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1 Introduction

In view of the steadily growing car traffic and the limited capacity of our street
networks, we are facing a situation where methods for better traffic management
are becoming more and more important. Studies [93] show that an individual
“blind” choice of routes leads to travel times that are between 6% and 19%
longer than necessary. On the other hand, telematics and sensory devices are
providing or will shortly provide detailed information about the actual traffic
flows, thus making available the necessary data to employ better means of traffic
management.

Traffic management and route guidance are optimization problems by na-
ture. We want to utilize the available street network in such a way that the
total network “load” is minimized or the “throughput” is maximized. This article
deals with the mathematical aspects of these optimization problems from the
viewpoint of network flow theory. This is, in our opinion, currently the most
promising method to get structural insights into the behavior of traffic flows in
large, real-life networks. It also provides a bridge between traffic simulation [12,
77] or models based on fluid dynamics [81] and variational inequalities [23], which
are two other common approaches to study traffic problems. While simulation is
a powerful tool to evaluate traffic scenarios, it misses the optimization potential.
On the other hand, fluid models and other models based on differential equations
capture very well the dynamical behavior of traffic as a continuous quantity, but
can currently not handle large networks.

Traffic flows have two important features that make them difficult to study
mathematically. One is ‘congestion’, and the other is ‘time’. ‘Congestion’ cap-
tures the fact that travel times increase with the amount of flow on the streets,
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while ‘time’ refers to the movement of cars along a path as a “flow over time”.
We will therefore study several mathematical models of traffic flows that become
increasingly more difficult as they capture more and more of these two features.

Section 2 deals with flows without congestion. The first part gives an intro-
duction to the classical static network flow theory and discusses basic results in
this area. The presented insights are also at the core of more complex models
and algorithms discussed in later sections. The main part of the section then
introduces the temporal dimension and studies flows over time without conges-
tion. Although of indisputable practical relevance, flows over time have never
attracted as much attention among researchers as their classical static counter-
parts. We discuss some more recent results in this area which raise hope and can
be seen as first steps towards the development of methods that can cope with
flows over time as they occur in large real-life traffic networks. We conclude this
section with a short discussion of flows over time as they occur in evacuation
planning.

In Section 3 we add congestion to the static flow model. This is already a
realistic traffic model for rush-hour traffic where the effect of flow changing over
time is secondary compared to the immense impact of delays due to conges-
tion. We consider algorithms for centralized route guidance and discuss fairness
aspects for the individual user resulting from optimal route guidance policies.
Finally, we review fast algorithms for shortest path problems which are at the
core of more complex algorithms for traffic networks and whose running time is
therefore of utmost importance.

Section 4 then combines flows over time with congestion. Compared to the
models discussed in earlier sections, this setting is considerably closer to real-
world traffic flows. Thus, it hardly surprises that it also leads to several new
mathematical difficulties. One main reason is that the technique of time expan-
sion which still worked for the problems of Section 2 is no longer fully available.
Nevertheless, it is possible to derive approximation algorithms for reasonable
models of congestion, but the full complexity of this problem is by far not un-
derstood yet.

Despite the partial results and insights discussed in this article, the develop-
ment of suitable mathematical tools and algorithms which can deal with large
real-world traffic networks remains an open problem. The inherent complexity
of many traffic flow problems constitutes a major challenge for future research.

2 Static Flows and Flows Over Time

An exhaustive mathematical treatment of network flow theory started around
the middle of the last century with the ground-breaking work of Ford and Fulker-
son [35]. Historically, the study of network flows mainly originates from problems
related to transportation of materials or goods; see, e. g., [46, 54, 63]. For a de-
tailed survey of the history of network flow problems we refer to the recent work
of Schrijver [87].
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2.1 Static Flow Problems

Usually, flows are defined on networks (directed graphs) G = (V,E) with capac-
ities ue ≥ 0 and, in some settings, also costs ce on the arcs e ∈ E. The set of
nodes V is partitioned into source nodes, intermediate nodes, and sink nodes.
On an intuitive level, flow emerges from the source nodes, travels through the
arcs of the network via intermediate nodes to the sinks, where it is finally ab-
sorbed. More precisely, a static flow x assigns a value 0 ≤ xe ≤ ue to every arc
e ∈ E of the network such that for every node v ∈ V

∑
e∈δ−(v)

xe −
∑

e∈δ+(v)

xe


≤ 0 if v is a source,
= 0 if v is an intermediate node,
≥ 0 if v is a sink.

(1)

Here, δ+(v) and δ−(v) denote the set of arcs e leaving node v and entering
node v, respectively. Thus, the left hand side of (1) is the net amount of flow
entering node v. For intermediate nodes this quantity must obviously be zero;
this requirement is usually refered to as flow conservation constraint. A flow x is
said to satisfy the demands and supplies dv, v ∈ V , if the left hand side of (1) is
equal to dv for every node v ∈ V . In this setting, nodes v with negative demand
dv (i. e., positive supply −dv) are sources and nodes with positive demand are
sinks. A necessary condition for such a flow to exist is

∑
v∈V dv = 0. Observe

that the sum of the left hand side of (1) over all v ∈ V is always equal to 0.
A flow problem in a network G = (V,E) with several sources S ⊂ V and

several sinks T ⊂ V can easily be reduced to a problem with a single source and
a single sink: Introduce a new super-source s and a new super-sink t. Then add
an arc (s, v) of capacity u(s,v) := −dv for every source v ∈ S and an arc (w, t) of
capacity u(w,t) := dw for every sink w ∈ T . In the resulting network with node
set V ∪ {s, t} all nodes in V are intermediate nodes and we set ds :=

∑
v∈S dv

and dt :=
∑

w∈T dw.
For the case of one single source s and one single sink t, the flow x is called

an s-t-flow and the left hand side of (1) for v = t is the s-t-flow value which
we denote by |x|. Due to flow conservation constraints, the absolute value of the
left hand side of (1) for v = s also equals the flow value. In other words, all
flow leaving the source must finally arrive at the sink. Ford and Fulkerson [33,
35] and independently Elias, Feinstein, and Shannon [24] show in their so-called
‘Max-Flow-Min-Cut Theorem’ that the maximum s-t-flow value is equal to the
minimum capacity of an s-t-cut. An s-t-cut δ+(S) is given by a subset of vertices
S ⊆ V \{t}, s ∈ S, and defined as the set of arcs going from S to its complement
V \ S, i. e., δ+(S) := (

⋃
v∈S δ+(v)) \ (

⋃
v∈S δ−(v)). The capacity of an s-t-cut is

the sum of the capacities of all arcs in the cut. We give an example of a maximum
s-t-flow and a matching minimum cut in Figure 1. Ford and Fulkerson [35] also
observe that the Max-Flow-Min-Cut Theorem can be interpreted as a special
case of linear programming duality.

Today, a variety of efficient (i. e., polynomial time) algorithms are known for
computing an s-t-flow of maximum value and a corresponding minimum capacity
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Fig. 1. A maximum s-t-flow together with a matching minimum cut in a network. The
first number at each arc denotes its flow value and the second number its capacity.
The depicted s-t-flow has value 5 which equals the capacity of the depicted s-t-cut
δ+({s, w}) = {(s, v), (w, t)}.

cut. We refer to the standard textbook by Ahuja, Magnanti, and Orlin [1] for
a detailed account of results and algorithms in this area. However, we mention
one further structural result for s-t-flows by Ford and Fulkerson [35]. Any given
s-t-flow x = (xe)e∈E can be decomposed into the sum of flows of value xP on
certain s-t-paths P ∈ P and flows of value xC on certain cycles C ∈ C, that is,

xe =
∑
P∈P
e∈P

xP +
∑
C∈C
e∈C

xC for all e ∈ E.

Moreover, the number of paths and cycles in this decomposition can be bounded
by the number of arcs, i. e., |P|+ |C| ≤ |E|.

In the setting with costs on the arcs, the cost of a static flow x is defined as
c(x) :=

∑
e∈E ce xe. For given demands and supplies dv, v ∈ V , the minimum

cost flow problem asks for a flow x with minimum cost c(x) satisfying these de-
mands and supplies. As for the maximum flow problem discussed above, various
efficient algorithms are known for this problem and a variety of structural char-
acterizations of optimal solutions has been derived. Again, we refer to [1] for
details.

A static flow problem which turns out to be considerably harder than the
maximum flow and the minimum cost flow problem is the multicommodity flow
problem. Every commodity i ∈ K is given by a source-sink pair si, ti ∈ V and a
prescribed flow value di. The task is to find an si-ti-flow xi of value di for every
commodity i ∈ K such that the sum of these flows obeys the arc capacities,
i. e.,

∑
i∈K(xi)e ≤ ue for all e ∈ E. So far, no combinatorial algorithm has

been developed which solves this problem efficiently. On the other hand, there
exist polynomial time algorithms which, however, rely on a linear programming
formulation of the problem and thus on general linear programming techniques
(such as the ellipsoid method or interior point algorithms); see e. g. [1].
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2.2 Flows Over Time

Flow variation over time is an important feature in network flow problems aris-
ing in various applications such as road or air traffic control, production systems,
communication networks (e. g., the Internet), and financial flows. This charac-
teristic is obviously not captured by the static flow models discussed in the
previous section. Moreover, apart from the effect that flow values on arcs may
change over time, there is a second temporal dimension in these applications:
Usually, flow does not travel instantaneously through a network but requires a
certain amount of time to travel through each arc. Thus, not only the amount
of flow to be transmitted but also the time needed for the transmission plays an
essential role.

Definition of flows over time. Ford and Fulkerson [34, 35] introduce the notion
of ‘dynamic flows’ or ‘flows over time’ which comprises both temporal features.
They consider networks G with capacities ue and transit times τe ∈ Z+ on the
arcs e ∈ E. A flow over time f on G with time horizon T is given by a collection
of functions fe : [0, T ) → [0, ue] where fe(θ) determines the rate of flow (per
time unit) entering arc e at time θ. Here, capacity ue is interpreted as an upper
bound on the rate of flow entering arc e, i. e., a capacity per unit time. Transit
times are fixed throughout, so that flow on arc e progresses at a uniform rate.
In particular, the flow fe(θ) entering the tail of arc e at time θ arrives at the
head of e at time θ + τe. In order to get an intuitive understanding of flows over
time, one can associate the arcs of the network with pipes in a pipeline system
for transporting some kind of fluid. The length of each pipeline determines the
transit time of the corresponding arc while the width determines its capacity.

Continuous vs. discrete time. In fact, Ford and Fulkerson introduce a slightly
different model of flows over time where time is discretized into intervals of unit
size [0, 1), [1, 2), . . . , [T − 1, T ), and the function fe maps every such interval to
the amount of flow which is sent within this interval into arc e. We call such a
flow over time discrete. Discrete flows over time can for instance be illustrated
by associating each arc with a conveyor belt which can grasp one packet per
time unit. The maximal admissible packet size determines the capacity of the
corresponding arc and the speed and length of the conveyor belt define its transit
time.

Fleischer and Tardos [31] point out a strong connection between the discrete
time model and the continuous time model described above. They show that
most results and algorithms which have been developed for the discrete time
model can be carried over to the continuous time model and vice versa. Loosely
speaking, the two models can be considered to be equivalent.

Flow conservation constraints. When considering flows over time, the flow con-
servation constraints (1) must be integrated over time to prohibit deficit at any
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Fig. 2. A network with transit times on the arcs (left hand side) and the corresponding
time-expanded network (right hand side). The vertical black arcs model the possibility
to store flow at nodes.

node v which is not a source. Hence, for all ξ ∈ [0, T )

∑
e∈δ−(v)

∫ ξ

τe

fe(θ − τe) dθ −
∑

e∈δ+(v)

∫ ξ

0

fe(θ) dθ ≥ 0 . (2)

The first term on the left hand side of (2) is the total inflow into node v until
time ξ and the second term is the total outflow out of v until time ξ. Notice that
since the left hand side of (2) might be positive, temporary storage of flow at
intermediate nodes is allowed. This corresponds to holding inventory at a node
before sending it onward. However, we require equality in (2) for ξ = T and any
intermediate node v in order to enforce flow conservation in the end. If storage
of flow at intermediate nodes is undesired, it can be prohibited by requiring
equality in (2) for all ξ ∈ [0, T ).

As in the case of static flows, a flow over time f satisfies the demands and
supplies dv, v ∈ V , if the left hand side of (2) for ξ = T is equal to dv for every
node v ∈ V . If there is only one single sink t, the left hand side of (2) for ξ = T
and v = t is the flow value of f .

Time-expanded networks. Ford and Fulkerson [34, 35] observe that flow-over-time
problems in a given network with transit times on the arcs can be transformed
into equivalent static flow problems in the corresponding time-expanded network.
The time-expanded network contains one copy of the node set of the underlying
‘static’ network for each discrete time step θ (building a time layer). Moreover,
for each arc e with transit time τe in the given network, there is a copy between
each pair of time layers of distance τe in the time-expanded network. An illustra-
tion of this construction is given in Figure 2. Thus, a discrete flow over time in
the given network can be interpreted as a static flow in the corresponding time-
expanded network. Since this interrelation works in both directions, the concept
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of time-expanded networks allows to solve a variety of time-dependent flow prob-
lems by applying algorithmic techniques developed for static network flows; see
e. g. [31]. Notice, however, that one has to pay for this simplification of the con-
sidered flow problem in terms of an enormous increase in the size of the network.
In particular, the size of the time-expanded network is only pseudo-polynomial
in the input size and thus does not directly lead to efficient algorithms for com-
puting flows over time. Nevertheless, time-expanded networks are often used to
solve problems in practice.

Maximum s-t-flows over time. Ford and Fulkerson [34, 35] give an efficient al-
gorithm for the problem of sending the maximum possible amount of flow from
one source to one sink within a given time horizon T . They show that this prob-
lem can be solved by one minimum-cost flow computation in the given network,
where transit times of arcs are interpreted as cost coefficients. Their algorithm
is based on the concept of temporally repeated flows. Let x be a feasible static
s-t-flow in G with path decomposition (xP )P∈P where P is a set of s-t-paths.
If the transit time τP :=

∑
e∈P τe of every path P ∈ P is bounded from above

by T , the static s-t-flow x can be turned into a temporally repeated s-t-flow f as
follows. Starting at time zero, f sends flow at constant rate xP into path P ∈ P
until time T − τP , thus ensuring that the last unit of flow arrives at the sink
before time T . An illustration of temporally repeated flows is given in Figure 3.

Feasibility of f with respect to capacity constraints immediately follows from
the feasibility of the underlying static flow x. Notice that the flow value |f | of
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f , i. e., the amount of flow sent from s to t is given by

|f | =
∑
P∈P

(T − τP )xP = T |x| −
∑
e∈E

τe xe . (3)

The algorithm of Ford and Fulkerson computes a static s-t-flow x maximizing
the right hand side of (3), then determines a path decomposition of x, and
finally returns the corresponding temporally repeated flow f . Ford and Fulkerson
show that this temporally repeated flow is in fact a maximum s-t-flow over time
by presenting a matching minimum cut in the corresponding time-expanded
network. This cut in the time-expanded network can be interpreted as a cut
over time in the given network, that is, a cut wandering through the network
over time from the source to the sink.

A problem closely related to the one considered by Ford and Fulkerson is the
quickest s-t-flow problem. Here, instead of fixing the time horizon T and asking
for a flow over time of maximal value, the value of the flow (demand) is fixed
and T is to be minimized. This problem can be solved in polynomial time by
incorporating the algorithm of Ford and Fulkerson into a binary search frame-
work. Burkard, Dlaska, and Klinz [15] observed that the quickest flow problem
can even be solved in strongly polynomial time.

More complex flow over time problems. As mentioned above, a static flow prob-
lem with multiple sources and sinks can easily be reduced to one with a single
source and a single sink. Notice, however, that this approach no longer works for
flows over time. It is in general not possible to control the amount of flow which
is sent on the arcs connecting the super-source and super-sink to the original
nodes of the network. Hoppe and Tardos [49] study the quickest transshipment
problem which asks for a flow over time satisfying given demands and supplies
within minimum time. Surprisingly, this problem turns out to be much harder
than the special case with a single source and sink. Hoppe and Tardos give a
polynomial time algorithm for the problem, but this algorithm relies on submod-
ular function minimization and is thus much less efficient than for example the
algorithm of Ford and Fulkerson for maximum s-t-flows over time.

Even more surprising, Klinz and Woeginger [55] show that the problem of
computing a minimum cost s-t-flow over time with prespecified value and time
horizon is NP-hard. This means that under the widely believed conjecture P6=NP,
there does not exist an efficient algorithm for solving this problem. The cost of
a flow over time f is defined as

c(f) :=
∑
e∈E

ce

∫ T

0

fe(θ) dθ .

In fact, Klinz and Woeginger prove that the problem is already NP-hard on very
special series-parallel networks. The same hardness result holds for the quickest
multicommodity flow problem; see Hall, Hippler, and Skutella [41]. On the other
hand, Hall et al. develop polynomial time algorithms for solving the problem
on tree networks. An overview of the complexity landscape of flows over time is
given in Table 1.
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Table 1. The complexity landscape of flows over time in comparison to the correspond-
ing static flow problems. The third column ‘transshipment’ refers to single-commodity
flows with several source and sink nodes. The quoted approximation results hold for
the corresponding quickest flow problems.

s-t-flow transshipment min-cost flow multicommodity flow

(static) flow poly poly (' s-t-flow) poly poly (' LP)

flow over time

poly [34] poly [49]
pseudo-poly

pseudo-poly

with storage

(' min-cost flow) (' subm. func.) NP-hard [55]

NP-hard [41]
FPTAS [28, 29]

flow over time FPTAS [28, 29] strongly NP-hard [41]
without storage 2-approx. [27, 29]

Approximation results. Fleischer and Skutella [27] generalize the temporally re-
peated flow approach of Ford and Fulkerson in order to get an approximation
algorithm for the quickest multicommodity flow problem with bounded cost. A
key insight in their result is that by taking the temporal average of an optimal
multicommodity flow over time with time horizon T , one gets a static flow in the
given network which is T -length-bounded, i. e., it can be decomposed into flows
on paths whose transit time is bounded by T . While it is initially not clear how
to compute a good multicommodity flow over time efficiently, a length-bounded
static flow mimicking the static ‘average flow’ can be obtained in polynomial
time (if the length bound is relaxed by a factor of 1 + ε). The computed static
multicommodity flow can then be turned into a temporally repeated flow in a
similar way as in the algorithm of Ford and Fulkerson. Moreover, the time hori-
zon of this temporally repeated flow is at most (2 + ε) T and therefore within
a factor of 2 + ε of the optimum. Martens and Skutella [70] make use of this
approach to approximate s-t-flows over time with a bound on the number of
flow-carrying paths (k-splittable flows over time).

Fleischer and Skutella [27, 28] also show that better performance ratios can
be obtained by using a variant of time-expanded networks. In condensed time-
expanded networks, a rougher discretization of time is used in order to get net-
works of polynomial size. However, in order to discretize time into steps of larger
length L > 1, transit times of arcs have to be rounded up to multiples of L. This
causes severe problems in the analysis of the quality of solutions computed in
condensed time-expanded networks. Nevertheless, one can show that the solution
space described by a condensed time-expanded network is only slightly degraded.
This yields a general framework to obtain fully polynomial time approximation
schemes for various flow-over-time problems like, for example, the quickest mul-
ticommodity flow problem with costs. Moreover, this approach also yields more
efficient algorithms for solving flow over time problems in practical applications.

For the case that arc costs are proportional to transit times, Fleischer and
Skutella [28] describe a very simple fully polyomial-time approximation scheme
based on capacity scaling for the minimum cost s-t-flow over time problem.

For a broad overview of flows over time we refer to the survey papers by
Aronson [3], Powell, Jaillet, and Odoni [79], Kotnyek [64], and Lovetskii and
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Fig. 4. A network with one source and two sinks with unit demands for which an
earliest arrival flow does not exist. All arcs have unit capacity and the transit times are
given in the drawing. Notice that one unit of flow can reach sink t1 by time 1; in this
case, the second unit of flow reaches sink t2 only by time 3. Alternatively we can send
one unit of flow into sinks t1 and t2 simultaneously by time 2. It is impossible to fulfill
the requirement, that both flow units must have reached their sink by time 2 and one
of them must have already arrived at time 1.

Melamed [68]. We also refer to the PhD thesis of Hoppe [47] for an easily ac-
cessible and detailed treatment of the topic based on the discrete time model.
Skutella [91] presents a treatment of flows over time for the purpose of teaching
in an advanced course.

2.3 Earliest Arrival Flows

In typical evacuation situations, the most important task is to get people out
of an endangered building or area as fast as possible. Since it is usually not
known how long a building can withstand a fire before it collapses or how long a
dam can resist a flood before it breaks, it is advisable to organize an evacuation
such that as much as possible is saved no matter when the inferno will actually
happen. In the setting of flows over time, the latter requirement is captured by
so-called earliest arrival flows.

Shortly after Ford and Fulkerson introduced flows over time, the more elab-
orate earliest arrival s-t-flow problem was studied by Gale [37]. Here the goal
is to find a single s-t-flow over time that simultaneously maximizes the amount
of flow reaching the sink t up to any time θ ≥ 0. A flow over time fulfilling
this requirement is said to have the earliest arrival property and is called earli-
est arrival s-t-flow. Gale [37] showed that earliest arrival s-t-flows always exist.
Minieka [75] and Wilkinson [95] both gave pseudopolynomial-time algorithms
for computing earliest arrival s-t-flows based on the Successive Shortest Path
Algorithm [53, 50, 16]. Hoppe and Tardos [48] present a fully polynomial-time
approximation scheme for the earliest arrival s-t-flow problem that is based on
a clever scaling trick.

In a network with several sources and sinks with given supplies and demands,
flows over time having the earliest arrival property do not necessarily exist [30].
Baumann and Skutella [8] give a simple counterexample with one source and
two sinks; see Figure 4.

For the case of several sources with given supplies and a single sink, however,
earliest arrival transshipments do always exist. This follows, for example, from
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the existence of lexicographically maximal flows in time-expanded networks; see,
e.g., [75]. We refer to this problem as the earliest arrival transshipment problem.
Hajek and Ogier [40] give the first polynomial time algorithm for the earliest
arrival transshipment problem with zero transit times. Fleischer [30] gives an al-
gorithm with improved running time. Fleischer and Skutella [29] use condensed
time-expanded networks to approximate the earliest arrival transshipment prob-
lem for the case of arbitrary transit times. They give an FPTAS that approx-
imates the time delay as follows: For every time θ ≥ 0 the amount of flow
that should have reached the sink in an earliest arrival transshipment by time θ,
reaches the sink at latest at time (1 + ε)θ. Tjandra [92] shows how to compute
earliest arrival transshipments in networks with time dependent supplies and ca-
pacities in time polynomial in the time horizon and the total supply at sources.
The resulting running time is thus only pseudopolynomial in the input size.

Earliest arrival flows and transshipments are motivated by applications re-
lated to evacuation. In the context of emergency evacuation from buildings,
Berlin [13] and Chalmet et al. [20] study the quickest transshipment problem in
networks with multiple sources and a single sink. Jarvis and Ratliff [52] show that
three different objectives of this optimization problem can be achieved simulta-
neously: (1) Minimizing the total time needed to send the supplies of all sources
to the sink, (2) fulfilling the earliest arrival property, and (3) minimizing the av-
erage time for all flow needed to reach the sink. Hamacher and Tufecki [45] study
an evacuation problem and propose solutions which further prevent unnecessary
movement within a building.

Baumann and Skutella [8] (see also [7]) present a polynomial time algo-
rithm for computing earliest arrival transshipments in the general multiple-
source single-sink setting. All previous algorithms rely on time expansion of
the network into exponentially many time layers. Baumann and Skutella first
recursively construct the earliest arrival pattern, that is, the piece-wise linear
function that describes the time-dependent maximum flow value obeying sup-
plies and demands. The algorithm employs submodular function minimization
within the parametric search framework of Megiddo [71, 72]. As a by-product,
a new proof for the existence of earliest arrival transshipments is obtained that
does not rely on time expansion. It can finally be shown that the earliest ar-
rival pattern can be turned into an earliest arrival transshipment based on the
quickest transshipment algorithm of Hoppe and Tardos [49].

The running time of the obtained algorithm is polynomial in the input size
plus the number of breakpoints of the earliest arrival pattern. Since the earliest
arrival pattern is more or less explicitly part of the output of the earliest ar-
rival transshipment problem, the running time of the algorithm is polynomially
bounded in the input plus output size.

3 Static Traffic Flows with Congestion

In the previous section we have considered flows over time where transit times
on the arcs are fixed. The latter assumption is no longer true in situations where
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congestion does occur. Congestion means that the transit time τe on an arc e is
no longer constant, but a monotonically increasing, convex function τe(xe) of the
flow value xe on that arc e. Congestion is inherent to car traffic, but also occurs
in evacuation planning, production systems, and communication networks. In
all of these applications the amount of time needed to traverse an arc of the
underlying network increases as the arc becomes more congested.

Congestion in static traffic networks has been studied for a long time by
traffic engineers, see e. g. [90]. It models the rush hour situation in which flow
between different origins and destinations is sent over a longer period of time.
The usual objective to be optimized from a global system-oriented point of view
is the overall road usage, which can be viewed as the sum of all individual transit
times.

3.1 User Equilibrium and System Optimum

From a macroscopic point of view, such a static traffic network with congestion
can be modeled by a multicommodity flow problem, in which each commodity
i ∈ K represents two locations in the network, between which di “cars” are to
be routed per unit of time. The data (si, ti, di), i ∈ K, form the so-called origin-
destination matrix. Feasible routings are given by flows x, and the “cost” c(x) of
flow x is the total travel time spent in the network. On arc e, the flow x then
induces a transit time τe(xe), which is observed by all xe flow units using that
arc e. So the total travel time may be written as c(x) =

∑
e∈E xe τe(xe).

It is usually more convenient to think of a feasible routings in terms of flows
on paths instead of flows on arcs. Then, for every commodity i, the di amounts
of flow sent between si and ti are routed along certain paths P from the set Pi

of possible paths between si and ti. These paths P can be seen as the choice of
routes that users take who want to drive from si to ti. On the other hand, any
solution x in path formulation can be seen as a route recommendation to the
users of the traffic network, and thus as a route guidance strategy. Therefore, it is
reasonable to study properties of flows as route recommendations and investigate
their quality within this model.

Current route guidance system are very simple in this respect and usually
restrict to recommend shortest or quickest paths without considering the effect
on the congestion that their recommendation will have. Simulations show that
users of such a simple route guidance system will—due to the congestion caused
by the recommendation—experience longer transit times when the percentage
of users of such a system gets larger.

Without any guidance, without capacity restrictions, but full information
about the traffic situation, users will try to choose a fastest route and achieve
a Nash equilibrium, a so-called user equilibrium. Such an equilibrium is defined
by the property that no driver can get a faster path through the network when
everybody else stays with his route. One can show that in such an equilib-
rium state all flow carrying paths P in each Pi have the same transit time
τP =

∑
e∈P xe τe(xe), and, furthermore, if all τe are strictly increasing and twice
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differentiable, then the value of the user equilibrium is unique. This is no longer
true in capacitated networks [21].

So in uncapaciated networks, the user equilibrium is characterized by a cer-
tain fairness, since all users of the same origin destination pair have the same
transit time. Therefore, is has been widely used as a reasonable solution to the
static traffic problem with congestion. This is supported by recent results show-
ing that, under reasonable assumption about obtaining traffic information, a sim-
ple replication-exploration strategy will indeed converge to the Nash equilibrium
and the convergence (the number of rounds in which users choose new routes)
is polynomial in the representation length of the transit time functions [26]. So
users of a static traffic system can learn the user equilibrium efficiently.

The advantage of the user equilibrium lies in the fact that it can be achieved
without traffic control (it only needs selfish users) and that it is fair to all users
with the same origin and destination. However, it does not necessarily optimize
the total travel time. Roughgarden and Tardos [84] investigate the difference
that can occur between the user equilibrium and the system optimum, which is
defined as a flow x minimizing the total travel time

∑
e∈E xe τe(xe). The ratio

c(UE)/c(SO) of the total travel time c(UE) in the user equilibrium over that in
the system optimum is referred to as the price of anarchy. In general, it may
become arbitrarily large than in the system optimum, but it is never more than
the total travel time incurred by optimally routing twice as much traffic [84].
Improved bounds on the price of anarchy can be given for special classes of
transit time functions [84, 89].

Another unfavorable property of the user equilibrium is a non-monotonicity
property with respect to network expansion. This is illustrated by the Braess
paradox, where adding a new road to a network with fixed demands actually
increases the overall road usage obtained in the updated user equilibrium [14,
90, 39].

So one may ask what can be achieved by centralized traffic management. Of
course, the system optimum would provide the best possible solution by defini-
tion. But it may have long routes for individual users and thus misses fairness,
which makes it unsuited as a route guidance policy (unless routes are enforced
upon users by pricing and/or central guidance). To quantify the phenomenon of
long routes in the system optimum, Roughgarden [83] introduces a measure of
unfairness. The unfairness is the maximum ratio between the transit time along
a route in the system optimum and that of a route in the user equilibrium (be-
tween the same origin-destination pair). In principle, the unfairness may become
arbitrarily large, but like the price of anarchy, it can be bounded by a param-
eter γ(C) of the class C of underlying transit time functions [89]. For instance,
γ{polynomials of degree p with nonnegative coefficients} = p + 1.

In computational respect, user equilibrium and system optimum are quite
related problems in networks without capacities on the arcs. In fact, given convex
and twice differentiable transit time functions τe(xe), the system optimum is the
user equilibrium for the transit time functions τ̄e(xe) = τe(xe) + xe

dτe(xe)
dxe

, and
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the system optimum is the unique user equilibrium for the transit time functions
τ̂e(xe) = 1

xe

∫ xe

0
τe(t)dt, see [11].

So they are both instances of convex optimization with convex separable
objective and linear constraints. They are usually solved with the Frank-Wolfe
algorithm [36], which is essentially a feasible direction method, and several vari-
ants thereof such as the Partan algorithm [32], which performs a more intelligent
line search. Computing the routes of the user equilibrium is usually referred to
as traffic assignment problem. It was originally introduced by Wardrop [94] in
order to model natural driver behavior, and has been studied extensively in the
literature, see [90, 78]. In the absence of arc capacities, the linearized problem
decomposes into separate shortest path problems for every origin-destination
pair (commodity), where the length of an arc e is given by the marginal cost
τ̄e(xe) = τe(xe) + xe

dτe(xe)
dxe

. For capacitated networks, one has to solve a multi-
commodity flow problem instead.

3.2 Constrained System Optimum

Can one overcome the unfairness in the system optimum by introducing con-
straints on the paths that may be recommended as routes? This problem has
been investigated by Jahn et al. in [51] for static traffic networks with congestion.
For each commodity i they consider only a subset P̄i ⊆ Pi of admissible paths. In
the simplest case, admissibility is defined by geographical length in the following
way. Every arc e has a geographical length `e, and path P ∈ Pi is admissible if
its geographical length `P :=

∑
e∈P `e does not exceed the geographical length

of a shortest path between si and ti by a certain, globally controlled fairness
factor L > 1 (e. g., L = 1.2). The corresponding optimum is a constrained system
optimum for the original problem and the total travel time increases with 1/L.
An example from [51] with real data is given in Figure 5.

More precisely, Jahn et al. introduce the concept of the normal length of
a path, which can be either its traversal time in the uncongested network, its
traversal time in user equilibrium, its geographic distance, or any other appropri-
ate measure. The only condition imposed on the normal length of a path is that
it may not depend on the actual flow on the path. Equipped with this definition,
they look for a constrained system optimum (CSO) in which no path carrying
positive flow between a certain origin-destination pair is allowed to exceed the
normal length of a shortest path between the same origin-destination pair by
more than a tolerable factor L > 1. By doing so, one finds solutions that are fair
and efficient at the same time. This approach implements a compromise between
user equilibrium and system optimum, which meets a demand expressed e. g. by
Beccaria and Bolelli [10]: The goal should be to“find the route guidance strategy
which minimizes some global and community criteria with individual needs as
constraints”.

Computations in [51] with the street network of Berlin and networks from
the Transportation Network Test Problems website [5] indicate that the CSO
with transit times in the user equilibrium as normal lengths is the right concept
to measure fairness. The resulting total travel time cannot exceed that of the
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Fig. 5. System optimum with restrictions on path lengths: One commodity routed
through the road network between the marked nodes. The left-hand side image displays
the system optimum in which flow is distributed over the whole network in order to
avoid high arc flows that would incur high arc transit times. In the right-hand side
image the same amount of flow gets routed, but this time with a restriction on the
geographical path lengths. Line thickness denotes arc capacity (yellow) and arc usage
(blue).

user equilibrium, i.e., c(SO) ≤ c(CSO) ≤ c(UE ), and achieves a much better
fairness than the unrestricted system optimum, while at the same time avoiding
the larger road usage and non-monotonicity of the user equilibrium. An example
is given in Figure 6 taken from [51].

Besides the unfairness with respect to the user equilibrium, Jahn et al. con-
sider also an intrinsic unfairness of the suggested routes, which is measured as
the largest ratio `P1/`P2 of the geographical path lengths `Pj

of two flow car-
rying paths P1, P2 for any origin-destination pair i. The intrinsic unfairness of
the system optimum may go up to 3 and more, while its control via the fairness
factor L also implies a strongly correlated fairness for other “length” measures
such as actual transit times or transit times in the uncongested network.

3.3 Algorithmic Issues

To solve Problem CSO, Jahn et al. use the Partan variant of the Frank-Wolfe al-
gorithm mentioned above. The model is path-based, where every potential path
P ∈ ∪i∈KP̄i is represented by a path flow variable xP . However, these paths
are only given implicitly by the length constraints

∑
e∈P `e ≤ Lλ(si, ti) for a

path between si and ti, where λ(si, ti) is the normal path length between si and
ti. Because there may be exponentially many paths, they are only generated as
needed. For that reason, the algorithm can be considered as a column generation
method. This becomes even more obvious when the network is capacitated. In
that case, in order to find the best descent direction, one has to solve a lin-
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Fig. 6. Objective values and unfairness distributions for the area Neukölln in Berlin.
Normal lengths are equal to transit times in user equilibrium. Total travel times are
distinctively smaller than in equilibrium, while the fraction of users traveling longer
than in equilibrium is substantially smaller.

ear program (a multicommodity flow problem) in path variables with column
generation.

One then maintains a linear program (the master program) with a sub-
set of the variables (enough to contain a basis). Checking the master pro-
gram for optimality then reduces to a constrained shortest path problem in the
given network: Compute a shortest path (where the length is influenced by the
dual solution of the master program) such that the normal length constraint∑

e∈P `e ≤ Lλ(si, ti) is preserved. Then either optimality is established and the
current solution in the master problem is optimal, or there are paths that are
“too long”. These paths are added to the master problem (usually in exchange
for others) and one iterates.

This is the point in the algorithm where also other conditions on the paths
could be considered. They can be dealt with in the current algorithm if the short-
est path problem resulting from the linear programming optimality conditions
can be combined with the restrictions defining the paths.

The constrained shortest path problem is NP-hard in the weak sense. There
are many different approaches to solve this problem in practice. Jahn et al.
implemented the label correcting algorithm of [2] because of its superior com-
putational efficiency. The algorithm fans out from the start node s and labels
each reached node v ∈ V with labels of the form (d`(v), dτ (v)). For each path
from s to v that has been detected so far, dτ (v) represents its transit time and
d`(v) its distance. During the course of the algorithm, several labels may have
to be stored for each node v, namely the Pareto-optimal labels of all paths that
have reached it. This labeling algorithm can be interpreted as a special kind of
branch-and-bound with a search strategy similar to breadth-first search. Starting
from a certain label of v, one obtains lower bounds for the remaining paths from
v to t by separately computing ordinary shortest path distances from v to t with
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respect to transit times τe and lengths `e, respectively. If one of these bounds is
too large, the label can be dismissed. The algorithm reduces essentially to a re-
peated application of Dijkstra’s algorithm and runs polynomial in the maximum
number of labels generated at a node.

The non-linear part of the algorithm is dealt with as in the Frank-Wolfe
algorithm. One first computes a feasible direction y − x = argmin{∇c(x)T y |
y feasible flow} of the objective function c at the current flow x and then a
stepsize λ by line search. The next solution is then obtained as x := x+λ(y−x).
At first glance, this natural approach seems to be infeasible since the objective
function c(x) involves all of the many path variables xP . But the scalar product
∇c(x)T y can equivalently be expressed in arc variable vectors, thus reducing the
number of variables to the number of arcs in the network. Also the line search
can be reduced to the number of paths that actually carry flow, which does not
get too large.

Figure 7 illustrates the nesting of the different steps in the algorithm. The sec-
ond step (solving the linear program) is only necessary for capacitated networks.
It becomes clear that algorithms for shortest paths and constrained shortest
paths are at the core of the algorithm and that their run time largely determines
the efficiency of the whole algorithm.

shortest paths, e. g. Dijkstra

algorithm for constrained shortest paths

simplex algorithm

feasible direction method (Frank-Wolfe)

Fig. 7. Steps in computing the constrained system optimum. The second step (solving
the linear program) is only necessary for capacitated networks.

The algorithm has been tested extensively in [51]. Most notably, the time
needed to compute a constrained system optimum is typically not larger than
that for computing an unconstrained system optimum, and it is only somewhat
larger than that for getting a user equilibrium. In fact, the problem of finding a
constrained system optimum becomes computationally more costly with increas-
ing values of the tolerance factor L. The reason is that the number of allowable
paths increases. However, the constrained shortest path subproblems become
easier because the normal lengths are less binding. In this trade-off situation,
the total work and the number of iterations increase, but the work per iteration
decreases. Generally, most of the time is spent on computing constrained shortest
paths (which implies that improved algorithms for this subproblem would yield
greatly improved overall performance). Instances with a few thousand nodes,
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arcs and commodities can be solved on an average PC within minutes. Bigger
instances like Berlin take longer but can also be solved without difficulty in less
than an hour.

Additional speedups are obtained by König [62] with a Lagrangian relax-
ation that relaxes the coupling condition between flow rates on paths and arcs,
i.e., the condition that xe =

∑
P :e∈P xP . The problem can then be separated

into commodities and determining the Lagrangian dual reduces to computing
resource-constrained shortest paths and evaluation of a simple twice differen-
tiable function and its derivatives. The actual computation of the Lagrangian
dual is done with the Proximal Analytic Center Cutting Plane Method of Babon-
neau et al. [4]. Altogether, this leads to a speedup by a factor of 2 compared
with the Partan algorithm.

3.4 Acceleration of Shortest Path Computation

Figure 7 shows that repeated (constrained) shortest path calculations form the
bottleneck for computing the constrained system optimum. Similar requirements
for repeated shortest path calculations arise in algorithms for navigation systems,
where the network is again considered to be static (at least over certain periods).
The last few years have witnessed tremendous progress in speeding up such cal-
culations by preprocessing the network data for more efficient repeated shortest
path calculations. A good overview on this progress is given by the theses of
Wilhalm [96], Schilling [86], Schultes [88] and the volume of papers of the 2006
Dimacs Challenge on Shortest Paths (in preparation) [22].

Köhler et al. [60, 86] investigate a generalization of a partition-based arc
labelling approach has that is referred to as the arc-flag approach. The basic
idea of the arc-flag approach using a simple rectangular geographic partition
was suggested by Lauther in [66, 67] and patented in [25]. The arc-flag approach
divides the graph G = (V,A) into regions r ∈ R and gathers information for each
arc a ∈ A and for each region r ∈ R (V =

⋃
r∈R r) on whether the arc a is on at

least one shortest path leading into region r. For each arc a ∈ A this information
is stored in a flag (bit) vector fa. The vector fa contains a flag (true or false)
for each region r ∈ R indicating whether the arc a can contribute to answering
shortest path queries for nodes in region r or not, see Figure 8. Thus, the size
of each flag vector is determined by the number |R| of regions and the number
of flag vectors is bounded by the number |A| of arcs. Since the actual number of
unique flag vectors can be much smaller than the number of arcs, storing the flag
vectors at one point and adding an index (or pointer) to each arc can reduce the
extra amount of memory below the obvious |A||R| bits. The number of regions
depends on the input graph size, but can be kept to a moderate size: 200 regions
already lead to considerable speedups on instances with 24M nodes and 58M
edges.

The arc-flags are used in a slightly modified Dijkstra computation to avoid
exploring unnecessary paths. This means that one checks the flag entry of the
corresponding target region (the region where the target node t belongs to) each
time before the Dijkstra algorithm tries to traverse an arc. Thus, implementing
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Fig. 8. Rectangular decomposition. Every arc e = (u, v) carries a bit vector with a bit
for every region r. The bit of region r is set to 1 iff e is on a shortest path from u to a
node in r.

the arc-flags is one of the simplest acceleration modifications of the standard Di-
jkstra algorithm and therefore suggests itself for straightforward usage in existing
code bases.

The choice of the underlying partition is crucial for the speedup of the arc-flag
acceleration of Dijkstra’s algorithm. In [60] a multi-way arc separator is suggested
as an appropriate partition for the arc-flags, see Figure 9 for an example. This
improvement achieved much better speedups compared to the original arc-flag
version in [67]. For instance, using this one can reach acceleration factors 10
times higher than with Lauther’s version of the arc-flags (on networks with up
to 0.3M nodes, 0.5M arcs and 278 bits of additional information per arc). This
study was further refined by Möhring et al. [76].

When combining the arc-flags with a multi-way arc separator partition and
a bi-directed search, the overall performance of the method is competitive to
those of other acceleration techniques such as the highway hierarchy method of
Sanders and Schultes [85] but requires much more preprocessing time. Hilger et
al. [61] reduce the preprocessing times significantly and also improve the effi-
ciency of queries and the space requirements. This is achieved by a new central-
ized shortest path algorithm which computes distances simultaneously from a set
of starting vertices instead of one starting vertex. Another improvement on the
preprocessing time is achieved by removing small attached structures for which
the arc-flags can be calculated in a much easier way. Note that this reduction is
only performed during preprocessing, queries are calculated on the unmodified
graph using the pre-calculated information.

On continental road networks like the US network (24M nodes, 54M edges)
this method only needs a few hours to complete the pre-calculation. This ap-
proach is the first to apply the arc-flag accelerated shortest path method to
networks of this size. Recently, Bauer and al. [6] have demonstrated that the
arc flag method currently constitutes the best performing purely goal-directed
acceleration technique and that the preprocessing can even be improved further.
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Fig. 9. Berlin divided by a hierarchical separator approach.

If preprocessing is not possible, e.g. because the arc values change too often
(which is the case in the algorithms for the restricted user optimum), one can
still apply goal directed and bidirected search for shortest paths. Here the main
underlying idea is to distort arc weights in such a way, that Dijkstra’s algorithm
prefers to explore nodes that are closer to the target node, thus reducing the
time it takes to reach the source. Figure 10 illustrates the areas of the graph
that are explored in the respective searches.

The goal directed approaches can also be applied to some extent to the
constrained shortest path problem [60]. Here, the simple goal oriented search
showed the best speedup, as the bidirectional variant suffers from the lack of a
good stopping criterion.

4 Flows Over Time with Flow Dependent Transit Times

In the previous sections we particularly considered flow models that either were
able to capture flow variations with respect to time (Section 2.2), or transit time
variations with respect to the flow situation on an arc (Section 3). Both aspects
are important features that have to be taken into account when optimizing traf-
fic systems. However, while in the previous sections we handled these features
separately, we will now investigate what can be done if we have to deal with both
of them at the same time. To be more precise, we study flow variations over time
in networks where transit times on the arcs vary with the amount of flow on that
particular arc. While both static flow theory with flow dependent transit times
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Fig. 10. Variants of simple search speedup techniques: goal directed, bidirected, and
their combination (from left to right).

and the theory of flows over time with constant transit times are well studied
areas of research, the field of flows over time with flow dependent transit times
has attracted attention only in the last couple of years. One main reason for
this seems to be the lack of well defined models for this kind of flows, which is
due to the more complicated setting. Standard approaches from flows over time
with constant transit times seem not easily be carried over to this case and we
will explain some of the occurring problems in the following. There is, in fact, a
variety of different approaches to define an applicable model. Unfortunately, all
of them are capturing only some but not all features of flows over time with flow
dependent transit times. However, they hopefully will be helpful for the design
of useful models and algorithms in the future.

4.1 Problems of Flow Dependent Transit Times

One significant property of flows over time in networks is that, in contrast to
static flow problems, flow values on arcs may change with time. As mentioned
before, in many applications one has to deal also with the phenomenon that the
time taken to traverse an arc varies with the current flow situation on this arc. It
is a highly nontrivial problem to map these two aspects into an appropriate and
tractable mathematical network flow model and there are hardly any algorithmic
techniques known which are capable of providing reasonable solutions even for
networks of rather modest size. The crucial parameter for modeling temporal
dynamics of time-dependent flows is the presumed dependency of the actual
transit time τe on the current (and maybe also past) flow situation on arc e.
Unfortunately, there is a tradeoff between the need of modeling this usually
highly complex correlation as realistically as possible and the requirement of
retaining tractability of the resulting mathematical program.

As for the static case, a fully realistic model of flow-dependent transit times
on arcs must take density, speed, and flow rate evolving along the arc into consid-
eration [38]. Unfortunately, even the solution of mathematical programs relying
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on simplifying assumptions is in general still impracticable, i. e., beyond the
means of state-of-the-art computers, for problem instances of realistic size (as
those occurring in real-world applications such as road traffic control).

When considering the correspondence between transit time and flow on a
particular arc, the first question in a time dependent model is, of course, which
flow or flow rate (flow units traversing an arc per time unit) do we measure?
When deciding about the transit time of a given unit of flow in an arc e at a
particular point in time t, what flow rate value do we consider to determine this
transit time? One possibility would be, to take the inflow rate, i. e., the flow rate
at the beginning of the arc e at the moment that the particular flow unit enters
e. When looking at this approach in the setting of traffic networks, one realizes
its drawbacks. Even if the number of cars which currently enter a street is small
compared to the capacity of the street, their transit times might nevertheless
be huge due to traffic congestion caused by a large number of cars which have
entered the arc earlier. Another plausible choice would be to consider the whole
amount of flow that is on arc e at time t, i. e., the load of e at time t. Yet, this
has its disadvantages as well, since when considering all cars on a street e at
some point in time t, one even counts those cars that are behind the particular
car of interest.

Besides the question how to measure the flow situation on an arc, an impor-
tant figure in the search for a good model is the transit time function itself. Due
to the inherent complexity of the time- and flow-dependent setting, models in the
literature often rely on relatively simple transit time functions, based on those,
used in static models of flow-dependent networks, e. g., the Davidson function
or the function of the BPR (see [90]). While these functions τe(xe) are given for
a static flow value xe, that is not varying over time, one can interpret τe(xe) as
the transit time on arc e for the static flow rate xe. Of course, these functions
mean a simplification of the actual flow situation in a time- and flow-dependent
model. However, their use is justified already since they are a generalization of
the well-established models for the static case and thus often allow to compare
the quality of a computed solutions to the solutions of the static model.

When developing flow models for real-world applications, a useful model often
has to satisfy certain additional requirements, which sometimes increase the
complexity of this model enormously. One prominent such requirement that is
present especially in traffic applications is the so-called FIFO or first-in-first-out
property. This property states that no unit of flow A entering an arc e after
some flow unit B exits this arc before B; in other words, overtaking of flow units
is not permitted. While a violation of this causes no problems for traffic when
considering single cars, it is considered not permitted by traffic scientists for
large groups of cars. In a model with constant transit time this requirement is
trivially satisfied since all flow through an arc travels with the same travel time.
However, in a model with variable transit times on the arcs it is often very hard
to guarantee.
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Fig. 11. Violations of the first-in-first-out property.

4.2 Models and Algorithms

In the following we discuss some approaches that can be found in the literature.
For a more detailed account and further references we refer to [3, 69, 79, 82].

One of the first models for time dependent flows with flow dependent transit
times has been defined by Merchant and Nemhauser [73]. They formulate a non-
linear and non-convex program in which time is discretized. In their model, the
outflow out of an arc in each time period solely depends on the amount of flow
on that arc at the beginning of the time period. Instead of using a transit time
function, as discussed above, they use for each arc e a cost function he,t and
an exit function ge, where he,t accounts for the transit time that is spend by
the flow on arc e in period t. Now, if x is the amount of traffic on an arc e at
the beginning of time period t, a cost he,t(x) is incurred and during period t an
amount of traffic ge(x) exits from arc e. In their setting Merchant and Nemhauser
were able to consider networks of general topology and multiple origins, but
only a single sink. Although this model seems to be not easily applicable to
real-world applications, it has been an important stepping stone in the study of
time- and flow-dependent models. Still, the non-convexity of this model causes
both analytical and computational problems.

Later, Merchant and Nemhauser [74] and Carey [17] further studied this
model and described special constraint qualifications which are necessary to
guarantee optimality of a solution in this model. Carey [18] introduces a slight
revision of the model of Merchant and Nemhauser which transforms the non-
convex problem into a convex one.

A rather different approach to modeling flows over time with flow dependent
transit times was used by Carey and Subrahmanian [19]. Before we look at their
model in more detail, we shortly discuss the problems occurring with the time
expanded network approach of Section 2.2.

Recall that the main advantage of the time expanded network is that we
can apply known algorithms for static networks to solve the corresponding time
dependent problems. Unfortunately, this simple approach does not easily carry
over to the case of flow dependent transit times. Consider a simple network with
only two arcs. Initially, the flow value on each arc is zero and, as each arc has
a certain empty transit time (in our example the transit time of each arc is
one time unit), we can easily construct a time expanded network, as described
earlier (see Figure 12). Again, we can consider a path P from some source s to
a sink t in the original network and find the corresponding path in the time-
expanded version that captures the transit times of the different arcs. However,
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if we now send some flow on this path P through the network, then the problem
of this approach becomes evident: since the transit times of the arcs vary with
the amount of flow on them, the time expanded graph changes its adjacencies
and its structure. In fact, the arcs of the path corresponding to P in the original
network now become incident to completely different copies of the vertices in the
time-expanded network. As a consequence we cannot apply standard algorithms
for static flow problems any more since they rely heavily on the fact that the
underlying graph is not changing. Thus, the advantage of the time-expanded
approach seems to be lost.
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Fig. 12. A simple two-arc network together with a time-expansion for empty transit
times, and the time-expansion when one unit of flow is sent from s to t, showing the
problems of a time expansion for flow dependent transit times.

In spite of this daunting observation, Carey and Subrahmanian [19] were
able to define a variant of the time expanded network that captures at least
some features of flow dependent transit times. Their network again has fixed
transit times on the arcs. But for each time period, there are several copies
of an arc of the underlying ‘static’ network corresponding to different transit
times. Now changing flow values on the arcs is to result no longer in a change
of adjacencies in the graph but instead different copies of the same arc should
be used for different amounts of flow. In order to enforce these flow-dependent
transit times, special capacity constraints are introduced which give rise to a
dependency between the flow on all copies of an arc corresponding to one time
step. As a consequence of these generalized capacity constraints, the resulting
static problem on the modified time-expanded graph can no longer be solved
by standard network flow techniques but requires a general linear programming
solver. This constitutes a serious drawback with regard to the practical efficiency
and applicability of this model.

Although the models mentioned up to this point mark some important de-
velopments in the study of flows over time with flow dependent transit times,
they have a drawback in common; they are not suitable for efficient optimization
methods. In contrast to the models for static flows and for flows over time with
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Fig. 13. Idea of expanded model of Carey and Subrahmanian; here for a simple two-arc
network with transit time function τ(xe), causing transit times 1, 3, and 6, depending
on the amount of flow xe entering arc e.

constant transit times, here fast standard flow algorithms cannot be applied.
This is of course partially due to the complexity of these models. However, for
solving real problems, also on large networks one has to have fast algorithmic
tools.

The following model was suggested by Köhler and Skutella [58, 59]. It is
inspired by the earlier mentioned results of Ford and Fulkerson and of Fleischer
and Skutella (see Section 2.2). Although the result of Ford and Fulkerson for
computing a maximum flow over time for a fixed time horizon T cannot be
generalized to the more general setting of flow-dependent transit times, it is
shown in [58, 59] that there exists at least a provably good temporally repeated
flow for the quickest flow problem, i. e., for the problem of sending a certain
amount of flow from some vertex s through the network such that it reaches the
sink t as fast as possible.

As for the case of fixed transit times, and in contrast to the before men-
tioned models for flow dependent transit times, this flow can be determined very
efficiently. Since the transit times are no longer fixed, the linear min-cost flow
problem considered by Ford and Fulkerson now turns into a convex cost flow
problem. Under very mild assumptions on the transit time functions τe, the re-
sulting optimal static flow can be turned into a temporally repeated flow which
needs at most twice as long as a quickest flow over time.

This result is based on the fairly general model of flow-dependent transit
times where, at each point in time, the speed on an arc depends only on the
amount of flow (or load) which is currently on that arc. This assumption captures
for example the behavior of road traffic when an arc corresponds to a rather short
street (notice that longer streets can be replaced by a series of short streets).

The next model that we present here is again based on the time-expanded
network, known from flows over time with constant transit time. As in the model
of Carey and Subrahmanian [19], Köhler, Langkau and Skutella [56, 65] suggest
a generalized time-expanded network with multiple copies of each arc for each
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time step. However, in contrast to the model in [19], additional ‘regulating’ arcs
are introduced which enable to enforce flow-dependent transit times without
using generalized capacity constraints. As a result, one can apply the whole
algorithmic toolbox developed for static network flows to this generalized time-
expanded network, also called the fan graph (see Figure 14).

Fig. 14. Transit time function, fan-graph, and bow-graph of a single arc.

The underlying assumption for this approach (as for the related approach of
Carey and Subrahmanian [19]) is that at any moment of time the transit time
on an arc solely depends on the current rate of inflow into that arc. We therefore
speak of flows over time with inflow-dependent transit times, emphasizing the
fact that transit times are considered as functions of the rate of inflow. Thus,
in contrast to the load-dependent model developed by Köhler and Skutella [58,
59], the flow units traveling on the same arc at the same time do not necessarily
experience the same pace, as the transit time and thus the pace of every unit of
flow is determined when entering the arc and remains fixed throughout.

As in the case of constant transit times, a drawback of this rather general
time-expanded model is the size of the constructed graph. Depending on the
considered time horizon and the size of a single time step, the graph grows
rapidly. Hence, when considering large instances of networks, this model is again
not applicable. However, as shown by Köhler, Langkau and Skutella [65, 56] as
well, there is also a time condensed version of this network, the so-called bow-
graph of the given network. The idea is here to construct a graph with constant
transit times on the arcs, such that the time expansion of this graph is again
the fan-graph. Another way of looking at this condensed graph is, to see it as an
expansion of the transit time function of the original graph, since now for each
arc we have copies for each possible transit time of this arc (instead of having a
copy for each time step in the time expanded graph). Again a set of regulation
arcs guarantees that only a restricted amount of flow can transit an arc using
a particular copy of this arc in the bow-graph. This bow-graph itself does not
capture the time varying behavior of the flow over time. However, the interesting
property here is that the bow-graph relates to the fan-graph in this model, as
the original graph relates to the time expanded graph in the constant travel
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time model of Ford and Fulkerson. As shown in [65, 56], this relationship can
be exploited for developing a 2-approximation algorithm for the quickest flow
problem in this model for flows over time with inflow-dependent transit times.

For the load-dependent model of Köhler and Skutella [58, 59] the quickest flow
problem can be shown to be APX-hard even for the case of only one source and
one sink, implying that there is no polynomial-time approximation scheme unless
P=NP. The inflow-dependent model is easier to approximate. Hall, Langkau
and Skutella [65, 43, 44] combined the inflow-dependent model with the idea of
condensed time-expanded networks (see Section 2.2) to design a fully polynomial
time approximation scheme for the quickest multicommodity flow problem with
inflow-dependent transit times.

Not only quickest flows but also earliest arrival flows have been studied in
the context of flow dependent transit times. Baumann and Köhler [7, 9] show
that for the case of flow-dependent transit times earliest arrival flows do not
always exist. However, an optimization version of the earliest arrival problem is
introduced. This is done as follows. Find the minimum α such that there is a
flow over time f that sends for each θ ∈ [0, T ) at least as much flow into the
sink t as can be sent into t up to time θ

α by a maximum flow over time fmax( θ
α )

within this time horizon, i.e., value(f, θ) ≥ value(fmax( θ
α ), θ

α ). Such a flow will be
called an α-earliest arrival flow. Using any of the approximation algorithms for
the quickest flow problem both for load-dependent and inflow-dependent flows
one can design approximation algorithms for the α-earliest arrival flow problem.

Finally, we would like to mention the rate-dependent model. It was intro-
duced by Hall and Schilling [42] and tries to overcome some of the deficiencies
of the flow-dependent models outlined above. In particular one can avoid FIFO-
violations (see Section 4.1) which might occur in the inflow-dependent model and
undesired overtaking (see Section 4.1) that might occur in the load-dependent
model. In the rate-dependent model the relationship between the flow-rate on an
edge and the pace (which is defined to be the inverse of the velocity) is the cen-
tral notion. Roughly speaking, the novel idea of this model is not to set a fixed
pace for each possible flow rate (as done in the earlier models), but rather to
allow a whole interval of pace–flow rate combinations. Hence, one ends up with
a less restrictive and more realistic model. Unfortunately, these advantages are
obtained on the cost of efficiency: Similarly, as for the earlier models, computing
a quickest flow is NP-hard. But, in contrast, no efficient approximation algo-
rithm, e.g. for the quickest flow in this model is known. Yet, the authors show
the practical relevance of their approach by presenting a heuristic algorithm for
the quickest flow problem and comparing its solutions with the solutions of the
inflow-dependent model.
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60. Ekkehard Köhler, Rolf H. Möhring, and Heiko Schilling. Acceleration of shortest
path and constrained shortest path computation. In Sotiris E. Nikoletseas, editor,
Experimental and Efficient Algorithms, 4th International Workshop, WEA 2005,
volume 3503 of Lecture Notes in Computer Science, pages 126–138, Berlin, 2005.
Springer.
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& Partner GmbH, München, in Zusammenarbeit mit diversen deutschen Automo-
bilherstellern, 1995.

94. John Glen Wardrop. Some theoretical aspects of road traffic research. Proceedings
of the Institution of Civil Engineers, 1(2):325–362, 1952.

95. W. L. Wilkinson. An algorithm for universal maximal dynamic flows in a network.
Operations Research, 19:1602–1612, 1971.

96. Thomas Willhalm. Engineering Shortest Paths and Layout Algorithms for Large
Graphs. PhD thesis, Universität Karlsruhe (TH), Karlsruhe, 2005.


