
ADM III WiSe 2014/15
Scheduling and Project Planning

LATEXby Martin Plonka

November 1, 2015

Contents

1 Projects and Partial Orders 1

2 The Deterministic Project Scheduling Model 4

3 The Stochastic Project Scheduling Model 8

4 Scheduling with Scarce Resources 10

5 Scheduling Policies 15

6 Priority Policies 21

7 Early Start Policy 23

8 Constructing ES-Policies 28

9 Preselective Policies 30

10 Constructing and Evaluating Preselective Policies 37

11 Characterization of ES- and Preselective Policies 42

12 Set Policies 46

13 Expected Makespan 51

14 Weighted Completion Times 53

15 Stochastic Online Scheduling for Weighted Completion Times 63

16 Evaluating the Distribution of the Objective Value of a Policy 68

17 Bounding the Distribution Function of the Makespan 72

18 Bounds for Dependent Processing Times and the Makespan 78

19 Time-Cost Tradeoff Problems 81

20 More on Project Scheduling with Resource Constraints 87

21 Generalized Project Scheduling Problems and IP-Models 89
21.1 Generalize Precedence Constraints by Time Lags 89
21.2 Scheduling with Time Lags and Start Dependent Costs 90
21.3 Lower Bounds for the RCPSP . 93

1 Projects and Partial Orders

1 Projects and Partial Orders
Definition 1.1:
A project consists of for example

(1) activities / jobs u, v, i, j or just V = {1, . . . , n}

(2) job data
• processing time / duration (random or deterministic)
• resource requirements
• processing costs

(3) project data
• available resources
• limited budget
• deadlines

(4) project rules
• temporal conditions
• resource conditions

The simplest case consists only of precedence conditions. Therefore we define a
partial order.

Definition 1.2:
We define the binary relation < on V by

i precedes j i < j :⇔ j must wait for i

meaning i precedes j. This defines a partial order:

i < j ⇒ j ≮ i (asymmetric)
i < j ∧ j < k ⇒ i < k (transitive)

We may represent our projects as activity on node diagram, meaning an directed
acyclic graph G = (V,E). Where E is the transitive reduction of precedence con-
straints <.

Definition 1.3:

• PredG(i) := {j ∈ V | j < i}

• SucG(i) := {j ∈ V | i < j}

• ImPredG(i) := {j ∈ V | j < i ∧ (j, i) ∈ E}

• ImSucG(i) := {j ∈ V | i < j ∧ (i, j) ∈ E}

• i is maximal in G if and only if SucG(i) = ∅.

1

1 Projects and Partial Orders

• i is minimal in G if and only if PredG(i) = ∅.

• i is greatest if and only if i is the only maximal job

• i is smallest if and only if i is the only minimal job.

• i, j are comparable i ∼G j if either i < j or j < i.

• i, j are incomparable i ‖G j if they are not comparable.

Example 1 : Bridge Construction Project
Consider Foundations Fi, Piers Pi, Superstructures Si.
We get the set of jobs V = {F1, F2, F3, F4, P1, P2, S1, S2, S3} with the natural prece-
dence constraints:

S1 S2 S3

P1 P2
F1 F4

F2 F3

F1 < S1

F2 < P1 < S1 P1 < S2

F3 < P2 < S2 P2 < S3

F4 < S3
We want to represent this as an activity on node graph for now. This leads to the
following directed acyclic graph.

F1

F2

F3

F4

P1

P2

F1

F1

F1
V = set of jobs
E = {(i, j) | i < j @k : i < k < j}
Meaning the transitive reduction of the
partial order <

♦

Lemma 1.4:
Let (V,<) be a finite partial order and (V,E) be its transitive reduction. Then E is
the smallest (inclusion wise) binary relation on V such that

Etrans = <

where Etrans denotes the transitive closure, meaning the smallest transitive rela-
tion containing E, e.g. the set of all (i, j) such that there is a finite sequence
i = i0, . . . , ik = j with (iv, iv+1) ∈ E.

Sketch of Proof. By the definition of E we need all pairs (i, j) ∈ E in any D with
Dtrans =<. Therefore E must be contained in the smallest set D with Dtrans =<.
Let i < j and (i, j) /∈ E by definition of E there is a k such that i < k < j. By
iteration we get the finite sequence in E because < is acyclic.

Remark:
This lemma does not hold for relations with cycles or infinite ground sets. M

2

1 Projects and Partial Orders

Exercise

(1.1) Formulate an algorithm for constructing the transitive closure of a digraph
(not necessarily acyclic).

(1.2) Formulate an algorithm for constructing the transitive reduction of a directed
acyclic graph (or partial order).

(1.3) Prove O(n3) run time bound for your algorithms.

In mathematics predecessor relations are sometimes modeled in a so called Hasse
diagram. Where as in computer science and operations research directed acyclic
graphs are used.

3

2 The Deterministic Project Scheduling Model

2 The Deterministic Project Scheduling Model
Every job j ∈ V has a fixed processing time xj ∈ R>. This gives a processing
time vector x = (x1, . . . , xn) ∈ Rn>. We consider the case with no preemption (no
interruption of jobs). So jobs are the smallest units of a project. The precedence
constraints are given by a partial order G or < (used synonymously).

Definition 2.1:
A schedule S is a vector S = (S1, . . . , Sn) of start times for the jobs. S respects G if
and only if i < j implies Si +xi ≤ Sj. Furthermore Ci = Si +xi is the completion
time of job i.
We may represent a schedule via a so called Gantt Chart

t

i

Si Ci

Now we try to model the resource constraints in a mathematically and maybe not
that intuitive way.

Definition 2.2:
The system F = {F1, . . . , Fk} of forbidden sets consists of antichains Fi of G. Fi
is an antichain if u ‖G v for all u, v ∈ Fi. These are the smallest sets that must
not be scheduled simultaneously at any moment during project execution, but every
proper subset can.
A schedule S repects F if and only if for every Fi for every t

M(t) = {j ∈ V |Sj < t < Cj} + Fi

Lemma 2.3:
Resource constraints given by forbidden sets model precisely constant resource re-
quirements (constant amount during processing of a job) and availabilities (constant
availability during project execution).

Example 2 :

1

2

3

4

5

6

7

j 1 2 3 4 5 6 7
r1(j) 2 1 1
r2(j) 1 1 1 2 2 2

ri(j) is the constant amount of resource i
required by job j.

Availabilities: R1 = 2 units of resource 1 and R2 = 3 units of resource 2. This gives
the system of forbidden sets

F = {{1, 2}, {3, 4, 5}, {6, 7}, {3, 4, 7}, {5, 6}}

4

2 The Deterministic Project Scheduling Model

Every system F (with no Fi ⊂ Fj) of antichains of G can be obtained in this way,
even with ri(j) ∈ {0, 1}.

j 1 2 3 4 5 6 7
F1 = r1 1 1 R1 = 1
F2 = r2 1 1 1 R2 = 2
F3 = r3 1 1 1 R3 = 1
F4 = r4 1 1 R4 = 2
F5 = r5 1 1 R5 = 1

♦

Example 3 : m-machine problem
We consider m parallel identical machines(R1 = m).

j 1 2 . . . n
r1(j) 1 1 . . . 1

Then F is the set of all (m+ 1) element antichains of G. ♦

Remark:

(a) |F| can be exponential in n.

(b) Often it suffices that F is given implicitly (by m machines).

(c) A schedule S is feasible for G, x,F if S respects G,F .

To be able to differentiate between feasible schedules we introduce a regular measure
of performance (cost function).

Definition 2.4:
A function κ : Rn → R that is non-decreasing in every component describes the
cost of performing the project according to schedule S.

κ(C1, . . . , Cn) = κ(S, x)

The cost function may look like

(a) κ(C1, . . . , Cn) = max{C1, . . . , Cn} makespan, project duration

(b) κ(C1, . . . , Cn) = ∑n
j=1Cj sum of completion times

(c) κ(C1, . . . , Cn) = ∑n
j=1wjCj weighted sum of completion times

(d) κ(C1, . . . , Cn) = ∑n
j=1wjTj where Tj = max{0, Cj − dj} is the tardiness.

M

Example 4 : 2 machine model
1

2

3

4

With F = {{2, 3, 4}} and x = (1, 3, 3, 1).
There are several possible schedules.
(With most left shifted jobs).

5

2 The Deterministic Project Scheduling Model

S1

2
1 3

4

S2

2
1 4 3

S3
1

4
3

2

S1 is optimal for (a), S2 is optimal for (b) and all are feasible. ♦
The optimal schedule depends on the objective function. We may restrict our

considerations to left shifted schedules since κ is non-decreasing.
Let us now consider the special case with no resource constraints. Is there a best
schedule for G, x? Yes.

Definition 2.5:
We define the Early Start (or Earliest Start) schedule

ESG[x](j) :=


0 j is minimal in G
max

(i,j)∈E
{ESG[x](i) + xi} otherwise

Lemma 2.6:
(a) ESG[x] is a schedule that respects G.

(b) ESG[x] ≤ S (componentwise) for every feasible schedule S respecting G.

(c) ESG[x](j) is the length of a longest chain in G|Pred(j).

ESG[x](j) = max
{∑
i∈U

xi |U is an ⊆ -max chain in G|Pred(j)
}

(d) ESG[·] : Rn> → Rn≥ is positively homogeneous, convex, monotone, sublinear and
continuous.

Remark:
A chain U is a set of jobs such that x ∼G y for all x, y ∈ U holds. The set G|Pred(j)
is the induced subgraph. M

Proof.
(c) Induction on |Pred(j)|

Ind. Start |Pred| = 0 ⇒ Pred(j) = ∅ so we maximize over the empty set.
Therefore j is minimal in G which implies ESG[x](j) = 0.

Ind. Step |Pred(j)| > 0
ESG[x](j) = max{ESG[x](i) + xi} Thus with |Pred(i)| < |Pred(j)| we
can use the inductive assumption on i and therefore we get

ESG[x](j) = max
(i,j)∈E

max
U

∑
k∈U

xk

+ xi


= max

U ′

∑
k∈U ′

xj

Every chain (U ′) ending in j is a chain (U) in Pred(i) plus an arc (i, j)
for some i ∈ ImPred(j).

6

2 The Deterministic Project Scheduling Model

(b) follows from (c) since the length of a chain in Pred(j) is a lower bound for Sj
for every schedule S.

(a) follows from the definition of ES, but also from (c). Add a dummy job before
all minimal jobs. Then li is the length of a longest chain in Pred(i). Thus

lj ≥ li + xi
(c)⇔ ESG[x](j) ≥ ESG[x](i) + xi

(d) ESG[x](j) = max
Cchain

∑
i∈C

xi is the maximum of linear functions and therefore

inherits the claimed properties.

Consequences

(a) Given κ, the minimum cost of planning according to ESG[x] is

κ(ESG[x], x) =: κG(x) .

(b) We can consider κG(·) : Rn> → R1 as a cost or performance function.

(c) Special case κ = Cmax. Then CG
max(x) is the length of the longest chain in G.

Remark:

• (c) leads to the CPM (critical path method).

• If the world is simple (no resource constraints) then the early bird rule is
optimal.

M

Exercise

(2.1) Prove that if S minimizes Lmax (lateness Lj = Cj−dj) then S minimizes Tmax
(tardiness).

(2.2) The objectives ∑wjCj and
∑
wjLj are equivalent.

(2.3) Describe the makespan polytope

P =
{
x ∈ Rn≥

∣∣∣CG
max(x) ≤ t

}
of a partial order G by its vertices.

t ≥ CG
max(x)⇔

∑
i∈U

xi ≤ t

Hint: Use antichains of G.

7

3 The Stochastic Project Scheduling Model

3 The Stochastic Project Scheduling Model
We now consider random processing times Xj instead of fixed xj. Assume that we
know the joint distribution P of X = (X1, . . . , Xn). The Xi will be independent in
most cases but not always.
The structure [G,P] is called a stochastic project network. For a measurable
(will always be assumed) cost function κ the distribution PκG of κG(·) is well defined.
Remember that κG(x) = κ(ESG[x] + x) is measurable.

Theorem 3.1: Underestimation Error
Let [G,P] be a stochastic project network. Let E(X) := (E(X1), . . . ,E(Xn)) be the
vector of average job processing times. If κ is convex, then we have the following
comparison between the deterministic planning according to averages (left) and the
real expected costs (right)

κG(E(x)) ≤ E(κG(·))

Proof.
κG(x) = κ(ESG[x] + x) =: f(x1, . . . , xn) is convex

Thus the theorem follows from Jensen’s inequality for convex functions

f(E(X1), . . . ,E(Xn)) ≤ E(f(X1, . . . , Xn))

Most of our cost functions are convex (as Cmax, Tmax etc.).

Elementary Proof for Cmax.
Let C := {C1, . . . , Cm} be the set of ⊆-maximal chains of G. For Ci define

Y i :=
∑
j∈Ci

Xj

as the (random variable) length of chain Ci. Then

CG
max(X) = max

i
Y i

and thus

CG
max (E(X)) = max

i

∑
j∈Ci

E(Xj)

= max
i
E

∑
j∈Ci

Xj


= max

i
E(Y i)

= E(Y i0)
≤ E(max

i
Y i) = E(CG

max(X))

We assume that the expected maximum is attained for some Y i0 .

8

3 The Stochastic Project Scheduling Model

Remark:
• Equality holds for Cmax if and only if one of the chains is the longest with

probability 1.

• The underestimation error can get arbitrarily large (if n grows or the variance
of the Xj grows).

M

Example 5 : n grows
We have n parallel jobs. Gn is an n element anti-chain. Assume that every Xj is
independently exponentially distributed with parameter λ = 1. Thus E(Xj) = 1

λ
.

Then with the memoryless property of the exponential distribution follows

E(CGn
max) = E(first completion) + E(CGn−1

max)

Since the minimum of X1, . . . , Xn is exponentially distributed with (λ1 + . . .+λn)−1

we get a recursive formula and can conclude:

1
λ1 + . . .+ λn

+ E(CGn−1
max) = E(CGn

max)

1
n

+ E(CGn−1
max) =

n∑
i=1

1
i
≈ log n+ γ

where γ denotes the Eulerian constant.
Since CGn

max(E(X)) = 1, the absolute and relative error may get arbitrarily large. ♦
Summary:

• Stochastic influences are important and need to be considered.

• This has led to PERT method at NASA. It considers only distributions of Y i0

with E(Y i0) = maxi E(Y i) for the makespan.

9

4 Scheduling with Scarce Resources

4 Scheduling with Scarce Resources
Introduction and Complexity
Definition 4.1: The model

V = {1, . . . , n} set of jobs.

G = graph (V,E) of precedence constraints.

F = {F1, . . . , Fk} system of forbidden sets (resource constraints).

κ = cost function / regular measure of performance.

x = (x1, . . . , xn) deterministic case.

X = (X1, . . . , Xn) stochastic case.

In the deterministic case we want find a schedule S that respects G, x and F
(feasible schedule) such that κ(S, x) = κ(C1, . . . , Cn) is minimized.

Definition 4.2: m-machine problems
We have m identical machines / processors and every job needs one, every machine
can process only one job at a time.

⇒ F = {F ⊂ V | |F | = m+ 1 and F is an antichain of G}

Theorem 4.3:
Let m = 1 and EG = ∅ (no precedence constraints). Then the following holds.

(1) Idle time does not pay for any κ. Idle time means that a processor is not busy,
but there is a job that could be processed.

(2) For κ = ∑
wjCj Smith’s rule constructs an optimal schedule:

• Sort the jobs such that: xi1
wi1
≤ xi2
wi2
≤ . . . ≤ xin

win
• Schedule jobs in that order.

(3) For κ = Lmax Jackson’s rule constructs an optimal schedule
• Sort jobs such that: di1 ≤ di2 ≤ . . . ≤ din

• Schedule the jobs in that order.

(4) The problem with κ = Lmax and jobs with non-trivial release dates rj (i.e. Sj ≥
rj) is NP-hard.

(5) The cost function ∑wjTj gives again an NP-hard problem.

Proof.
(1) Trivial.

(2) A simple exchange argument for two adjacent jobs.

10

4 Scheduling with Scarce Resources

(3) Exercise!

(4) Without proof.

(5) Without proof.

The theorem above shows that already small changes may turn a problem from
polynomially solvable to NP-hard. This behavior is typical for scheduling. From
1975 to 1985 many scheduling problems have been classified (about 8000) and about
80 per cent of them are NP-hard. 1

Other examples:(CG
max)(1)

We now want to consider the m-machine problem with m ≥ 2, arbitrary precedence
constraints, xj = 1 for all j and κ = Cmax. xj = 1 models jobs in a parallel processor
environment where xj = 1 corresponds to a time slot for processing and every long
job is subdivided into a chain of pieces with unit length.

Claim:
The case m = 2 is polynomially solvable.

Definition 4.4:
The incomparability graph Incomp(G) of G is given by the vertex set V of G and
(i, j) is an edge in Incomp(G) if and only if i 6= j and i ‖G j.

Theorem 4.5: Fujii et al 67,71
(CG

max)OPT (1) is equal to the maximum size of a matching in Incomp(G) plus the
number of unmatched jobs and one can construct the schedule from the matching in
polynomial time.
We will illustrate this idea with the following example.

Example 6 :
G

3

2

1

6

5

4

8

7

9

Incomp(G)

1

2

3 4

5

6

7

8

9

An optimal schedule is given by

1 3 5 6 7
2 4 8 9

See that every time slot with two jobs in parallel defines a matched edge in Incomp(G).
Now from the matching to a schedule.

1You can find this and more detailed information on the classification of scheduling problems on:
http://www.informatik.uni-osnabrueck.de/Kunst/class

11

http://www.informatik.uni-osnabrueck.de/Kunst/class

4 Scheduling with Scarce Resources

1

2

3 4

5

6

7

8

9

This is a maximum matching, but it cannot be turned into a schedule such that
matched jobs are scheduled in the same time slot. The following crossing (matching
edges cross with respect to precedence constraints) leads to a contradiction.

in Gtrans

b d

a c

crossing

b d

a c
uncrossed

b d

a c

There is no ordering of the time slots respecting the precedence constraints. We
want to uncross the matching. ♦

Lemma 4.6:
For every matching M , there is a non-crossing matching of the same size that can
be obtained by uncrossing crossings in any order.
So every uncrossing reduces the number of crossings.

Proof. Suppose this is not the case. Then the uncrossing creates a new crossing
with u1, v1, u2, v2

u2 u4

u1 u3

uncross→
u2 u4

u1 u3

v2v1

This implies the precedence relations u1 < v1 and v2 < u2 and (v1, v2) ∈M . There-
fore (v1, v2) crosses with (u1, u4) before the uncrossing

u2 u4

u1 u3

v2v1 uncross→
u2 u4

u1 u3

v2v1

This crossing does no longer exist after uncrossing. Thus for every new crossing,
another old crossing involving the same edges is also uncrossed and the number of
total crossings drops.

Example 6 : continued
Now assume that the matching M (= {(1, 2), (3, 4), (6, 8), (7, 9)} e.g.) is non-
crossing. We want to construct a schedule from M . First we order the matching
edges (a, b) < (c, d) if and only if

a < c ∨ a < d ∨ b < c ∨ b < d

This defines a unique ordering of the matching edges because there are no crossings.
To insert unmatched jobs into this linear order we define a < (b, c)(matching edge)

12

4 Scheduling with Scarce Resources

if and only if a < b∨ a < c. This is well defined (else we would get a contradiction).
Now take a linear extension of that ordering (a linear order that preserves the order-
ing relations). The linear extension of matching edges and unmatched jobs defines
a schedule.
G∗

2

1

4

3

5

8

6

9

7
ESG∗

1 3 5 6 7
2 4 8 9

So as claimed in theorem 4.5 every matching gives a schedule S of length |M | + #
unmatched and vice versa. ♦
The complexity of the m-machine problem is still open for m = 3. If m is part of

the input we can use the following theorem.

Theorem 4.7:
The following problem is NP-complete:
For given G,m, t and x = 1 is there a feasible schedule with makespan less or equal
to t.

Proof. Clique is reducible to them-machine problem. The Clique problem states:
For G = (V,E) and k ∈ N, does G have a clique of size k? We want to construct
an instance of m-machine problem from this instance. The graph G defines vertex
jobs (ui) and edge jobs (uij). Where every vertex job is schedule before the edge job
containing that vertex

(i, j) ∈ E ⇒ ui < uij and uj < uij

G1 un

uj

ui

u1

uij

G2 aλ

a2

a1

bν

b2

b1

cµ

c2

c1

In addition there are dummy jobs that define a frame in which the real jobs must
be scheduled together with the time bound t for the makespan. Every ai < bj and
every bi < cj. With the number of machines

m = max
{
k,

(
k

2

)
+ n− k, |E| −

(
k

2

)}
+ 1

define
λ = m− k ν = m−

(
k

2

)
− n+ k µ = m− |E|+

(
k

2

)
such that min{λ , ν , µ} = 1. Set t = 3 and G∗ = G1 +G2 (disjoint union).

13

4 Scheduling with Scarce Resources

Claim:
The graph G has a clique of size k if and only if there is a G∗ feasible schedule of
length at most t.

⇒ Schedule k jobs from the clique in time slot 1. Then we can schedule
(
k
2

)
edge

jobs from a k clique and the remaining vertex jobs in time slot 2. Finally
schedule the remaining edge jobs in time slot 3.

⇐ Assume that the graph has no clique of size k therefore there are at most(
k
2

)
− 1 in slot 2 and one slot remains empty at time 2. Thus the schedule has

length greater than 3.

a1

b1

c1

bν

aλ

u1

u2

u24

cµ

u4

u25

u12

1

2

3

Exercise

(4.1) Show that Jackson’s rule constructs an optimal 1-machine schedule for Lmax
(no precedence constraints).

(4.2) Show that the 3-machine problem can be solved in polynomial time for prece-
dence constraints of fixed width (i.e. the size of the largest antichain is bounded
by a constant).

14

5 Scheduling Policies

5 Scheduling Policies
Scheduling problems are highly NP-hard. Therefore we need polynomial time (ap-
proximation) methods to study these problems with varying processing times but
fixed G,F , sometimes also independent of κ.

Definition 5.1:
A planning rule for [G,F] is a function Π : Rn> → Rn≥ that assigns to each vector
x of processing times a schedule Π[x] that respects G,F and x.
We can now speak of monotone, continuous, etc. (properties of) planning rules.

For fixed κ and a planning rule Π the function:

κΠ : Rn> → R1 with κΠ[x] = κ(Π(x) + x)

gives the performance cost resulting from planning according to Π and x. For a
fixed class P of planning rules

ρP(κ, x) := inf{κΠ(x) |Π ∈ P}

denotes the optimal value over P for fixed x.
If processing times are random, we want to find a planning rule that is best on
average, i.e.

ρP(κ) := inf{E[κΠ] |Π ∈ P}

Dynamic Representation of Planning Rules and Ploicies
This is a different implicit representation.
Decision Times

• Project start t = 0.

• Completion of a job.

• Times at which information becomes available.

These are the times, when we have to make a decision.
Consider the situation at decision time t:

t

• Set of completed jobs C(t).

• Set of busy jobs B(t).

• Set of jobs started at t S(t).

What constitutes a decision:

• S(t) The set of start jobs

• tplan The next tentative decision time.

• tnext = min{tplan, next completion }

15

5 Scheduling Policies

Definition 5.2:
A planning rule is non-anticipative or a policy if tplan and S(t) depend only on the
history up to time t.
History hereby means:

• Processing times and starting times of jobs in C(t)

• Current processing times and start times of jobs in B(t).

• Time t.

• G,F etc.

This gives information about conditional distribution obtained from the given joint
distribution Q of processing time conditioned on the history.
In dynamic programming language we also say state instead of history and action
instead of decision.

Example 7 :

• Smith’ rule is not a policy, but Smith’s rule based on expected length

E(xi1)
wi1

≤ . . . ≤ E(xin)
win

would be a policy.

• The matching algorithm for the 2-machine problem is a policy if we take the
ordering of jobs obtained from the matching.

♦

Example 8 : Non-anticipative is worse than anticipative
Let V = {1, 2, 3} without precedence constraints and the distribution

x = (1, 1, 2) y = (1, 2, 1) z = (2, 1, 1)
1
3

1
3

1
3

The best anticipative planning rule does the best for every realization.

x : 3

1 2

y : 2

1 3

z : 1

2 3

Thus we get E[CΠ
max] = 2.

The best non-anticipative planning rule must make a decision at time t = 0 without
knowing the future. So without loss of generality S(0) = {1, 2} implies the schedules:

x : 2

1 3

y : 2

1 3

z :
1

2 3

Thus we get E[CΠ
max] = 7

3 . This is the unavoidable loss due to non-anticipativity. ♦

16

5 Scheduling Policies

Example 9 : Tentative Decision Times are Necessary
1

2

3

4

Consider the 2-machine problem with the
forbidden set F = {2, 3, 4}.

Let the Xj ∼ exp(a) be exponentially distributed and independent with a common
due date d. Consider penalties for lateness v for job 2 and w for jobs 3, 4 with
v � w. We want to minimize the expected penalties.
If we start the jobs 1 and 2 at t = 0 we risk that job 2 blocks a machine and we
have to do the expensive jobs 3 and 4 sequentially. Starting only job 1 and wait for
its completion the deadline may be approaching and we have a short span for the
remaining jobs.
Thus start job 1 at time t = 0 and fix a tentative decision time tpanic. If C1 ≤ tpanic

start 3 and 4 at C1, else start 2 at tpanic. ♦
Without loss of generality we may require that S(t) 6= ∅ at tentative decision times.

Otherwise the policy without that decision time would define the same function
Π : Rn> → Rn≥.
Thus a planning rule has a finite number of decision times, especially at most 2n−1,
because at t = 0 and every completion except the last one job starts and we have
at most (n− 1) tentative decision times.

Lemma 5.3:
Let Π be a policy. Then the history at decision time t is completely determined by

• The processing time xj of all j ∈ C(t).

• The current processing time x̄j of all j ∈ B(t).

• Time t.

Meaning, from that information, we can construct Sj, Cj of the history.

Proof. By induction along the decision times.

t(1) = 0 The policy Π defines S(t(1)) uniquely. Thus we know all Sj = 0 for all
j ∈ S(t(1)).

t(k) → t(k+1)

Case 1 t(k+1) s not a completion time. Since we knew all Sj and Cj at t(k) by
the inductive assumption and nothing completes and the start time of
new jobs is t− x̄j, we know all Sj and Cj up to t(k+1).

Case 2 t(k+1) is a completion time (first completion after t(k)). The start times
of new jobs is t − x̄j and the completion times of newly completed jobs
is t.

The lemma above implies the following theorem.

17

5 Scheduling Policies

Theorem 5.4:
A planning rule Π is non-anticipative if and only if the following condition holds:

x ∼t y and Π[x](j) = t⇒ Π[y](j) = t (NA)

We say that x, y look the same to Π at time t (x ∼t y) if and only if

xj = yj ∀j ∈ C(t) = Cx(t) = Cy(t)
x̄j = ȳj ∀j ∈ B(t) = Bx(t) = By(t)

The above theorem is a condition in the interpretation of Π as a function. The
relation ∼t constitutes an equivalence relation Et on Rn>. So Π : Rn> → Rn≥ is a
policy if and only if Π[x] is a feasible schedule and for all x and Π fulfills (NA).

Theorem 5.5:

(a) E0 = Rn> × Rn>, i.e., x ∼t=0 y for all x, y

(b) t1 < t2 implies Et1 ⊃ Et2 (i.e. x ∼t2 y ⇒ x ∼t1 y)

(c) E∞ = {(x, x) |x ∈ Rn>} (i.e. x ∼∞ y ⇒ x = y)

Proof.
(a) Clear since C(0) = ∅ and x̄j = ȳj = 0 for all j.

(b) Now x ∼t2 y implies

xj = yj ∀j ∈ C(t2) x̄j = ȳj ∀j ∈ B(t2)

t1 t2

j ∈ B(t1) ∩B(t2)

j ∈ B(t1) ∩ C(t2)

j ∈ C(t1)

Now for j ∈ C(t1) we get j ∈ C(t2) and with x ∼t2 y follows xj = yj at t1.
For j ∈ B(t1) implies two cases j ∈ B(t2) or j ∈ C(t2).
Case 1 j ∈ B(t2) implies x̄j = ȳj at t2 and thus x̄j = ȳj at t1.
Case 2 j ∈ C(t2). Use lemma ?? at t2. Thus Sj and Cj are the same for x, y

and therefore x̄j = ȳj at time t1.

(c) Let x 6= y say xj 6= yj. For t→∞ Π will see the difference in the history.

Definition 5.6: Properties of Planning Rules

• Π1 dominates Π2 if and only if Π1(x) ≤ Π2(x) (component-wise) for all x.

18

5 Scheduling Policies

• Π is minimal in a class P of planning rules if
(i) Π ∈ P
(ii) Π′ ∈ P and Π′ ≤ Π implies Π′ = Π.

• Π is elementary if and only if Π starts jobs only at completion of other jobs.

To use approximate methods under data deficiencies we require stability:

Qn approximates Q
κn approximates κ

⇒ OPT (Qn, κn) approximates OPT (Q, κ)

Where Qn approximates Q (Qn ⇀ Q) means weak convergence of measures2 and κn
approximates κ means uniform convergence.
In general we have no stability for optimal policies.

Example 10 : Excessive use of information yields instability

3

2

1

5

4
Consider the objective minE(Cmax), the
only forbidden set F = {2, 3} and the
joint distribution:

Qε :
xε = (1 + ε, 4, 4, 8, 4) with probability 1

2
y = (1, 4, 4, 4, 8) with probability 1

2

If we start job 1 first and wait till t = 1 we know which realization we have and can
plan the rest optimal.

3 5
2 4

3 5
42

1 13

1

1xε

y

This gives EQε(Cmax) = 13.
Now ε → 0 implies Qε → Q. Therefore we gain no information at t = 1 and thus
start job 2 (or 3) at t = 0.

2 4
3

5

3 5
42

0 12

1

1x

y

Which leads to EQ(Cmax) = 14 6= 13 = limEQε(Cmax). ♦
So we want to only rely on robust information at time t this includes: which jobs

have completed and which jobs are running at t. If we start jobs only at completion
of other jobs (elementary) we may hope for stability.

2Qn ⇀ Q⇔
∫

f dQn →
∫

f dQ ∀f continuous and bounded.

19

5 Scheduling Policies

Definition 5.7:
A class P of policies is called stable if for every sequence Qj ⇀ Q, every countable
subset P ′ of P and every continuous κ the following holds:

lim
j→∞

ρP
′(κ,Qj) = ρP

′(κ,Q)

Theorem 5.8:
Let P be a stable class of policies. Then

(1) Every Π ∈ P is continuous.

(2) If P ′ is a finite class of continuous policies then P ∪ P ′ is stable.

(3) For all Qj ⇀ Q and κj → κ the following holds

ρP(κj, Qj)→ ρP(κ,Q)

Proof.
(1) Suppose Π is not continuous. Then the mapping x 7→ Π[x](j) + (xj) is discon-

tinuous for some job j. Thus there is a sequence xk → x with

lim
k→∞

Π[xk](j) + xkj 6= Π[x](j) + xj

Choose κ(C1, . . . , Cn) = Cj, Qk the point distribution in xk converging to Q the
point distribution in x and P ′ = {Π}. This implies

lim
k→∞

ρP
′(κ,Qk) = lim

k→∞
Π[xk](j) + xk(j)

6= Π[x](j) + xj

= ρP
′(κ,Q)

Thus the weak stability is not satisfied.

(2) Show that stability holds by adding one continuous policy at a time.

(3) This is more difficult and needs results on convergence of probability measures.
(Especially sufficient conditions.)

Exercises

(5.1) Find an example for ∑j wjCj with independent processing times in which ten-
tative decision times lead to better policies. Can you do it without precedence
constraints?

(5.2) Try the same for Cmax.

(5.3) Show that the class of elementary policies is unstable.

There are special classes of policies which can be approached from three different
point of views.

20

6 Priority Policies

6 Priority Policies
The combinatorial objects corresponding to these policies are priority lists.

Definition 6.1:
A planning rule Π is a priority planning rule or priority rule for [G,F] if

1. Π is elementary.

2. At every decision time t, there is a priority list on the set of still unscheduled
jobs:

L(t) = j1 < j2 < . . . < jk

3. Π considers jobs j in L(t) one by one in the order of L(t) and sets Sj = t if
possible with respect to G,F and the previously started jobs.

Π is static if every L(t) is a sublist of L(0). Otherwise Π is called dynamic.
For priority policies, the list L(t) may only depend on the history up to time t.

Remark:
Smith’s rule is a static priority rule but not a priority policy. Smith’s rule using
expected lengths is a priority policy. M

Advantages of Priority Policies

(1) Every priority policy is minimal among all policies.

(2) Easy to implement

(3) There is an approximation guarantee for some problems. E.g. :

CΠ
max(x) ≤

(
2− 1

m

)
OPTCmax(x)

for the m-machine problem with arbitrary processing times.

Proof.
(1) Suppose there is some Π′ ≤ Π for a priority policy Π. Consider a fixed x at time

t = 0. Thus Π[x] starts as many jobs as possible in the order of L(0) at t = 0.
Since Π′ ≤ Π, Π′[x] has the same start set. Now look at the first completion
with respect to x. Π′ cannot start new jobs earlier since all resources are used.
Thus Π[x] = Π′[x] with the same argument as above. Iterations gives the claim
since Π and Π′ have to start the same jobs at every completion time.

(2) Clear

(3) Without proof (later).

21

6 Priority Policies

Disadvantages of Priority Policies
Priority policies are neither continuous nor monotone and thus may cause instability.

Example 11 :

2

1

4

3 Consider L = 1 < 2 < 3 < 4 and the forbidden set F =
{3, 4}. For fixed x2, x3, x4 and x1 ∈ [x2 − ε, x2 + ε]. S4 =
Π[·](4) is discontinuous and not monotone.

x1 < x2 ⇒
2

1 3 4
x2 < x1 ⇒

2

1

4 3

(S4 may jump while x grows a little). ♦

Priority Policies Anomalies (Graham Anomalies)

(a) We want to minimize the makespan on 2 identical machines using the priorities
1 < 2 < 3 < Then Cmax may grow though x gets smaller:

2 3 5 7
1 4 6

x = (4, 2, 2, 5, 5, 10, 10)

2 3 7
61 4 5

y = x− 1 = (3, 1, 1, 4, 4, 9, 9)

In the first case we have Cmax = 19 and after shortening we get Cmax = 20.

(b)
4

3

2

1

8

7

6

5

9 We consider m = 2, x =
(3, 2, 2, 2, 4, 4, 4, 4, 9) and L = 1 < . . . < 9.
Cmax grows when 4 < 5 and 4 < 6 are
deleted.

(c) Cmax grows when more machines are deleted. Take the previous G but m = 3.
Then Cmax grows when m = 4 machines are available.

Remark:
In general, there is no priority policy that yields an optimal schedule for fixed x. To
see this take example (a) with processing times y. M

Exercise

(6.1) Show that there are no Graham anomalies for m-machine problems without
precedence constraints. Show that, in this case, every static priority policy is
continuous and monotone.

22

7 Early Start Policy

7 Early Start Policy
Recall the ES-function induced by a partial order H on V . Then ESH [x] is the
earliest start schedule with respect to H and x.

Example 12 :

H

2

1

5

4

3

This graph H leads to the earliest start
schedule:

ESH [x] = (0, 0, x1, x1,max{x1 + x3, x2})
♦

Thus ESH [·] is a function with the same domain and range as a policy Π for [G,F]
and ESH [·] has nice properties (continuous, monotone).
Question: Given [G,F], when is ESH [·] a policy for [G,F]?

Theorem 7.1:
ESH [·] is a planning rule for [G,F] if and only if

(1) H extends G, i.e., i <G j ⇒ i <H j.

(2) No antichain of H is forbidden, i.e., F ∈ F ⇒ F is not an antichain of H.

Proof.

⇒ By contradiction.
(1) Assume i <G j but i ≮H j. Define x ∈ Rn> with ε < 1

n2 by

xk :=
ε k 6= i

1 k = 1

and therefore
ESH [x](j) ≤ (n− 2) · ε < 1

xi = 1 implies that j does not wait for i in the schedule ESH [x]. Thus
ESH [x] does not respect G. Therefore ESH [·] is not a planning rule for
[G,F].

(2) Suppose F ∈ F is an antichain of H. Define x ∈ Rn> with ε < 1
n2 by

xk =
ε k /∈ F

2 k ∈ F

Then for j ∈ F because j has only short predecessors:

ESH [x](j) ≤ (n− 2)ε < 1

At t = 1 all jobs in F are busy. Thus ESH is not a planning rule for
[G,F]

⇐ H extends G therefore ESH [·] respects G. No antichain of H is forbidden and
thus ESH [·] respects F .

23

7 Early Start Policy

Definition 7.2:
A partial order H on V is called feasible for [G,F] if it respects G (i.e.H extends
G) and F (no antichain of H is in F).

Theorem 7.3:
ESH [·] is a planning rule for [G,F] if and only if H is feasible for [G,F]. In this
case ESH [·] is already a policy, i.e., non-anticipative.

Proof. The first part follows immediately from the previous theorem ??.
Let x ∼t y and ESH [x](j) = t so that x, y have the same history up to time t. Thus
for all i ∈ PredH(j) where xi = yi. Therefore since ESj is the longest path length
in PredH(j) we get

ESH [y](j) = ESH [x](j) = t

Let E(G) denote the set of all extension of G (including G). E(G) is a partial
order under the order relation:

H1 ≺ H2 ⇔ H2 extends H1 i.e. i <H1 j ⇒ i <H2< j

We call E(G) the extension order of G.

Example 13 : Conflict Resolution Tree

4

2

1 3

4

2

1

3

4

1 2 3

4

2 1 3

2

1

3

4

2

1

4

3

4

1 2 3

4

2 1 3

2

1 4 3
2

1

4

3

4

1 2 3

4

2 1 3
2

1
4 3

1 4 2 3 1 2 4 3

We consider the forbidden sets F = {{1, 2, 4}, {3, 4}}. In the above diagram we
used the coloring
green root blue minimum feasible yellow feasible ♦

Claim:
E(G) has nice properties.

24

7 Early Start Policy

(1) H1 = (V,E1) , H2 = (V,E2). H1 is an immediate predecessor of H2 if and only
if |Etrans

2 \Etrans
1 | = 1.

(2) All ⊂-maximal chains from H1 to H2 have the same length.

(3) H1 and H2 have a (unique) largest common predecessor H = (V,E) with
Etrans = Etrans

1 ∩ Etrans
2 .

(4) H1, H2 have a (unique) smallest common successor H = (V,E) if and only if
E1 ∪ E2 is acyclic. Then Etrans = (E1 ∪ E2)trans holds.

Note that (3) and (4) say that E(G) equipped with an artificial greatest element
is a semi-lattice.

Consequences
(1) The set of feasible order is upwardly closed in E(G), i.e., H1 feasible andH1 ≺ H2

imply H2 is feasible.

(2) H1 ≺ H2 if and only if ESH1 ≤ ESH2

(3) ESH is a minimal ES-policy if and only if H is minimal feasible in E(G).

(4) The set of ES-policies for [G,F] may be identified with the set of feasible orders
in E(G).

ES policies lead to optimal schedules in the deterministic case. This is not the case
for priority policies! In the above example with processing times y, every priority
policy would start job 7 at the completion of 3, leading to a non-optimal schedule.

Theorem 7.4:
Consider [G,F]. For every x there is an ES-policy Π = ESH such that

OPT (κ, x) = κH(x) = κΠ(x)

Note that Π and thus H depend on x and κ. This in particular means

OPT (κ, x) = min{κH(x) |H feasible } = min{κH(x) |H minimal feasible }

Proof.
≤ Let the minimum of the right handside be attained by H. Then ESH [x] is a

feasible schedule for [G,F] and x. This implies

κ(ESH [x], x) = κH(x) ≥ OPT (κ, x)

≥ Let S be an optimal schedule for (G,F , x, κ). Consider the partial order
H = H(S, x) induced by S and x:

i <H j if Si + xi ≤ Sj

25

7 Early Start Policy

Claim: 1
A is an antichain of H(S, x) if and only if there is a time t such that all j ∈ A
are busy, i.e., Sj < t < Sj + xj for all j ∈ A.

Proof. Induction on |A|. (Claim 1 corresponds to the Helly property of a set
of intervals.)

Claim: 2
H(S, x) extends G.

Proof. i <G j implies Si + xi ≤ Sj since S is feasible. By definition of H(S, x)
follows i <H j .

Claim: 3
No antichain of H(S, x) is forbidden.

Proof. If A is an antichain ofH(S, x) then claim (1) implies that A is processed
at some time t in (S, x). Since S is feasible, A is not a forbidden set.

Claim (2) and claim (3) imply that H(S, x) is a feasible order.
S respects H(S, x) by construction and ESH(S,x)[x] is the component-wise best
schedule for H(S, x).

⇒ κH(S,x)(x) ≤ κ(S, x)
So there is a minimal feasible order H̄ ≺ H(S, x) with κH̄(x) ≤ κ(S, x).

Remark:

(1) Every schedule S and vector x induce such an order H(S, x) (since xi > 0).

(2) H(S, x) is an interval order, i.e., an order H whose elements j that can be
represented by intervals Ij ⊂ R such that

i <H j if Ii is entirely to the left of Ij (except for endpoints)

For H(S, x) set Ij = [Sj, Sj + xj]

(3) Interval orders have nice properties. (See Exercises).

(4) Claim (1) corresponds to the Helly property of a set of intervals: If any two
intersect then all intersect.

M

26

7 Early Start Policy

Consequences
In the deterministic case we have

OPT (κ, x) = min{κH(x) |H is a minimal feasible interval order }

This does not hold in the stochastic case.

2

1

4

3
H

2

1

4

3
H1

2

1

4

3
H2

For every deterministic x we have

ESH [x] = min{ESH1 [x], ESH2 [x]}

Thus one of H1, H2 is as good as H.

For random processing times, when we minimize expected makespan, H may be bet-
ter. For example let every job have a processing time 1 and 3 with probability 1

2
each, and independent from each other. This gives for example

E(CH1
max) = E(CH2

max) = 4.875 E(CH
max) = 4.75

Note that H is not an interval order but H1 and H2 are.

Theorem 7.5:
Let Π be a policy for [G,F]. Then Π is an ES-policy if and only if Π is convex.

Proof. Later.

Exercises

(7.1) Prove the properties of E(G)

(7.2) (Characterization of Interval Orders)
Show that the following conditions are equivalent:
(1) H is an interval order.

(2) H does not contain (2 + 2) as induced suborder.
(3) There is an ordering j1, . . . , jn of V with

Pred(j1) ⊆ . . . ⊆ Pred(jn)

(4) There is a numbering A1, . . . , Am of the maximal antichains of H such
that for every j ∈ V , all Ak containing j occur consecutively in the
numbering. (Consecutiveness property of maximal antichains.)

(7.3) The m-machine problem can be solved in polynomial time on interval orders.

(7.4) For every minimal feasible order H, there are κ and Q such that H is the only
optimal (minimal) feasible order, meaning:

EQ[κH] < EQ[κH′] for all minimal feasible H ′ 6= H

Does this also holds for κ = Cmax?

27

8 Constructing ES-Policies

8 Constructing ES-Policies
Lemma 8.1:
H is feasible for [G,F] if and only if

(1) G ≺ H

(2) For every F ∈ F there are iF , jF ∈ F with iF <H jF

For (2) we say F is destroyed by iF < jF , meaning the resource conflict given by
F is settled by letting jF wait for iF .

Proof. Obvious, since no F ∈ F is an antichain of H.

The idea is to solve conflicts on forbidden sets by telling who must wait for whom.
This may be contradictory.

Example 14 :

4

2

1 3 5

G F = {{2, 3}, {3, 4}, {1, 2, 4}}

There are 24 independent choices of iF < jF but only 9 lead to feasible orders.

2

1 3

4

5 This is for example 2 < 3, 3 < 4 and
1 < 4.

But 2 < 3, 3 < 4 and 1 < 4 lead to a contradiction because EH∪{(2, 3), (3, 4), (4, 1)}
is not acyclic. ♦
H and a choice of iF < jF defines an ES policy if and only if H and the choice is

acyclic.
Let us organize the construction in a tree, the conflict settling tree. Let G be the
root and extensions of G be the nodes. The children of a node H are all extensions
H ′ obtained by settling the conflict on one (yet unsettled) forbidden set. The leaves
correspond to feasible orders. We may use a suitable ordering of the forbidden sets.
These orderings determine the tree.

Theorem 8.2:
The conflict settling tree is a suborder (not necessarily induced) of E(G) containing
all minimal feasible orders.

Proof.
• It is obviously a suborder.

• It is not necessarily induced, since all the order relations H1 ≺ H2 in the tree
are also present in E(G). But there may be more if there are several F ∈ F
with |F | > 2.

• All minimal feasible orders are contained:
Let H be minimal feasible and F1, . . . , Fk be the order defining the tree. Now
lemma 8.1 gives that for every Fr there is some iFr < jFr in H. Thus adding
the iFr < jFr in the order 1, . . . , k yields H.

28

8 Constructing ES-Policies

Note that not every leaf of the conflict settling tree is minimal feasible.

Remark:
The conflict settling tree may be used for Branch & Bound algorithms for calculating
an optimal schedule for given κ and x. The B & B algorithms can be combined
with dynamic decision models (Branch only at decision times). In this way only a
subset of all forbidden sets will be considered.
In the stochastic case, the optimal values obtained by priority / ES-policies are
incomparable. (Remember: In the deterministic case, ES is better.) M

Example 15 :

(1) OPTPrior < OPTES

2

1

4

3 F = {{3, 4}} κ = Cmax with the realisa-
tions x1 = (1, 2, 0, 1) and x2 = (2, 1, 1, 1).
Each has probability 0.5

Now the priority policy leads to:

Π[x1]
2

1 3 4
Π[x2]

2

1

4

3

and thus E[κΠ] = 3. The minimal feasible orders are

H1
2

1 3 4

H2
2

1

3 4

and thus E[κH1] = E[κH2] = 3.5.

(2) OPTES < OPTPrior holds already in the deterministic case.

♦

Exercises

(8.1) Construct an example in which the conflict settling tree contains leaves that
are not minimal feasible.

(8.2) What is the complexity of adding a precedence constraint iF < jF to an order
H? What is a good data structure for the orders in the conflict settling tree
to allow fast updating with respect to adding precedence constraints.

29

9 Preselective Policies

9 Preselective Policies
We want to generalize the ES-planning rules by relaxing the rule for solving the
conflict on a forbidden set f .

Definition 9.1: ES-policies
For every F ∈ F choose iF , jF ∈ F and add iF < jF to G, i.e. choose a waiting
job jF and a job iF for which jF must wait.

Definition 9.2: Preselective planning rules
For every F ∈ F , choose a waiting job jF ∈ F that must wait for any job in F , i.e.
jF can start after the first job in F\{jF} completes.
The sequence s = (jF1 , . . . , jFk) of waiting jobs jFr ∈ Fr for F = {F1, . . . , Fk} is

called a selection for F .

Example 16 :

3

2

1

5

4 The forbidden sets

F := {{1, 5}, {2, 3, 4}, {2, 4, 5}}

defines a selection s = (5, 4, 4).

What are the possible schedules, when we do early start scheduling with respect to
G and the waiting conditions coming from the selection s?

(1) x1 < x2 < x3 leads to ES of a feasible order.

3
2

1 H1

3

2

1

5

4

(2) x1 < x3 < x2 so 4 waits for 2 or 5

3
2

1 H21

3

2

1

5

4 H22

3

2

1

5 4

(3) x2 < x1 < x3

3
2

1 H3

3

2

1

5

4

(4) x2 < x3 < x1

3
2

1 H4

3

2

1

5

4

(5) x3 < x1 < x2 so 4 waits for 2 or 5

3
2

1 H51

3

2

1

5

4 H52

3

2

1

5 4

30

9 Preselective Policies

(6) x3 < x2 < x1

3
2

1 H6

3

2

1

5

4

All other cases are subsumed by (1) to (6) by equivalence. Further we can see:

H1 = H3 H51 = H21 H52 = H22 H1 ≺ H6

♦
This example shows that depending on x we obtain a different feasible order H

with Π[x] = ESH [x] (holds for every elementary policy). Furthermore we get

Π = min{ESH |H induced by Π[x] for some x}

This does not hold for every elementary policy.

Questions

(1) When is a selection contradictory? Can this be easily checked?

(2) Does a feasible selection define a policy? I.e. is a preselective policy (non-
anticipative)?

(3) What is the relationship with ES-policies? Is Π = min{ESH | . . .} for some set
of feasible ES-policies?

(4) How to calculate the start times of a preselective policy?

(5) Do preselective policies still have nice properties?

The combinatorial representation of preselective planning rules are so called AND/OR
networks.
To see this, consider a selected job jF for F ∈ F . We introduce an OR-precedence
constraint.

F
jFall j ∈ F with j 6= jF waiting job for F

We can interpret this as: jF may start after one of the direct predecessors of has com-
pleted. Ordinary precedence constraints correspond to AND-precedence constraints.

So j must wait for the completion of all
direct predecessors.

31

9 Preselective Policies

Figure 1: Algorithm for Testing Feasibility
1: Intiate list L := []
2: while there is a job i ∈ V that is not a waiting job of a condition in W do
3: Insert i at the end of L and delete if from V
4: if some waiting condition (X, j) becomes satisfied) then
5: delete (X, j) from W
6: end if
7: end while
8: return L

Example 17 :

3

2

1

F3

F2

F1

5

4 With the forbidden sets F1 = {1, 5},
F2 = {2, 3, 4} and F3 = {2, 4, 5}. We
can also represent every precedence con-
straint i < j as an OR precedent con-
straint. i j

The above network is defined by the selection s = (5, 4, 4). ♦

Consequences

(1) The resulting AND/OR network is bipartite.

(2) We may just speak of a systems W of waiting conditions.

jX(X, j) =

So (X, j) is a system of waiting conditions if and only if it corresponds to a
bipartite AND/OR network.

Definition 9.3:
A realization of W is an acyclic graph R = (V,A) on V such that for every waiting
condition (X, j), there is some i ∈ X preceding j. We call W feasible if and only
if W has a realization (if and only if W has a linear realization).
The following algorithm tries to construct a linear realization for W . It imitates
topological sort for digraphs.

Lemma 9.4: Correctness of the algorithm 1
W is feasible if and only if L contains all jobs.

Proof.
⇐ trivial

32

9 Preselective Policies

⇒ Let R be a linear realization but L 6= V .

R

j

Let j be the first job in V \L (= red jobs). Since j is not in L there is a waiting
condition (X, j) with X ⊆ V \L. Thus all jobs in X are red. But in R there
must be a job i ∈ X, i.e. a red job before j. This gives a contradiction

Corollary 9.5: Consequences
The set V \L corresponds to a generalized cycle C. Meaning, for j ∈ C there exist
waiting conditions (X, j) with X ⊆ C.

(1) The list L is an ⊂-maximal feasible subset of V .

(2) Every linear realization can be constructed by the algorithm.

Proof.

(1) Let V \L 6= ∅ set C := V \L and let WC denote the set of all waiting conditions
(X, j) with X ⊆ C and j ∈ C. Then WC is a relaxation of the original problem
W . So no job of C can be in any linear realizer of WC . Therefore no job of C
can be in any linear realizer of W . Thus L is an ⊆-maximal set of jobs that can
be in a linear realizer.

(2) Choose jobs in the algorithm according to the linear realizer R. Then the
algorithm produces R.

Remark:
The linear realizations form the basic words of an antimatroid ([KL84]). M

Question: Does every feasible selection define a policy?

Lemma 9.6:
Let s be a feasible selection for [G,F]. Then, for every x ∈ Rn>, the earliest start
ESW with respect to the system W of waiting conditions given by s and G is well
defined.

Proof. Since the selection s is feasible, also W is feasible. Consider the OR-nodes
as dummy jobs. Let (S1, . . . , SN) = S be a vector of times associated with the given
jobs j ∈ V and the dummy jobs. A schedule S is feasible for W if and only if

Sw ≥ min
j∈ImPred(w)

(Sj + djw) for all OR-nodes w

Sj ≥ max
w∈ImPred(j)

(Sw + dwj) for all AND-nodes j

33

9 Preselective Policies

This min-max system is fulfilled by S for djw = xj and dwj = 0.
IfW is feasible then every linear realizer R defines a solution of the min-max system.
With lemma 9.7 there exists a unique minimal feasible solution S = (S1, . . . , SN) ≥
0. Clearly every Sj for j ∈ V is the earliest start of j with respect to W .

Lemma 9.7:
Let (S1, . . . , SN) and (T1, . . . , TN) be two solutions of a general min-max system.
Then

(min{S1, T1}, . . . ,min{SN , TN})
is also a solution.

Proof. Consider an OR-node w. Then there exist AND-nodes i and k with

Sw ≥ Si + diw Tw ≥ Tk + dkw

Let the minimum in

Sw , Tw ≥ min{Si + diw, Tk + dkw}

be without loss of generality be attained by Si + diw. This implies

min{Sw, Tw} ≥ Si + diw ≥ min{Si, Ti}+ diw

Therefore is the OR inequality for node w fulfilled.
Consider an AND-node j. Then there exist OR-nodes w with

Sj ≥ Sw + dwj Tj ≥ Tw + dwj ∀w

For all w and w.l.o.g. Sj ≤ Tj we get

min{Sj, Tj} ≥ Sj ≥ min{Sw, Tw}+ dwj

Therefore is the AND inequality for node j fulfilled.

Theorem 9.8:
Every feasible selection s for [G,F] defines a preselective policy.

Proof. Consider a feasible selection s and W the associated waiting conditions for
s,G. Let Π by the planning rule induced by s. Then we know by the lemmas
above Π = ESW . The proof of the (NA) property is similar to that for ES-policies
(theorem 7.3). Let x, y look the same to Π at time t and Π[X](j) = t. Meaning
x ∼t y

xi = yi for all jobs i completed before t
x̄i = ȳi for all busy jobs

Thus all waiting conditions are fulfilled with the same times with respect to x and
y which implies Π[y](j) = t.

Question: What is the relationship with ES-policies?

34

9 Preselective Policies

Theorem 9.9:
Let s be a feasible selection for [G,F], W be the associated system of waiting condi-
tions and Π be the associated policy. Then

Π = ESW = min{ESR |R is a realizer of W}

Proof. Consider F ∈ F and consider the corresponding OR-node w. Let j ∈ F be
the waiting job. Then there is some i0 ∈ F\{j} such that Sj = Si0 + xi0 . So if
we delete all other arcs except (i0, w) we get the same minimal solution ESW = S
for the given x. Therefore S is a minimal solution to the modified problem which
is tighter. Thus S is the unique minimal solution for the modified problem. Hence
F is settled by letting j wait for i0. This implies that [G + (i0, j),F\{F}] has the
same minimal solution S for x.
Iteration gives that

[G+ {(iF , jF) |F ∈ F}, ∅]
has the same minimal solution S for x.

Claim:
R := G+ {(iF , jF) |F ∈ F} is a realizer of W .

Proof. We have added one arc (iF , jF) for every waiting condition coming from F .
For precedence constraints i → � → j a choice (i, j) is forced in every realizer. So
our choices lead to an acyclic graph since all xj > 0. If not, the cycle would have
positive length and some waiting condition is not satisfied.

So Sj = ESR[x](j) and since R is acyclic and ES is the minimal solution.

Question: How to compute ESW ? → Section 10
Question: Do preselective policies have nice properties?

Theorem 9.10:
Let Π be a policy for [G,F] then the following are equivalent

(1) Π is preselective.

(2) Π is monotone, i.e. x ≤ y ⇒ Π[x] ≤ Π[y].

(3) Π is continuous.

Proof. Here we may only prove (1) ⇒ (2) and (1) ⇒ (3) and the rest in section ??.
Since ESR is continuous, monotone and convex, the claim follows with

Π = min {ESR |R realizer of W}

because monotonicity and continuity is preserved by taking the minimum.

Remark:
The points (2) and (3) show that Graham anomalies of type a) occur in pairs. M

35

9 Preselective Policies

Exercises

(9.1) Theorem 9.9 shows that a preselective policy is the minimum of ES-policies.
Consider now a set H of feasible orders and set Π = min{ESH |H ∈ H}. Give
necessary and sufficient conditions (on H) for Π being a policy.

(9.2) Let OPTPres(κ,Q) = min{EQ(κΠ) |Π preselective} be the optimum value over
the class of preselective policies. Show that there are instances with

OPTPres(κ,Q) < OPTES(κ,Q)

but that OPTPres and OPTPrior are incomparable in general.

36

10 Constructing and Evaluating Preselective Policies

10 Constructing and Evaluating Preselective Policies
The goal of this section is a systematic construction similar to ES-policies along a
conflict settling tree. Our tree consists of

• A root G.

• Some nodes that correspond to AND-OR networks arising from choices of
waiting jobs on some forbidden sets.

• The children of a node D are all AND-OR networks obtained from D by
choosing awaiting job from one yet unsettled forbidden set. We need to check
the unsettledness and may use a suitable ordering of the forbidden sets.

Let us recall a previous example.

Example 18 :
Conflict settling tree

3

2

1

5

4

3

2

1

5

4 3 5 1

4

2

3

2

1

5

4

3

2

15

4

3

2

1

5

4

3

2

1

5

4

3 5

1

2

4

3

2

1

5

4

3

2

1

5

4

3

2

1

5

4

3

2

1

5

4

S1 = 5 S1 = 1

S2 = 2 S2 = 3 S2 = 4

S3 = 2 S3 = 4 S3 = 5 S3 = 2 S3 = 4 S3 = 5

We use the ordering F1 = {1, 5}, F2 = {2, 3, 4} and F3 = {2, 4, 5}. We can handle
F1 as a simple precedence constraint since |F1| = 2. At different depths of the tree
we get blue acyclic feasible networks and yellow feasible networks starting from the
green root. ♦
The task to check if a forbidden set F is already settled by the partial selection

(S1, . . . , Sr) corresponds to finding forced waiting condition of the form (F\{i}, j).

Definition 10.1:
The job j is forced to wait for U if and only if all linear realizers have some u ∈ U
before j.

37

10 Constructing and Evaluating Preselective Policies

Figure 2: An algorithm for finding forced waiting conditions
Input: Jobs V , feasible waiting conditions W and a set U ⊆ V
Output: A list L of jobs
1: list L := [] = ∅
2: while there is a job i ∈ V \U that is not a waiting job in W do
3: Insert i at the end of L and delete i from V \U
4: if some waiting condition (X, j) becomes satisfied then
5: delete (X, j) from W (delete all such waiting jobs)
6: end if
7: end while
8: return L

Correctness of the Algorithm

Theorem 10.2:
(U, j) is a forced waiting condition if and only if j /∈ L (and /∈ U).

Lemma 10.3:
There is a linear realization of W starting with all jobs j for which (U, j) is not a
forced waiting condition.
Then only U and forced waiting jobs are not in L at termination of the algorithm.

Proof. For now let us call jobs that are in a forced waiting condition with U red
and those that are not in a forced waiting condition with U green. We call jobs in
U blue. Now consider the linear realization R′ constructed by our algorithm

R′

k

S

With the maximal initial segment S of green jobs. Then the first job after S must
be blue. Let k be a green job after S then there is a linear realization R with U
after k.

R

kj

Then there must be a first green job j that is in R before k but was not in S. Thus
there is a waiting condition (X, j) with X after S in R′. Therefore there is some
i ∈ X before j in R. But all jobs before j in R are in S. This gives a contradiction
 .

Therefore we can detect forced waiting conditions in linear time.

Computing earliest start times for a preselective policy
Input: preselective policiy Π, processing time vector x
Output: vector Π[x] of starting times. This corresponds to an earliest start with
respect to the system of waiting conditions given by selection S defining Π and
a graph G of precedence constraints. We translate this to an algorithm on the

38

10 Constructing and Evaluating Preselective Policies

Figure 3: Algorithm 3
1: Set Sj := 0 if there is no (w, j) ∈ A
2: For OR nodes w ∈ out(j) set Sw = min{Sj + djw | (j, w) ∈ A} and set Sw =∞

otherwise.
3: loop
4: Choose unmarked OR node w = (X, j) with minimum Sw and mark w
5: Reduce indegree of j by 1
6: if indegree (j) = 0 then
7: Set Sj := max{Sw | (w, j) ∈ A}
8: For unmarked OR nodes w ∈ out(j) set Sw = min{Sj + djw | (j, w) ∈ A}
9: end if
10: end loop

AND/OR network representing Π and G. The previous section 9 allows us to solve
a system of min-max inequalities and compute the unique componentwise minimal
solution.

• General Case: arbitrary arc weights djw, dwj (also negative)

• Special Case: (needed here) We have positive arc weights djw := xj for AND
node j and OR node w. We may assume the arc weight dwj = 0 for w OR
node and j AND node. Since there is only one outgoing arc from every OR
node.

So we can solve the special case using a Dijkstra like algorithm.

Theorem 10.4:
The algorithm 3 computes the unique minimal feasible solution ≥ 0 of the min-max
system given by the AND /OR graph D = (V ∪W,A) in

O(|V |+ |W | · log |W |+ |A|)

Proof. We leave the run time as an exercise and will only prove correctness.
Let S be the vector of start times constructed by the algorithm. Let S∗ be the
ES-vector (see lemma 9.6) of (V,W). Assume S 6= S∗. Then chose a node v with
Sv > S∗v and S∗v minimum.

Case 1 v is an AND node
Then there exists an OR node w = (X, v) with

Sw = Sv + dwv︸︷︷︸
0

> S∗v ≥ S∗w

By the choice of v we get S∗v = S∗w and Sw > S∗w. Thus we reduced the problem
to the case that v is an OR node (case 2).

Case 2 v is an OR node
There exists an AND node i with

S∗v = S∗i + div div > 0

39

10 Constructing and Evaluating Preselective Policies

Claim:
Si > S∗i

Suppose not, i.e. Si = S∗i . Then, when the algorithm asigns to i the value Si,
Sv is set to

min
(j,v)
{Sj + djv} ≤ S∗i + div = S∗v

if unmarked and if already marked we have

Sv ≤ Si + div = S∗i + div = S∗v

Either way we get a contradiction to Sv > S∗v .
So with the claim we know Si > S∗i and S∗i < S∗v which contradicts the choice
of v .

For a min-max system (∞, . . . ,∞) is a solution.

Definition 10.5:
We call a solution S of a min-max system feasible if every Sj <∞ and the min-max
system feasible if there is a feasible solution.

Lemma 10.6:
A min-max system with xjw > 0 and xwj ≥ 0 has a feasible solution S if and only
if the waiting conditions are feasible (feasibility of min-max system = structural
feasibility).

Proof.

⇒ All xjw > 0 implies that for every w = (X, j) there is an i ∈ X with Si <
Sw ≤ Sj. (Otherwise S is not feasible.) The arcs (i, j) define a realization of
W . If not, they contain a cycle and we would have Sl < Sk for every arc (l, k)
on the cycle, which cannot be the case.

⇐ W is feasible implies that there exists a realization R. Now ESR defines a
feasible solution of the min-max system.

We consider a min-max system

j ∈ V AND node Sj ≥ max{Sw + dwj | (w, j) ∈ A}
w ∈ W OR node Sw ≥ min{Sj + djw | (j, w) ∈ A}

}
min-max system

We allow (∞, . . . ,∞) as a solution. If (S1, . . . , Sn) and (T1, . . . , Tn) are solutions
then (min{S1, T1}, . . . ,min{Sn, Tn}) is a solution as well.

Remark:
There is a unique componentwise minimal solution S ≥ 0 and there is a unique
maximal feasible subset of jobs. M

40

10 Constructing and Evaluating Preselective Policies

Claim:
Any feasible schedule S = (S1, . . . , Sn) is a certificate for Solvability ∈ NP .

Sketch of Proof. Let S = (S1, . . . , Sn) be the unique minimal solution (maybe with
∞). For every AND node j one can delete all but one incoming arcs without
changing Sj. Then every cycle has non-negative length.
Relaxing in every AND node gives
(1) A relaxed problem with only min inequalities (OR nodes)

(2) We can check Sj > K by shortest path algorithms in polynomial time.

(3) The relaxed is a certificate for Solvability ∈ coNP.
Relaxing
Delete all possible arcs such that S∗ does not change.
Suppose there exists an AND node j with indegree > 1 let Sk be the best schedule
after deleting (wk, j). Assume without loss of generality k = 2 and S1

j ≤ S2
j . We

also have by construction S∗j > Skj . Now define
Si := min{S1

i + S2
i − S1

j , S
2
i } for all nodes

This gives S ≤ S2 and Sj = S2
j . Now we want to show that S is a schedule.

w 6= w2 (w, j)⇒ Sj = S2
j ≥ Sw

(w2, j)⇒ Sj = S1
j + S2

j − S1
j ≥ Sw2

⇒ Sj ≥ max
(w,j)

Sw

Now for AND node 6= j we have
S1
k ≥ S1

w and S2
k ≥ S2

w ⇒ S1
k + S2

k − S1
j ≥ S1

w + S2
w − S1

j

A similar arguement for OR nodes gives that S is a schedule. But then Sj = S2
j < S∗j

contradicts the fact that S∗j is the best schedule by construction.

Theorem 10.7:
A schedule and a tightened subproblem are polynomially checkable certificates for
membership in NP and coNP. Therefore Solvability ∈ NP ∩ coNP.

Remark:
No polynomial algorithm known. It is not known to be NP-complete or coNP-
complete. M

Exercises
10.1 Show that algorithm 3 can be implemented to run in

O(|V |+ |W | · log |W |+ |A|)

10.2 Derive a polynomial-time algorithm for finding the unique minimal (feasible)
solution ≥ 0 of a min-max system with non-negative arc weights.
Hint: Try to relate the feasibility of the min-max system to the structural
feasibility in the sense of lemma 10.6. What changes?

10.3 Derive a pseudo-polynomial-time algorithm for finding the unique minimal
(feasible) solution ≥ 0 of a min-max system with arbitrary arc weights.

41

11 Characterization of ES- and Preselective Policies

11 Characterization of ES- and Preselective Policies
So far we have shown that ES-policies are convex, continuous and monotone and
that preselective policies are continuous and monotone. Now we show that they are
already characterized by these properties.

Theorem 11.1:
Every monotone policy is dominated by a preselective policy.

Proof. Consider [G,F]. Let A be an antichain of G, and x be a duration vector.
We call a job j selected for (A, x) if and only if j waits for any i ∈ A for all y that
are only larger on A (y ≥A x), i.e. for every such y there is i ∈ A (may depend on
y) with

Π[y](i) + yi ≤ Π[y](j)
Intuitively this notion means: For x several jobs might wait and making jobs of A
longer reveals the real selected job.
Let S(A, x) be the set of jobs selected for (A, x). First we want to prove

F ∈ F ⇒ S(F, x) 6= ∅ ∀ policy Π (11.1)

Consider xm (long on F) with

xmk :=
xk k /∈ F
xk +m k ∈ F

Since Π is a policy there is a job jm that waits with respect to xm. Thus some job
j occurs infinitely often in the sequence (jm)m.

Claim:
j ∈ S(F, x)

Proof of the claim. Suppose not, say j does not wait with respect to y with y ≥F x.
Then

Π[y](j) < min
i∈F
i 6=j

{Π[y](i) + yi}

This means that the start of job j under Π remains the same if we enlarge the
processing times on F , because we have the same history up to the start of j.
Therefore j does not wait for all xm with xm ≥F x. This is a contradiction

We proved furthermore

non-waiting is invariant under F -monotonicity (11.2)

Next we want to prove

(∀F, x, y : x ≤ y ⇒ S(F, x) ⊂ S(F, y))⇒ Π preselective (11.3)

Suppose the assumptions hold but Π is not preselective. Then there is an F ∈ F
such that Π is not preselective on F . Then for every j ∈ F there is xj such that

42

11 Characterization of ES- and Preselective Policies

j does not wait with respect to xj. Now (11.2) gives j /∈ S(F, xj) for all j ∈ F .
Consider x defined component wise by

xk := min
j
xjk

Let j0 ∈ S(F, x) 6= ∅. Then x ≤ xj0 and the assumptions implies j ∈ S(F, xj0) by a
diagonalization arguement. But this is a contradiction. Thus (11.3) holds.
Further we want to prove

Π monotone⇒ (∀F, x, y : x ≤ y ⇒ S(F, x) ⊂ S(F, y)) (11.4)

Suppose the conclusion does not hold. Then there is F, x, y with x ≤ y but S(F, x) *
S(F, y). Thus there exists j ∈ S(F, x)\S(F, y). Consider xm, ym as above (+m on
jobs in F). So j waits for x and thus for all xm. But j does not wait for some
y′ ≥F y and thus j does not wait for all ym ≥F y′ by (11.2).
This implies the contradiction

m ≤ Π[xm](j) ≤ Π[ym](j) = Π[y′](j)

Corollary 11.2:
Let Π be an arbitrary policy then Π is monotone if and only if Π is preselective up
to dominance (i.e. maybe not earliest start).

Theorem 11.3:
Every continuous and elementary policy is preselective.

Corollary 11.4:
Let Π be an arbitrary policy. Then Π is preselective if and only if Π is monotone
(up to dominance) if and only if Π is continuous and elementary.

Consequences
(1) Graham anomalies of type a) come in pairs.

(2) Preselective policies form a natural class fulfilling stability.

Theorem 11.5:
If Π is convex implies then it is an ES-policy.

Proof.

(1) Π convex ⇒ Π is dominated by a preselective policy.

Claim:
For all x, y, F we have x ≤ y implies S(F, x) ⊂ S(F, y).

43

11 Characterization of ES- and Preselective Policies

Let x ≤ y but j ∈ S(F, x)\S(F, y). Consider the line x(λ) = (1− λ)x + λy for
0 ≤ λ ≤ 1. Let λ∗ be the first λ with j /∈ S(F, x(λ)). Without loss of generality
we assume x, y are close enough on the line to x(λ∗) such that z := 2x− y > 0
meaning

x = 1
2y + 1

2z

Consider xm, ym as before (add m to jobs in F). Then

xm = 1
2y

2m + 1
2z = 1

2y
2m + x− 1

2 = 1
2y + 1mF + x− 1

2y

holds and gives

m ≤ Π[xm](j) ≤ 1
2Π[y2m](j) + 1

2Π[z](j)(11.2)=1
2Π[y](j) + 1

2Π[z](j)

a contradiction.

(2) Π convex ⇒ ∃ ES-policy Π∗ ≤ Π.
By (1) the convexity implies that Π is preselective. Thus there is a waiting job
j on F ∈ F .

Claim:
j waits always for the same job i.

Suppose not. Then for every i ∈ F\{j} there is xi with

Π[xi](i) + xii > Π[xi](j)

meaning job j does not wait for i with respect to xi. Consider xi,m (again make
jobs in F larger by m). Then by monotonicity of non-waiting Π[xi,m](j) does
not change. Now define

zm := 1
|F | − 1

∑
i∈F\{j}

xi,m

(convex combination). This leads to

m ≤ Π[zm](j) ≤ 1
|F | − 1

∑
i∈F\{j}

Π[xi,m](j)

Therefore the start is larger than or equal to the first completion on F\{j}.
Every i is at least m

|F |−1 long with respect to xi,m and hence at least m long with
respect to z. But this is a contradiction.
So every F is settled by a waiting pair i < j and there is an ES-policy Π∗ ≤ Π.

(3) Π is elementary.
Suppose not. Then there exist x0 and j0 such that j0 starts in Π[x0] at a time
t where no job j 6= j0 ends. We define in Π[x0] the sets C(t) of completed jobs
before t and B(t) of busy jobs at t. Further we define the set

X :=
{
x ∈ Rn>

∣∣∣xj = x0
j ∀j ∈ C(t) and xj > (t− Π[x0](j)) ∀j ∈ B(t)

}

44

11 Characterization of ES- and Preselective Policies

of all x ∈ Rn> that look the same to Π at t. So we have

Π[x](j0) = t ∀x ∈ X

Now let z ∈ Rn> with zj = x0
j for all j ∈ (C(t) ∪ SucG(j0) ∪ {j0}) and zj short

for all other jobs. Hereby short means that as these jobs end before t, say at
t − ε. So only job j0 and its successors are left. Π[z] has the same history as
Π[x0] and z /∈ X.
Since policies have no total idle time and j is the only job that can be started
we can conclude Π[z](j0) = t− ε < t. If we now choose y ∈ X with 1

2y+ 1
2z ∈ X

(choose yj large for j ∈ B(t) in Π[x0]) we get

t = Π[12y + 1
2z](j0) ≤ 1

2Π[y](j0) + 1
2Π[z](j0) < t

a contradiction.

(4) Π is an ES-policy.
Consider the most restrictive problem [G∗,F∗] for which Π is still a policy.

• Add to G all i < j with Π[x](i) + xi < Π[x](j) for all x
• Let F∗ be all antichains of G∗ that are not scheduled simultaneously by Π

for all x.
Then Π is a convex policy for [G∗,F∗]. By (1) there is an ES policy Π∗ with
Π∗ ≤ Π.

Claim:
Π∗ = Π.

We prove this by induction along decision times t of Π for arbitrary fixed vector
x.
For t = 0 we have S∗(0) the set of jobs started by Π∗ at t = 0 and S(0) for Π.
If S∗(0) 6= S(0) implies with Π∗ ≤ Π that there exists a j ∈ S∗(0)\S(0). Since
Π is elementary j waits for another completion. Thus S∗(0) is not processed
simultaneously in Π[x] and therefore S∗(0) is either forbidden or not an antichain
because [G∗,F∗] is most restrictive. But then Π∗ is not a policy for [G∗,F∗]
Now the inductive step: We assume S(t′) = S∗(t′) for all decision times t′ < t.
By the same argument as at t = 0 we can show S(t) = S∗(t) for the next
completion time t (decision time) (the same for Π and Π∗).

45

12 Set Policies

12 Set Policies
Set policies try to generalize priority and preselective policies while using only robust
information. They are reasonably stable.

Definition 12.1:
Π is a set policy for [G,F] if it is elementary and decisions at time t are only
based on

• the set C(t) of jobs completed before t

• the set B(t) of jobs busy at t

(so only the sets, not the processing times etc.)

Remark:
Static priority policies, ES-policies and preselective policies are set policies but not
the only ones. M

Theorem 12.2: Representation Theorem
Let Π be a set policy for [G,F]. Then there exists a partition of Rn> into finitely
many sets Z1, . . . , Zm and finitely many interval orders G1, . . . , Gm on v such that

(1) Every Zi is a polyhedral (convex) cone.

(2) Π[x] = ESGi [x] for all x ∈ Zi

i.e. set policies behave locally as ES-policies.
The following example will lead us through the proof.

Example 19 :
We consider G = (V = {1, 2, 3}, ∅) and F = {{1, 2, 3}} and Π a priority policy for
the list L : 1 < 2 < 3. Consider the vector x = (1, 2, 2) of processing times. This
gives

Π[x] = 1
2

3

t0 t1 t2 t3

and the sequence of sets

S = [(∅, ∅), ({1}, {2}), ({1, 2}, {3}), ({1, 2, 3}, ∅)]

Now we define
ZS =

{
x ∈ R3

> |x1 < x2, x2 < x1 + x3
}

♦

46

12 Set Policies

Proof. For given [G,F] and a fixed vector x of processing times, Π makes a sequence
of decisions for x that depend only on sets. Let S be the sequence of these sets

S := [(C(t0) = ∅, B(t0) = ∅), . . . , (C(tk) = V,B(tk) = ∅)]

Now given such a sequence S we define

ZS := {x ∈ Rn> |x induces the sequence S}

Claim:
The sets ZS for a (finite) partition of Rn>.
This is clear since every x leads to exactly one S and there are only finitely many

such sequences.
Now we want to show (1) and (2) for these sets.

(1) We proced inductively along the sequence. Every pair (Ci, Si) represents the
state of a decision at a time ti that depends on x. But the state is the same for
all x ∈ ZS.

Claim:
The decision time ti is equal to the sum of some xr for r ∈ C(ti) and every such
xr occurs only once, meaning

ti =
∑

r∈C(ti)
αrxr with αr ∈ {0, 1}

and the jobs with αr = 1 are sequential in Π[x].

Proof. By induction. We have t0 = 0 and all αr = 0. Now at t1 we get t1 = xi
for i ∈ C(t1).
Now look at ti. Some jobs must complete at ti since Π is elementary, say job j.
Then the start of j is a decision time t ≤ ti−1 and thus ti = tstart j + xj because
tstart j only involves other xr that are sequential by induction hypothesis.

Now we want to use this claim to express conditions on x ∈ ZS by homogeneous
inequalities and equations. First we obviously have

xj > xi for all j ∈ B(t1) , i ∈ C(t1)

and analogously for later times

j ∈ C(ti)\C(ti−1)⇒ ti = xj + tstart of j

k ∈ B(ti)⇒ ti < xk + tstart of k

Since Π is a set policy, these equations and inequalities induce exactly the se-
quence S. Therefore ZS is the intersection of finitely many open halfspaces and
linear spaces, all containing 0 in its closure. Thus Zs is a polyhedral cone.

47

12 Set Policies

(2) S defines an abstract interval order GS

i → [tstart i, tfinish i]

These are both abstract points given by the sum of xr of sequential jobs. The
order of theses is the same for all x ∈ ZS. So

Π[x] = ESGS [x] for x ∈ Zs

Corollary 12.3:

(1) Graham anomalies occur only across the boundaries of the cones.

(2) Every Set policy is almost everywhere continuous.

(3) The class of set policies is stable for continuous probability distributions.

Definition 12.4:
A cost function κ is additive if there is a set function g : 2V → R (the cost rate)
with

κ(C1, . . . , Cn) =
∫
g(U(t)) dt

where U(t) is the set of uncompleted jobs at t

Theorem 12.5:
If all jobs are exponentially distributed and independent and the cost function κ is
additive, then there is an optimal set policy (optimal among all policies).[MRW85]

Sketch of Proof. We assume additionally that a prescribed set V ′ of jobs must start
at time 0. Let Π be a policy for this version.

Claim:
There is a set policy Π∗ for this version with

E
[
κΠ∗

]
≤ E

[
κΠ
]

Proof of the Claim. By induction on n = |V |.
n = 1 : There is only one policy: start 1 at 0. This is a set policy.
Inductive Step:
Consider the problem with n jobs and the start set V ′. Assume that there is an
optimal set policy for all problems with less than n jobs and arbitrary start set V ′′.
There is a policy Π′ with E[κΠ′] ≤ E[κΠ] that always waits for the first completion
of a job since there are no tentative decision times at t = 0. (Part 1)
Suppose Π fixes a tentative decision time t <∞ at time 0. Consider

X = {x ∈ Rn | every job started at 0 is longer than t}

Then Π starts some new jobs at t and thus

E
[
κΠ
]

= Q(X) · E
[
κΠ
∣∣∣X]+Q(XC) · E

[
κΠ
∣∣∣XC

]

48

12 Set Policies

The memoryless property of the exponential distribution further gives

E
[
κΠ
]

= t · g(V) + E
[
κΠ
]

Consider Π′ that starts all jobs at 0 and otherwise behaves as Π.

⇒ E
[
κΠ
]
− E

[
κΠ′

]
= Q(x) · t · g(V) > 0

This proves (Part 1). So without loss of generality let Π wait for the first completion.
Consider a particular set C of jobs to complete first. Let ΠC be the policy for the
subproblem on V \C with start set V ′′ induced by Π. Now we get

E
[
κΠ
]

=
∑

all possible C
Q(jobs in C end first) · (g(V) · (expected completion of C))

=
∑
j∈V

Q(j ends first) ·
(
E[j completes] · g(V) + E[κΠj]

)

=
∑
j∈V

λj
λ1 + . . .+ λn

·
(

1
λj
· g(V) + E[κΠj]

)
(12.1)

We use the inductive hypothesis on E[κΠj], so we can replace Πj by an optimal set
policy for the subproblem. Combining this for all subproblems gives a set policy Π∗
for given problem with E[κΠ∗] ≤ E[κΠ].

Since there are only finitely many set policies, there is an optimal set policy and
with V ′ = ∅ also for the original problem.

Theorem 12.6:

(1) κ = Cmax is additive with

g(U) :=
1 if U 6= ∅

0 if U = ∅

and LEPT is optimal for P |pj ∼ exp |Cmax.

(2) κ = ∑
j wjCj is additive with

g(U)
∑
j∈U

wj

and SEPT is optimal for P |pj ∼ exp |∑Cj

Example 20 :
We assume no precedence constraints,m = 3 identical machines, 6 jobsXj ∼ exp(aj)
with a1 = a2 = a > 1 and a3 = a4 = a5 = a6 = 1. We consider the set function

g(U) :=


w � 1 if 1 ∈ U and 2 ∈ U
1 if 1 /∈ U and (2, 5 ∈ U or 2, 6 ∈ U)
1 if 2 /∈ U and (1, 3 ∈ U or 1, 4 ∈ U)
0 otherwise

The optimal set policies involves deliberate idleness. ♦

49

12 Set Policies

Non-idleness problem Under which condition on g : 2V → R does there exist an
optimal set policy without idleness?

Remark:
The formula (12.1) in the proof of theorem 12.5 gives an algorithm for computing
the expected cost of a set policy for an additive cost function κ. M

Exercises

(12.1) Calculate the expected makespan by the algorithm in the remark above for
the ES-policy Π = ESH with

2 4

1 3

H :
Consider Xj ∼ exp(λj) for
λ1 = 1, λ2 = 2, λ3 = 2 and λ4 = 1.

50

13 Expected Makespan

13 Simple Policies for the Expected Makespan
Determining an optimal policy is in general NP -hard. Therefore we want approxi-
mation algorithms. For an instance I of a scheduling problem an algorithm should
produce a feasible solution A(I) in form of a policy Π. Its value is given by the
expected cost of Π. We want to give performance guarantees of the form

A(I) ≤ % ·OPT (I)

for machine scheduling problems.

Theorem 13.1:
Let G be arbitrary and the set F of forbidden sets corresponds to m-machines.
Further let the cost function be the makespan, i.e. κ = Cmax. Then for every static
priority rule Π and every vector x of processing times the following asymptotically
tight bound holds:

CΠ
max(x) ≤

(
1 + m− 1

m

)
OPT (x) .

Proof. Consider Π[x] as an m× l rectangle, where l denotes the makespan.

m

l

Let Ik be the blue idle time and Bk be the red busy time of machine k.

m · l =
m∑
k=1

(|Ik|+ |Bk|)

Case 1 No idle time implies that Π[x] is optimal.

Case 2 Consider job j0 that ends last.
Case (a) All idle times are parallel to j0. Thus all machines are busy until the

start of job j0.

⇒
m∑
k=1
|Ik| ≤(m− 1)xj0 ≤(m− 1)OPT

⇒ l ·m =
m∑
k=1
|Ik|+

m∑
k=1
|Bk|≤(m− 1)OPT +mOPT

⇒ l ≤(1 + m+ 1
m

)OPT

Case (b) There are idle times before the start of j0. Consider the last such
idle time with respect to its start. Why was j0 not started in that idle
time? It can only be, because a predecessor j1 of j0 was busy until the

51

13 Expected Makespan

start of j0 or during an end interval of the idle time. So inductively we
get a chain C with length lC :

jr <G . . . <G j1 <G j0

such that all idle times occur in parallel to the processing of that chain.
m∑
k=1
|Ik| ≤ (m− 1) · lC ≤ (m− 1)OPT

Proceed as above.

Remark:
The bound (1 + m−1

m
) is achieved pointwise. Thus E(CΠ

max) is less or equal to the
optimum expected over all policies for every joint distribution of processing times.
M

Example 21 :
To prove the tightness of the bound for m machines and no precedence constraints
consider

jobs 1, . . . ,m− 1 m m+ 1, . . . , 2m− 1
processing times m− 1 m 1

For the priority list L = 1 < . . . < m−1 < m+1 < . . . < 2m−1 < m the algorithm
gives a policy Π[x] with Cmax = 2m+ 1.

m− 1

1 m

...

· · ·

Where as the optimal solution OPT (x) only takes Cmax = m.

m

...

This gives the needed ratio of 1 + m−1
m

. ♦

52

14 Weighted Completion Times

14 Simple Policies for Weighted Completion Times
Here we need more sophisticated methods. We will use LP-guided construction of
a policy. Let us first consider deterministic times for fixed vector x = (p1, . . . , pn)
(fixed processing times).
Model:
We consider no precedence constraints and m machines. This can be generalized to
include release dates rj ≥ 0. Consider the following LP in completion time variables
CLP
j .

min
n∑
j=1

wjC
LP
j

s.t.
∑
j∈A

pj · CLP
j ≥ 1

2m ·
∑
j∈A

pj

2

+ 1
2
∑
j∈A

p2
j ∀A ⊆ V (14.1)

CLP
j ≥ pj ∀j ∈ {1, . . . , n} (14.2)

Lemma 14.1:
The completion times of every feasible schedule fulfill the LP constraints (14.1) and
(14.2).

Proof. The second constraint is always fulfilled. Now consider a feasible schedule S
with completion times C1, . . . , Cn.

m = 1 The left hand side is smallest if the jobs of A are in the beginning. So con-
sider the picture A = {1, . . . , k}:

p1 p2 p3 pk

p1C1

p2C2

p3C3

pkCk

1
2

∑
j∈A

p2
j =

1
2

(∑
j∈A

pj

)2

=

∑
j∈A

pjCj ≥

So with m = 1 obviously holds

∑
j∈A

pj · CLP
j ≥ 1

2 · 1 ·
∑
j∈A

pj

2

+ 1
2
∑
j∈A

p2
j

53

14 Weighted Completion Times

m > 1 We reduce the problem to the 1 machine case and use the Cauchy-Schwarz
inequality.

∑
j∈A

pjCj =
m∑
i=1

∑
j∈A∩Mi

pjCj

≥
m∑
i=1

1
2

 ∑
j∈A∩Mi

pj

2

+ 1
2

 ∑
j∈A∩Mi

p2
j




= 1
2

m∑
i=1

 ∑
j∈A∩Mi

pj

2

+ 1
2
∑
j∈A

p2
j

≥ 1
2m

 m∑
i=1

∑
j∈A∩Mi

pj

2

+ 1
2
∑
j∈A

p2
j

Lemma 14.2:
If the numbers C1 ≤ . . . ≤ Cn fulfill the first constraint (14.1), then with J =
{1, . . . , j} we get

2Cj ≥
1
m

∑
k∈J

pk .

Proof.

Cj
∑
k∈J

pk ≥
∑
k∈J

pkCk ≥
1

2m

∑
k∈J

pk

2

+ 1
2
∑
k∈J

p2
k ≥

1
2m

∑
k∈J

pk

2

⇒ 2Cj ≥
1
m

∑
k∈J

pk

Idea for an Approximation Algorithm

(A) Solve the LP. This gives an (LP) optimal solution CLP
j . This can be done in

polynomial time although we have exponentially many inequalities.

(B) We use the ordering CLP
j1 ≤ . . . ≤ CLP

jn for a job based priority list

L = j1 < j2 < . . . < jn

We may start job jk only after all j1, . . . , jk−1have been started, i.e., we do list
scheduling with conditions Sj1 ≤ . . . ≤ Sjn . This is different from priority lists
as considered before.

(C) Use lemma 14.2 to prove a performance guarantee.

More on (B).

54

14 Weighted Completion Times

Theorem 14.3:

(1) Every job-based list scheduling rule defines a policy, called job-based list schedul-
ing policy hereafter.

(2) Every job-based list scheduling policy is dominated by a preselective policy.
Proof.
(1) A job based list scheduling rule is clearly non-anticipative.

(2) Let 1 < 2 < . . . < n be the priority list L and Π be the job based priority policy.
The condition S1 ≤ S2 ≤ . . . ≤ Sn implies that, for every forbidden set F the
last job of F in L is selected as waiting job. The preselective policy Π∗ with
that selection S dominates Π because it does early start scheduling with respect
to S and thus may violate S1 ≤ . . . ≤ Sn.

More on (C).

Lemma 14.4:
Let Π be a job-based priority policy with List L = 1 < 2 < . . . < n. Define
CΠ
j (x) := Π[x](j) + xj the completion time of job j with respect to Π and x. Then

CΠ
j (x) ≤ 1

m

j−1∑
k=1

xk + xj

holds for every x and thus we get in the stochastic case:

E[CΠ
j] ≤ 1

m

j−1∑
k=1
E[Xk] + E[Xj]

Proof. Consider x fixed. When j is started the jobs 1, . . . , j − 1 have already been
started. The latest time by which a machine becomes available for j is

1
m

j−1∑
k=1

xk (all machines are busy as long as possible)

This gives

Sj ≤
1
m

j−1∑
k=1

xk ⇒ Cj ≤
1
m

j−1∑
k=1

xk + xj

Taking expectations gives the second inequality.

Theorem 14.5:
Let CLP

1 ≤ CLP
2 ≤ . . . ≤ CLP

n be an optimal solution of the (LP) and (for fixed x)
let C1, . . . , Cn be the vector of completion times obtained by job-based list scheduling
according to the list L = 1 < 2 < . . . < n. Then we get∑

j

wjCj ≤
(

3− 1
m

)
OPT

i.e., the algorithm for the LP-guided job-based priority scheduling is a (3 − 1
m

)-
approximation algorithm for the deterministic case.

55

14 Weighted Completion Times

Proof.

Cj
lem14.4
≤ 1

m

j−1∑
k=1

xk + xj = 1
m

j∑
k=1

+m− 1
m

xj

lem14.2
≤ 2CLP

j + m− 1
m

xj ≤
(

3− 1
m

)
CLP
j

⇒
∑
j

wjCj ≤
(

3− 1
m

)∑
j

wjC
LP
j ≤

(
3− 1

m

)
OPT

More on (A)
We can solve the (LP) in polynomial time if the separation problem for (14.1) and
(14.2) can be solve in polynomial time. This is trivial for (14.2). So let us show this
for (14.1).
For a given vector (C1, . . . , Cn) ∈ Rn and A ⊆ V we define the violation as

v(A) := 1
2m

∑
j∈A

pj

2

+ 1
2
∑
j∈A

p2
j −

∑
j∈A

pjCj

Lemma 14.6:
Let A maximize the violation. Then k ∈ A if and only if

Ck −
1
2pk <

1
m

∑
j∈A

pj

Proof. First we get for k ∈ A

v(A\{k}) = v(A)− pk

 1
m

∑
j∈A

pj + m− 1
2m pk − Ck

 (14.3)

and for k /∈ A we get

v(A ∪ {k}) = v(A) + pk

 1
m

∑
j∈A

pj + m+ 1
2m pk − Ck

 (14.4)

Now let A maximize the violation then we can conclude

k ∈ A implies v(A\{k}) ≤ v(A). Using (14.3) we can calculate

Ck ≤
1
m

∑
j∈A

pj + m− 1
2m pk <

1
m

∑
j∈A

pj + 1
2pk

k /∈ A implies v(A ∪ {k}) ≤ v(A). Using (??) we can calculate

1
m

∑
j∈A

pj + m+ 1
2m pk ≤ Ck

56

14 Weighted Completion Times

Separation Algorithm

(1) Sort the jobs with respect to increasing Cj − 1
2pj values. Let 1 < 2 < . . . < n

be this ordering.

(2) The set A with maximum violation is an initial segment J = {1, 2, . . . , j} of
this ordering.

(3) Check the initial segments of the ordering for violation.

Proof of (2). Let A maximize the violation and i ∈ A. We show that k ∈ A for
every k ≤ i. So let i ∈ A. This implies with lemma 14.6

Ci −
1
2pi <

1
m

∑
j∈A

pj

Since k ≤ i the ordering and lemma 14.6 imply

Ck −
1
2pk ≤ Ci −

1
2pi <

1
m

∑
j∈A

pj ⇒ k ∈ A

Checking (3) clearly requires only polynomial time.

We now consider the stochastic case with independent processing times. Let us look
at an LP-based approach. Consider the achievable region{

(E[CΠ
1], . . . ,E[CΠ

n]) ∈ Rn
∣∣∣Π policy

}
Find a polyhedral relaxation P . Solve the linear program

min
∑
j

wjC
LP
j

s.t. CLP ∈ P

Then use the list L : i1 < i2 < . . . < in defined by CLP
i1 ≤ CLP

i2 ≤ . . . ≤ CLP
in as list

for priority policies.
To find the polyhedral relaxation we generalize the valid inequalities from determin-
istic scheduling according to [HSDW97].

∑
j∈A
E[Xj]E[CΠ

j] ≥ 1
2m

∑
j∈A
E[Xj]

2

+ 1
2
∑
j∈A
E[Xj]2 −

m− 1
2m

∑
j∈A

V ar[Xj]

∀A ⊆ {1, . . . , n} and all policies Π (14.5)

Lemma 14.7:
Every policy Π (for an m-machine problem without precedence constraints) fulfills
(14.5).

57

14 Weighted Completion Times

Proof. Consider a fixed realization x = (x1, . . . , xn). Then lemma 14.1 gives

∑
j∈A

xjC
Π
j (x) ≥ 1

2m

∑
j∈A

xj

2

+ 1
2
∑
j∈A

x2
j ∀A ⊆ V

We rewrite this in terms of start times SΠ
j (x) = CΠ

j − xj and get

∑
j∈A

xjS
Π
j (x) ≥ 1

2m

∑
i,j∈A
i 6=j

xixj

− m− 1
2m

∑
j∈A

x2
j (14.6)

The SΠ
j and Xj are stochastically independent because Π is a policy and thus non-

anticipative. Furthermore we can now conclude from stochastics

E[Xj · SΠ
j] = E[Xj] · E[SΠ

j] V ar[Xj] = E[X2
j]− E[Xj]2 (14.7)

We now take expectation in (14.6) and use linearity of expectation, (14.7) and
independency of processing times to get

∑
j∈A
E[Xj · SΠ

j] (14.7)=
∑
j∈A
E[Xj] · E[SΠ

j]

≥ 1
2m

∑
i,j∈A
i 6=j

E[XiXj]−
m− 1

2m
∑
j∈A
E[X2

j]

= 1
2m

∑
i,j∈A
i 6=j

E[Xi]E[Xj]−
m− 1

2m
∑
j∈A
E[X2

j]

= 1
2m

∑
j∈A
E[Xj]

2

− 1
2m

∑
j∈A
E[Xj]2 −

m− 1
2m

∑
j∈A
E[X2

j]

Now looking an the two last sums

− 1
2m

∑
j∈A
E[Xj]2 −

m− 1
2m

∑
j∈A
E[X2

j]

= m− 1
2m

∑
j∈A
E[Xj]2 −

m− 1
2m

∑
j∈A
E[X2

j]− m− 1
2m

∑
j∈A
E[Xj]2 −

1
2m

∑
j∈A
E[Xj]2

(14.7)= −m− 1
2m

∑
j∈A

V ar[Xj]−
1
2
∑
j∈A
E[Xj]2

Therefore we get

∑
j∈A
E[Xj] · E[CΠ

j] ≥ 1
2m

∑
j∈A
E[Xj]

2

+ 1
2
∑
j∈A
E[Xj]2 −

m− 1
2m

∑
j∈A

V ar[Xj]

by adding ∑E[Xj]2 on both sides.

58

14 Weighted Completion Times

Note that we got a similar inequality to the deterministic case, except for the
variances.

Definition 14.8:
For a random variabe Xj we define the coefficient of variation of Xj as

CV [Xj] := V ar[Xj]
E[Xj]2

This coefficient is ≤ 1 for all NBUE (New Better than Used in Expectation) dis-
tributions (e.g. exponential, uniform). The NBUE property reads in mathematical
terms as:

E[Xj − t|Xj > t] ≤ E[Xj] ∀t > 0
Discrete and multi-modal distributions are not NBUE.

Lemma 14.9:
Assume that CV [Xj] ≤ ∆ holds for all j, then this implies

∑
j∈A
E[Xj]E[CΠ

j] ≥ 1
2m


∑
j∈A
E[Xj]

2

+
∑
j∈A
E[Xj]2


− (m− 1)(∆− 1)

2m
∑
j∈A
E[Xj]2 . (14.8)

Proof. Just calculation.

Lemma 14.10:
Let C = (Cj1 , . . . , Cjn) ∈ Rn fulfill (14.8). Assume C1 ≤ . . . ≤ Cn and Cj ≥ E[Xj]
then

1
m

j∑
k=1
E[Xk] ≤

(
1 + max

{
1, m− 1

m
∆
})

Cj ∀j

Proof. First consider

Cj

j∑
k=1
E[Xk] ≥

j∑
k=1
E[Xk]Ck

≥ 1
2m

 j∑
k=1
E[Xk]

2

+ m−∆(m− 1)
2m

j∑
k=1
E[Xk]2

Then we divide by ∑E[Xk] and get

Cj ≥
1

2m

j∑
k=1
E[Xk] + m−∆(m− 1)

2m ·
∑
k E[Xk]2∑
k E[Xk]

Case 1 ∆ ≤ m
m−1 Then we get

Cj ≥
1

2m

j∑
k=1
E[Xk]

59

14 Weighted Completion Times

Case 2 ∆ > m
m−1 Now the second term is negative. We use that Cj ≥ Ck ≥ E[Xk]

for k = 1, . . . , j and get

Cj ≥ max
k=1,...,j

E[Xk] ≥ (
j∑

k=1
E[Xk]2) · (

j∑
k=1
E[Xk])−1 .

Now let the maximum be attained at index i0, i.e. E[Xi0] = maxE[Xk] and
thus

j∑
k=1
E[Xk]2 ≤ E[Xi0]

j∑
k=1
E[Xk] .

Therefore we can conclude

Cj ≥
1

2m

j∑
k=1
E[Xk] + m−∆(m− 1)

2m Cj

Now case 1 and case 2 imply the claim.

Remark:
The previous lemma implies that the average load of the machines of an initial
segment of {1, . . . n} is less or equal to a constant times the completion of the last
job. So this is the stochastic counterpart of lemma 14.1. M

Theorem 14.11:
Let Π be the job based policy induced by the (LP)

min
∑
j

wjC
LP
j

s.t. (14.8)
CLP
j ≥ E[Xj] ∀j

Then Π is a (2 + max{1, m−1
m

∆})-approximation.

Proof.
Let CLP

1 ≤ . . . ≤ CLP
n be an optimal solution of the LP and let L := 1 < 2 < . . . < n

be a priority list and Π be the induced policy. Then we can estimate

E[CΠ
j] ≤ 1

m

j−1∑
k=1
E[Xk] + E[Xj]

= 1
m

j∑
k=1
E[Xk] + m− 1

m
E[Xj]

??
≤
(

1 + max
{

1, m− 1
m

∆
})

CLP
j + m− 1

m
CLP
j

≤
(

2 + max
{

1, m− 1
m

∆
}
− 1
m

)
CLP
j

60

14 Weighted Completion Times

This now implies

E[
n∑
j=1

wjC
Π
j] =

n∑
j=1

wjE[CΠ
j] ≤

(
2− 1

m
+ max

{
m− 1
m

∆
}) n∑

j=1
wjC

LP
j

≤
(

2− 1
m

+ max
{
m− 1
m

∆
})

︸ ︷︷ ︸
αm

·OPT

Remark:

(1) The LP can be solved in polynomial time (see Theorem 14.12).

(2) The WSEPT3 first rule, i.e.
wj1
E[Xj1] ≥ . . . ≥ wjk

E[Xjk]

leads to a guarantee of

1 + (∆ + 1)(m− 1)
2m ≈ αm − 1

(3) These results can be generalized to problems with release dates rj ≥ 0. Using a
job based priority policy we then get an αm + 1 guarantee.

M

Theorem 14.12:
Assume that the jobs are ordered according to WSEPT, meaning

w1

E[X1] ≥ . . . ≥ wn
E[Xn]

Then the LP has the optimal solution

CLP
j = 1

m

j∑
k=1
E[Xk]−

(∆− 1)(m− 1)
2m E[Xj] j = 1, . . . , n

for fixed ∆ ≥ 1 , m ∈ N

Proof. Idea:
Let f(A) be the right hand side of the inequalities of (14.8) for A ⊆ V . Then
f : 2V → R is supermodular, i.e.

f(A ∪B) + f(A ∩B) ≥ f(A) + f(B) ∀A,B ⊆ V

⇔ f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B) ∀A ⊂ B ⊂ V , x ∈ V \B

Therefore the polyhedron defined by the LP (14.8) is a supermodular polyhedron.
Thus the optimal solution can be obtained by Edmond’s Greedy Algorithm for such
supermodular polyhedra.

3Weighted Shortest Expected Processing Time

61

14 Weighted Completion Times

Exercises

14.1 Show that WSEPT leads to a 1 + (∆+1)(m−1)
2m approximation (on m machines

with no precedence constraints).

14.2 Generalize the results to the case with release dates. (Use a job based priority
rule.)

14.3 Show that WSEPT may be arbitrary bad for release dates.

Consequences

(A) WSEPT is an optimal policy for m = 1.

(B) The guarantee of WSEPT is better than the one given in theorem 14.11 and is
the best known for problems without release dates.

(C) Theorem 14.11, however, can be generalized to release dates and gives a guar-
antee of 3− 1

m
+ max{1, m−1

m
∆}.

Theorem 14.13: Master Thesis of B. Labonté 2013
The term ∆ (=: k) is essential, i.e., there are instances I(m,n, k) such that

WSEPT(I(m,n, k))
OPT (I(m,n, k)) ∈ Ω(k 1

4) .

Where we have n jobs, m machines and k = ∆ ≥ CV (Xj).

Sketch of Proof. The instances I(m,n, k) are constructed as follows.
We take m deterministic jobs with weights wj = 1 and processing times xj = r > 0
and n−m stochastic jobs with weights wj =

√
m
m−1 and processing times

Xj =
rwjk with probability 1

k

0 with probability 1− 1
k

Thus we have
CV (Xj) ≤ k − 1 and wj

E[Xj]
= 1
r
∀j

So every order is WSEPT. We use two different policies based on different job
orderings:

Πdet-first and Πstoch-first .

Then we obviously have
E[κΠ

det]
E[κΠ

OPT] ≥
E[κΠ

det]
E[κΠ

stoch]
and furthermore for n = m+ b

√
kc

E[κΠ
det] ≥

(
1− 1

k

)n−m
(m · r + (n−m)r · w) ∈ Ω(k 1

4)

and E[κΠ
stoch] = O(1).

62

15 Stochastic Online Scheduling for Weighted Completion Times

15 Stochastic Online Scheduling for Weighted
Completion Times

We follow some results of [MUV06]. Consider a 2 phase model for the weighted sum
of completion times on m machines.

• jobs arrive online and must be assigned to machines immediately. There is an
unknown number of jobs which have a random processing time each.

• on the next day the jobs are scheduled on the assigned machines in the expected
performance model. The number of jobs is now known. (We do this optimally
on every machine with WSEPT)

• view this as a scheduling policy and analyze with respect to expected perfor-
mance.

Now we want to develop an algorithm called Min-Increase.

• Assign jobs to a machine such that ∑wjCj based on E[Xj] has minimum
increase and can be done in polynomial time.

• Min-Increase matches best known bounds of previous model. This can be done
even better for NBUE processing times and release dates.

• Needs LP-based lower bounds in analysis but not for defining the policy.

• This was the first combinatorial approximation algorithm for release dates.

Let us introduce some notations using the priority orders from WSEPT

• j → i if job j is assigned to machine i

• H(j) = {k ∈ V | higher priority as j} ∪ {j}

• L(j) = V \H(j) lower priority jobs

• k < j corresponds to k arrives before j

• We tie break according to the incoming order.

Algorithm Min-Increase

(1) Upon arrival of job j, assign it to machine i that minimizes

z(j, i) := wj
∑

k∈H(j)
k<j
k→i

E[Xk] + E[Xj]
∑

k∈L(j)
k<j
k→i

wk + wjE[Xj]

(2) In the scheduling phase, schedule the jobs on every machine according toWSEPT
(optimal per machine).

63

15 Stochastic Online Scheduling for Weighted Completion Times

Lemma 15.1:
The value z(j, i) is the increase of ∑l wlE[Cl] on machine i when j is assigned to
that machine and jobs are scheduled by WSEPT.

Proof.
Consider machine i

H(j)\{j} j L(j)

The first part doesn’t change. The expected completion time of j gets weight wj.
All jobs after j are delayed by the expected processing time of j.

Lemma 15.2:
The expected value of the policy induced by Min-Increase is equal to the sum over
the minimum increase for assigning the jobs on arrival, i.e.

E

 n∑
j=1

wjC
MI
j

 =
n∑
j=1

min
i
z(j, i)

Proof. Let us abbreviate Cj := CMI
j for now. We partition the jobs as follows

E

 n∑
j=1

wjCj

 =
n∑
j=1

wj
∑

k∈H(j)
k→ij
k<j

E[Xk] +
n∑
j=1

∑
k∈H(j)
k→ij
k>j

E[Xk] +
n∑
j=1

wjE[Xj]

into the jobs that arrive before and after j. The index ij denotes the machine to
which j is assigned.

Claim:
n∑
j=1

wj
∑

k∈H(j)
k>j
k→ij

E[Xj] =
n∑
j=1
E[Xj]

∑
k∈L(j)
k<j
k→ij

wk

Sketch of proof. We count the jobs rowwise and columnwise in a 2−D Gantt chart.
Now the left hand side corresponds to rowwise counting and the right hand side to
columnwise counting.

The claim implies

E

 n∑
j=1

wjCj

 =
n∑
j=1

(
wj

∑
k∈H(j)
k<j
k→ij

E[Xk] + E[Xj]
∑

k∈L(j)
k<j
k→ij

wk + wjE[Xj]
)

=
n∑
j=1

min
i
z(j, i)

64

15 Stochastic Online Scheduling for Weighted Completion Times

Theorem 15.3:
Let CV [Xj] ≤ ∆. Then Min-Increase is a %-approximation algorithm with

% = 1 + (m− 1)(∆ + 1)
2m

Proof. Using the lemma 15.2 and 15.1, i.e. the claim from the proof above, we can
estimate

E[MI(I)] =
n∑
j=1

min
i
z(j, i)

=
n∑
j=1

min
i

{
wj

∑
k∈H(j)
k<j
k→i

E[Xk] + E[Xj]
∑

k∈L(j)
k<j
k→i

wk + wjE[Xj]
}

=
n∑
j=1

min
i

{
wj

∑
k∈H(j)
k<j
k→i

E[Xk] + E[Xj]
∑

k∈L(j)
k<j
k→i

wk
}

+
n∑
j=1

wjE[Xj]

The minimum of m elements is less than or equal to the arithmetic mean of these
m elements. Therefore we get

E[MI(I)] ≤
n∑
j=1

1
m

m∑
i=1

{
wj

∑
k∈H(j)
k<j
k→ij

E[Xk] + E[Xj]
∑

k∈L(j)
k<j
k→ij

wk
}

+
n∑
j=1

wjE[Xj]

=
m∑
i=1

1
m

{ n∑
j=1

wj
∑

k∈H(j)
k<j
k→i

E[Xk] +
n∑
j=1
E[Xj]

∑
k∈L(j)
k<j
k→i

}
+

n∑
j=1

wjE[Xj]

=
m∑
i=1

1
m

n∑
j=1

∑
k∈H(j)
k 6=j
k→i

E[Xk] +
n∑
j=1

wjE[Xj]

=
n∑
j=1

1
m
wj

m∑
i=1

∑
k∈H(j)
k 6=j
k→i

E[Xk] +
n∑
j=1

wjE[Xj]

=
n∑
j=1

1
m
wj

∑
k∈H(j)

E[Xk] + m− 1
m

n∑
j=1

wjE[Xj]

Now we use the inequality (??) from lemma 15.4 and conclude

⇒E[MI(I)] ≤ E[OPT (I)] +
((m− 1)(∆− 1)

2m + m− 1
m

) n∑
j=1

wjE[Xj]

⇒E[MI(I)] ≤ % · E[OPT (I)]

65

15 Stochastic Online Scheduling for Weighted Completion Times

Lemma 15.4:
Consider priorities with respect to non-increasing wj

E[Xj] values. Then the following
inequality holds

E[OPT (I)] ≥
n∑
j=1

wj
1
m

∑
k∈H(j)

E[Xk]−
(m− 1)(∆− 1)

2m

n∑
j=1

wjE[Xj] (15.1)

Proof. Recall theorem 14.11, i.e. an optimal solution to the LP defined by inequality
(14.8) and CLP

j ≥ E[Xj] in the section 14 is given by

CLP
j = 1

m

∑
k∈H(j)

E[Xk]−
(m− 1)(∆− 1)

2m E[Xj]

⇒
n∑
j=1

wjC
LP
j =

n∑
j=1

wj
1
m

∑
k∈H(j)

E[Xk]−
(m− 1)(∆− 1)

2m E[Xj]

and thus
E[OPT (I)] ≥

n∑
j=1

wjC
LP
j

Remark:(1) The performance guarantee of Min-Increase matches the best known
in the offline setting, but does not require the knowledge of all jobs and their
expected processing times in advance, but only when they arrive.

(2) WSEPT and Min-Increase produce different schedules in general.

(3) The lower bound of theorem 14.12 applies to Min-Increase.
M

Exercises
15.1 Show by example that WSEPT and Min-Increase generate different schedules.
We want to derive a simple lower bound for Min-Increase

Example 22 :
Asymptotically we get

E[MI(I)]
E[OPT (I)] ≥

1
2

Let an instance I be given by n−1 deterministic jobs {1, . . . , n−1} with processing
times xj = 1 and weights wj = 1 and 1 stochastic job n with a 2-point distribution

Xn :=
1 with probability 1− 2

n
n2

4 with probability 2
n

wn = E[Xn] = 1− 2
n

+ n

2

We consider 2 machines and the jobs arrive 1 to n. Therefor Min-Increase assigns
the n− 1 deterministic jobs first. Then job n is assigned to the less busy machine.
This gives

E[MI(I)] = E
∑

j

wjCj

 = 3n
2

4 + o(n2)

66

15 Stochastic Online Scheduling for Weighted Completion Times

An optimal policy starts only job n and fixes t = 1 as next tentative decision time.
If job n takes longer than 1 put all remaining jobs on the other machine (else split
them on both). This gives

E[OPT (I)] = n2

2 + o(n2)

So the ratio goes to 1
2 for n to infinity. ♦

67

16 Evaluating the Distribution of the Objective Value of a Policy

16 Evaluating the Distribution of the Objective Value
of a Policy

We will do this in two steps.

(1) Determine a policy Π (for a distribution of processing times Q and a cost
function κ).

(2) Evaluate its cost distribution QΠ
κ .

This is well investigated for ES-policies, and κ = Cmax (makespan). Ideal we want
a distribution function F of Cmax or at least important percentiles.

Hagstrom ’88 [Hag88]

MEAN For a stochastic project network (V,G,Q) (defines ES-policy) with discrete
independent processing times we want to calculate the expected makespan.

DF For a given stochastic network with discrete independent processing time and
some time t we want to know the probability of (makespan ≤ t).

Theorem 16.1: Hagstrom

(1) MEAN and DF are polynomially equivalent for 2-point distrbutions.

(2) MEAN and the 2-point version of DF are #P -complete.

(3) Unless P = NP , MEAN and DF cannot be solved in time polynomial in the
number of values in the (also) discrete distribution that the makespan attains.

Definition 16.2:
Number-P , #P , is a complexity class for counting problems. A decision problem
is in #P if one can compute in non-deterministic polynomial time the number of
Yes-answers for every instance I of that problem. So a problem is in #P if and
only if there is a polynomial p and a non-deterministic algorithm A such that for all
I ∈ P A(I) gives the number of Yes-answers to instance I in p(< I >)4. We say
that A solves the counting problem.

Example 23 :

(1) We know SAT is NP and models the question: Does a CNF formula have a
fulfilling truth assignment?
Now #SAT is #P and models the question: How many fulfilling assignments
has a CNF formula?

(2) As above for the NP problem: Does a graph G have a Hamiltonian Cycle? The
counting version: How many Hamiltonian Cycles does a graph have? is #P .

4< I > denotes the encoding length.

68

16 Evaluating the Distribution of the Objective Value of a Policy

(3) The linear extension problem is in P (Does a partial order have a linear exten-
sion?). The problem: How many linear extension does a partial order have? is
#P .

♦
So problems in P can also lead to #P problems. Similar to NP -complete one defines
#P -complete. We use Turing reduction instead of polynomial or Karp reduction.

Definition 16.3:
A problem P ∈ #P is #P -complete if and only if there is a (polynomial) Turing
reduction from P ′ ∈ #P -complete to P such that P ′ → P. So counting on P solves
that counting problem in P ′ in polynomial time.
For the proof of Hagstroms theorem 16.1 we need a different representation of

partial orders. So far we considered jobs as vertices and G as transitive reduction in
a node diagram. Now we use an arc diagram and consider jobs as arcs and a digraph
D with a unique source s and a unique sink t. We may need artificial dummy jobs
to represent precedence constraints correctly. More precisely (i, j) ∈ E(G) if and
only if there is a directed path from the tail of i to the head of j.

Example 24 :
Node diagram: The jobs are nodes of
the digraph G.

2

1

5

4

3

7

6

Arc diagram: The jobs are arcs of di-
graph D.

2

1

5

3

4
7

6

The blue arcs are dummy jobs. The makespan corresponds the length of a longest
path. ♦

Remark:

• An arc diagram enables us to use standard graph algorithms directly.

• The resulting arc diagrams are not unique.

• Constructing an arc diagram with a minimum number of dummy arcs is NP -
hard.

M

Standard Construction
Start from G. Uses edges of G as dummy arcs. Expand every node of G to an arc
and contract afterwards. Identify the tail nodes of all minimal jobs and the head
nodes of all maximal jobs and contract superflous dummy arcs.

Proof of Theorem 16.1. We will only proof claim for the 2-point version of DF. We
will use a reduction from Reliability which is #P -complete.

69

16 Evaluating the Distribution of the Objective Value of a Policy

Reliability
For a given directed acyclic s− t graph D with independent failure probabilities qj
on arc j we want to know the probability of the event that there exists an s− t path
without failures (the reliability of D).
Let I be an instance of Reliability. Construct an instance I ′ of DF such that for
some appropriate L ∈ N we have

reliability of D = 1− P({Cmax ≤ L− 1}) = 1− F (L− 1)

So we can compute the reliabilty from one evaluation of F .
Construction of I ′
Take D as an arc diagram of G. Every job j has processing time

Xj =
0 with P = qj

pj with P = 1− qj

with pj ∈ N such that all s− t paths have the same length L. This can be done in
polynomial time. Now we get

P(some path is reliable) = 1− P(all paths fail)
= 1− P(∩{Pi fails})
= 1− P(∩{some arc in Pi fails})
= 1− P(∩{Pi has length < L})
= 1− P(∩{Cmax ≤ L− 1})
= 1− F (L− 1)

This shows #P -hardness. See [Hag88] for DF in #P .

Exercises

16.1 Characterization of partial orders that have an arc diagram without dummy
arcs:
A partial order is N -free if its Hasse diagram does not contain an N (viewed
as nodes and arcs) as subgraph. Mathematically

∀i, j ImPred(i) = ImPred(j) or ImPred(i) ∩ ImPred(j) = ∅

A partial order has the CAC-property if every maximal chain and every max-
imal antichain have a non-empty intersection (also called the chain-antichain
property). Show that the following are equivalent for a partial order G =
(V,E)
(1) G has an arc-diagram without dummy arcs.
(2) G is N -free.
(3) G has the CAC property.

16.2 Strengthen the proof of theorem 16.1 to processing times Xj ∈ {0, 1}. Hint:
Use the fact that Reliability is already #P -complete for s − t dags of the
form (bipartite)

70

16 Evaluating the Distribution of the Objective Value of a Policy

s t

16.3 Show that the 2-point versions of MEAN and DF with Xj ∈ {0, 1} are poly-
nomially equivalent.

71

17 Bounding the Distribution Function of the Makespan

17 Bounding the Distribution Function of the
Makespan

One approach is simulation. There one needs exact information about the process-
ing time distribution and it is difficult to model stochastic dependencies. Therefore
we take another approach here. We will compute bounds. This is closely related to
network algorithms.

Definition 17.1:
Let N,N ′ be stochastic project networks. We say N is a chain minor of N ′ if

• every job of N is represented by one or several copies in N ′ (but N ′ may not
contain more than those copies).

• every maximal chain of N is contained in a maximal chain of N ′ by taking
appropriate copies of jobs and the order of jobs (copies) along the chain is
preserved.

Example 25 :

We want to represent the simple network
N two different chain majors N1, N2.

1

2
3

4

5

6
7

8

1 4 8

2 3 5 6 7

N1 has no copies of jobs but proper con-
tainment of chains.

1
1
1

2
2

3

3

4

5

5

5

6

5 6

8
7
7

7
8

N2 is an extreme case. It is a parallel de-
composition of all maximal chains.

These are just some examples. ♦

Definition 17.2:
Let X1, X2 be real valued random variables with distributions P1, P2 and distribution
functions F1, F2. Then X1, P1 is stochastically smaller than X2, P2 if F1 ≥ F2
holds pointwise, i.e.

∀t P({X1 ≤ t}) ≥ P({X2 ≤ t})
⇔ ∫

f dP1 ≤
∫
f dP2 ∀f : R→ R non-decreasing

Intuitively: X1 is smaller than X2 with higher probability.

Theorem 17.3:
Let N be a chain minor of N ′. The copies of j in N ′ shall have the same processing
time distributions as in N . But consider all processing time distributions in N ′ as

72

17 Bounding the Distribution Function of the Makespan

independent. Then the makespan of N is stochastically smaller than the makespan
of N ′.

QCmax(N) ≤st QCmax(N ′)

Remark:
We will use the bounding principle to sandwich the unknown distribution function
F of Cmax. M

Proof. Let N be a chain minor of N ′. Then N ′ can be obtained by a finite sequence
N = N0 ≺ N1 ≺ . . . ≺ Nk = N ′ such that Ni is obtained from Ni−1 by one of the
following operations.

• Duplicating one job only.

• Ni as partial order is an extension of Ni−1 and no duplication is made.

The second operation is trivial for stochastically larger. So it suffices to show the
claim for duplicating one job.
We prove this for an example. This proof can easily be generalized (it’s quite
generic). So we need to show

P(Cmax(N) ≤ t) ≥ P(Cmax(N ′) ≤ t) ∀t .

We want to compare a set in Rm and a set in Rm+1.

fix u

shadow

(u, v)-space

SN = SN ′ =

Therefore we consider the following situation. In N we have v = x1 and u =
(x2, . . . , xm) and define the shadow SN = {x1 |CN

max(x1, u) ≤ t}. For N ′ we set
v = (x1

1, x
2
1), u = (x2, . . . , xm) and SN ′ = {(x1

1, x
2
1) |CN

max(x1
1, x

2
1, u) ≤ t}. Let Q1 be

the distribution of X1. Then using independence in N ′ we only need to show that

Q1(SN) ≥ Q1 ⊗Q1(SN ′)

holds.
Taking m = 1 we get SN = [0, a] and SN ′ = [0, b]× [0, c]. Without loss of generality
we assume b ≥ c.

Claim:
Under the assumptions above we get a ≥ c

Assume not, then a < c. Then (c, u) gives

CN
max(a, u) > t in N but CN ′

max(c, c, u) ≤ t in N ′.

but this contradicts
CN

max(c, u) = CN ′

max(c, c, u)

73

17 Bounding the Distribution Function of the Makespan

because all chains in N have the same length as in N ′.
So b ≥ c which implies a ≥ c. Now we can compute

Q1(SN) = Q1([0, a]) ≥ Q1([0, c]) ≥ Q1([0, b]) ·Q1([0, c]) = Q1 ⊗Q1(SN ′) .

Using the properties of the product measure and the independence of the distribu-
tion.

Our sandwiching may only be useful if the lower bound F1 and he upper bound
F2 are easier to compute than the actual distribution function F . We can choose
the networks N1 and N2 as special series-parallel networks.

Definition 17.4:
A series-parallel network is a network that be reduced to ({a, b}, (a, b)) = (V,A) =
G (so one job) by a sequence of series and parallel reductions.5

Series Reduction Parallel Reduction

Remark:
Series-Parallel networks can be recognized in linear time and a reduction sequence
can be constructed in linear time. The makespan and makespan distribution can be
calculated along a reduction sequence. M

Example 26 :
We look at deterministic processing times and get ’max’ for parallel and ’+’ for
series reductions:

a

c

d

b

⇒
d

a max{b, c}
⇒

a+ max{b, c}

d

⇒
max{a+ max{b, c}, d}

♦
So we can compute Cmax in the deterministic case by max and + for parallel and

series reduction. So now we look at the stochastic counterparts to these operations

Fmax{X,Y } = FX · FY FX+Y =FX ∗ FY

Where the convolution of distribution functions is defined by

F1 ∗ F2(t) =
∫ t

0
F1(t− x)f2(x) dx f2 density of F2

5These networks can be recognized in linear time.

74

17 Bounding the Distribution Function of the Makespan

Example 27 :
Our previous example with stochastic processing times.

F1

F3
F4

F1

⇒
F4

F1 F2 · F3 ⇒
F1 ∗ (F2 · F3)

F4

⇒
F4 · (F1 ∗ (F2 · F3))

♦

Theorem 17.5:

(1) DF is NP -hard in the weak sense for series-parallel networks with 2-point pro-
cessing time distributions.

(2) The reduction sequence algorithm computes for discrete distributions the makespan
distribution function in a number of steps polynomial in

M = max number of values of the makespan
along the sequence.

Proof.
(1) Reduction from Partition

For an instance I of Partition, consisting of a1, . . . , an, b ∈ N with ∑ ai = 2b,
we want to know whether there is a subset that adds up to exactly b. We
construct an instance of 2 state DF-SP by constructing a network N with jobs
1 to n in a chain. Job j has the processing time distribution

Xj =
0 p = 0.5
aj p = 0.5

Assume there is a polynomial algorithm A that solves 2 state DF-SP. Then we
use A to compute FN(t) for t = b and t = b − 1. Then I is a Yes-instance if
and only if there is a subset J ⊂ {1, . . . , n} such that ∑j∈J aj = b if and only if
{CN

max = b} has positive probability if and only if FN has a jump at t = b. This
is equivalent to FN(b) > FN(b− 1). So we can decide in polynomial time if I is
a Yes-instance of Partition.

(2) DF-SP can be solved in O(M2n) time for discrete distributions, where M is the
maximum number values of Cmax along a reduction sequence and job processing
times. This can be bounded from above by the sum of breakpoints per job over
all jobs.
Assume that Fj (the distribution function of job j) is given by a list t1 < t2 <
. . . < tl of its jumps with values Fj(t1) ≤ . . . ≤ Fj(tl). Then Fj(t) can be
calculated by a scan through the list in O(M) because l ≤ M at every stage
along a reduction sequence. Now computing the product of two distribution
functions takes O(M) time and computing the convolution of two distribution
functions takes O(M2) because

P(Xi +Xj = t) = P(all combinations Xi, Xj such that Xi +Xj = t)

Now we want t discuss specific bounds.

75

17 Bounding the Distribution Function of the Makespan

The bound of Dodin (1985)
The following algorithm gives an upper bound on the makespan distribution of a
stochastic project network N .
1: while |A(N)| > 1 do
2: if ser. red. possible then do series reduction
3: else if par. red. possible then do parallel reduction
4: else find (A) or (B) and duplicate the relevant arc (and get (A′) or (B′))
5: end if
6: end while

The remaining single job is an upper bound for FN
Cmax

Transform (A) into (A′) by duplicating a

a
=⇒

a

a

Transform (B) into (B′) by duplicating a

a
=⇒

a

a

Exercise

17.0 Show that Dodin’s algorithm alway terminates with a single job.

Theorem 17.6:
Dodin’s bound for a network N is exact if N is series-parallel. In general it is the
distribution function of a series parallel network N ′ that contains N as a chain-
minor.

Proof. Clear from the bounding principle.

Bound of Spelde 1976
Now we want to use special series-parallel networks (parallel chains) to get upper
and lower bounds. We consider disjoint chains for lower and all chains for upper
bounds. This clearly works because of the minor property.
In addition we can approximate a distribution-free evaluation of Spelde’s bound.
For large networks we may assume that the chain length is normally distributed.
We only need µj the mean value and σ2

j the variance of job j and get

µ =
∑

µj σ2 =
∑

σ2
j

But we may still have an exponential number of chains. We want to restrict to
relevant chains. We compute the 1st, 2nd , . . ., k − th longest chains with respect
to µj until P{Yk ≥ Y1} ≤ ε for a specified ε. Hereby Y is the length of the chain as

76

17 Bounding the Distribution Function of the Makespan

normal distribution. Then F := F1 · . . . · Fk is an upper bound for FN
Cmax .

To compute the k-longest paths one may use a k-shortest paths algorithm since N
is acyclic. Such algorithms exist and run in O(kn(m + n log n)) time.6 This gives
excellent and fast bounds in practice. A special case is PERT which considers only
Y1.
The distance of a partial order to a series-parallel order determines the quality of
the bounds. Appropriate distance measures have been explored in combinatorics.
We can measure the number of node reductions (→ measure M1) or the number
of duplicated subexpressions (→ measure M2). For these measures the following
results hold.

Theorem 17.7:
M1 ≥M2 and M1 can be determined in polynomial time has been proven in 1992 by
Bein, Kamburowski & Stallman. In 1994 Naumann proved M1 = M2

Exercises

17.1 Consider series-parallel partial orders and their comparability graphs. An
undirected graph is called a complement-reducible graph or simply cograph if
every induced subgraph H of G has the property that H or its complementary
graph H̄ is disconnected. Show that G is a cograph if and only if it is the
comparability graph of a series-parallel partial order.

17.2∗ Let G be a finite undirected graph. Show G is a cograph if and only if G does
not contain P4 as induced subgraph. P4 is a chain consisting of 4 nodes and 3
edges.

17.3 Let G be a finite partial order. Show G is series-parallel if and only if G does
not contain the following Hesse diagram as induced suborder

6See www.ics.uci.edu/~eppstein/bibs/kpath.bib

77

www.ics.uci.edu/~eppstein/bibs/kpath.bib

18 Bounds for Dependent Processing Times and the Makespan

18 Bounds for Dependent Processing Times and the
Makespan

The dependencies of the processing times are difficult to specify. Therefore we take
a worst case approach for stochastic dependencies by [MN79] and [KH86].
Consider the expected tardiness

EQ[(Cmax − t)+] = EQ[max{0, Cmax − t}]

of the makespan Cmax in the worst case, i.e.,

Ψ(t) := sup
Q
EQ[(Cmax − t)+]

Where the supremum is taken over all joint distributions with the given job process-
ing time distributions as marginals. The function EQ[(X − t)+] is piecewise linear
and convex for discrete random variables X.

Definition 18.1:
A distribution P is called stochastically smaller than a distribution Q in the
convex sense if for all monoton convex functions f : R→ R holds

P ≤c Q⇔
∫
f dP ≤

∫
f dQ⇔ E[(X − t)+] ≤ E[(Y − t)+]

for all t if X, Y are real-valued random variables with distributions P,Q respectively.

Theorem 18.2: Meilijson & Nadas 1971
Let P be the class of joint distributions Q whose marginals Qj (for job j) equal the
processing time distributions. Then the following holds

(a) EQ[(Cmax − t)+] ≤ Ψ(t) for all Q ∈ P.

(b) There is a random variable Z with Ψ(t) = E[(Z − t)+].

(c) If Pz is the distribution of Z, then QCmax ≤c Pz for all Q ∈ P.

(d) If G is series-parallel, then Pz = QCmax for some Q ∈ P.

(e) Ψ(t) is a tight upper bound for EQ[(Cmax − t)+] in the sense that for every t
there is a distribution Qt ∈ P such that Ψ(t) = EQt [(Cmax − t)+].

Proof. We show only (a). Consider a chain C of N and processing time vector
x = (x1, . . . , xn). Now we can calculate a couple of estimates.∑

j∈C
Xj − t =

∑
j∈C

xj − t+
∑
j∈C

(Xj − xj)

≤ (Cmax(x)− t)+ +
n∑
j=1

(Xj − xj)+

78

18 Bounds for Dependent Processing Times and the Makespan

for all C and all x. If we maximize over all C and take the positive part and the
expectation we get

max
C

∑
j∈C

Xj − t = Cmax(X)− t

≤ (Cmax(X)− t)+

⇒ EQ[(Cmax(X)− t)+] ≤ (Cmax(x)− t)+ +
n∑
j=1
EQ[(Xj − xj)+]

for all x and all Q. So we can take the infimum over all x and the supremum over
all Q because ∑j EQ[(Xj − xj)+] is independent of Q.

sup
Q
EQ[(Cmax(X)− t)+] ≤ inf

x

(Cmax(x)− t)+ +
n∑
j=1
EQ[(Xj − xj)+]



Now we want to solve the convex optimization problem

Ψ(t) = min
(x1,...,xn)

n∑
j=1
E[(Xj − xj)+] such that Cmax ≤ t

There is a piecewise linear, convex and decreasing function f(xj) for every job j in
the objective. We can interprete f(xj) as cost for executing job j with processing
time xj. So we get the side constraints to find processing times xj that minimize
the total cost and do not exceed the deadline t on the makespan. This leads to
time-cost tradeoff problems.

Time-Cost Tradeoff Problems

• classical network problem.

• is the dual of a min-cost-flow problem for fixed t (Fulkerson 1961)

• can be solved parametrically in t by a sequence of max-flow problems (Kelley
1961)

• very efficient in practice

Compatibility with Incomplete Information
If we have incomplete information about Xj we may simplify unimodal or unimodal
and symmetric distributions to uniform distributions that are larger in the convex
sense.

unimodal & symmetric

79

18 Bounds for Dependent Processing Times and the Makespan

=⇒

aj bj aj bj

only unimodal

=⇒

aj bjmj aj bjmj

We still obtain upper worst case bounds if we use these uniform distributions when
we only have incomplete information about the real distributions.

Exercise

18.1 Ψ(t) for series-parallel networks
(a) Consider a 2-element (arcs X1, X2) chain and let F1 and F2 be the

distribution functions of X1, X2. Show that the distribution of the 2-
dimensional random variable (F−1

1 (U), F−1
2 (U)) with U uniformly dis-

tributed on [0, 1], is the worst case distribution in the convex sense.
(b) Consider two jobs in parallel. With the notation of a) show that the

distribution of (F−1
1 (U), F−1

2 (1−U)) is the worst case distribution in the
convex sense.

(c) Use a) and b) to compute the worst case expected tardiness of a series
parallel network.

80

19 Time-Cost Tradeoff Problems

19 Time-Cost Tradeoff Problems
Let us first consider the linear case. We are in the situation

• project network as arc diagram without parallel jobs

• for every job (i, j) an interval Iij = [aij, bij] of possible job durations

• for every job (i, j) a cost function kij with slope −cij, cij > 0
kij(xij)

xij

−cij

aij bij

So kij(xij) denotes the cost of
processing job (i, j) with pro-
cessing time xij ∈ Iij

• time limit t for the makespan
The goal is to execute the project at minimum cost within the given time limit.

min
∑
(i,j)

kij(xij) =: k(x)

s.t. Cmax(x) ≤ t

x = vector of chosen xij
Further we define the project cost curve H(t) as the minimum cost for time t. This
problem is called the (linear-) time-cost tradeoff problem. Note that we shorten jobs
at a cost rate cij and want to find the right shortenings

kij(xij) = kij(bij) + (bij − xij) · cij
The basic idea is to consider an optimal processing time vector x for t and charac-
terize optimal tradeoffs to t − ε for small ε in the arc diagram. We will show that
we must shorten on a cut in the network of critical jobs.

Definition 19.1:
Let D = (N,A) be the arc diagram of G, N = {1, . . . ,m} where 1 denotes the source
and m denotes the sink. A cut [S, T] of D is a partition of N = S∪̇T of N with
1 ∈ S and m ∈ T . An arc (i, j) is critical if it is in a critical path for given x.
Further Dcrit = (Ncrit, Ecrit) denote the subnetwork of critical jobs.
For a given x, let πi(x) denote the length of a longest path from 1 to i with respect

to x. So an optimal x for t and z for t − ε imply node potentials πi(x) and πi(z)
respectively for every i. Thus

π1(x) = π1(z) = 0 πm(x) = t πm(z) = t− ε

holds and implies that

S := {i ∈ N |πi(x) = πi(z)} T := N\S

is a cut. The processing times have changed on some forward arcs in the cut and
maybe elsewhere too. Let us consider what happens if we change processing times
on a cut only.

81

19 Time-Cost Tradeoff Problems

1 m

i j

Now we formulate two rules

(R1) If we shorten forward arcs by δ this reduces πm by at least δ. But some πi(z)
may be changed by a multiple of δ.

(R2) Shortening all forward arcs in a good cut of Dcrit by δ reduces πm by exactly
δ.

Definition 19.2:
A cut [S, T] is good if every s ∈ S can be reached from 1 by a directed path in S.

Proof of (R2). Assume a topological sort of nodes. Let (i, j) be a forward arcs with
largest i in S. Since [S, T] is a good cut there is a path from 1 to i in S. Thus this
path is only shortened by δ. Any path from j can not cross to S again because of
the topological ordering. So if (i, j) is on a critical path then πm reduces by exactly
δ.

But now backward arcs (k, i) in the cut have a slack δ. This can be exploited by
lengthening backward arcs (if possible).

Lemma 19.3:
Let [S, T] be a good cut. If we shorten all forward arcs and lengthen all backward
arcs by δ then πm is shortened by δ.

Proof. We already know that shortening on forward arcs decreases πm by δ. Let
(i, j), (k, l) be forward arcs on a path with a backward arc between them. Then
−2δ+δ = δ, since every backward arc is contained between two forward arcs in that
way.

Definition 19.4:
We call the following procedure shortening on a (good) cut

• Shorten all forward arcs by δ and lengthen all backward arcs by δ (if their
processing time permits).

We define the cost rate of a (good) cut as

c[S, T] =
∑

(i,j)f−a
cij −

∑
(k,l)b−a

admissible

Ck,l

How big can δ be ?
δ = min{δ1, δ2, δ3}

82

19 Time-Cost Tradeoff Problems

δ1 = min{πj − πi− xij | (i, j) not critical} meaning the amount of decrease until
a non-critical job becomes critical.

δ2 = min{xij−aij | (i, j) forward arc in the cut} denoting the amount of decrease
until a forward arc is at its minimum processing time

δ3 = min{bij − xij | backward arc and xij < bij} is the amount of increase until
a backward arc that can be prolonged reaches its maximum processing time.

Necessary is of course that all forward arcs can be shortened.

Theorem 19.5:
Let x be optimal for t > Cmax(a). Then there is a good cut [S, T] in Dcrit with asso-
ciated δ > 0 such that for every ρ ∈ (0, δ) the change of processing times according
to (??) yields an optimal processing time vector yρ for t− ρ. So

yρij =


xij − ρ (i, j) is a forward arc of [S, T]
xij + ρ (i, j) is a backward arc of [S, T] with xij < bij

xij otherwise

The total cost grows by the amount ρ · c[S, T]

Proof. Later.

Corollary 19.6:
The project cost curve H(t) is piecewise linear and convex on

[tmin, tmax] = [Cmax(a), Cmax(b)] .

It may be constructed as follows

(1) Start at time t = tmax. Then x = (bij) is optimal.

(2) Repeat until t = tmin

(a) Construct Dcrit with respect to x.
(b) Find a good cut with minimum cost rate in Dcrit that can still be shortened.
(c) Compute δ of this cut and change this processing times according to 19.4

into xδ.
(d) Set t = t− δ and x = xδ the new optimal vector for t− δ.

Proof. Theorem 19.5 and integrality of aij, bij imply that δ ≥ 1. This proves termi-
nation. We will prove convexity later.

Example 28 :

1

2

3

4

(3, 5, 10)

(6, 10, 2)

(1, 2, 1)

(3, 5, 10)

(3, 5, 10)

With (aij, bij, cij) and tmax = 15 , tmin = 9.
We start with all jobs at maximum dura-
tion. This gives Cmax = 15 and further
δ = δ1 = 3 ≤ 4 = δ2 < δ3 = ∞ attained
in (2, 3) and cost rate 4. This leads to

83

19 Time-Cost Tradeoff Problems

1

2

3

4

5

7

2

7

5

Looking at the graph and Dcrit we obtain
Cmax = 12 , δ = min{∞, 1,∞} and cost
rate 6

1

2

3

4

5

6

1

6

5

Looking at the graph and Dcrit we obtain
Cmax = 11 , δ = min{∞, 2, 1} and cost
rate 18

1

2

3

4

4

6

2

6

4

Looking at the graph and Dcrit we obtain
Cmax = 10 , δ = min{∞, 1,∞} and cost
rate 20

Now we reach tmin = 9. Note that after shortening job (2, 3) is no longer critical. ♦
Question: How to compute a good cut with minimum cost rate?

Idea: Use network flows and the max-flow-min-cut theorem. Meaning the maximum
value of a 1−m flow equals the minimum capacity of a 1−m cut.
We call a flow feasible if it respects lower and upper capacities

lij ≤ xij ≤ uij

and flow conservation holds on V \{1,m}. The value of the flow is given by∑
j=1

x1,j −
∑
j=1

xj,1

and the capacity of the cut [S, T] is given by∑
(i,j) forward

uij −
∑

(i,j) backward
lij .

We define the cost rate of the cute [S, T] as∑
(i,j) forward

cij −
∑

(i,j) backward
cij

where we only sum up over arcs that can be lengthened. Therefore we set in Dcrit

uij :=
cij if xij > aij

∞ otherwise
lij :=

cij if xij < bij

0 otherwise
.

From flow theory we know that any max flow algorithm producing good cuts will
find a max flow and a good cut of minimum capacity. Here we find flow augmenting
paths by breadth first search (BFS) which guarantees good cuts.

Theorem 19.7:

(1) Every good cut with minimum cost rate can be found by augmenting path algo-
rithms for maximum flows in O(n3 log n).

84

19 Time-Cost Tradeoff Problems

(2) The zero flow is feasible at tmax. The current flow remains feasible when the
capacities are changed. Thus H is convex.

(3) H(t) can be calculated in O(Mn3 log n) whereM is the number of cut calculation
which is bounded from below by the number of breakpoints of H(t) (these can be
exponentially many).

Proof.
(1) Follows from flow theory (especially Goldberg & Tarjan).

(2) Easy verification.

(3) Is obvious except for the exponential example.

The algorithm is based on the theorem 19.5.

Sketch of Proof of theorem 19.5 using examples.

3

1

2 1

1 2

1 1
3

1 Every job has aij = 1 and bij = 10. The
numbers on the edges are the cij.

Consider t ∈]tmin, tmax] and x optimal for t. The problem is that an optimal pro-
cessing time vector for t− ρ may be obtained by shorting several jobs in Dcrit that
are scattered all over the network.
In our example graph x = (10, . . . , 10) is optimal for t = 40 = tmax and every job is
critical. Consider δ̄ defined as δ but over all arcs of Dcrit.

δ̄1 = ∞ all arcs are critical
δ̄2 = 9 all arcs can be shortened by 9
δ̄3 = ∞ no arc can be lengthened

⇒ δ̄ = 9

Let ρ0 ∈ (0, δ̄] and let y be optimal for t− ρ0.

9

10

9 8

9 8

10 9
8

9 This is the y we work with. We also have
t− ρ = 35.

Define for each i ∈ V the potential difference δπi = πi(x)− πi(y). Let ∆π1 < . . . <
∆πl be the different δπi values of all i.

0

1

0

2

1

4

3

5
Our example with the potential differ-
ences δπi. We get

∆π1 = 0 < 1 < 2 < 3 < 4 < ∆πl = 5

85

19 Time-Cost Tradeoff Problems

(1) [Sk, Tk] with Sk := {i ∈ V | δπi ≤ ∆πk} and Tk = V \Sk is a good cut for all k.

(2) y can be obtained from x by the following algorithm
FOR k := 1 TO l − 1 DO
(a) ∆k := ∆πk −∆πk−1

(b) xij := xij −∆k for all forward arcs in [Sk, Tk]
(c) xrs := xrs + ∆k for all backward arcs in [Sk, Tk]

(3) Let [Sr, Tr] be the cut with smallest cost rate among the [Sk, Tk]. Let z be
the processing time vector obtained by changing x on [Sr, Tr] by ρ0. Then z is
optimal for t− ρ0.

Proof. We can estimate the change of the total cost for x→ y by

l−1∑
k=1

c[Sk, Tk] ·∆k ≥
l−1∑
k=1

c[Sr, Tr] ·∆k

= c[Sr, Tr] · ρ0

Which corresponds to the change from x to z.

(4) The decrease on the cut [Sr, Tr] is optimal for all ρ ∈ (0, δ̄].
Let ρ1, ρ2 ∈ (0, δ̄] with best cuts [S1, T1] and [S2, T2] according to (3). We may
assume without loss of generality ρ1 ≤ ρ2. We show that the cost rates of the
two cuts are equal. If the cost rate for [S1, T1] would be strictly less than the
one for [S2, T2] then decreasing on [S1, T1] by min{ρ1, ρ2} would give a better
solution for t− ρ1 on the other cut. This gives a contradiction.

(5) So far we have decreased by at most δ̄. Now let us consider δ defined by the
best cut [Sr, Tr] =: [S, T]. Then we have δ̄ ≤ δ and thus by (4) that [S, T] is
optimal for t− δ̄ and z. All cuts that can be decreased at time t− δ̄ and z can
also be decreased at time t and x by definition of δ̄. Therefore [S, T] is still the
best at t− δ̄ and now ca be further decreased until δ.

Back to the computation of Ψ(t) = min{∑E[(Xij − xij)+} |Cmax(x) ≤ t}. The-
orem ?? ensures that there is a random variable Z with Ψ(t) = E[(Z − t)+] and
that the first piece of Ψ(t) will have the slope −1. So in the time cost trade off
computation with cost functions kij(xij) = E[(Xij − xij)+] we stop when the cost
rate of the current minimum cut is greater than or equal to 1 and set the slop to
the left of the current time to −1.

Exercise

19.1 Generalize the computation of H(t) by flow methods to the case that all cost
functions kij are piecewise linear and convex.

86

20 More on Project Scheduling with Resource Constraints

20 More on Project Scheduling with Resource
Constraints

So far we have seen complexity results for machine scheduling problems. Project
scheduling with resource constraints is much harder. These problems include a par-
tial order for the jobs and a system of forbidden sets, where jobs may require several
resource types. This problem is called resource constrained project scheduling prob-
lem (Rcpsp). We will show the hardness of approximation and reoptimization for
Cmax and deterministic processing times.

Theorem 20.1:
Rcpsp is as hard to approximate as vertex coloring of graphs, i.e., unless P = NP ,
there is no approximation algorithm with a performance guarantee of n1−ε for every
ε ∈ [0, 1), where n is the number of jobs.

Proof. Transform and instance of Coloring into an instance of RCPSP.
The Coloring consists of an undirected graph G a number k ∈ N and the question
if there is a vertex coloring with at most k colors.
The RCPSP instance will be a graph V = V (G) with xj = 1 for all j ∈ V , no
precedence constraints, a number k ∈ N, F = E(G) and the question if there is a
schedule with Cmax ≤ k.
The time slots correspond to color classes. Thus the inapproximability result for
coloring applies [Zuc07].

Complexity of Reoptimization
UPDATE-ADD (update after adding a forbidden set)
For a given instance I of RCPSP and an optimal schedule we want to find an optimal
schedule for I ′ (I plus one new forbidden set).
Define UPDATED-DELETE analogously.

Theorem 20.2:
UPDATE-ADD is NP -hard in the weak sense.

Proof. Reduction from Partition7

For given numbers a1, . . . , an ∈ N with ∑ ai = 2b , b ∈ N we want to know if there is
a subset I ⊂ {1, . . . , n} with ∑i∈I ai = b. From this instance of Partition we will
construct an instance I of RCPSP as follows:
We define

jobs {1, . . . , n} ∪ {d1, d2, d3}
processing times a1, . . . , an b+ 1, 2b+ 1, b

with no precedence constraints and F consists of all 3-element sets and all sets of the
form {d3, j} for j = 1, . . . , n. So this corresponds to a 2-machine problem. Further
we set κ = Cmax. Thus an optimal schedule looks like

7From ADM 1 we know that an NP -complete decision problem leads to an NP -hard optimization
problem.

87

20 More on Project Scheduling with Resource Constraints

d3 d2

d1 2b

b 3b+ 1

b+ 1 Now we add a new forbidden set {d1, d3}.
If Cmax = 3b+1 then d3 must be parallel to
d2. A possible schedule with Cmax = 3b+1
must look as follows

d2

d1 d3

b 3b+ 1

with d3 and d2 without loss of generality
right shifted.

So deciding whether Cmax ≤ 3b + 1 is as hard as deciding whether the instance of
Partition is a Yes-instance.

Theorem 20.3:
UPDATED-DELETE is NP -hard in the strong sense.

Proof. Reduction from Coloring Planar Graphs with Maximum Degree
∆ ≤ 4.8
For a given undirected planar graph G with degree ∆ ≤ 4 we want to know if there
is a vertex coloring of G with 3 colors. By the theorem of Brooks (theorem ??) the
problem to decide if a planar non-bipartite graph with ∆ ≤ 4 can be colored with
only 3 or 4 colors is NP -hard.
Reduction to RCPSP
So take G planar with ∆ ≤ 4 etc, and define Ḡ = G + K4 with K4 as a separate
component. We transform Ḡ into an instacne of RCPSP as in theorem 20.4. We
have no precedence constraints, κ = Cmax, xi = 1 and F = E(Ḡ). Then an optimal
schedule has Cmax = 4 because Ḡ contains a K4. Assume that we know such an
optimal schedule. We modify the RCPSP instance by deleting a forbidden set {u, v}
(an edge of K4 in Ḡ). Now we must decide if G can be colored with 3 or 4 colors.

Theorem 20.4: Brooks (1941)
Every graph that is not Kn and not an odd cycle (C2k+1) can be colored with ∆
(maximum degree) colors.

8This is strongly NP -hard (see Garey et al. 1979)

88

21 Generalized Project Scheduling Problems and IP-Models

21 Generalized Project Scheduling Problems and
IP-Models

We divide this topic into three paragraphs:
21.1 Generalize Precedence Constraints by Time Lags.

21.2 Time Lags and Start Dependent Costs. (Uses flow methods)

21.3 Time Lags and Resource Constraints. (Uses Lagrange Relaxations)

21.1 Generalize Precedence Constraints by Time Lags
precedence constraints i < j ⇔ Si + xi ≤ Sj

time lags Si + dij ≤ Sj dij ∈ R
Interpretation of negative dij

Si + dij ≤ Sj ⇔ Si ≤ Sj − dij
So Sj − dij is a deadline for the start of i relative to the start of j.
Time lags express lower and upper bounds on the start times and also the comple-
tion times of jobs relative to other jobs.
Time lags are often referred to as minimum (lower bounds, dij ≥ 0) time lags
and maximum (upper bounds, dij ≤ 0) time lags. We will use the standard for
Si + dij ≤ Sj and represent it in a digraph by the arc

i j

xi + dmin
ij

−(xi + dmax
ij)

Example 29 :

1, 3

2, 1

3, 4

4, 2

5, 5

6, 2

7, 1

(0,∞)

(4,
∞)

(0,∞)

(0, 8)

(0,
∞)

(2,∞)

(1, 10)

(3, 10)

(1,
∞)

(0,
∞)

(0, 3)

Here is a larger example with different lags
indicated by start and end of the arrows.
On each arc we have (dmin

ij , dmax
ij) and in

each node we have the job number i and
its processing time xi.

1

2

3

4

5

6

7

4

3

3

−11

2

−11

5

−12

2

−5

0
1

2

2

5

This is the resulting digraph D.

89

21 Generalized Project Scheduling Problems and IP-Models

♦
The new question is: Is there a feasible schedule S = (S1, . . . , Sk) respecting the
given time lags? It is clear that there is no feasible schedule if D contains a cycle of
positive length with respect to the dij. This is also sufficient.

Theorem 21.1:

(a) A project network with time lags has a feasible schedule if and only if the asso-
ciated digraph has no cycle of positive length.

(b) In that case, the earliest start of job j is given by the length of the longest path
from an artificial start node s (with zero arcs to all other nodes) to j.

(c) Checking for the existence of a positive cycle and computing the earliest start
vector can be done in O(n3) with the Bellman-Ford algorithm.

Proof. See ADM 1 for the existence of negative cycles, feasible potentials and con-
servative arc weights.

21.2 Scheduling with Time Lags and Start Dependent Costs
We add two artificial nodes (0 for the project start and n + 1 for the project end)
with processing time 0 and get V = {0, 1, . . . , n, n + 1}. For now consider fixed
deterministic processing times pj ∈ N∪{0} and a set L ⊂ V ×V of normalized time
lags. Assume that they admit a feasible schedule. Let wjt denote the cost if job j is
started at time t for t = 0, 1, 2, . . . , T where T is an upper bound on the makespan.
Our objective is to find a schedule that respects the time lags and minimizes the
total start time costs.
We consider time lags Si + dij ≤ Sj and costs wjt for starting job j at time t. We
note that p0 = pn = 0 and that time lags with 0 or n+ 1 can be arbitrary. We want
to minimize the sum of all starting time costs over all feasible schedules (assuming
there is one). Let us now formulate this as an IP.

min
n+1∑
j=0

T∑
t=0

wjtxjt

s.t.
T∑
t=0

xjt = 1 ∀j (21.1)

T∑
s=t

xis +
t+dij−1∑
s=0

xjs ≤ 1 ∀(i, j) ∈ L , ∀t (21.2)

xjt ∈ {0, 1} (21.3)

The constraint (21.1) ensures that every job is started exactly once and (21.2) models
the time lags. So if i starts at a and j at b and a + dij > b then (21.2) is violated
for t = a.
Now we can compute in advance the earliest start times e(j) ≥ 0 and latest start

90

21 Generalized Project Scheduling Problems and IP-Models

times l(j) < T − pj for all j and set xjt = 0 for t /∈ [e(j), l(j)]. Because of (21.1) we
can lift all wjt by a constant M such that

w̄jt := wjt +M ≥ 0

This changes the objective only by the constant (n + 1)M . So we may assume
without loss of generality wjt ≥ 0.
We want to transform this into a minimum cut problem. Therefore we define D =
(N,A), the graph for the minimum cut problem.

Nodes We add one node for every possible start time of every job and l(j) + 1 as
well as an artificial source a and sink b. This gives

N = {wjt | j ∈ V , t = e(j), e(j) + 1, . . . , l(j) + 1} ∪ {a, b}

Arcs The graph shall have assignment arcs, temporal arcs and auxiliary arcs.
assignment (vjt, vj,t+1) for all j ∈ V
auxiliary (a, vj,e(j)) , (vj,l(j)+1, b) for all j ∈ V
temporal (vit, vj,t+dij) for all time lags (i, j) ∈ L and for all t with e(i) + 1 ≤

t ≤ l(i) and e(j) + 1 ≤ t+ dij ≤ l(j).

Example 30 :
We consider the following graph and its transformation. We have all pj = 1, all
dij = 1 and T = 6.

0 1 2 3 4 5

1

2

3

4

5

a b

assignment

auxiliary

temporal

♦
Now the idea is to use assignment arcs to indicate the start of a job. We define
the upper arc capacities c(vjt, vj,t+1) = wjt on assignment arcs and c(·) =∞ else as
well as the lower capacities as 0. For our result, we are interested in special cuts, so
called n-cuts.

Definition 21.2:
An a − b cut of D is an n-cut if the forward arcs of the cut contain exactly one
assignment arc for every job.

Lemma 21.3:
Let (X,N\X) be a minimum a − b-cut and cap(X,N\X) < ∞. Then there is an
n-cut with the same value. It can be computed from (X,N\X) in O(n · T) time.

Proof.

91

21 Generalized Project Scheduling Problems and IP-Models

(1) The cut (X,N\X) contains at least one assignment arc for every jobs. As usual
for job j we consider the j-path a−vj,e(t)− . . .−vj,l(t)−b with all the assignment
arcs of j in the middle. Then this path must have a forward arc in (X,N\X).

(2) If (X,N\X) contains more than one assignment arc for some jobs, then we can
construct an n-cut from it with the same capacity.
For such jobs let tj be the first index such that (vjt, vj,t+1) is a forward arc in
(X,N\X). We define the set

X∗ := {a} ∪
⋃
j

{vjt | t ≤ tj} .

Claim:
The cut (X∗, N\X∗) does not contain a temporal arc as forward arc.

Proof. Suppose it does contain a temporal arc (vis, vjt) as forward arc. So we
have a time lag dij = t− s.

j

i
s ti

tj t
k

· · ·

· · ·

If tj is a possible start time then e(j) + 1 ≤ tj − k. Furthermore we have
s − k ≤ l(i) because s − k ≤ s ≤ ti ≤ l(i) and we have s − k ≥ e(i) + 1.
To see that assume that the ladder inequality does not hold then we have the
implications

s− k < e(i) + 1
⇒ t− k = s− k + dij < e(i) + dij + 1 ≤ e(j) + 1
⇒ t− k < e(j) + 1

This gives a contradiction.
Now the gathered inequalities allow us to conclude that vi,s−k is a start node
for i and vi,s−k ∈ X∗ and thus vj,t−k = vj,tj+1 ∈ N\X. So the temporal arc
(vi,s−k, vj,t+1) is a forward arc of (X,N\X) but this implies the contradiction
cap(X,N\X) =∞.

Claim:
The cut (X∗, N\X∗) has the same capacity as (X,N\X).

This is clear because (X∗, N\X∗) contains fewer assignment arcs, no temporal
arcs and all wjt are non-negative.

(3) The n-cut (X∗, N\X∗) can be constructed polynomial time from (X,N\X) in
O(nT). This is clear from the definition of X∗.

92

21 Generalized Project Scheduling Problems and IP-Models

Theorem 21.4:
There is a one-to-one correspondence between n-cuts of D with finite capacities
and feasible solutions of our scheduling problem defined by the IP above using the
constraints (21.1) to (21.3), namely

xjt =
1 if (vjt, vj,t+1) is in the cut (X,N\X) of D

0 otherwise

The capacity cap(X,N\X) is equal to the value of the scheduling problem.

Proof.
(1) Let x be a feasible solution of the IP. Then x defines an n-cut because exactly

one xjtj = 1. Set X = ∪j{vjt | t ≤ tj} ∪ {a}. This defines a cut with capacities
cap(X,N\X) = w(x) (Sum of assignment arcs). If there is another forward arc
then that must be a temporal arc.

vis → vjt corresponds to a time lag dij = t− s

s ti

tj t

This implies tj − ti < t − s = dij, a
contradiction to feasibility of x. Thus
w(x) = cap(X,N\X). This implies that
the optimal value of a minimum cut is less
than or equal to the optimal value of the
IP.

(2) Consider an n-cut (X,N\X) with finite value. Then the forward arcs in the
cut define the start times tj for j with xjtj = 1 and 0 else. Thus no temporal
conditions are violated and we have that cap(X,N\X) = w(x). Therefore the
minimum value of a cut is greater than or equal to the optimal value of the IP.

Corollary 21.5:
The scheduling problem with start-time dependent cost and time lags can be solved
by computing a maximum a − b-flow and a corresponding a − b-cut in the digraph
D.

Corollary 21.6:
This scheduling problem can be solved by computing a minimum a − b-cut in D or
equivalently computing a maximum flow.

21.3 Lower Bounds for the RCPSP
We know that these problems including time lags, resource constraints and makespan
objective are very hard. Many solution methods are based on IPs. Therefore we
want a good IP formulation for RCPSP.
We introduce time indexed binary variables

xjt :=
1 job j starts at time t

0 otherwise

93

21 Generalized Project Scheduling Problems and IP-Models

We still want to minimize the makespan. So we only consider job n (project end)
in the objective function.

min
∑
t

t · xnt

s.t.
∑
t

xjt = 1 ∀j (IP:1.1)

T∑
s=t

xis +
t+dij−1∑
s=0

xjs ≤ 1 (IP:1.2)

∑
j

rjk

 t∑
s=t−pj+1

xjs

 ≤ Rk ∀k , ∀t (IP:2)

Where the last constraints (IP:2) model the resource constraints. We have Rk units
available of resources k and job j needs rjk units of type k. Now the constraints
(IP:1.1) and (IP:1.2) would only give a pseudopolynomial problem but the con-
straints (IP:2) make the problem hard. So we want to simplify by relaxing the
resource constraints.

Lagrange-Relaxation
We consider a general IP of the following form

min cTx
s.t. Ax ≥ b (hard) (IP:H)

Bx ≥ d (easy) (IP:E)
x integer

We want to relax (IP:H) in terms of feasibility but punish its violation in the objec-
tive. This leads to the so called Lagrange Relaxation for λ ≥ 0 fixed.

min cTx+ λT (b− Ax) =: L(x, λ)
s.t. Bx ≥ d

x integer

Now for all λ ≥ 0 obviously holds

OPT (IP) ≥ OPT (LRλ)

We can try to improve these lower bounds by optimizing over λ.

max
λ≥0

min
x int

L(x, λ) = max
λ≥0

min
i
{cTxi + λT (b− Axi)}

Therefore an optimal λ can be found by subgradient optimization. Hence we can
compute the best (or a good) λ for OPT (LRλ). How good is the beast lower bound?
The value OPT (LRλ) can be compared to the LP relaxation of the IP. Then

OPT (LRλopt) ≥ OPT (LPrelax)

94

21 Generalized Project Scheduling Problems and IP-Models

Equality holds if the polyhedron defined by the relaxed conditions Bx ≥ d is integral.
We now apply the Lagrangian relaxation to the IP and relax the inequalities (IP:2).
Now the objective becomes

∑
t

t · xnt +
∑
j

∑
t

∑
k∈R

rjk

t+pi−1∑
s=t

λsk

xjt −∑
t

∑
k∈R

λtkRk

We introduce weights

wjt :=


∑
k∈R

rk

t+pj−1∑
s=t

λsk if j 6= n

t if j = n

Now the objective becomes∑
j

∑
t

wjtxjt −
∑
t

∑
k∈R

λtkRk

Where the second term is constant and therefore can be neglected. The resulting
simplified problem is a scheduling problem with start-dependent cost.

min
∑
j

∑
t

wjt · xjt makespan + resource violation
∑
t

xjt = 1 start every job

T∑
s=t

xis +
t+dij−1∑
s=0

≤ 1 respect temporal distances

xj ∈ {0, 1}

The relaxed problem can be solved by max-flow computations. This gives a time-
feasible solution, but not necessarily resource-feasible.
With better technology one may ask for more complex approaches and algorithm to
achieve better results. In 2012 Jens Schulz showed in his Ph.D. thesis that this is
possible by combining

• integer programming

• constraint programming

• SAT-solvers

Remark:
As an overall reference for scheduling theory we may refer to [Pin12] M

95

References

References
[Hag88] Hagstrom, J.N.: Computational Complexity of PERT Problems. In:

Networks Vol.18 (1988), S. 139–147

[HSDW97] Hall, L. ; Schulz, A. ; D., Shmoys ; Wein, J.: Scheduling to Min-
imize Average Completion Time: Off-line and On-line Approximation
Allgorithms. In: Mathematics of Operatios Research Vol.22 (1997), S.
513–544

[KH86] Klein-Haneveld, W.K.: Duality in Stochastic Linear and Dynamic
Programming. In: Lecture Notes in economics and Mathematical Sys-
tems Vol.274 (1986), S. VIII – 295

[KL84] Korte, B. ; Lovasz, L.: Greedoids and Linear Objective Functions.
In: SIAM Journal on Algebraic and Discrete Methods Vol.5 (1984), S.
229–238

[MN79] Meilijson, I. ; Nadas, A.: Convex Majorization with an Application
to the Length of Critical Paths. In: Journal of Applied Probability Vol.16
(1979), S. 671–677

[MRW85] Möhring, R.H. ; Radermacher, F.J. ; Weiss, G.: Stochastic
Scheduling II - Set Strategies. In: Zeitschrift für Operations Research
Vol.29 (1985), S. 65–104

[MUV06] Megow, N. ; Uetz, M. ; Vredeveld, T.: Models and Algorithms for
Stochastic Online Scheduling. In: Mathematics of Operatios Research
Vol.31 (2006), S. 513–525

[Pin12] Pinedo, M.L.: Scheduling. Springer Verlag, 2012

[Zuc07] Zuckerman, D.: Linear Degree Extracors and the Inapproxability of
Max Clique and Chormatic Number. In: Theory Comput. Vol. 3 (2007),
S. 103–128

96

Index
#P , 68

Additive, 48
AND-OR-Network, 31

Chain Minor, 72
Coefficient of Variation, 59
Completion Time, 4
Cost Function, 5
Cut, 81

Domination, 18
Dynamic, 21

Early Start Schedule, 6
Elementary, 19
Extension Order, 24

Feasible, 24
Forbidden Sets, 4
Forced Waiting Condition, 37

Good Cut, 82

History, 16

Jackson’s Rule, 10
Job Based Priority, 54

M-Machine Problem, 10
Minimal, 19

N-Cut, 91

Partial Order, 1
Planning Rule, 15
Policy, 16
Precedence Relation, 1
Preselective Planning Rules, 30
Priority Rule, 21
Project, 1

Realization, 32
Reliability, 69
Representation Theorem, 46

Schedule, 4
Selection, 30

Series-Parallel-Network, 74
Set Policy, 46
Smith’s Rule, 10
Stability, 19
Stable, 20
Static, 21
Stochastic Project Network, 8
Stochastically Smaller, 72

Underestimation Error, 8

WSEPT, 61

97

	Projects and Partial Orders
	The Deterministic Project Scheduling Model
	The Stochastic Project Scheduling Model
	Scheduling with Scarce Resources
	Scheduling Policies
	Priority Policies
	Early Start Policy
	Constructing ES-Policies
	Preselective Policies
	Constructing and Evaluating Preselective Policies
	Characterization of ES- and Preselective Policies
	Set Policies
	Expected Makespan
	Weighted Completion Times
	Stochastic Online Scheduling for Weighted Completion Times
	Evaluating the Distribution of the Objective Value of a Policy
	Bounding the Distribution Function of the Makespan
	Bounds for Dependent Processing Times and the Makespan
	Time-Cost Tradeoff Problems
	More on Project Scheduling with Resource Constraints
	Generalized Project Scheduling Problems and IP-Models
	Generalize Precedence Constraints by Time Lags
	Scheduling with Time Lags and Start Dependent Costs
	Lower Bounds for the RCPSP

