm (EMCD). The Expo-
nential Marginal Cost Difference Algorithm (EMCD-Algorithm) calculates the toll value of one
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Algorithm 5: Exponential Marginal Cost Difference Toll Computation (EMCD)
Input: instance I = (G, d, #, T ), minimal toll change ∆
Output: toll vector τ = (τe)e∈T
f ∗ ←system optimum flow, τ(1)

e ← max{∆, #′e( f ∗e ) f ∗e } for all e ∈ T , i← 1, c← 1;1
repeat2

f τ ←Wardrop equilibrium flow with tolls τ(i), α← maxe∈T {#′e( f τe ) f τe };3
foreach e ∈ T do4

τ
(i+1)
e ← τ

(i)
e · exp

(

c
max{1,α}

(

#′e( f τe ) f τe − #′e( f ∗e ) f ∗e
)

)

;5

end6
i← i + 1, c← c · 0.9;7

until maxe∈T
∣

∣

∣τ
(i)
e − τ

(i−1)
e

∣

∣

∣ < ∆ ;8

edge by considering the difference between the marginal cost of the actual equilibrium flow and
the marginal cost of the optimal flow on that edge. We use this difference as the argument for
an exponential function that, due to its special characteristics, yields smooth convergence. A
small difference between the two marginal cost values implies only a small change in the toll
value. Similar to the MCT-algorithm (Algorithm 4), we choose marginal cost pricing as initial
toll values with a small modification τe = max{∆, #′e( f ∗e ) f ∗e } for all e ∈ T . EMCD terminates
after a finite number of iterations due to the embedded cooling factor c. In this way, the rate of
toll changes decreases with the number of iterations until the maximal toll change over all edges
in one iteration is less than a predefined termination threshold ∆.

Combinatorial Toll Computation Algorithm (CT). In contrast to the previous algorithms,
the following algorithm (denoted by CT, see Algorithm 6) is based on a combinatorial approach.
Instead of changing the toll on all tollable edges simultaneously, we iteratively increase the toll
of the edge with currently highest marginal costs #′e( f τe ) f τe for which f τe > f ∗e by a fixed step size
∆. The performance of this straightforward approach strongly depends on the step size. A higher
step-size results in faster convergence, but may produce a poor solution quality of the resulting
equilibrium. It will turn out that a smaller step-size finds tolls whose induced equilibrium have
less travel time, but might cause slow convergence and high computing times. Note that CT
always converges as the tolls are monotonically increased.

5.1 Computational Study

Data Sets. We used data sets from the Transportation Network Test Problems (TNTP)1, a
database originally set up to provide realistic data for the traffic assignment problem. The data
sets are for academic research purposes and consist of several networks for different cities. In
addition to the data sets provided by TNTP, we used a quite large Swiss instance with 2, 210
nodes, 6, 334 edges, 20 commodities and a demand of 49, 975 and a set of instances of the city
of Berlin. The largest Berlin instance by far is Berlin-Mitte with 2, 953 edges and a demand of

1http://www.bgu.ac.il/˜bargera/tntp

25



Algorithm 6: Combinatorial Toll Computation Algorithm (CT)
Input: instance (G, d, #, T ), step size ∆
Output: toll vector τ = (τe)e∈T
f ∗ ←system optimum flow, τe ← 0 for all e ∈ T ;1
while T ! ∅ do2

f τ ←Wardrop equilibrium flow with tolls τ;3
choose e← arg maxe∈T (#′e( f τe ) f τe );4
if f τe > f ∗e then τe ← τe + ∆ else T ← T \ {e};5

end6

49, 974, followed by the almost equally sized instances Berlin-Tiergarten and Berlin-Prenzlauer
Berg with each about 355 nodes and 760 edges. Berlin-Friedrichshain is the smallest network
instance of the four, but still contains nine times the number of nodes and seven times the number
of edges of the Sioux Falls network. For each instance, a trip file specifies the commodities and
demands. The network file specifies parameters such as the length, free flow travel time and the
capacity of every edge from which we constructed the respective BPR functions presented in
Section 4.2.

We solved the underlying traffic assignment problems (Wardrop equilibrium and system
optimum) with up to a precision of 0.01% using a variant (CMCF developed by Jahn et al. [23])
of the Frank-Wolfe algorithm [18]. The CPU running times for the computation of each system
optimum and Wardrop equilibrium were in the range of less than 1 second for the Sioux Falls
instance and about 6 minutes for the Swiss instance.

Relative Price of Anarchy. After having computed the system optimum and Wardrop equilib-
rium for each instance, we obtain different magnitudes of the price of anarchy depending on the
instance. We use the relative price of anarchy, defined as

(

C( f ) −C( f ∗))/C( f ∗
)

as an efficiency
measure for selfish flows. The Berlin instances show remarkable differences in the relative price
of anarchy. Without tolls, the Berlin-Friedrichshain instance with about 9.41% has the largest
relative price of anarchy, followed by Berlin-Mitte (6.72%), Berlin-Prenzlauer Berg (4.85%) and
Berlin-Tiergarten (2.78%). An overview about the instances, including network parameters and
actual values of the total travel time of the system optimum, Wardrop equilibrium, the resulting
relative price of anarchy, and the computation times are depicted in Table 1.

Tollable Edge-Set Selection. We used subsets of tollable edges of cardinality 1, 2, 5, 10, 25
and 50. The set of tollable edges were chosen as follows. We first computed a system optimal
flow f ∗ and a Wardrop equilibrium f of the instance without tolls and then ordered the edges in
descending order in terms of their marginal cost #e( fe) fe with fe > f ∗e , e ∈ T . From this list, we
chose in decreasing order the first 1, 2, 5, 10, 25 and 50 tollable edges. In total we performed
144 different toll computations. A detailed discussion of the edge selection problem is presented
in Section 6, where we formally state and investigate the mathematical problem of selecting the
best subset of tollable edges subject to a cardinality constraint.
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network topology travel times computation
Instance n m k

∑k
i=1 di C( f ∗) C( f ) ρ t∗ t

Anaheim 416 914 1406 104,694 1,304,562 1,322,566 1.38% 23s 11s
B.-Friedrichshain 224 523 506 11,205 475,801 520,586 9.41% 53s 24s
B.-Mitte 1782 2935 20 49,974 33,578,426 35,835,784 6.72% 273s 97s
B.-Prenzlauer Berg 352 749 1406 16,660 999,565 1,048,046 4.85% 350s 143s
B.-Tiergarten 359 766 644 10,755 565,746 581,450 2.78% 73s 20s
Sioux Falls 24 76 552 9,537 4,050,027 4,150,454 2.48% <1s <1s
Swiss 2210 6334 20 49,975 202,284,911 212,957,076 5.28% 380s 111s
Winnipeg 1040 2836 4344 64,775 808,915 815,441 0.81% 285s 109s

Table 1: Number of nodes n, number of edges m, number of commodities k, sum of the commodities’ demand, total
travel time of system optimal flow f ∗, total travel time of Wardrop equilibrium flow f , relative price of anarchy ρ =
(

C( f )−C( f ∗)
)

/C( f ∗), CPU computing time t∗ for system optimum, CPU computing time t for Wardrop equilibrium.
System optima and Wardrop equilibria were computed with 0.01% CMCF precision.

5.2 Results

For all network instances, we computed tolls with the three algorithms MCT, EMCD and CT.
The tables below show the resulting relative prices of anarchy for these algorithms. All algo-
rithms perform quite well and significantly reduce the total travel time of the induced equilibrium
flow for instances with at least 10 tollable edges. On almost all instances, MCT and EMCD out-
perform CT in terms of the final total travel time. For all instances, all algorithms reduce the
relative price of anarchy by at least 35% using only 25 tollable edges. Except for Berlin-Mitte
and the Swiss instance, this reduction is even more than 70%.

Perhaps the most interesting instances are Berlin-Mitte and Berlin-Friedrichshain, as they
exhibit the two largest relative prices of anarchy of 9.41% and 6.72%, respectively. For the
Berlin-Friedrichshain instance, the relative price of anarchy is reduced by 50% already using
only 5 tollable edges. Berlin-Mitte on the contrary needs at least 10 tollable edges to show a
significant reduction of total travel time of approximately 16%. The results for our algorithms
on all 8 instances can be found in Table 2.

5.3 Convergence Time

We first demonstrate the average convergence behavior of the algorithms over all instances.
Figure 5 shows the average performance over all instances for the cases |T | = 10 and |T | = 25,
respectively. Here, one can see that the algorithms exhibit significant differences in terms of
the speed of convergence. On average, EMCD exhibits the fastest convergence to close-to-
optimal solutions, followed by MCT; however, CT needs hundreds of iterations to converge to
good solutions. We also demonstrate the convergence behavior on a single instance (Berlin-
Tiergarten) with ten tollable edges. Figure 6 shows for each iteration of the algorithms the total
travel time of the computed Wardrop equilibrium with imposed tolls. Already after the first toll
computation, the total travel time of the induced equilibrium improves significantly. In the first
iteration, the toll values are set to the marginal cost prices #e( f ∗e ) f ∗e , e ∈ T , which seems to
be a good choice of initial toll values. The CT-Algorithm progresses almost linearly and thus
converges quite slowly despite the relatively large step-size of 0.1. In contrast, MCT and EMCD
converge quickly (already after 20 iterations) to a near optimal solution. EMCD exhibits very
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Instance |T | MCT # it EMCD # it CT # it

Anaheim

0 1.38%
1 1.24% 65 1.24% 18 1.24% 125
2 1.09% 66 1.09% 35 1.10% 200
5 0.80% 70 0.79% 32 0.80% 434

10 0.57% 69 0.57% 86 0.61% 708
25 0.19% 69 0.19% 57 0.21% 1,130
50 0.05% 69 0.04% 131 0.11% 1,346

B.-Friedrichshain

0 9.41%
1 6.93% 107 6.93% 39 6.92% 240
2 5.22% 107 5.21% 74 5.21% 342
5 2.77% 107 2.92% 51 3.25% 638

10 2.60% 109 2.65% 92 2.68% 701
25 0.16% 107 0.17% 317 0.39% 1,086
50 0.07% 150 0.07% 225 0.23% 1,112

B.-Mitte

0 6.74%
1 6.7% 138 6.7% 55 6.7% 40
2 6.6% 138 6.6% 93 6.5% 142
5 6.4% 138 6.4% 210 6.4% 331

10 5.6% 138 5.7% 104 5.5% 612
25 4.0% 138 4.0% 139 4.0% 1,314
50 2.5% 138 2.6% 125 2.6% 2,041

B.-Prenzlauer Berg

0 4.90%
1 3.5% 101 3.5% 47 3.4% 86
2 2.2% 107 2.2% 52 2.2% 134
5 2.0% 105 2.0% 73 2.1% 176

10 1.1% 106 1.2% 106 1.3% 272
25 0.3% 105 0.3% 122 0.6% 355
50 0.1% 106 0.1% 222 0.5% 401

B.-Tiergarten

0 2.8%
1 2.3% 90 2.3% 49 2.3% 91
2 1.6% 91 1.6% 64 1.6% 224
5 0.7% 90 0.7% 113 0.7% 459

10 0.1% 93 0.1% 79 0.1% 617
25 0.02% 95 0.02% 136 0.1% 864
50 <0.01% 92 <0.01% 136 0.1% 957

Sioux Falls

0 2.48%
1 2.48% 112 2.48% 74 2.24% 950
2 2.48% 12 2.48% 760 2.04% 1,899
5 1.24% 117 1.25% 88 1.23% 5,586

10 0.62% 117 0.63% 77 0.58% 8,277
25 0.04% 117 0.02% 274 0.07% 11,323
50 <0.01% 369 <0.01% 162 0.03% 11,912

Swiss

0 5.40%
1 5.1% 128 5.1% 93 5.1% 501
2 5.0% 136 5.0% 85 5.0% 1,052
5 4.5% 143 4.5% 112 4.5% 1,897

10 3.8% 148 3.8% 248 3.8% 3,354
25 3.3% 136 3.3% 194 3.3% 4,961
50 2.3% 135 2.3% 136 2.4% 8,000

Winnipeg

0 0.81%
1 0.7% 75 0.7% 34 0.7% 42
2 0.7% 75 0.7% 25 0.7% 72
5 0.6% 76 0.6% 94 0.6% 132

10 0.5% 75 0.5% 63 0.5% 194
25 0.2% 78 0.2% 74 0.3% 265
50 0.1% 75 0.1% 81 0.2% 317

Table 2: Performance of our algorithms for different numbers |T | of tollable edges in terms of the achieved relative
price of anarchy.

28



fast convergence yielding a close-to-optimal toll solution after only 10 iterations.
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(a) Average Performance for |T | = 10
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(b) Average Performance for |T | = 25

Figure 5: Average performance of the MCT-Algorithm, the EMCD-Algorithm, and the CT-Algorithm with
step-size = 0.1 on all instances with 10 and 25 tollable edges.

6 The Impact of the Choice of Taxable Edges
A good choice of the set T of tollable edges is critical to achieve a small total travel time. In
practice, traffic planers usually select congested roads (for instance the city center) for installing
toll schemes to improve the overall traffic throughput. In this section, we discuss the mathe-
matical problem of selecting the best subset of tollable edges subject to a cardinality constraint.
Formally, we define the following problem that we term the cardinality constrained toll prob-
lem. Here, we are given a tuple I = (G, d, #, b), where G, d, and # are defined as before and the
parameter b ∈ N specifies a cardinality constraint on the support of the toll vector. That is, we
require that the toll vector τ satisfies |{e ∈ E : τe > 0}| ≤ b.

6.1 Hardness

We next show that the problem of finding an optimal cardinality constrained set of tollable edges
is strongly NP-hard and not even approximable by any constant c ≥ 1. We reduce from the
directed multicut problem. An instance of the directed multicut problem is given by a directed
graphG = (V, E) and k commodities (si, ti)i=1,...,k. A multicut S ⊆ E is a subset of edges such that
after removing S from G there is no (si, ti)-path for all i ∈ {1, . . . , k}, or, equivalently, S ∩ P ! ∅
for each path P ∈ Pi and each commodity i ∈ {1, . . . , k}. Theminimum directed multicut problem
is to find a multicut of minimum cardinality. The corresponding decision problem is to decide
for a given graph G and an integer b ∈ [0, |E|] whether G has a multicut of cardinality at most b.
The directed multicut problem is strongly NP-hard even for k = 2, see [19].

Theorem 6.1. The cardinality constrained toll problem is strongly NP-hard. Moreover, unless
P = NP, there is no c-approximation algorithm for the cardinality constrained toll problem for
any c ≥ 1. This even holds for instances with at most 3 commodities and τe ∈ {0, 1} for all e ∈ E.
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(a) MCT-Algorithm
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(c) CT-Algorithm

Figure 6: Performance of the MCT-Algorithm, the EMCD-Algorithm, and the CT-Algorithm (step-size = 0.1) on the
Berlin-Tiergarten instance with 10 tollable edges.

Proof. Consider an instance I = (G, (si, ti)i=1,...,k) of the directed multicut problem with G =
(V, E), k = 2, |E| = m and b ∈ [0,m]. We will construct an instance Î = (Ĝ, #̂, d̂, b) of our problem
as follows. We first augmentG by adding for each commodity i ∈ {1, 2} an auxiliary edge êi from
si to ti. For the auxiliary edges we set #êi(x) = 1. We replace each original edge e = (u, v) ∈ E
by three dummy edges in series, that is, we introduce el = (u, ve), em = (ve,we), er = (we, v) for
every e ∈ E (see also Figure 7 (a) for the graph construction). The right and left dummy edges
el and er have zero latency. For each dummy middle edge, we define the latency function as

#M(x) =














0, if x ≤ M,
x−M
m , if x ≥ M + 1/m,

where we choose M ≥ 2 ·m2. In the interval (M,M + 1/m) the function #M is defined arbitrarily
so that overall it is a standard and convex function (see also Figure 7 (b)). The commodities
i ∈ {1, 2} have a demand of 1 each.

We introduce a super-source s and a super-sink t. We connect s to every start node ve, e ∈ E
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Figure 7: (a) An example of the augmentation used in the proof of Theorem 6.1. The figure shows
the resulting network for the graph G = (V, E) with 4 nodes V = {s1, s2, t1, t2} and five edges E =

{(s1, t1), (s1, s2), (s2, t1), (t1, t2), (t2, s1)}. All dotted edges have zero latency. (b) The latency function #M (x) used
in the proof of Theorem 6.1.

of every middle dummy edge and we connect the end-nodes we of every middle dummy edge
directly to the super-sink. All these additional edges have zero latency. For an illustration of this
construction see Figure 7 (a). We assume a demand from s to t of value m · M. Let τb be an
optimal solution to the instance Î. We claim the following equivalence proving the theorem.

C( f τb) ≤ 2⇔ there exists a feasible multicut of cardinality b.

We first assume that C( f τb ) ≤ 2. Suppose there is no feasible multicut of cardinality b. This
implies that there is a commodity, say i = 1, with at least one toll-free path P using only dummy
edges. Suppose #P( f τb ) ≥ 1. By the definition of the latencies #M(x), there is at least one edge
em ∈ P with f τbem ≥ M + 1/m. We obtain

C( f τ
b
) =

∑

e∈Ê

#e( fe(τb)) fe(τb) ≥
M + 1/m − M

m
(M + 1/m) > 2,

a contradiction. Thus, we may assume that #P( f τb ) < 1. Using the Wardrop conditions, the edge
ê1 from s1 to t1 is not used in the induced equilibrium. Thus, there is a total demand of m ·M+ 1
to be distributed over the remaining available paths, each containing at least one of the m middle
dummy edge. Thus, there must exist a middle dummy edge em with flow fem(τb) ≥ (m ·M+1)/m
and we are in the previous case.
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Conversely, assume that there is a feasible multicut S of cardinality b. We define tolls
τber = 1, e ∈ S on the corresponding dummy right edges and zero, otherwise. The flow f τb

defined by routing 1 flow unit for every i ∈ {1, 2} along the direct si-ti-edges êi each with latency
1 and routing mM flow units along their direct middle dummy edge (each with flow value M)
satisfies the Wardrop conditions. We obtain C( f τb ) ≤ 2 proving the claim.

To prove inapproximability, for any constant c ≥ 1, we define M ≥ 2m2c. Then it follows
for a c-approximate toll solution τb that

C( f τ
b
) ≤ c · 2⇔ there exists a feasible multicut of cardinality b,

which proves the claim. !

6.2 Computational Study for the Cardinality Constrained Toll Problem

As the problem of selecting the best set of tollable edges subject to a cardinality constraint is
NP-hard and not approximable, we discuss several heuristics for selecting the edges on which
tolls can be imposed. Our heuristics are based on sorting the edges with respect to marginal
costs (Heuristic MCT in Algorithm 7), the difference between marginal costs of equilibrium and
optimal flow (which gives Heuristic DMCT), and the difference between equilibrium and opti-
mal flow (Heuristic DFT). We combine all edge selection heuristics with the EMCD-algorithm
to compute the final tolls on the chosen subsets of edges.

Algorithm 7: Tollable Edge Subset Selection Heuristics MCT, DMCT, and DFT
Input: network instance (G, d, #) with G = (V, E), maximal number b of tollable edges
Output: set T of tollable edges with |T | ≤ b
f ∗ ← system optimum flow, f ←Wardrop equilibrium flow, T ← ∅;1
while |T | ≤ b do2
MCT: e← arg maxe∈E\T, fe> f ∗e (#′e( fe) fe);3

DMCT: e← arg maxe∈E\T, fe> f ∗e (#′e( fe) fe − #′e( f ∗e ) f ∗e );4

DFT: e← arg maxe∈E\T ( fe − f ∗e );5

if {e ∈ E \ T : fe > f ∗e } = ∅ then6
MCT: e← arg maxe∈E\T (#′e( fe) fe);7

DMCT: e← arg maxe∈E\T (#′e( fe) fe − #′e( f ∗e ) f ∗e );8

end9
T ← T ∪ {e};10

end11

In addition to the above three heuristics, we also consider selection heuristics with random
choices of the tollable edges. For every instance and every cardinality b ∈ {1, 2, 5, 10, 25, 50},
edges are selected iteratively and uniformly at random. We then compute tolls for the randomly
chosen tollable edges with algorithm EMCD. Using 50 repetitions, the aRND solution is com-
puted as the average of the relative difference between the total travel time of the toll-induced
user equilibrium (using EMCD) and the system optimum. Furthermore, we picked the best
random solution (bRND) out of these 50 runs.
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Instance |T | aRND bRND MCT DMCT DFT

Anaheim

0 1.38%
1 1.37% 1.24% 1.24% 1.24% 1.17%
2 1.36% 1.24% 1.09% 1.09% 1.04%
5 1.34% 1.10% 0.79% 0.76% 0.88%
10 1.31% 1.00% 0.57% 0.55% 0.76%
25 1.24% 0.97% 0.19% 0.19% 0.53%
50 1.12% 0.81% 0.04% 0.12% 0.23%

B.-Friedrichshain

0 9.40%
1 9.41% 9.39% 6.93% 6.93% 9.41%
2 9.36% 7.77% 5.21% 5.45% 9.41%
5 9.12% 6.63% 2.92% 2.92% 8.41%
10 9.05% 6.62% 2.65% 2.65% 8.17%
25 8.54% 5.10% 0.17% 0.53% 6.78%
50 7.80% 3.92% 0.07% 0.07% 1.36%

B.-Mitte

0 6.70%
1 6.7% 6.2% 6.7% 6.7% 6.2%
2 6.7% 6.2% 6.6% 6.7% 6.1%
5 6.7% 6.2% 6.4% 5.9% 5.6%
10 6.6% 6.2% 5.7% 5.4% 5.5%
25 6.4% 6.0% 4.1% 3.7% 5.1%
50 6.1% 5.2% 2.6% 2.2% 4.3%

B.-Prenzlauer Berg

0 4.90%
1 4.9% 4.8% 3.5% 3.5% 4.6%
2 4.8% 3.5% 2.2% 2.2% 4.6%
5 4.8% 4.5% 2.0% 1.7% 4.5%
10 4.7% 3.4% 1.2% 1.4% 3.2%
25 4.5% 3.0% 0.3% 0.3% 1.2%
50 4.3% 2.6% 0.1% 0.1% 1.2%

B.-Tiergarten

0 2.80%
1 2.7% 2.0% 2.3% 2.3% 2.3%
2 2.7% 2.0% 1.6% 1.8% 2.3%
5 2.7% 2.0% 0.7% 0.7% 1.9%
10 2.6% 1.7% 0.1% 0.1% 1.1%
25 2.4% 1.4% <0.1% <0.1% 0.4%
50 2.3% 1.1% <0.1% <0.1% 0.1%

Sioux Falls

0 2.48%
1 2.45% 2.31% 2.48% 2.48% 2.48%
2 2.38% 1.96% 2.48% 2.48% 2.48%
5 2.30% 1.91% 1.25% 1.66% 1.34%
10 2.08% 1.19% 0.63% 0.59% 1.14%
25 1.43% 0.88% 0.02% 0.02% 0.27%
50 0.39% 0.01% <0.01% 0.02% <0.01%

Swiss

0 5.40%
1 5.4% 5.3% 5.1% 5.1% 5.2%
2 5.4% 5.3% 5.0% 4.9% 5.2%
5 5.3% 5.1% 4.5% 4.3% 5.1%
10 5.3% 5.2% 3.8% 3.6% 5.0%
25 5.3% 5.1% 3.3% 3.0% 4.4%
50 5.2% 4.9% 2.3% 2.1% 3.8%

Winnipeg

0 0.80%
1 0.8% 0.8% 0.7% 0.7% 0.7%
2 0.8% 0.8% 0.7% 0.7% 0.7%
5 0.8% 0.7% 0.6% 0.6% 0.7%
10 0.8% 0.7% 0.5% 0.5% 0.7%
25 0.8% 0.7% 0.2% 0.3% 0.6%
50 0.8% 0.7% 0.1% 0.1% 0.5%

Table 3: EMCD-Performance in terms of the relative price of anarchy for different selection rules and different
numbers |T | of tollable edges, CMCF precision= 0.1%. The best solutions are underlined.
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Table 3 contains the results of all heuristics (in combination with EMCD) for the 8 test
instances; the best solutions are underlined. Taking for instance a closer look at the results for
Berlin-Mitte, we observe that the strategy which chooses 25 edges according to their marginal
costs already leads to a reduction of the relative price of anarchy by 50% to 4.1%. Selecting
edges in descending order of the flow difference f − f ∗ between selfish flow and optimal flow
(Heuristic DFT) seems to result in a better equilibrium state when only a few edges are tollable.
For a larger number of tollable edges (more than 10) Heuristic DFT is significantly weaker than
the other two heuristics. For the Berlin-Friedrichshain instance the edge selection rule depending
on the flow difference f − f ∗ does not perform well at all, whereas the two selection strategies
which consider marginal costs lead to similar solutions. The strategies using information about
marginal costs and the difference between optimal and selfish marginal costs, respectively, lead
to small total travel time in almost every case and thus seem to be very good choices. Only in a
few cases, in which the cardinality constraint is one or two, the best randomly selected edge set
outperforms our heuristics.

7 Conclusions
We have provided a detailed study of network toll problems with constraints on the support set
of feasible toll vectors.

For the simplest, but still practically relevant case of single-commodity networks with m
parallel edges we obtained a far-reaching generalization of the analysis for affine latencies [22]
to standard latency functions with a common Lipschitz constant κ and an upper bound K. In
the most general case, we obtained a quasi-polynomial algorithm that computes for a demand
of d an ε-optimal solution with an additive error of ε in poly(m,K, κ, d, 1/ε)-time. We improved
the runtime to poly(m, logK, log κ, log d, log 1/ε), i.e., to a polynomial algorithm, for the case
that the total travel time is a piecewise convex function of the demand d. We also identified
sufficient conditions when this holds and showed that these conditions cover commonly used
latency functions such as the M/M/1 functions and functions similar to the Bureau of Public
Roads (BPR) functions.

Our analysis showed that there is little hope to extend these results to arbitrary multi-
commodity traffic networks. Moreover, even simple cases with two commodities are known
to be NP-hard [22]. In order to still handle practically important cases, we devised three algo-
rithms that are motivated by steepest descent approaches. We investigated their performance
w.r.t. solution quality and convergence behavior in an extensive computational study on large
street networks with up to 6,334 edges. All algorithms perform quite well and significantly re-
duce the total travel time for only a few tollable edges. The reduction in terms of a decrease
of the relative price of anarchy is at least 35% with only 25 tollable edges, and even more than
70% on all but two networks. The algorithms differ, however w.r.t. their convergence behavior.
Algorithm EMCD, in which the descent per edge e is based on the exponential marginal cost
difference between system-optimal flow and tax induced flow on e, turned out to be the best of
the three.

In the last section, we considered the cardinality constrained version of the toll problem.
We no longer fix the set of tollable edges, but permit arbitrary subsets up to a fixed size, thus

34



increasing the optimization potential for finding good tolls that significantly reduce the total
travel time. We showed via a reduction from the directed multicut problem that the cardinality
constrained toll problem is NP-hard and cannot be approximated within a constant factor unless
P = NP. Again we devised practical algorithms that combine the three algorithms above with
suitable heuristic choices for the tollable edges. Algorithm EMCD combined with an edge
selection rule based on their marginal cost showed the best overall performance.

Our results show that the problem of computing tolls with support constraints is mathe-
matically challenging, computationally hard and even not approximable. We presented the first
rigorous analysis for single-commodity networks with parallel links and general latency func-
tions, and investigated heuristic algorithms for multi-commodity networks. Our computational
results show that, for realistic street networks, these algorithms have the potential to significantly
reduce the total travel time with only a small number of tollable edges.
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