| 7.1 Einführung                         | 42 |
|----------------------------------------|----|
| ♦ 7.2 Vollständig unimodulare Matrizen | 43 |
| © 7.3 Branch and Bound Algorithmen     | 44 |
| ♦ 7.4 Lagrange Belaxation              | 45 |
| 7.5 Schnittebenenverfahren             | 46 |
| ♦ 7.6 Optimierung und Separierung      | 47 |

| 7. Ganzzahlige Lineare Optimierung |  |
|------------------------------------|--|
| 7.1 Einführung                     |  |

| Ganzzahlige lineare Programme (Integer Linear Program, ILP, IP) verlangen die Ganzzahligkeit der Variablen für … |
|------------------------------------------------------------------------------------------------------------------|
| In diesem Abschnitt:                                                                                             |
| Die Ganzzahligkeit erhöht die Modellierungskraft enorm, viele nichtlineare Effekte können so modelliert werden   |
| O Daher erhält man i.A. NP-schwere Probleme                                                                      |
|                                                                                                                  |
| EP Relaxation eines IP                                                                                           |
| • Standardform eines IP                                                                                          |
| min c <sup>T</sup> ×                                                                                             |
| unter Ax = b                                                                                                     |
| ×≥0 und ganzzahlig                                                                                               |
| Spezialfall: 0/1 IP oder Binary Integer Program                                                                  |
| min c <sup>T</sup> ×                                                                                             |
| unter Ax = b                                                                                                     |
| $x_{1} \in \{0, 1\}$                                                                                             |
| Die LP Relaxation eines IP ergibt sich durch Weglassen der Ganzzahligkeitsbedingungen, d.h.                      |
|                                                                                                                  |
|                                                                                                                  |

#### 7. Ganzzahlige Lineare Optimierung 7.1 Einführung

7. Ganzzahlige Lineare Optimierung

| unter Ax = b                                                                                             |   |
|----------------------------------------------------------------------------------------------------------|---|
| ×>0                                                                                                      |   |
| im allgemeinen Fall und                                                                                  |   |
| min $c^{T}x$                                                                                             |   |
| unter Ax = b                                                                                             |   |
| 0 ≤ x: ≤ 1                                                                                               |   |
| im O/1 Fall                                                                                              |   |
|                                                                                                          |   |
| Eisen der LP Relaxation und anschließendes Runden der Variablen                                          |   |
| erzeugt i.A. keine zulässige Lösung                                                                      |   |
| Ohne weitere Überlegungen nur sinnvoll bei großen Werten der Variablen, aber auch dann sind große Fehler | r |
| möglich                                                                                                  |   |
|                                                                                                          |   |

42-2







## 7. Ganzzahlige Lineare Optimierung 7.1 Einführung

|   | (3) Konditionale Bedingungen                                                                     |
|---|--------------------------------------------------------------------------------------------------|
|   | o<br>if x < a then y≥b else y≥0 mit a, b>0                                                       |
| _ | Claim: Die Konditionale Bedingung kann auf Fall (2) reduziert werden                             |
|   | O die Konditionale Bedingung ist äquivalent zu                                                   |
| _ | y ≥ 0                                                                                            |
| _ | x≥a oder y≥b □                                                                                   |
| _ |                                                                                                  |
| _ | 😑 (4) Diskrete Variable                                                                          |
| _ | • $x \in \{s_1,, s_m\}$                                                                          |
| _ | Claim: Diskrete Variable x ∈ { s <sub>1</sub> ,, s <sub>m</sub> } können modelliert werden durch |
| _ | $x = s_1 \delta_1 + + s_m \delta_m$ mit $\delta_i \in \{0, 1\}$ und $\delta_1 + + \delta_m = 1$  |
| _ | klar 🗆                                                                                           |
| _ |                                                                                                  |
| _ | 7.1 Beispiel (Minimum Weight Perfect Matching Problem als IP)                                    |
|   | Jede Lösung des IP                                                                               |
|   |                                                                                                  |

| min $\sum_{e \in F} c(e) x_e$                                                                               |
|-------------------------------------------------------------------------------------------------------------|
| $x(\delta(v)) = 1$ für alle $v \in V$                                                                       |
| $x_{1} \in \{0, 1\}$                                                                                        |
| ist ein perfektes Matching                                                                                  |
| ⊖<br>Komplexität von ILPs                                                                                   |
| <sup>⊖</sup><br>7.2 Satz (Komplexität von ILPs)                                                             |
| (1) SATISFIABILITY (SAT) ist reduzierbar auf ILP                                                            |
| (2) Es ist NP-schwer zu entscheiden, ob ein ILP eine zulässige Lösung hat                                   |
| (3) Es ist NP-schwer, von einer zulässigen Lösung der LP Relaxation eines ILP auf eine zulässige Lösung des |
| ILP zu runden                                                                                               |
| Beweis                                                                                                      |
| Sei eine Instanz von SA⊤ gegeben durch m Klauseln C1,, Cm in Booleschen Variablen x1,, x                    |
| Führe für jede Boolesche Variable x; eine 0/1-Variable z; ein mit z; = 1 falls x; = TRUE                    |
| Dann lässt sich die Erfüllung einer Klausel als lineare Ungleichung schreiben und die Existenz einer        |
| erfüllenden Belegung ist äguivalent zur Existenz einer zulässigen Lösung für das ILP.                       |
| Beispiel:                                                                                                   |
|                                                                                                             |

# 7. Ganzzahlige Lineare Optimierung 7.1 Einführung

| $\mathbf{x}_1 \lor \mathbf{x}_2 \lor \mathbf{x}_2, \ \mathbf{x}_1 \lor \overline{\mathbf{x}}_2, \ \mathbf{x}_2 \lor \overline{\mathbf{x}}_2, \ \mathbf{x}_2 \lor \overline{\mathbf{x}}_1, \ \overline{\mathbf{x}}_1 \lor \overline{\mathbf{x}}_2 \lor \overline{\mathbf{x}}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\underbrace{(\underbrace{1}_1, \underbrace{1}_2, \underbrace{1}_3, \underbrace{1}_2, \underbrace{1}_2, \underbrace{1}_2, \underbrace{1}_2, \underbrace{1}_2, \underbrace{1}_3, \underbrace{1}_2, \underbrace{1}_2, \underbrace{1}_3, \underbrace{1}_2, \underbrace{1}_2, \underbrace{1}_3, \underbrace{1}_2, \underbrace{1}_2, \underbrace{1}_3, \underbrace{1}_2, \underbrace{1}_3, \underbrace{1}_3, \underbrace{1}_2, \underbrace{1}_3, \underbrace$ |
| ist äguivalent zu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\frac{1}{7}$ + $\frac{7}{7}$ + $\frac{7}{7}$ > 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -1 $-2$ $-3$ $-1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $z_1 + (1 - z_2) = z_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $z_2 + (1 - z_3) \ge 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $z_3 + (1-z_1) \ge 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $(1-z_1) + (1-z_2) + (1-z_2) \ge 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $z_i \in \{0, 1\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Hat jede Klausel ≥ 2 Literale (dies ist der nicht-triviale Fall), so ist z <sub>i</sub> = 1/2 eine zulässige Lösung der LP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Relaxation. Das Runden auf eine zulässige Lösung des ILP ist daher genauso schwer wie das Finden einer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| efüllenden Belegung für die gegebene SAT Instanz. 🖵                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Beachte: Der Beweis zeigt nicht, dass der Test auf Zulässigkeit NP-vollständig ist. Dazu müssten wir zeigen,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| dass ein Zertifikat für Zulässigkeit von polynomialer Länge existiert (vgl. ADM I). Das ist zunächst unklar, es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| kann jedoch gezeigt werden, dass die Komponenten x <sub>j</sub> einer ganzzahligen zulässigen Lösung x nicht zu groß                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| _werden (eine analoge Aussage zu Lemma 3.4). Daher kann × selbst als Zertifikat genommen werden. NP-schwe |
|-----------------------------------------------------------------------------------------------------------|
| kann also überall in Satz 7,2 durch NP-vollständig ersetzt werden.                                        |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |

| ⊖<br>Fragestellung dieses Abschnittes                                                                  |
|--------------------------------------------------------------------------------------------------------|
| Wann hat ein LP aanzzahlige Basislösungen?                                                             |
|                                                                                                        |
| => Dann lasst sich ein ILP dadurch losen indem man die LP Relaxation mit dem Simplexalgorithmus lost.  |
| Hier der Speziallfall:                                                                                 |
| Wann hat  Ax = b  nur ganzzahlige Basislösungen für beliebige Wahl von gannzzahligen rechten Seiten b? |
| Dies ist dann eine Eigenschaft der Matrix A                                                            |
|                                                                                                        |
|                                                                                                        |
| Volistandig unimodulare Matrizen                                                                       |
| Eine quadratische Matrix B mit ganzzahligen Einträgen heißt unimodular                                 |
| :<=> det $B \in \{-1, 1\}$                                                                             |
| Eine Matrix A mit ganzzahligen Einträgen heißt vollständig unimodular (totally unimodular, TUM)        |
|                                                                                                        |
| :<=> jede quadratische nicht-singuläre Teilmatrix ist unimodular                                       |
|                                                                                                        |
| erste Eigenschaften                                                                                    |
|                                                                                                        |
| A TOM - A har har har entrage $a_{ij} \in \{-1, 0, 1\}$                                                |
| die kleinste nicht unimodulare Matrix ist                                                              |
|                                                                                                        |

| Ist B eine Basis von A mit B = $(A_{B(1)}, A_{B(2)},, A_{B(m)})$ , so folgt aus der Cramerschen Regel               |
|---------------------------------------------------------------------------------------------------------------------|
|                                                                                                                     |
| $x_{B(i)} = \frac{\det B'}{dim}$ mit $B^{i} = (A_{B(1)}, \dots, A_{B(i-1)}, b, A_{B(i+1)}, \dots, A_{B(m)})$        |
| det B det B                                                                                                         |
| => x_m aanzzahlia falls A TUM und b aanzzahlia                                                                      |
| B(1) ganzzahing rais $X$ rom and b ganzzahing                                                                       |
|                                                                                                                     |
| e<br>Belveden van lineeren Ontimienungsnahlemen mit eenstelligen Eeken                                              |
| Polyeder von innearen Optimierungsproblemen mit ganzzanligen Ecken                                                  |
| Sei $R_1(A) := \{x \in \mathbb{R}^n \mid Ax = b, x \ge 0\}$ das Polyeder zur Standardform des LP                    |
|                                                                                                                     |
| Set $R_2(A) := \{x \in \mathbb{R}^n \mid Ax \le b, x \ge 0\}$ das Polyeder zur Kanonischen Form des LP              |
| Bemerkung:                                                                                                          |
| 0                                                                                                                   |
| Beide Polyeder sind hier als Teilmengen des $\mathbb{R}^n$ definiert.                                               |
| Die Definition R <sub>2</sub> (A) entspricht der in Abschnitt 3.3 betrachtenen Korrespondenz zwischen geometrischer |
| und alaphraischen Internetation von LPs, insbesendene enternechen die Ecken von D. (A), den zulässigen              |
| und digebraischer interpretation von LPS, insbesondere entsprechen die Ecken von R <sub>2</sub> (A) den zulässigen  |
|                                                                                                                     |
| Basisiosungen des um Schluptvariabien erweiterten LP { Ax + s = b, x, s ≥0 }                                        |

## 7. Ganzzahlige Lineare Optimierung

43-3

## 7.2 Vollständig unimodulare Matrizen



| _ |                                                                                                                  |
|---|------------------------------------------------------------------------------------------------------------------|
| _ | Θ                                                                                                                |
| _ | 7.3 Satz (Ganzzahligkeit von R <sub>1</sub> (A))                                                                 |
| - | Ist A vollständig unimodular, so sind alle Ecken von R <sub>1</sub> (A) für beliebige ganzzahlige rechte Seite b |
| _ | ganzzahlig.                                                                                                      |
| - | Insbesondere führt der Simplexalgorithmus in einem LP in Standardform mit vollständig unimodularer Matrix        |
| _ | A bei ganzzahliger rechter Seite b immer zu einer ganzzahligen Optimallösung.                                    |
| - | Beweis:                                                                                                          |
| - | 🔍 folgt aus dem Abschnitt "Erste Eigenschaften" 🕒                                                                |
| _ |                                                                                                                  |
| _ | ⊖<br>74 Satz (Ganzzahliakeit von R.(A))                                                                          |
| _ |                                                                                                                  |
| - | Ist A vollständig unimodular, so sind alle Ecken von R <sub>2</sub> (A) für beliebige ganzzahlige rechte Seite b |
| - | ganzzahlig.                                                                                                      |
| _ | Insbesondere führt der Simplexalgorithmus in einem LP in kanonischer Form mit vollständig unimodularer           |
| _ | Mateire Albeitermandeliser andeter Ceiter berech Einführung von Cabler Gereichlen immen zu einer                 |
| - | Matrix A dei ganzzanliger rechter Seite d nach Einfuhrung von Schluptvariadien immer zu einer                    |
| - | ganzzahligen Optimallösung.                                                                                      |
| - | Beweis:                                                                                                          |
| 1 |                                                                                                                  |

#### 7. Ganzzahlige Lineare Optimierung 7.2 Vollständig unimodulare Matrizen

Nach Einführung von Schlupfvariablen entsteht die Matrix (A|I).
Sei C eine nicht-singuläre quadratische Teilmatrix von (A|I)
=> nach geeigneter Permutation der Zeilen hat C die Form

(B | 0
D
mit B = quadratische Teilmatrix von A
I<sub>k</sub> = (k,k)-Einkeitsmatrix
> |det(C)| = |det(B)| = 1, da A TUM
=> (A|I) ist TUM
=> Behauptung mit Satz 7.3 und Satz 3.10 □

Die Sätze 7.3 und 7.4 bedeuten also, dass die Polyeder R<sub>1</sub>(A) und R<sub>2</sub>(A) ganzzahlige Ecken haben, wenn A vollständig unimodular und die rechte Seite b ganzzahlig ist.

Erkennung von vollständig unimodularen Matrizen

Θ

Die Komplexität der Erkennung vollständig unimodularer Matrizen war lange offen und wurde erst durch

# 7. Ganzzahlige Lineare Optimierung

7.2 Vollständig unimodulare Matrizen

| Für jede Spalte mit 2 Einträgen ≠ 0 und verschiedenen Vorzeichen liegen die zugehörigen Zeilen in demselben I <sub>j</sub> Beweis durch Induktion nach der Größe k der quadratischen Teilmatrix Induktionsanfang k = 1 klar, da A nur Einträge a <sub>ij</sub> ∈ {-1, 0, 1} hat Schluss auf k Sei C eine quadratische nichtsinguläre (k,k)-Teilmatrix von A => in jeder Spalte von C gibt es mindestens einen Eintrag Fall 1: es gibt in C eine Spalte mit genau einem Eintrag a <sub>ij</sub> ≠ 0 entwickle det(C) nach dieser Spalte, wobei C' die Untermatrix von C nach Streichen von Zeile i und Spalte j ist =>  det(C')  ≠ 0 Induktionsvoraussetzung =>  det(C')  = 1 a <sub>i</sub> ∈ {-1, 1} =>  det(C)  = 1                                                                                | verschiedenen I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pur jede Sparte mit 2 Einträgen * 0 und verschledenen Vorzeichen liegen die zugenorigen Zeilen in<br>demselben I <sub>j</sub><br>Beweis durch Induktion nach der Größe k der quadratischen Teilmatrix<br>Induktionsanfang k = 1<br>klar, da A nur Einträge $a_{ij} \in \{-1, 0, 1\}$ hat<br>Schluss auf k<br>Sei C eine quadratische nichtsinguläre (k,k)-Teilmatrix von A<br>$\Rightarrow$ in jeder Spalte von C gibt es mindestens einen Eintrag<br>Fall 1: es gibt in C eine Spalte mit genau einem Eintrag $a_{ij} \neq 0$<br>entwickle det(C) nach dieser Spalte, wobei C' die Untermatrix von C nach Streichen von Zeile i und<br>Spalte j ist<br>$\Rightarrow  det(C)  =  a_{ij}  \cdot  det(C')  = 1$<br>$a_{ij} \in \{-1, 1\} \Rightarrow  det(C)  = 1$                                     | Cincipal Construction of Operations (Construction of Construction of Construct |
| demselben I <sub>j</sub> Beweis durch Induktion nach der Größe k der quadratischen Teilmatrix         Induktionsanfang k = 1         klar, da A nur Einträge a <sub>ij</sub> ∈ {-1, 0, 1} hat         Schluss auf k         Schluss auf k         Sei C eine quadratische nichtsinguläre (k,k)-Teilmatrix von A         => in jeder Spalte von C gibt es mindestens einen Eintrag         Fall 1: es gibt in C eine Spalte mit genau einem Eintrag a <sub>ij</sub> ≠ 0         entwickle det(C) nach dieser Spalte, wobei C' die Untermatrix von C nach Streichen von Zeile i und         Spalte j ist         =>  det(C)  =  a <sub>ij</sub>  · det(C')          C nicht singulär =>  det(C')  ≠ 0         Induktionsvoraussetzung =>  det(C')  = 1         a <sub>i</sub> ∈ {-1,1} =>  det(C)  = 1 | rur jede Spaite mit 2 Eintragen 7 0 und verschiedenen vorzeichen liegen die zugenorigen Zeilen in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>Beweis durch Induktion nach der Größe k der quadratischen Teilmatrix</li> <li>Induktionsanfang k = 1</li> <li>klar, da A nur Einträge a<sub>ij</sub> ∈ {-1, 0, 1} hat</li> <li>Schluss auf k</li> <li>Sei C eine quadratische nichtsinguläre (k,k)-Teilmatrix von A</li> <li>=&gt; in jeder Spalte von C gibt es mindestens einen Eintrag</li> <li>Fall 1: es gibt in C eine Spalte mit genau einem Eintrag a<sub>ij</sub> ≠ 0</li> <li>entwickle det(C) nach dieser Spalte, wobei C' die Untermatrix von C nach Streichen von Zeile i und</li> <li>Spalte j ist</li> <li>=&gt;  det(C)  =  a<sub>ij</sub> · det(C') </li> <li>C nicht singulär =&gt;  det(C')  ≠ 0</li> <li>Induktionsvoraussetzung =&gt;  det(C')  = 1</li> <li>a<sub>i</sub> ∈ {-1, 1} =&gt;  det(C)  = 1</li> </ul>     | demselben I <sub>i</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>Induktionsanfang k = 1</li> <li>klar, da A nur Einträge a<sub>ij</sub> ∈ {-1, 0, 1} hat</li> <li>Schluss auf k</li> <li>Sei C eine quadratische nichtsinguläre (k,k)-Teilmatrix von A</li> <li>⇒ in jeder Spalte von C gibt es mindestens einen Eintrag</li> <li>Fall 1: es gibt in C eine Spalte mit genau einem Eintrag a<sub>ij</sub> ≠ 0</li> <li>entwickle det(C) nach dieser Spalte, wobei C' die Untermatrix von C nach Streichen von Zeile i und</li> <li>Spalte j ist</li> <li>⇒  det(C)  =  a<sub>ij</sub> · det(C') </li> <li>C nicht singulär =&gt;  det(C')  ≠ 0</li> <li>Induktionsvoraussetzung =&gt;  det(C')  = 1</li> <li>a<sub>i</sub> ∈ {-1, 1} =&gt;  det(C)  = 1</li> </ul>                                                                                           | Beweis durch Induktion nach der Größe k der guadratischen Teilmatrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Induktionsantang k = 1<br>klar, da A nur Einträge $a_{ij} \in \{-1, 0, 1\}$ hat<br>Schluss auf k<br>Sei C eine quadratische nichtsinguläre (k,k)-Teilmatrix von A<br>=> in jeder Spalte von C gibt es mindestens einen Eintrag<br>Fall 1: es gibt in C eine Spalte mit genau einem Eintrag $a_{ij} \neq 0$<br>entwickle det(C) nach dieser Spalte, wobei C' die Untermatrix von C nach Streichen von Zeile i und<br>Spalte j ist<br>=> $ det(C)  =  a_{ij}  \cdot  det(C') $<br>C nicht singulär => $ det(C')  \neq 0$<br>Induktionsvoraussetzung => $ det(C')  = 1$                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <pre>klar, da A nur Einträge a<sub>ij</sub> ∈ {-1, 0, 1} hat Schluss auf k Sei C eine quadratische nichtsinguläre (k,k)-Teilmatrix von A =&gt; in jeder Spalte von C gibt es mindestens einen Eintrag Fall 1: es gibt in C eine Spalte mit genau einem Eintrag a<sub>ij</sub> ≠ 0 entwickle det(C) nach dieser Spalte, wobei C' die Untermatrix von C nach Streichen von Zeile i und Spalte j ist =&gt;  det(C)  =  a<sub>ij</sub> · det(C')  C nicht singulär =&gt;  det(C')  ≠ 0 Induktionsvoraussetzung =&gt;  det(C')  = 1 a<sub>i</sub> ∈ {-1,1} =&gt;  det(C)  = 1</pre>                                                                                                                                                                                                                       | Induktionsantang K = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Schluss auf k Schluss auf k Sei C eine quadratische nichtsinguläre (k,k)-Teilmatrix von A => in jeder Spalte von C gibt es mindestens einen Eintrag Fall 1: es gibt in C eine Spalte mit genau einem Eintrag a <sub>ij</sub> ≠ 0 entwickle det(C) nach dieser Spalte, wobei C' die Untermatrix von C nach Streichen von Zeile i und Spalte j ist =>  det(C)  =  a <sub>ij</sub>  · det(C')  C nicht singulär =>  det(C')  ≠ 0 Induktionsvoraussetzung =>  det(C')  = 1 a <sub>i</sub> ∈ {-1, 1} =>  det(C)  = 1                                                                                                                                                                                                                                                                                      | klar, da A nur Einträge a <sub>ii</sub> ∈{-1,0,1} hat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>Sei C eine quadratische nichtsinguläre (k,k)-Teilmatrix von A</li> <li>⇒ in jeder Spalte von C gibt es mindestens einen Eintrag</li> <li>Fall 1: es gibt in C eine Spalte mit genau einem Eintrag a<sub>ij</sub> ≠ 0</li> <li>entwickle det(C) nach dieser Spalte, wobei C' die Untermatrix von C nach Streichen von Zeile i und</li> <li>Spalte j ist</li> <li>=&gt;  det(C)  =  a<sub>ij</sub> · det(C') </li> <li>C nicht singulär =&gt;  det(C')  ≠ 0</li> <li>Induktionsvoraussetzung =&gt;  det(C')  = 1</li> <li>a<sub>i</sub> ∈ {-1, 1} =&gt;  det(C)  = 1</li> </ul>                                                                                                                                                                                                               | Schluss auf k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Set C eine quadratische nichtsingulare (k,k)= i elimatrix von A => in jeder Spalte von C gibt es mindestens einen Eintrag Fall 1: es gibt in C eine Spalte mit genau einem Eintrag a <sub>ij</sub> ≠ 0 entwickle det(C) nach dieser Spalte, wobei C' die Untermatrix von C nach Streichen von Zeile i und Spalte j ist =>  det(C)  =  a <sub>ij</sub>  · det(C')  C nicht singulär =>  det(C')  ≠ 0 Induktionsvoraussetzung =>  det(C')  = 1 a <sub>i</sub> ∈ {-1, 1} =>  det(C)  = 1                                                                                                                                                                                                                                                                                                                | O Cai C aine an dastiada aidtain d'an (bl) Taila stainna A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ⇒ in jeder Spalte von C gibt es mindestens einen Eintrag Fall 1: es gibt in C eine Spalte mit genau einem Eintrag a <sub>ij</sub> ≠ 0 entwickle det(C) nach dieser Spalte, wobei C' die Untermatrix von C nach Streichen von Zeile i und Spalte j ist =>  det(C)  =  a <sub>ij</sub>  · det(C')  C nicht singulär =>  det(C')  ≠ 0 Induktionsvoraussetzung =>  det(C')  = 1 a <sub>i</sub> ∈ {-1, 1} =>  det(C)  = 1                                                                                                                                                                                                                                                                                                                                                                                 | Sei C eine quadratische nichtsingulare (K,K)- i elimatrix von A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fall 1: es gibt in C eine Spalte mit genau einem Eintrag a <sub>ij</sub> ≠ 0 entwickle det(C) nach dieser Spalte, wobei C' die Untermatrix von C nach Streichen von Zeile i und Spalte j ist =>  det(C)  =  a <sub>ij</sub>  · det(C')  C nicht singulär =>  det(C')  ≠ 0 Induktionsvoraussetzung =>  det(C')  = 1 a <sub>i</sub> ∈ {-1, 1} =>  det(C)  = 1                                                                                                                                                                                                                                                                                                                                                                                                                                          | => in jeder Spalte von C gibt es mindestens einen Eintrag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| entwickle det(C) nach dieser Spalte, wobei C' die Untermatrix von C nach Streichen von Zeile i und<br>Spalte j ist<br>=>  det(C)  =  a <sub>ij</sub>  · det(C') <br>C nicht singulär =>  det(C')  ≠ 0<br>Induktionsvoraussetzung =>  det(C')  = 1<br>a <sub>ii</sub> ∈ {-1,1} =>  det(C)] = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fall 1: es gibt in C eine Spalte mit genau einem Eintrag a. ≠ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| entwickle det(C) hach dieser Spalte, wobei C die Untermatrix von C hach Streichen von Zeile i und<br>Spalte j ist<br>=> $ det(C)  =  a_{ij}  \cdot  det(C') $<br>C nicht singulär => $ det(C')  \neq 0$<br>Induktionsvoraussetzung => $ det(C')  = 1$<br>$a_{ij} \in \{-1, 1\} =>  det(C)  = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Spalte j ist<br>=> $ det(C)  =  a_{ij}  \cdot  det(C') $<br>C nicht singulär => $ det(C')  \neq 0$<br>Induktionsvoraussetzung => $ det(C')  = 1$<br>$a_{ij} \in \{-1, 1\} =>  det(C)  = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | entwickle det(C) hach dieser Spaite, wobei C die Untermatrix von C hach Streichen von Zeile i und                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $=  \det(C)  =  a_{ij}  \cdot  \det(C') $ C nicht singulär => $ \det(C')  \neq 0$ Induktionsvoraussetzung => $ \det(C')  = 1$ $a_{ij} \in \{-1, 1\} \Rightarrow  \det(C)  = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Spalte j ist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C nicht singulär => $ det(C')  \neq 0$<br>Induktionsvoraussetzung => $ det(C')  = 1$<br>$a_{ii} \in \{-1, 1\} =>  det(C)  = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | => $ \det(C)  =  a_{ij}  \cdot  \det(C') $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Induktionsvoraussetzung => $ det(C')  = 1$<br>$a_{ii} \in \{-1, 1\} =>  det(C)  = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C nicht singulär =>  det(C')  ≠ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $a_{ii} \in \{-1, 1\} \Rightarrow  det(C)  = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Induktionsvoraussetzung =>  det(C')  = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $a_{ij} \in \{-1, 1\} \Rightarrow  det(C)  = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Fall 2: alle Spalten von C haben mindestens 2 Einträge ≠ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| _ | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | (1) => alle Spalten naden genau 2 Eintrage 7 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | Betrachte die Aufteilung der Zeilen in I <sub>1</sub> , I <sub>2</sub> gemäß (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | => für jede Spalte j ist ∑ <sub>i∈I1</sub> a <sub>ij</sub> = ∑ <sub>i∈I2</sub> a <sub>ij</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | $\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} a_i = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | d.h. eine Linearkombination der Zeilenvektoren von Cergibt den Nullvektor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | => Widerspruch zu C nicht-singulär                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | => dieser Fall kann nicht auftreten 🛛                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| _ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | 7.6 Korollar (Wichtige vollständig unimodulare Matrizen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | <ul> <li>7.6 Korollar (Wichtige vollständig unimodulare Matrizen)</li> <li>Tedes LR in Standardform oder kanonischer Form dessen Koeffizientenmatrix eleich der</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | <ul> <li>7.6 Korollar (Wichtige vollständig unimodulare Matrizen)</li> <li>Jedes LP in Standardform oder kanonischer Form, dessen Koeffizientenmatrix gleich der</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | <ul> <li>7.6 Korollar (Wichtige vollständig unimodulare Matrizen)</li> <li>Jedes LP in Standardform oder kanonischer Form, dessen Koeffizientenmatrix gleich der</li> <li>1. Knoten-Kanten Inzidenzmatrix eines Digraphen</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | <ul> <li>7.6 Korollar (Wichtige vollständig unimodulare Matrizen)</li> <li>Jedes LP in Standardform oder kanonischer Form, dessen Koeffizientenmatrix gleich der</li> <li>1. Knoten-Kanten Inzidenzmatrix eines Digraphen</li> <li>2. Knoten-Kanten Inzidenzmatrix eines bipartiten Graphen</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | <ul> <li>7.6 Korollar (Wichtige vollständig unimodulare Matrizen)</li> <li>Jedes LP in Standardform oder kanonischer Form, dessen Koeffizientenmatrix gleich der</li> <li>1. Knoten-Kanten Inzidenzmatrix eines Digraphen</li> <li>2. Knoten-Kanten Inzidenzmatrix eines bipartiten Graphen</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | <ul> <li>7.6 Korollar (Wichtige vollständig unimodulare Matrizen)</li> <li>Jedes LP in Standardform oder kanonischer Form, dessen Koeffizientenmatrix gleich der</li> <li>1. Knoten-Kanten Inzidenzmatrix eines Digraphen</li> <li>2. Knoten-Kanten Inzidenzmatrix eines bipartiten Graphen</li> <li>ist, hat nur ganzzahlige optimale Basislösungen (bei ganzzahliger rechter Seite b).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | <ul> <li>7.6 Korollar (Wichtige vollständig unimodulare Matrizen)</li> <li>Jedes LP in Standardform oder kanonischer Form, dessen Koeffizientenmatrix gleich der         <ol> <li>Knoten-Kanten Inzidenzmatrix eines Digraphen</li> <li>Knoten-Kanten Inzidenzmatrix eines bipartiten Graphen</li> </ol></li></ul> |
|   | <ul> <li>7.6 Korollar (Wichtige vollständig unimodulare Matrizen)</li> <li>Jedes LP in Standardform oder kanonischer Form, dessen Koeffizientenmatrix gleich der         <ol> <li>Knoten-Kanten Inzidenzmatrix eines Digraphen</li> <li>Knoten-Kanten Inzidenzmatrix eines bipartiten Graphen</li> <li>Knoten-Kanten Inzidenzmatrix eines bipartiten Graphen</li> <li>hat nur ganzzahlige optimale Basislösungen (bei ganzzahliger rechter Seite b).</li> <li>Hierzu gehören u.A. die LP Formulierungen des</li> </ol> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | <ul> <li>7.6 Korollar (Wichtige vollständig unimodulare Matrizen)</li> <li>Jedes LP in Standardform oder kanonischer Form, dessen Koeffizientenmatrix gleich der         <ol> <li>Knoten-Kanten Inzidenzmatrix eines Digraphen</li> <li>Knoten-Kanten Inzidenzmatrix eines bipartiten Graphen</li> <li>knoten-Kanten Inzidenzmatrix eines bipartiten Graphen</li> <li>hat nur ganzzahlige optimale Basislösungen (bei ganzzahliger rechter Seite b).</li> <li>Hierzu gehören u.A. die LP Formulierungen des</li> <li>Kürzeste-Wege-Problem</li> </ol> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

## 7. Ganzzahlige Lineare Optimierung 7.2 Vollständig unimodulare Matrizen

| Max-Fluss-Problem                                                                                          |
|------------------------------------------------------------------------------------------------------------|
| Transportproblem                                                                                           |
| 8                                                                                                          |
| Beweis                                                                                                     |
| 😑 Fall 1                                                                                                   |
| 0                                                                                                          |
| A enthält in diesem Fall pro Spalte genau eine +1 und eine -1                                              |
|                                                                                                            |
| => setze I <sub>1</sub> = Menge aller Zeilen, I <sub>2</sub> = Ø                                           |
| Fall 2                                                                                                     |
| 0                                                                                                          |
| Sei G der bipartite Graph mit Bipartition A und B                                                          |
|                                                                                                            |
| => die Spalte zur Kante ij enthält genau 2 Einträge ≠ 0, und zwar eine +1 für den Knoten i und eine +1 für |
| den Knoten i                                                                                               |
|                                                                                                            |
| $\Rightarrow$ setze $I_1 = A, I_2 = B \Box$                                                                |



#### 7. Ganzzahlige Lineare Optimierung

7.2 Vollständig unimodulare Matrizen

 $\sum_{i} f_{ij} = 1 \quad \text{für alle } j = 1, ..., n$   $f_{ij} \ge 0 \quad \text{für alle } i, j$ Sei A die zugehörige Koeffizientenmatrix und R<sub>1</sub>(A) das zugehörige Polyeder zur Standardform
R<sub>1</sub>(A) ist ein Polytop, da der Zulässigkeitsbereich wegen  $0 \le f_{ij} \le 1$  beschränkt ist
Satz von Minkowski (Satz 3.9)  $\Rightarrow$  M ist Konvexkombination der Ecken von R<sub>1</sub>(A) A ist dabei Knoten-Kanten Inzidenzmatrix des vollständigen bipartiten Graphen K<sub>n,n</sub>  $\Rightarrow$  A ist vollständig unimodular nach Korollar 7.6  $\Rightarrow$  Die Ecken von R<sub>1</sub>(A) sind ganzzahlig nach Satz 7.3  $0 \le f_{ij} \le 1 \Rightarrow$  die Ecken von R<sub>1</sub>(A) sind Permutationsmatrizen  $\Box$ 

| Ziel dieses Abschnitts                                                                                       |
|--------------------------------------------------------------------------------------------------------------|
| Vorstellung von Branch and Bound als eine Standard-Technik zur exakten Lösung NP-vollständiger Probleme,     |
| speziell von IPs.                                                                                            |
| Obwohl einfach, ist Branch and Bound die Grundlage und das Arbeitspferd für alle kommerziellen Codes zur     |
| Lösung von IPs, allerdings angereichert mit einer Vielzahl von Verbesserungen und Tricks.                    |
|                                                                                                              |
| ⊖<br>Grundidee von Branch and Bound                                                                          |
| Branch and Bound (B&B) = geschickt (Problem-abhängig) organisierte systematische Durchforstung der Menge     |
| der zulässigen Lösungen nach einer Optimallösung oder bis zum Abbruch mit einer guten Lösung (d.h. mit einer |
| Instanz-abhängigen Gütegarantie)                                                                             |
|                                                                                                              |
| Der Nutzen unterer Schranken bei der Minimierung                                                             |





#### 7. Ganzzahlige Lineare Optimierung 7.3 Branch and Bound Algorithmen

 Image: Second second



#### 7. Ganzzahlige Lineare Optimierung 7.3 Branch and Bound Algorithmen





### 7. Ganzzahlige Lineare Optimierung 7.3 Branch and Bound Algorithmen



| <ul> <li>Branching und Bounding wird verbunden mit</li> <li>guten Auswahlstrategien zur Untersuchung der nächsten Knoten (= Teilmenge der zulässigen Lösungen) im<br/>B&amp;B Baum</li> <li>Tiefensuche</li> <li>Breitensuche</li> <li>Best-First-Search (gehe in Richtung bester ( = kleinster) unterer Schranke)</li> <li>Kombinationen davon</li> <li>der Baum wird natürlich nur implizit verwaltet und nie explizit erzeugt</li> <li>Techniken zur Erzeugung guter unterer Schranken (nächstes Kapitel)</li> <li>Lagrange Relaxation</li> <li>LP-Relaxation (spzeziell bei IPs)</li> <li>Techniken zur Erzeugung zulässiger Lösungen (oberer Schranken) in Baumknoten</li> </ul> |                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| guten Auswahlstrategien zur Untersuchung der nächsten Knoten (= Teilmenge der zulässigen Lösungen) im         B&B Baum         Tiefensuche         Breitensuche         Best-First-Search (gehe in Richtung bester ( = kleinster) unterer Schranke)         Kombinationen davon         der Baum wird natürlich nur implizit verwaltet und nie explizit erzeugt         Techniken zur Erzeugung guter unterer Schranken (nächstes Kapitel)         Lagrange Relaxation         LP-Relaxation (spzeziell bei IPs)         Techniken zur Erzeugung zulässiger Lösungen (oberer Schranken) in Baumknoten                                                                                 | Branching und Bounding wird verbunden mit                                                              |
| B&B Baum<br>Tiefensuche<br>Breitensuche<br>Best-First-Search (gehe in Richtung bester ( = kleinster) unterer Schranke)<br>Kombinationen davon<br>der Baum wird natürlich nur implizit verwaltet und nie explizit erzeugt<br>der Baum wird natürlich nur implizit verwaltet und nie explizit erzeugt<br>Techniken zur Erzeugung guter unterer Schranken (nächstes Kapitel)<br>Lagrange Relaxation<br>LP-Relaxation (spzeziell bei IPs)<br>Techniken zur Erzeugung zulässiger Lösungen (oberer Schranken) in Baumknoten<br>Laufzeit ist exponentiell, hängt sehr von der Qualität der unteren Schranken ab                                                                              | oguten Auswahlstrategien zur Untersuchung der nächsten Knoten (= Teilmenge der zulässigen Lösungen) im |
| Tiefensuche<br>Breitensuche<br>Best-First-Search (gehe in Richtung bester ( = kleinster) unterer Schranke)<br>Kombinationen davon<br>der Baum wird natürlich nur implizit verwaltet und nie explizit erzeugt<br>der Baum wird natürlich nur implizit verwaltet und nie explizit erzeugt<br>Techniken zur Erzeugung guter unterer Schranken (nächstes Kapitel)<br>Lagrange Relaxation<br>LP-Relaxation (spzeziell bei IPs)<br>Techniken zur Erzeugung zulässiger Lösungen (oberer Schranken) in Baumknoten<br>Laufzeit ist exponentiell, hängt sehr von der Qualität der unteren Schranken ab                                                                                          | B&B Baum                                                                                               |
| Breitensuche<br>Best-First-Search (gehe in Richtung bester ( = kleinster) unterer Schranke)<br>Kombinationen davon<br>der Baum wird natürlich nur implizit verwaltet und nie explizit erzeugt<br>Techniken zur Erzeugung guter unterer Schranken (nächstes Kapitel)<br>Lagrange Relaxation<br>LP-Relaxation (spzeziell bei IPs)<br>Techniken zur Erzeugung zulässiger Lösungen (oberer Schranken) in Baumknoten<br>Laufzeit ist exponentiell, hängt sehr von der Qualität der unteren Schranken ab                                                                                                                                                                                    | Tiefensuche                                                                                            |
| Best-First-Search (gehe in Richtung bester ( = kleinster) unterer Schranke)<br>Kombinationen davon<br>der Baum wird natürlich nur implizit verwaltet und nie explizit erzeugt<br>Techniken zur Erzeugung guter unterer Schranken (nächstes Kapitel)<br>Lagrange Relaxation<br>LP-Relaxation (spzeziell bei IPs)<br>Techniken zur Erzeugung zulässiger Lösungen (oberer Schranken) in Baumknoten<br>Laufzeit ist exponentiell, hängt sehr von der Qualität der unteren Schranken ab                                                                                                                                                                                                    | Breitensuche                                                                                           |
| Kombinationen davon<br>der Baum wird natürlich nur implizit verwaltet und nie explizit erzeugt<br>Techniken zur Erzeugung guter unterer Schranken (nächstes Kapitel)<br>Lagrange Relaxation<br>LP-Relaxation (spzeziell bei IPs)<br>Techniken zur Erzeugung zulässiger Lösungen (oberer Schranken) in Baumknoten<br>Laufzeit ist exponentiell, hängt sehr von der Qualität der unteren Schranken ab                                                                                                                                                                                                                                                                                   | Best-First-Search (gehe in Richtung bester ( = kleinster) unterer Schranke)                            |
| <ul> <li>der Baum wird natürlich nur implizit verwaltet und nie explizit erzeugt</li> <li>Techniken zur Erzeugung guter unterer Schranken (nächstes Kapitel)         <ul> <li>Lagrange Relaxation</li> <li>LP-Relaxation (spzeziell bei IPs)</li> <li>Techniken zur Erzeugung zulässiger Lösungen (oberer Schranken) in Baumknoten</li> </ul> </li> <li>Laufzeit ist exponentiell, hängt sehr von der Qualität der unteren Schranken ab</li> </ul>                                                                                                                                                                                                                                    | Kombinationen davon                                                                                    |
| <ul> <li>Techniken zur Erzeugung guter unterer Schranken (nächstes Kapitel)         <ul> <li>Lagrange Relaxation</li> <li>LP-Relaxation (spzeziell bei IPs)</li> <li>Techniken zur Erzeugung zulässiger Lösungen (oberer Schranken) in Baumknoten</li> </ul> </li> <li>Laufzeit ist exponentiell, hängt sehr von der Qualität der unteren Schranken ab</li> </ul>                                                                                                                                                                                                                                                                                                                     | er Baum wird natürlich nur implizit verwaltet und nie explizit erzeuat                                 |
| Lagrange Relaxation<br>LP-Relaxation (spzeziell bei IPs)<br>Techniken zur Erzeugung zulässiger Lösungen (oberer Schranken) in Baumknoten<br>Laufzeit ist exponentiell, hängt sehr von der Qualität der unteren Schranken ab                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Techniken zur Erzeugung guter unterer Schranken (nächstes Kapitel)                                     |
| LP-Relaxation (spzeziell bei IPs) <ul> <li>Techniken zur Erzeugung zulässiger Lösungen (oberer Schranken) in Baumknoten</li> <li>Laufzeit ist exponentiell, hängt sehr von der Qualität der unteren Schranken ab</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                           | l garange Belaxation                                                                                   |
| <ul> <li>Techniken zur Erzeugung zulässiger Lösungen (oberer Schranken) in Baumknoten</li> <li>Laufzeit ist exponentiell, hängt sehr von der Qualität der unteren Schranken ab</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LP-Relaxation (spzeziell bei TPs)                                                                      |
| Laufzeit ist exponentiell, hängt sehr von der Qualität der unteren Schranken ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>Techniken zur Erzeugung zulässiger Lösungen (oberer Schranken) in Baumknoten</li> </ul>       |
| Laufzeit ist exponentiell, hängt sehr von der Qualität der unteren Schranken ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Laufzeit ist exponentiell hängt sehr von der Qualität der unteren Schranken ab                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lauf zen ist exponentien, hangt sent von der Quantar der anter en sent anken ab                        |

## 7. Ganzzahlige Lineare Optimierung 7.3 Branch and Bound Algorithmen

 Image: schematische Darstellung von Branch and Bound

 Image: schematische Darstellung von Branch and Bound

| ⊖<br>Output                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------|
| O zulässige Lösung_x ∈ S <sub>T</sub> mit Gütegarantie in Form des Zielfunktionswertes c(x) und einer unteren Schranke |
| ℓ für den Optimalwert                                                                                                  |
| ⊖<br>Ingredienzen                                                                                                      |
| O lower bounding strategy                                                                                              |
| <pre>branching strategy</pre>                                                                                          |
| search strategy                                                                                                        |
| Methode                                                                                                                |
| <ul> <li>■</li> <li>1. Arbeit in der Wurzel</li> </ul>                                                                 |
| betrachte eine abgewandelte, leichter zu lösende Instanz I' (Relaxation) zur Bestimmung einer unteren                  |
| Schranke für I;                                                                                                        |
| berechne die Optimallösung x' von I' mit Zielfunktionswert z';                                                         |
| if $x' \in S_{\tau}$ then return $x' / / x'$ ist optimal                                                               |
| setze l := z' // anfängliche globale untere Schranke                                                                   |
| // initialisiere Datenstruktur D zur Verwaltung der noch zu untersuchenden Knoten des B&B Baums                        |
| Füge I mit $\ell(I) := \ell$ in D ein                                                                                  |

| The Branen and Beana Algentiment                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------|
| O Verwende Heuristiken zur Erzeugung zulässiger Lösungen                                                                       |
| setze x* := beste gefundene Lösung                                                                                             |
| setze u := bester gefundener Zielfunktionswert  // anfängliche obere Schranke                                                  |
| 😑 2. Main loop                                                                                                                 |
| $\stackrel{igodol{\Theta}}{=}$ while Güte (u- $\ell$ )/ $\ell$ nicht klein genug and noch Rechenzeit und Speicher verfügbar do |
| wähle nächsten zu untersuchenden Knoten v des B&B Baumes aus D // search strategy                                              |
| <sup>●</sup> <u>if</u> ℓ(v) ≥ u <u>then</u> lösche v aus D // pruning                                                          |
| else                                                                                                                           |
| erzeuge die Kinder v <sub>1</sub> ,, v <sub>k</sub> von v // branching rule                                                    |
| // Vereinigung der Zulässigkeitsbereiche der Kinder = Zlässigkeitsbereich von v                                                |
| For jedes Kind v <sub>i</sub> do                                                                                               |
| 🔘 berechne die Optimallösung x' (der Relaxation) des zugehörigen Teilproblems mit Zielfunktionswert                            |
| z' // bounding rule                                                                                                            |
| $\Theta$ if $x' \in S_{\tau}$ and $z' < u$ then                                                                                |
| ×* := x' // Aktualisierung bester bekannter zulässiger Lösung                                                                  |
| u := z' // Aktualisierung der oberen Schranke                                                                                  |
| -                                                                                                                              |

| else                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| if z' < u then füge v; mit $\ell(v_i) := z'$ in D ein // neues Teilproblem                                                                                                                    |
| lösche vaus D//vistabgearbeitet                                                                                                                                                               |
| $^{\circ}$ $\ell := \min \{ \ell(w) \mid w \text{ in } D \} // aktualisiere globale untere Schranke$                                                                                          |
| © <u>return</u> x <sup>*</sup> und ℓ                                                                                                                                                          |
|                                                                                                                                                                                               |
| Branch and Bound bei IPs                                                                                                                                                                      |
| Für das Bounding liegt die Verwendung der LP Relaxation nahe                                                                                                                                  |
| Für das Branching liegt das Branching bzgl. fraktionaler Variablen in der LP Relaxation nahe                                                                                                  |
|                                                                                                                                                                                               |
| 7.8 Beispiel (Das KNAPSACK Problem, vgl. ADM I)                                                                                                                                               |
| KNAPSACK                                                                                                                                                                                      |
| ⊖<br>Instanz                                                                                                                                                                                  |
| n Gegenstände (items) mit Gewicht w. und Wert (Profit) c.                                                                                                                                     |
| ein Rucksack mit Kapazität W                                                                                                                                                                  |
| ⊖<br>Aufgabe                                                                                                                                                                                  |
| <ul> <li>KNAPSACK</li> <li>Instanz</li> <li>n Gegenstände (items) mit Gewicht w<sub>i</sub> und Wert (Profit) c<sub>i</sub></li> <li>ein Rucksack mit Kapazität W</li> <li>Aufgabe</li> </ul> |

| rie Branch and Board Augentament                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Finde eine Teilmenge $S \subseteq \{1,, n\}$ mit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| maximalem Wert $c(S) \coloneqq \Sigma \{c,   i \in S \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\bigcirc$ Kapazität des Duckeacke wird nicht überschritten dh. w(S) := $\sum \{w \mid i \in S\} \neq W$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\odot$ Ci. To D = 1 in the second distribution of |
| Eine IP Formulierung von KNAPSACK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <sup>©</sup> Führe 0/1-Variable x <sub>j</sub> ein mit x <sub>j</sub> = 1, falls der Gegenstand j mitgenommen wird                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| min $\Sigma_{j}$ - c <sub>j</sub> × <sub>j</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\Sigma W \times \langle W \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $x \in \{0, 1\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $- \int - \int$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7.9 Lemma (Optimallösungen der LP Relaxation von KNAPSACK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Man erhält eine Optimallösung der LP-Relaxation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\min \sum_{j} -c_{j} x_{j}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Σ.w.x. ≤W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $0 \le x_j \le 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| der IP Formulierung von KNAPSACK wie folgt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| sortiere und nummeriere die Gegenstände so, dass c/w, > c/w, >, c /w (größter Nutzen pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| Gewichtseinheit zuerst)                                                          |
|----------------------------------------------------------------------------------|
| berechne in dieser Reihenfolge die kleinste Zahl k, so dass w1 + w2 + + w4,1 > W |
| Set $z = x, z = 1$                                                               |
| $x_1 - x_2 - \dots - x_k - 1$                                                    |
| $x_{k+1} = (w - w_1 - w_2 w_k)/w_{k+1}$                                          |
| x <sub>i</sub> =0 sonst                                                          |
| Beweis durch Überprüfung der Bedingungen vom komplementären Schlupf              |
|                                                                                  |
| primal duales Paar ist gegeben durch                                             |
| C <sub>1</sub> C <sub>2</sub>                                                    |
|                                                                                  |
| $v_1 \cdots v_n = 1$                                                             |
|                                                                                  |
| v <sub>n</sub> 1 1                                                               |
| x <sub>1</sub> x <sub>n</sub>                                                    |
| ⊖<br>die Bedingungen vom komplementären Schlupf ergeben                          |
|                                                                                  |
| $(1) \times 0 \Rightarrow w_{j}u + v_{j} = c_{j}$                                |
| (2) u > 0 => Σ, w,x, = W (ist von der Lösung x erfüllt)                          |
|                                                                                  |
| (3) $v_j > 0 \Rightarrow x_j = 1$                                                |

# 7. Ganzzahlige Lineare Optimierung 7.3 Branch and Bound Algorithmen

| Definiere nun zu x eine dual zulässige Lösung, die mit x die Bedingungen (1) und (3) erfüllt                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------|
| (3) => $v_{k+1} = v_{k+2} = \dots = v_n := 0$                                                                                                  |
| => (mit (1) für j = k+1) $w_{k+1}u = c_{k+1} => u = c_{k+1}/w_{k+1}$                                                                           |
| => (mit (1) für j = 1, k) $w_j(c_{k+1}/w_{k+1}) + v_j = c_j$                                                                                   |
| $= v_j := c_j - w_j(c_{k+1}/w_{k+1})$ für $j = 1, k$                                                                                           |
| => Werte für alle Dualvariablen definiert aus den Bedingungen (1) und (3)                                                                      |
| zeige noch: dies definiert eine dual zulässige Lösung                                                                                          |
| dazu muss nur noch v <sub>j</sub> ≥0 gezeigt werden, d.h. c <sub>j</sub> - w <sub>j</sub> (c <sub>k+1</sub> /w <sub>k+1</sub> ) ≥0 für j=1, k. |
| Dies folgt aus c <sub>i</sub> /w <sub>i</sub> ≥ c <sub>k+1</sub> /w <sub>k+1</sub> für j = 1, k □                                              |
| 5 5                                                                                                                                            |
| Nutze allgemeines B&B Schema mit folgenden Ingredienzen                                                                                        |
| Iower bounding strategy = LP Relaxation gelöst mit Lemma 7.9                                                                                   |
| branching strategy = branche auf fraktionaler Variablen x <sub>k+1</sub>                                                                       |
| search strategy = best first                                                                                                                   |
|                                                                                                                                                |
| Daten der Instanz                                                                                                                              |
|                                                                                                                                                |

44-15

| 0        |      |       |        |                   |                                                                                     |
|----------|------|-------|--------|-------------------|-------------------------------------------------------------------------------------|
|          | j    | Wj    | cj     | $\frac{c_j}{w_i}$ | W = 35                                                                              |
|          | 1    | 16    | 112    | 7                 |                                                                                     |
|          | 2    | 15    | 90     | 6                 |                                                                                     |
|          | 3    | 3     | 15     | 5                 |                                                                                     |
|          | 4    | 3     | 12     | 4                 |                                                                                     |
|          | 5    | 3     | 9      | 3                 |                                                                                     |
|          | 6    | 4     | 12     | 3                 |                                                                                     |
|          | 7    | 13    | 26     | 2                 |                                                                                     |
|          |      |       |        |                   |                                                                                     |
| h        | eur  | istis | che L  | .ösun             | $x_1 = x_2 = x_2 = 1$ , $x_1 = 0$ sonst => obere Schranke $u = -217$                |
|          |      |       |        | •                 | , 1 2 3 , j                                                                         |
| L        | P R  | elaxo | ation  | ergi              | ot $x_1 = x_2 = x_3 = 1, x_4 = 1/3, x_1 = 0$ sonst => untere Schranke $\ell = -221$ |
| ⊖<br>Bro | inch | n anc | l Bour | nd Tr             | ee                                                                                  |
|          |      |       |        |                   |                                                                                     |

| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{pmatrix} x_1 = x_2 = x_3 = 1 \\ x_4 = 1/3 \end{pmatrix}$ (k) = Reihenfolge<br>der Suche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| lb = -221 (1) $lb = lower bound$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| x <sub>4</sub> = 1x <sub>4</sub> = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $x_1 = x_2 = x_4 = 1$ $x_1 = x_2 = x_3 = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $x_3 = 1/3$ $x_5 = 1/3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| lb = -219 5 $lb = -220$ 2 |
| $x_3 = 1$ $x_3 = 0$ $x_5 = 1$ $x_5 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $ \begin{array}{c} x_{1} = x_{3} = x_{4} = 1^{2} \\ x_{2} = 13/15 \\ x_{5} = 1/3 \\ x_{6} = 1/4 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $lb = -217 \ge u$ / $lb = -217 \ge u$ / $lb = -216 > u$ / $lb = -220$ 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $x_6 = 1$ $x_6 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $x_1 = x_2 = x_6 = 1$ $x_1 = x_2 = x_3 = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $zulässig \qquad x_7 = 1/13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{pmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| x <sub>7</sub> = 1 x <sub>7</sub> = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $x_1 = x_7 = 1$ (x_1 = x_2 = x_2 = 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| x <sub>2</sub> = 2/5 zulässig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $b = -174 > u$ $z' = -217 \ge u$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| ⊖<br>Verwendung anderer Relaxationen als der LP-F                       | Relaxation                  |
|-------------------------------------------------------------------------|-----------------------------|
| Dies ist möglich, z.B. durch Weglassen von Neb                          | penbedingungen              |
| => Zulässigkeitsbereich wird größer => Minim                            | um wird kleiner             |
|                                                                         |                             |
| <sup>⊖</sup> 7.10 Beispiel (TSP in Digraphen)                           |                             |
| Eine IP Formulierung                                                    |                             |
| ●<br>Führe 0/1-Variable x <sub>;;</sub> ein mit x <sub>;;</sub> = 1 <=> | Kante (i,j) ist in der Tour |
| min $\Sigma_{ij} c_{ij} x_{ij}$                                         | -<br>                       |
| $\Sigma_{i} x_{ij} = 1$ für alle i = 1,, n                              | (7.1)                       |
| $\Sigma_i x_{ij} = 1$ für alle j = 1,, n                                | (7.2)                       |
| Σ <sub>i,j∈S</sub> x <sub>ij</sub> ≤  S -1 für alle Ø≠S⊂{               | 1,, n } (7.3)               |
| x <sub>ii</sub> ∈ { 0, 1 }                                              | (7.4)                       |
|                                                                         |                             |
| Die Cycle Cover Relaxation des TSP                                      |                             |
| Ergibt sich durch Weglassen der Bedingung                               | g (7.3).                    |

| Die verbleibenden Bedingungen beschreiben ein Zuordnungsproblem, wobei jedoch Kanten (i,i) nicht                           |   |
|----------------------------------------------------------------------------------------------------------------------------|---|
| vorkommen dürfen Dies kann in der Zielfunktion durch hahe Kosten c. berücksichtigt werden Solche                           |   |
|                                                                                                                            |   |
| Zuordnungsprobleme sind effizient lösbar, z.B. mit der primal-dualen Methode, vgl. Abschnitt 6.5.                          |   |
|                                                                                                                            |   |
| Survendung der Cycle Cover Delayation in Branch and Bound Algorithmen                                                      |   |
|                                                                                                                            |   |
| Nehme die Cycle Cover Relaxation als lower bounding strategy                                                               |   |
| Falls die optimale Zuordnung (x <sub>ii</sub> ) Bedingung (7.3) erfüllt, so ist sie eine Tour. Ansonsten branche wie folgt | : |
| wähle den kürzesten Zvkel bzal. Kantenzahl und setze die Kanten darauf einzeln zu 0                                        |   |
| ······································                                                                                     |   |
| => pro Kante im Zykel ein Kind im B&B Baum                                                                                 |   |
|                                                                                                                            |   |
|                                                                                                                            |   |

| Hauptpunkte dieses Adschnittes                                                                            |
|-----------------------------------------------------------------------------------------------------------|
| Lagrange Relaxation ist eine wichtige Technik zur Erzeugung von "guten" unteren Schranken für IPs. Sie    |
| relaxiert Nebenbedingungen, bestraft aber ihre Verletzung in der Zielfunktion. Durch Variation der        |
|                                                                                                           |
| Strafkosten kann die untere Schranke verbessert werden.                                                   |
| Die systematische Verbesserung der Strafkosten führt zur Subgradientenoptimierung, einer Methode zur      |
|                                                                                                           |
| Maximierung einer nicht-altterenzierbaren konkaven runktion                                               |
| Die dadurch erreichbare untere Schranke ist mindestens so gut wie bei der LP Relaxation, unter bestimmten |
| Redingungen jedech gleich. Den Venteil zum LP Delevetien liget (Drehlem ghhöngig) in den gehnellenen      |
| Bedingungen jedoch gleich. Der vorten zur LP Reidxation negt (Problem-abhangig) in der schneneren         |
| (approximativen) Berechnung der Schranke durch kombinatorische Algorithmen.                               |
|                                                                                                           |
| Lagrange Relaxation ist eins der Arbeitspferde in Branch and Bound Algorithmen                            |
|                                                                                                           |
| θ.                                                                                                        |
| Grundlagen der Lagrange Relaxation                                                                        |
|                                                                                                           |
| Gegeben sei das ganzzahlige Lineare Programm                                                              |
| (P) min c <sup>T</sup> x                                                                                  |
|                                                                                                           |
| unter Ax≥b (K "schwere" Nebenbedingungen)                                                                 |
| Bx≥d (m-k "leichte" Nebenbedingungen)                                                                     |

| × ganzzahlig                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------|
| ●<br>Relaxiere die "schweren" Nebenbedingungen Ax≥b und bestrafe ihre Verletzung in der Zielfunktion.                                            |
| Führe dazu Lagrange-Multiplikatoren $\lambda_1,, \lambda_k$ für diese Nebenbedingungen ein. Sie bilden eine Art Dualvariable                     |
| für diese Nebenbedingungen und erfüllen die Bedingungen                                                                                          |
| $a_i x \ge b_i \implies \lambda_i \ge 0$ (7.5)                                                                                                   |
| $a_i x = b_i \Rightarrow \lambda_i$ nicht vorzeichenbeschränkt (7.6)                                                                             |
| Für festes solches $\lambda = (\lambda_1,, \lambda_k)^T$ ist die Lagrange Relaxation (LR <sub><math>\lambda</math></sub> ) von (P) definiert als |
| $(LR_{\lambda})  \min c^{T} x + \lambda^{T} (b - Ax) =: L(\lambda, x)$                                                                           |
| unter Bx≥d                                                                                                                                       |
| × ganzzahlig                                                                                                                                     |
| $L(\lambda,x)$ wird Lagrange Funktion genannt, $\lambda = (\lambda_1,, \lambda_k)^T$ heißt auch Lagrange-Vektor und kann als Vektor von          |
| Strafkosten interpretiert werden.                                                                                                                |
| Wir bezeichnen die Zulässigkeitsbereiche von (P) und (LR $_{\lambda}$ ) mit S(P) und S(LR $_{\lambda}$ ) und die zugehörigen                     |
| Optimalwerte mit $z(P)$ und $z(LR_{\lambda})$ .                                                                                                  |
|                                                                                                                                                  |

| 7.11 Lemma (Lagrange Relaxation liefert untere Schranken)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Eijrieden Laarange Vektor ) ailt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Tur jeden Lagrange vertor X gin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (1) $S(LR_{\lambda}) \supseteq S(P)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (2) $z(LR_{\lambda}) \leq z(P)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Beweis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (1) ist trivial, da Nebenbedingungen weggelassen werden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ⊖<br>(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Sei x optimal bzgl. (P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\Rightarrow$ $D_i - a_i x \le 0$ dzw $D_i - a_i x = 0$ dei Gielchneitsrestiktionen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| => $\lambda_i(b_i - a_i x) \leq 0$ für alle i => $\lambda^T(b - Ax) \leq 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $r \rightarrow r(P) = r^{T} r \rightarrow r^{T} r \rightarrow r^{T} (P \rightarrow r^{T}) \rightarrow r^{T} (P \rightarrow r^$ |
| $-2 Z(P) - C X = C X + A (D - AX) = Z(LR_{\lambda}) dd X = S(P) = S(LR_{\lambda}) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| T12 Lamma (Ontimalitätahadingungan)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7.12 Lenina (Optimalitatsbealingungen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Genügen x und $\lambda$ den Bedingungen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (1) x ist optimal bzgl. (LR <sub>1</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (2) a <sub>i</sub> x≥b <sub>i</sub> bzw. a <sub>i</sub> x = b <sub>i</sub> bei Gleichheitsrestriktionen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# 7. Ganzzahlige Lineare Optimierung 7.4 Lagrange Relaxation

| (3) $\lambda^{T}(b - Ax) = 0$                                                                                        |
|----------------------------------------------------------------------------------------------------------------------|
| so ist x optimal bzgl. (P). Ist (3) nicht erfüllt, so ist x $\epsilon$ -optimal mit $\epsilon = \lambda^{T}(b - Ax)$ |
| Beweis                                                                                                               |
| (1), (2) => $x \in S(P)$                                                                                             |
| => $z(LR_{\lambda}) = c^T x + \lambda^T (b - Ax) = c^T x \ge z(P)$ wegen (3) und $x \in S(P)$                        |
| => $z(LR_{\lambda}) = z(P)$ wegen Lemma 7.11.                                                                        |
| Ist (3) nicht erfüllt, so ist $\lambda^{T}(b - Ax)$ der Fehlerterm $\Box$                                            |
| Eziel der Lagrange Relaxation                                                                                        |
| $^{igodol}$ Aufteilung der Restriktionen von (P) so, dass (LR $_\lambda$ ) im Verhältnis zu (P) leicht lösbar ist    |
| z(P) - z(LR <sub>\u03cb</sub> ) möglichst klein machen (Dualitätslücke der Lagrange Relaxation)                      |
| d.h. L( $\lambda$ ) := z(LR $_{\lambda}$ ) möglichst groß machen durch Variation der Lagrange Multiplikatoren        |
| => dies führt zu Optimierungsproblem max <sub>λ</sub> L(λ)                                                           |
| Dieses Optimierungsproblem muss bei Verwendung in B&B nicht optimal gelöst werden, es reicht ein guter               |
| Wert von L( $\lambda$ ), da jeder solche Wert eine untere Schranke für z(P) liefert.                                 |
|                                                                                                                      |

| Lagrange Relaxation des symmetrisc                          | hen TSP mittels 1-Bäumen                                     |
|-------------------------------------------------------------|--------------------------------------------------------------|
|                                                             |                                                              |
| IP Formulierung des symmetrischen                           |                                                              |
| Führe 0/1-Variable x <sub>e</sub> ein mit x <sub>e</sub>    | = 1 <=> Kante e ist in der Tour                              |
| (P) min $\Sigma_e c_e x_e$                                  |                                                              |
| x(δ(i)) = 2 für alle i = 1, .                               | , n (7.7)                                                    |
| x(S)≤ S -1 für alle Ø≠:                                     | S⊆{2,,n} <mark>(7.8)</mark>                                  |
| beachte: SC{2                                               | l reicht um                                                  |
| Dedcine: 5 ⊆ { 2,, 1                                        |                                                              |
| Kurzzykel a                                                 | uszuschließen                                                |
| $x_e \in \{0, 1\}$                                          | (7.9)                                                        |
| Dabei ist x(S) := Σ <sub>α</sub> = :: :: = ε X <sub>α</sub> | und $x(\delta(i)) := \sum_{\alpha \in \delta(i)} x_{\alpha}$ |
| e - ıj, ı,j ⊂ 3 e                                           |                                                              |
|                                                             |                                                              |
| Variation von (P) funrt zu (LR $_{\lambda}$ )               |                                                              |
| spalte (7.7) auf in                                         |                                                              |
| $\sum_{e} x_{e} = n$                                        | (7.10) redundant in (P)                                      |
| $x(\delta(i)) = 2 \text{ für } i = 2 \text{ n}$             | (7 11)                                                       |
|                                                             |                                                              |
| ×(δ(1)) = 2                                                 | (7.12)                                                       |

# 7. Ganzzahlige Lineare Optimierung 7.4 Lagrange Relaxation

| Definiere (LR $_{\lambda}$ ) durch die Relaxation von (7.11)                               |
|--------------------------------------------------------------------------------------------|
| $(LR_{\lambda})$ min $\Sigma_e c_e x_e + \Sigma_{i=2,,n} \lambda_i (2 - x(\delta(i)))$     |
| unter (7.8), (7.9), (7.10), (7.12)                                                         |
| Beachte: (7.10) ist nicht redundant in (LR <sub><math>\lambda</math></sub> )               |
| <u>^</u>                                                                                   |
| ⊖<br>Kombinatorische Struktur der zulässigen Lösungen von (LR <sub>λ</sub> )               |
| 7.13 Lemma (zulässige Lösungen von (LR <sub>λ</sub> ) sind 1-Bäume)                        |
| × ist zulässige Lösung von (LR <sub>λ</sub> ) <=> × ist ein 1-Baum, d.h.                   |
| x ist ein spannender Baum auf der Knotenmenge { 2,, n }                                    |
| mit 2 zusätzlichen Kanten vom Knoten 1 aus                                                 |
| Beweis                                                                                     |
| ⊖ "=>"                                                                                     |
| × zulässige Lösung von (LR,)                                                               |
| (7.9), (7.10), (7.12) => × hat n-2 Kanten auf den Knoten 2,, n                             |
| (7.8) => x ist zusammenhängend                                                             |
| ADM I => ein zusammenhängender Graph mit n-2 Kanten auf n-1 Knoten ist ein spannender Baum |

ų

| (7.12) => zusätzlich 2 Kanten vom Knoten 1 aus                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -> x ist 1-Paum                                                                                                                                                            |
|                                                                                                                                                                            |
|                                                                                                                                                                            |
| ieder 1-Baum erfüllt die Bedingungen (7.8), (7.9), (7.10), (7.12) 🖵                                                                                                        |
|                                                                                                                                                                            |
| 9                                                                                                                                                                          |
| $\Box$ Die Lagrangefunktion L( $\lambda$ ,x)                                                                                                                               |
| $(\lambda x) = \sum c x + \sum \lambda (2 - x(\delta(i))) - \lambda$ night vorzeichenbeschränkt                                                                            |
| $\Sigma(n,n) = \Sigma_e C_e^n e^n \Sigma_i = 2,, n^n (\Sigma_e^n (O(i)), N_i)$ mention zerenen beschränkt                                                                  |
| => o.B.d.A. $\lambda_i$ durch - $\lambda_i$ ersetzen (bessere kombinatorische Interpretation)                                                                              |
| $\Rightarrow L(\lambda, x) = \sum_{e} c_{e} x_{e} + \sum_{i=2,,n} \lambda_{i}(x(\delta(i) - 2))$                                                                           |
| mit x(δ(i)) - 2 = Abweichung vom angestrebten Grad 2 des Knoten i                                                                                                          |
|                                                                                                                                                                            |
| Mit $\lambda_1 := 0$ ergibt sich                                                                                                                                           |
| $L(\lambda, x) = \sum_{e} c_{e} x_{e} + \sum_{i=1,,n} \lambda_{i}(x(\delta(i) - 2))$                                                                                       |
| $= \sum_{e} c_{e} x_{e} + \sum_{i=1,,n} \lambda_{i} x(\delta(i)) - 2 \sum_{i=1,,n} \lambda_{i}$                                                                            |
| $= \sum_{\alpha} c_{\alpha} x_{\alpha} + \sum_{\alpha = ii} (\lambda_i + \lambda_i) x_{\alpha} - 2 \sum_{i=1, \dots, n} \lambda_i$                                         |
|                                                                                                                                                                            |
| $= \sum_{e=ij} (c_e + A_i + A_j) x_e - 2 \sum_{i=1,,n} A_i$                                                                                                                |
| Dies entspricht neuen Kantenkosten c <sub>e</sub> ´ = c <sub>e</sub> + λ <sub>i</sub> + λ <sub>j</sub> für e = ij abzüglich eines konstanten Terms 2 Σ <sub>i = 1,,n</sub> |

# 7. Ganzzahlige Lineare Optimierung 7.4 Lagrange Relaxation

| $\lambda_{i}$                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------|
| Interpretation der Lagrange Relaxation                                                                                               |
| Relaxiertes Problem                                                                                                                  |
| = Ermittlung eines 1-Baums mit minimalem Gewicht bzgl. der Kantenkosten c $_{ m e}$ + $\lambda_{ m i}$ + $\lambda_{ m j}$ für e = ij |
| Variation der Lagrange Multiplikatoren $\lambda_i$                                                                                   |
| = Variation der Kantenkosten c $_e$ über Knotenbewertungen $\lambda_i$                                                               |
| O Diese Variation der Kantenkosten hat keinen Einfluss auf die Optimalität einer Tour, verändern aber den 1-                         |
| Baum                                                                                                                                 |
| denn:                                                                                                                                |
| $\sum_{e=ij} (c_e + \lambda_i + \lambda_j) x_e - 2 \sum_{i=1,,n} \lambda_i = \sum_e c_e x_e$ wenn x eine Tour ist                    |
| Ist der minimale 1-Baum eine Tour, so ist diese Tour optimal für (P) nach Lemma 7.12, da $\lambda^{T}$ (b - Ax) = 0 bei              |
| einer Tour                                                                                                                           |
| Einen minimalen 1-Baum findet man in polynomialer Zeit durch                                                                         |
| (1) Ermittlung eines MST auf den Knoten 2,, n mit den Algorithmen aus ADM I (Kruskal oder Prim)                                      |
| (2) Wahl der beiden billigsten Kanten vom Knoten 1 aus                                                                               |
|                                                                                                                                      |

| e<br>Alaorithmus zur Verbesserung der unteren Schranke (Variation der λ.)          |
|------------------------------------------------------------------------------------|
|                                                                                    |
|                                                                                    |
| Graph G = (V, E) mit V = { 1,, n }                                                 |
| Kantenkasten c                                                                     |
|                                                                                    |
| Output                                                                             |
| optimale Tour oder 1-Baum mit "auter" unterer Schranke z(LRs)                      |
|                                                                                    |
| Methode                                                                            |
| // Initialisierung der $\lambda_i$                                                 |
| setze $\lambda_i \coloneqq 0$ für jeden Knoten i                                   |
| // Initialisierung einer Schrittweite w > 0 für die Variation der $\lambda_i$      |
| setze w := 1                                                                       |
|                                                                                    |
|                                                                                    |
| ermittle minimalen 1-Baum x bzgl der Kantenkosten $c_{ij} + \lambda_j + \lambda_j$ |
| if x ist Tour then return x // x ist optimale Tour                                 |
|                                                                                    |
| $\sim$ // Variation der $\lambda_i$                                                |
| for alle Knoten i≠1 do                                                             |
|                                                                                    |

| bestimme den Grad d <sub>i</sub> von Knoten i                                |
|------------------------------------------------------------------------------|
| <u>if</u> d; ≠ 2 <u>then</u> λ; := λ; + (d; - 2)w                            |
| varijere oof die Schrittweite w                                              |
|                                                                              |
| $\frac{\text{until}}{\text{z(LR}_{\lambda})} = z(x) \text{ ist "gut" genug}$ |
| $\sim$ return bestes bisher gefundenes x und das zugehörige $\lambda$        |
|                                                                              |
| 7 14 Reisniel (1-Roum Relayation des symmetrischen TSP)                      |
|                                                                              |
| Schrittweite w immer als 1 gewählt                                           |
| Graph mit Kantenkosten                                                       |
|                                                                              |
| (2-2-5) c                                                                    |
|                                                                              |
|                                                                              |
|                                                                              |
|                                                                              |
| (4) - 1 - (7)                                                                |
|                                                                              |
| ⊖<br>Iteration 1                                                             |
|                                                                              |



#### 7. Ganzzahlige Lineare Optimierung 7.4 Lagrange Relaxation





#### 7. Ganzzahlige Lineare Optimierung 7.4 Lagrange Relaxation

|   | Wert von $T_1 = 3 + 2\lambda_2 + 1\lambda_3 + 2\lambda_4 + 3\lambda_5 + 2\lambda_6 =: z_1$                                           |  |
|---|--------------------------------------------------------------------------------------------------------------------------------------|--|
|   | Wert von $T_2 = 3 + 2\lambda_2 + 3\lambda_3 + 2\lambda_4 + 1\lambda_5 + 2\lambda_6 =: z_2$                                           |  |
|   | Der Wert einer optimalen Tour bzgl. $c_{ij} + \lambda_i + \lambda_j$ ergibt sich als                                                 |  |
| - | $4 + 2\lambda_2 + 2\lambda_3 + 2\lambda_4 + 2\lambda_5 + 2\lambda_6 =: z_0$                                                          |  |
| _ | => $z_0 - z_1 = 1 + \lambda_3 - \lambda_5$ und $z_0 - z_2 = 1 - \lambda_3 + \lambda_5$                                               |  |
|   | => entweder z <sub>0</sub> > z <sub>1</sub> oder z <sub>0</sub> > z <sub>2</sub>                                                     |  |
|   | denn aus $z_0 < z_1$ und $z_0 < z_2$ folgt $1 + \lambda_3 - \lambda_5 < 0$ und $1 - \lambda_3 + \lambda_5 < 0$                       |  |
|   | => $\lambda_3 - \lambda_5 > 1$ und - $\lambda_3 + \lambda_5 > 1$ , Widerspruch $\Box$                                                |  |
|   |                                                                                                                                      |  |
|   | Beachte: Der hier beim TSP beobachtete Fall $\max_{\lambda} L(\lambda) \neq z(P)$ ist der Regelfall. Die Lagrange-Relaxation liefert |  |
|   | i.A. nur untere Schranken für z(P), die allerdings oft gut in einen Branch & Bound Algorithmus einbettbar sind.                      |  |
|   |                                                                                                                                      |  |
| _ | O<br>Zu weiteren Informationen über Laaranae Relaxationen des TSP siehe                                                              |  |
|   |                                                                                                                                      |  |
|   | E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, eds.                                                            |  |

The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization

John Wiley & Sons, New York, 1985.



| ⊖<br>Subgradientenverfahren                                                                                            |
|------------------------------------------------------------------------------------------------------------------------|
| ~ Gradientenverfahren der Maximierung einer konkaven stetig differenzierbaren Funktion f $:\mathbb{R}^n	o\mathbb{R}^1$ |
|                                                                                                                        |
| Gradient und Subgradient                                                                                               |
| e<br>Gradient einer statig differenzierbaren Funktion in Ju                                                            |
| = Vektor der partiellen Ableitungen in u:                                                                              |
| $\nabla f(u) = \left(\frac{\partial f}{\partial x_1}(u), \dots, \frac{\partial f}{\partial x_n}(u)\right)$             |
| Dann ist aus der Analysis bekannt:                                                                                     |
| f ist konkav <=>                                                                                                       |
| für alle v, u gilt f(v) - f(u) ≤ ∇f(u) <sup>T</sup> (v-u)                                                              |



|   | Θ                                                                                                                   |
|---|---------------------------------------------------------------------------------------------------------------------|
|   | Der nicht differenzierbare Fall                                                                                     |
|   |                                                                                                                     |
|   | 7.16 Lemma (Bedingung für Maximalpunkt einer stetigen konkaven Funktion)                                            |
| _ |                                                                                                                     |
| _ | Für eine stetige konkave Funktion $f: \mathbb{R}^n \to \mathbb{R}^1$ gilt                                           |
|   |                                                                                                                     |
|   | $\Lambda^{\circ}$ ist Maximalpunkt von $\uparrow <=> 0 \in \partial \uparrow (\Lambda^{\circ})$                     |
|   |                                                                                                                     |
|   | Beweis                                                                                                              |
| _ | <sup>●</sup> ","                                                                                                    |
| _ |                                                                                                                     |
|   | set $0 \in \lambda f(\lambda^*)$                                                                                    |
|   |                                                                                                                     |
|   | => 0 = 0 <sup>T</sup> (y - $\lambda^*$ ) > f(y) - f( $\lambda^*$ ) für alle y => $\lambda^*$ ist Maximalpunkt von f |
|   |                                                                                                                     |
| _ | u                                                                                                                   |
| _ | 0                                                                                                                   |
|   | sei λ* ist Maximalpunkt von f                                                                                       |
|   |                                                                                                                     |
|   | => 0 = 0'(v - λ*) ≥ f(v) - f(λ*) für alle v => 0 ∈ ∂f(λ*) □                                                         |
|   |                                                                                                                     |
|   |                                                                                                                     |
|   | Generisches Subgradientenverfahren                                                                                  |
|   | 8                                                                                                                   |
| _ | Input                                                                                                               |
| _ | 0                                                                                                                   |
|   | stetige konkave Funktion $ f:\mathbb{R}^n 	o \mathbb{R}^4$                                                          |
| - |                                                                                                                     |

| 0                                                                                |
|----------------------------------------------------------------------------------|
| Maximalpunkt $\lambda^*$ oder Punkt $\lambda$ mit "gutem" Wert f( $\lambda$ )    |
| Methode                                                                          |
| Memode                                                                           |
| wähle Startwert u <sub>n</sub>                                                   |
|                                                                                  |
| Initialisiere Zanier 1 := 0                                                      |
| repeat                                                                           |
|                                                                                  |
| $if \ 0 \in \delta f(u_i) \ then \ return \ u_i \ ist Maximalpunkt$              |
| // hierauf kann auch verzichtet werden falls der Test "0 ∈ ∂f(u.)" aufwändig ist |
|                                                                                  |
| bestimme Subgradient $d_i \in \partial f(u_i)$ und Schrittweite $w_i > 0$        |
|                                                                                  |
| seize $u_{i+1} - u_i + w_i u_i$                                                  |
| i := i+1                                                                         |
|                                                                                  |
| until Rechenzeit zuende oder Kaum noch Fortschrift                               |
| return besten Punkt der Folge und und                                            |
|                                                                                  |
|                                                                                  |
| e Reisniel eines tynischen Laufes                                                |
| -                                                                                |

45-19

45-20

## 7. Ganzzahlige Lineare Optimierung 7.4 Lagrange Relaxation



| Sei $f: \mathbb{R}^n \to \mathbb{R}^1$ konkav und stetig und f nehme ihr Maximum im Punkt $\lambda^*$ an. |
|-----------------------------------------------------------------------------------------------------------|
| Sei (w.) ch eine Folge von Schrittweiten mit                                                              |
|                                                                                                           |
| (1) w <sub>i</sub> ≥ 0 für alle i                                                                         |
| (2) (w <sub>i</sub> ) <sub>i∈N</sub> ist eine monoton fallende Nullfolge                                  |
| (3) die Reihe $\sum w_i$ ist divergent                                                                    |
| Dann gilt für die im Subgradientenverfahren erzeugte Folge von Punkten u <sub>i</sub>                     |
| $\lim_{i \to \infty} f(u_i) = f(\lambda^*)$                                                               |
| ohne Beweis 💷                                                                                             |
|                                                                                                           |
| O Dieser Satz sichert Konvergenz unter relativ schwachen Bedingungen, die bei konkreten Berechnungen      |
| leicht einzuhalten sind. Das Problem ist die Steuerung der Konvergenzgeschwindigkeit. Bei der             |
| Verwendung in B&B ist dies aber auch nicht so wesentlich.                                                 |
|                                                                                                           |
|                                                                                                           |
| bestimme Subgradient $d_i \in \delta f(u_i)$                                                              |
| 🔘 dies ist einfacher, Subgradienten bekommt man bei der Lagrange Relaxation geschenkt                     |
|                                                                                                           |
|                                                                                                           |

#### 7. Ganzzahlige Lineare Optimierung 7.4 Lagrange Relaxation

| The Lagrange Holaxation                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------|
| 7.18 Lemma (Subgradienten bei der Lagrange Relaxation)                                                                     |
| Sei x <sup>*</sup> optimale Lösung von $(LR_{\lambda})$ in $\lambda = u$ .                                                 |
| Dann ist b - Ax* Subgradient von $L(\lambda) = \min_{x} L(\lambda, x)$ in $\lambda = u$ , d.h. b - Ax* $\in \delta f(u)$ . |
| Beweis durch Überprüfung der Definition                                                                                    |
| $\bigcup_{L(v) - L(u) = \min_{x} L(v,x) - \min_{x} L(u,x)}$                                                                |
| = min <sub>x</sub> L(v,x) - L(u,x*) da x* optimal für (LR <sub>u</sub> ) ist                                               |
| ≤ L(v,x*) - L(u,x*) da x* zulässig für (LR <sub>v</sub> ) ist                                                              |
| = $(c^{T}x^{*} + v^{T}(b - Ax^{*})) - (c^{T}x^{*} + u^{T}(b - Ax^{*}))$                                                    |
| = $(v^{T} - u^{T})(b - Ax^{*}) = (b - Ax^{*})^{T}(v - u)$                                                                  |
|                                                                                                                            |
| $^{igodol}$ Bemerkung: Bei der 1-Baum Relaxation des symmetrischen TSP ergibt sich (nach Übergang von $\lambda_i^{}$ zu -  |
| $\lambda_i$ ) ×( $\delta(i)$ ) - 2 als Subgradient. Die Veränderung der Multiplikatoren $\lambda_i$ erweist sich damit als |
| Spezialfall des Subgradientenverfahren.                                                                                    |
|                                                                                                                            |
| Θ                                                                                                                          |

# Lagrange Relaxation vs. LP Relaxation

Es besteht eine Beziehung zwischen dem Optimalwert der Lagrange Relaxation und dem Wert der LP Relaxation

| ļ | ainer TD                                                                                      |
|---|-----------------------------------------------------------------------------------------------|
|   |                                                                                               |
|   | Wir betrachten dazu:                                                                          |
|   |                                                                                               |
|   | 0                                                                                             |
|   | Das Ausgangsproblem                                                                           |
| 1 | (P) min $c^{T}x$                                                                              |
|   |                                                                                               |
|   | unter Ax≥b                                                                                    |
|   | Bx > d                                                                                        |
|   |                                                                                               |
|   | × ganzzahlig                                                                                  |
|   | keine Vorzeichenbedingungen an x, diese sind ggf. in die Nebenbedingungen integriert          |
|   |                                                                                               |
|   | Die Lagrange Relaxation von (P)                                                               |
|   | $(LR_{\lambda})$ min $c^{T}x + \lambda^{T}(b - Ax) = min_{\lambda}L(\lambda, x) = L(\lambda)$ |
|   |                                                                                               |
|   | unter Bx ≥ d                                                                                  |
|   | × ganzzahlig                                                                                  |
|   | Die 10 Delevation von (D)                                                                     |
|   | Die LP Relaxation von (P)                                                                     |
| 1 | (LP) min c <sup>T</sup> x                                                                     |
|   |                                                                                               |
|   | unter AX 2 D                                                                                  |

# 7. Ganzzahlige Lineare Optimierung 7.4 Lagrange Relaxation

| 1                                            |                                                                                                        |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Bx ≥ d                                       |                                                                                                        |
| x beliebia                                   |                                                                                                        |
|                                              |                                                                                                        |
| mit Optimalwert z(LP)                        |                                                                                                        |
|                                              |                                                                                                        |
| 7.19 Satz (Beziehung zwischen Lagran         | ge Relaxation und LP Relaxation)                                                                       |
| $\max_{\lambda} L(\lambda) \geq z(LP)$       |                                                                                                        |
|                                              |                                                                                                        |
| Gleichneit gilt falls das von BX 2 d e       | erzeugte Polyeder ganzzahlig ist (also die Ganzzahligkeitsbedingung in                                 |
| (LR <sub>2</sub> ) weggelassen werden kann). |                                                                                                        |
| Θ                                            |                                                                                                        |
| Beweis                                       |                                                                                                        |
| wird hier geführt für Nebenbeding            | gungen der Form Ax ${}_2$ b (=> $\lambda$ ${}_2$ O), er folgt für Gleichheitsrestriktionen ( $\lambda$ |
| beliebig) entsprechend.                      |                                                                                                        |
| 0                                            |                                                                                                        |
| max L(λ) = max min L(λ,x) :                  | = max min L(λ,x)                                                                                       |
| λξο γξο Χ                                    | λ≥0 ×                                                                                                  |
| Bx ≥ d                                       | Bx≥d                                                                                                   |
| x gzz                                        |                                                                                                        |
| Ry>denze                                     | uat aanzzahliges                                                                                       |
| DA 2 d El 2e                                 | and all him                                                                                            |
| Folyeder, s                                  |                                                                                                        |

| = max min $(c^{T}x + \lambda^{T}(b - Ax))$                                                                              |
|-------------------------------------------------------------------------------------------------------------------------|
| $\lambda > 0 \times$                                                                                                    |
| Bx≥d                                                                                                                    |
|                                                                                                                         |
|                                                                                                                         |
|                                                                                                                         |
|                                                                                                                         |
| $= \max \left[ \lambda' b + \min \left( c' - \lambda' A \right) x \right] = \max \left[ \lambda' b + \max d' y \right]$ |
|                                                                                                                         |
| $Bx \ge d \qquad B'y = c - A'\lambda$                                                                                   |
| LP Dualität                                                                                                             |
|                                                                                                                         |
|                                                                                                                         |
| = max [b <sup>T</sup> λ + d <sup>T</sup> y] = min c <sup>T</sup> x                                                      |
| λ≥0 x beliebig                                                                                                          |
| y≥0 Ax≥b                                                                                                                |
| $B^{T}\mathbf{y} = \mathbf{c} - A^{T}\lambda$ $B \times \ge d$                                                          |
|                                                                                                                         |
| LP Dualität L                                                                                                           |
|                                                                                                                         |
| = z(LP) 🗅                                                                                                               |
|                                                                                                                         |
|                                                                                                                         |
| 7 20 Bemerkung                                                                                                          |
|                                                                                                                         |

# 7. Ganzzahlige Lineare Optimierung 7.4 Lagrange Relaxation

| Die 1-Baum Relaxation entspricht nach Satz 7.19 der LP-Relaxation des TSP-Polytopes.                                 |
|----------------------------------------------------------------------------------------------------------------------|
| Da LPs im Prinzip in polynomialer Zeit lösbar sind (innere Punkte Methoden) scheint die LP-Relaxation                |
| vorzuziehen sein, falls Bx≥d ein ganzzahliges Polyeder definiert. Dennoch ist in der Praxis sehr oft das             |
| Subgradientenverfahren vorzuziehen, da es wesentlich schneller ist (oft kann L( $\lambda$ ) kombinatorisch berechnet |
| werden) und meist Näherungswerte für max $_\lambda$ L( $\lambda$ ) reichen.                                          |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |

45-25



| Dann gilt für Polytope P                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| (1) P ist ganzzahlig <=> P = P <sub>I</sub>                                                                                             |
| (2) Ganzzahlige Optimierung über P <=> lineare Optimierung über P <sub>I</sub>                                                          |
| Daher ist man an linearen Beschreibungen (= Beschreibung als Ungleichungssystem) von P <sub>I</sub> interessiert                        |
| $^{\scriptsize \Theta}$ Leider ist P <sub>T</sub> im Allgemeinen kein Polyeder mehr!                                                    |
| Ein Deigniel angtabt fün                                                                                                                |
| Ein Beispierenstent Tur                                                                                                                 |
| $P := \{(y, x) \in \mathbb{R}^2 \mid \frac{y}{x} \le \sqrt{2}\}$                                                                        |
| (Übung)                                                                                                                                 |
| <sup>©</sup> Man kann jedoch zeigen, dass   P <sub>I</sub> für rationale Polyeder  P  wieder ein Polyeder ist. Wir zeigen dies hier für |
| rationale Polytope P.                                                                                                                   |
| Ein Polyeder P = { $x \in \mathbb{R}^n$   $Ax \le b$ } heißt rational, wenn alle Einträge von A und b rationale Zahlen sind. Im         |
| Weiteren werden alle Polyeder als rational vorausgesetzt, in den Sätzen wird es der Vollständigkeit halber                              |
| immer als Voraussetzung aufgeführt.                                                                                                     |
| A                                                                                                                                       |

Kriterien für die Existenz zulässiger Punkte und gültige Ungleichungen

| Diago Kristenian gind alternative Formulianungen des Fonkes Lemme (Lemme (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Diese Kriterien sind alternative Formulierungen des Farkas Lemma (Lemma 4.5).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Eine Ungleichung w <sup>T</sup> x≤t heißt gültig für das Polyeder P, wenn alle Punkte x∈P die Ungleichung erfüllen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| θ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7.21 Lemma (Farkas Lemma für die Existenz zulässiger Lösungen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Für ein Polyeder $P = \{ x \in \mathbb{R}^n \mid Ax \le b \}$ gilt:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (1) $P \neq \emptyset \iff y^T b \ge 0$ für alle $y \in \mathbb{R}^m$ mit $y \ge 0$ und $y^T A = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (2) $P = \emptyset$ <=> es gibt $y \in \mathbb{R}^m, y \ge 0$ mit $y^T A = 0$ und $y^T b \le -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (3) P = $\emptyset$ <=> die Ungleichung 0 <sup>T</sup> x $\le$ -1 ergibt sich als nicht-negative Linearkombination der Ungleichungen in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ax≤b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Beweis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ZU (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ₩ <sub>=&gt;</sub> "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\mathbf{B} = \mathbf{B} = $ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| P≠Ø => jedes x∈P ist Optimallösung des LP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Dualitätssatz => das duale LP hat eine optimale Lösung und                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $0 = \max \{ 0^{T} \times   A \times \le b \} = \min \{ y^{T} b   y^{T} A = 0, y \ge 0 \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

|   | => y <sup>T</sup> b≥0 für alle y≥0 mit y <sup>T</sup> A=0                                                               |
|---|-------------------------------------------------------------------------------------------------------------------------|
|   | ·····································                                                                                   |
|   |                                                                                                                         |
|   | Betrachte das LP min{y'b y'A=0,y≥0}                                                                                     |
|   | 0 ist zulässige Lösung dieses LP                                                                                        |
|   | Vorraussetzung => die Zielfunktion y <sup>T</sup> b ist nach unten durch 0 beschränkt                                   |
|   | Dualitätssatz => P hat eine optimale Lösuna also insbesondere eine zulässige Lösuna                                     |
|   |                                                                                                                         |
|   | zu (2)                                                                                                                  |
|   | O durch Negation von (1) folgt                                                                                          |
|   | $P = \emptyset$ <=> es gibt y' $\in \mathbb{R}^m$ , y' $\ge 0$ mit (y') <sup>T</sup> A = 0 und (y') <sup>T</sup> b < 0. |
|   |                                                                                                                         |
| _ | Sei g := (y) b 20                                                                                                       |
| _ | Mit y := y'/ g  folgt                                                                                                   |
| _ | $D = \mathcal{O}$ (i.e. $D = \mathbb{D}^{\mathbb{N}}$ (i.e. $D$ (i.e. $T = 0$ ) and $T = 1$                             |
| _ | $P = 10$ <=> esgibt $y \in \mathbb{R}$ , $y \ge 0$ mit $y \land = 0$ und $y \land \subseteq -1$                         |
| _ | zu (3)                                                                                                                  |
| _ |                                                                                                                         |
| _ |                                                                                                                         |
| _ | klar                                                                                                                    |
| _ |                                                                                                                         |
| _ |                                                                                                                         |
|   |                                                                                                                         |



### 7. Ganzzahlige Lineare Optimierung 7.5 Schnittebenenverfahren



## 7. Ganzzahlige Lineare Optimierung 7.5 Schnittebenenverfahren

| (1) wie beweist man, dass eine Ungleichung eine Schnittebene ist?                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------|
| (2) terminiert das Schnittebenenverfahren überhaupt?                                                                                 |
| (3) wie berechnet man zu gegebenem $x^* \in P - P_I$ eine $x^*$ separierende Hyperebene?                                             |
| Hier werden wir vor allem (1) und (2) behandeln und insofern positiv beantworten, als dass man Beweise für                           |
| (1) angeben kann und es immer eine endliche Menge von Schnittebenen einer speziellen Gestalt gibt, so dass                           |
| am Ende P = P <sub>I</sub> gilt.                                                                                                     |
| (3) hängt sehr vom jeweiligen Problem ab, dazu mehr in Kapitel 8.                                                                    |
|                                                                                                                                      |
| Schnittebenenbeweise                                                                                                                 |
| Für Polytope P = { x ∈ ℝ <sup>n</sup>   Ax ≤ b } kann ein Beweis für die Gültigkeit einer Ungleichung w <sup>T</sup> x ≤ t durch das |
| Farkas Lemma (Lemma 7.21) gegeben werden. Für Schnittebenen ist es komplizierter.                                                    |
|                                                                                                                                      |
| 7.23 Beispiel (Beispiel eines Schnittebenenbeweises)                                                                                 |
| Betrachte das Ungleichungssystem                                                                                                     |
| $2x_{1} + 3x_{2} < 27$ (1)                                                                                                           |
|                                                                                                                                      |
| $2x_1 - 2x_2 \le 7$ (2)                                                                                                              |



## 7. Ganzzahlige Lineare Optimierung 7.5 Schnittebenenverfahren

| Wie kann man das aus den Ungleichungen für P ableiten?                                                                     |  |
|----------------------------------------------------------------------------------------------------------------------------|--|
| Multipliziere (5) mit 1/2                                                                                                  |  |
| $= -3x_1 + 4x_2 \le 21/2$                                                                                                  |  |
| => -3x <sub>1</sub> + 4x <sub>2</sub> < [21/2] = 10 ist gültig für P <sub>I</sub> (da links nur ganzzahlige Koeffizienten) |  |
| => neue Ungleichung -3x1 + 4x2 ≤ 10 (6) für PI                                                                             |  |
| Multpliziere (6) mit 2, (1) mit 3 und addiere die resultierenden Ungleichungen                                             |  |
| $= -6x_1 + 8x_2 \le 20$                                                                                                    |  |
| $6x_1 + 9x_2 \le 81$                                                                                                       |  |
| => $17 \times_2 \le 101$                                                                                                   |  |
| => gewünschte Ungleichung x <sub>2</sub> < [101/17] = 5                                                                    |  |
| O Allgemein haben diese Unleichungen die Form                                                                              |  |
| y <sup>⊤</sup> Ax ≤ Ly <sup>⊤</sup> b」 mit y≥0 und y <sup>⊤</sup> A ganzzahlig                                             |  |
| wobei Ax≤b das System der Ungleichungen nach dem "vorigen" Schritt ist.                                                    |  |
| Aus dieser Beobachtung leitet sich die allgemeine Definition eines Schnittebenenbeweises ab.                               |  |
|                                                                                                                            |  |

Allgemeine Definition



| O Ungleichungen dieser Form                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| y <sup>⊤</sup> Ax ≤ Ly <sup>⊤</sup> b」 mit y≥0 und y <sup>⊤</sup> A ganzzahlig                                                                                                                                                                                                                                                                                                                                                     |
| heißen Gomory-Chvátal Schnitte.                                                                                                                                                                                                                                                                                                                                                                                                    |
| Gomory hat 1960 gezeigt, dass man mit diesen Schnitten ein endliches Schnittebenenverfahren erhält.                                                                                                                                                                                                                                                                                                                                |
| Chvátal hat 1973 das hier behandelte Prinzip der Schnittebenenbeweise eingeführt. Diese Beweise ähneln dem                                                                                                                                                                                                                                                                                                                         |
| Farkas Lemma in den Varianten Lemma 7.21 (2) und 7.22.                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7.24 Satz (Schnittebenenbeweise f ür rationale Polytope, Chv átal 1973)                                                                                                                                                                                                                                                                                                                                                            |
| <ul> <li>7.24 Satz (Schnittebenenbeweise für rationale Polytope, Chvátal 1973)</li> <li>Sei P = { x ∈ ℝ<sup>n</sup>   Ax ≤ b } ein rationales Polytop und sei w<sup>T</sup>x ≤ t eine Ungleichung mit ganzzahligem w und t,</li> </ul>                                                                                                                                                                                             |
| <ul> <li>7.24 Satz (Schnittebenenbeweise für rationale Polytope, Chvátal 1973)</li> <li>Sei P = { x ∈ ℝ<sup>n</sup>   Ax ≤ b } ein rationales Polytop und sei w<sup>T</sup>x ≤ t eine Ungleichung mit ganzzahligem w und t, die von allen Punkten aus P<sub>I</sub> erfüllt wird. Dann gibt es einen Schnittebenenbeweis von Ax ≤ b für eine</li> </ul>                                                                            |
| <ul> <li>7.24 Satz (Schnittebenenbeweise für rationale Polytope, Chvátal 1973)</li> <li>Sei P = { x ∈ ℝ<sup>n</sup>   Ax ≤ b } ein rationales Polytop und sei w<sup>T</sup>x ≤ t eine Ungleichung mit ganzzahligem w und t, die von allen Punkten aus P<sub>I</sub> erfüllt wird. Dann gibt es einen Schnittebenenbeweis von Ax ≤ b für eine Schnittebene w<sup>T</sup>x ≤ t' mit t' ≤ t.</li> </ul>                               |
| <ul> <li>7.24 Satz (Schnittebenenbeweise für rationale Polytope, Chvátal 1973)</li> <li>Sei P = { x ∈ ℝ<sup>n</sup>   Ax ≤ b } ein rationales Polytop und sei w<sup>T</sup>x ≤ t eine Ungleichung mit ganzzahligem w und t, die von allen Punkten aus P<sub>I</sub> erfüllt wird. Dann gibt es einen Schnittebenenbeweis von Ax ≤ b für eine Schnittebene w<sup>T</sup>x ≤ t' mit t' ≤ t.</li> <li>Beweis siehe unten □</li> </ul> |
| <ul> <li>7.24 Satz (Schnittebenenbeweise für rationale Polytope, Chvátal 1973)</li> <li>Sei P = { x ∈ ℝ<sup>n</sup>   Ax ≤ b } ein rationales Polytop und sei w<sup>T</sup>x ≤ t eine Ungleichung mit ganzzahligem w und t, die von allen Punkten aus P<sub>I</sub> erfüllt wird. Dann gibt es einen Schnittebenenbeweis von Ax ≤ b für eine Schnittebene w<sup>T</sup>x ≤ t' mit t' ≤ t.</li> <li>Beweis siehe unten □</li> </ul> |

Sei  $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$  ein rationales Polytop ohne ganzzahlige Punkte. Dann existiert ein

Schnittebenenbeweis von  $Ax \leq b$  für die Ungleichung  $0^{T}x \leq -1$ .

⊖ Beweis siehe unten 🛛

Für die Beweise benötigen wir ein Lemma, das eine Induktion über die Dimension von P möglich macht. Es zeigt, dass Gomory-Chvátal Schnitte von Seitenflächen eines rationalen Polyeders auf das Polyeder selbst "durch Rotation" geliftet werden können.
 7.26 Lemma (Rotation von Gomory-Chvátal Schnitten)
 Sei F eine durch ein Gleichungssystem beschriebene Seitenfläche eines rationalen Polytops P und sei c<sup>T</sup>x ≤ Ld ] ein Gomory-Chvátal Schnitt für F.
 Dann existiert ein Gomory-Chvátal Schnitt (c')<sup>T</sup>x ≤ Ld' ] für P mit F∩{x | c<sup>T</sup>x ≤ Ld]} = F∩{x | (c')<sup>T</sup>x ≤ Ld' } (Gleichheit auf F)





#### 7. Ganzzahlige Lineare Optimierung 7.5 Schnittebenenverfahren

| = F∩{x c <sup>T</sup> x ≤ LdJ} □                                                                            |
|-------------------------------------------------------------------------------------------------------------|
|                                                                                                             |
| Beweis von Satz 7.25 (Schnittebenenbeweise für rationale Polytope ohne ganzzahlige Punkte)                  |
| Induktion nach dim(P)                                                                                       |
| Induktionsanfang                                                                                            |
| $\Theta$ P = Ø                                                                                              |
| => Behauptung mit Farkas Lemma 7.21 (3)                                                                     |
| ⊖ dim(P) = 0                                                                                                |
| => P = {x*} und x* ist nicht ganzzahlig.                                                                    |
| => (Induktion nach n) es gibt gzz. Vektor w mit w <sup>T</sup> x* nicht ganzzahlig                          |
| Sei t so, dass die Hyperebene H = { x   w <sup>T</sup> x = t } durch x* geht (durch Verschiebung immer      |
| erreichbar).                                                                                                |
| w <sup>T</sup> x* nicht ganzzahlig => t = w <sup>T</sup> x* nicht ganzzahlig                                |
| => $w^T x \le t$ ist gültig für P, aber P':= P ∩ { x   $w^T x \le \lfloor t \rfloor$ } = Ø                  |
| Farkas Lemma 7.22 => es gibt Schnittebenenbeweis für w <sup>⊤</sup> x≤ Lt」 von Ax≤b                         |
| P' = Ø => (Farkas Lemma 7.21 (3)) es gibt Schnittebenenbeweis für $0^T x \le -1$ von $Ax \le b$ and $w^T x$ |



#### 7. Ganzzahlige Lineare Optimierung 7.5 Schnittebenenverfahren





#### 7. Ganzzahlige Lineare Optimierung 7.5 Schnittebenenverfahren

| P Polytop => r := max { $w^T x   x \in P$ } ist endlich                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------|
| => w <sup>T</sup> x≤r ist gültige Ungleichung für P                                                                              |
| Farkas Lemma 7.22 => w <sup>T</sup> x≤r ist beweisbar                                                                            |
| w ganzzahlig => w <sup>⊤</sup> x≤ ⌊r」 ist Gomory-Chvátal Schnitt                                                                 |
| Addition von $w^T x \leq \lfloor r \rfloor$ und $0^T x \leq -1$ ergibt $w^T x \leq \lfloor r \rfloor -1$                         |
| Fortgesetzte Addition von $0^T x \le -1$ ergibt $w^T x \le t' \le t$ in endlich vielen Schritten                                 |
| <sup>⊖</sup> Fall 2: P <sub>I</sub> ≠ Ø                                                                                          |
| P Polytop => r := max { $w^T x   x \in P$ } ist endlich                                                                          |
| Sei P':= { $x \in P \mid w^T x \leq \lfloor r \rfloor$ }                                                                         |
| Falls Lr]st => fertig                                                                                                            |
| Sei also [r] > t                                                                                                                 |
| Sei F := { $x \in P'   w^T x = \lfloor r \rfloor$ } => F ist Seitenfläche von P'                                                 |
| F enthält keine ganzzahligen Punkte, da w <sup>⊤</sup> x ≤ t gültig für P <sub>T</sub> und t < ∟r」 ist                           |
| ● Theorem 7.25 => für F gibt es einen Schnittebenenbeweis von 0 <sup>T</sup> x ≤ -1 ausgehend von Ax ≤ b, w <sup>T</sup> x = ⌊r⌋ |
| <sup>©</sup> Rotations Lemma für F and P' => es gibt einen Schnittebenenbeweis c <sup>⊤</sup> x≤∟d」für P ausgehend von Ax≤       |
| b, w <sup>T</sup> x ≤ Lr J so dass                                                                                               |

| $F \cap \{ x \mid c^T x \leq \lfloor d \rfloor, w^T x \leq \lfloor r \rfloor \} = F \cap \{ x \mid 0^T x \leq -1, w^T x \leq \lfloor r \rfloor \}$  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| <sup>●</sup> Hier haben wir die spezielle Ungleichung 0 <sup>T</sup> ×≤-1 on F.                                                                     |
| Die Konstruktion von c and d im Beweis des Rotationslemma wegibt hier c = w and d = r - 1                                                           |
| Also gibt es einen Schnittebenenbeweis von w <sup>T</sup> x = ⌊r⌋ - 1 auf P ausgehend von Ax≤b, w <sup>T</sup> x≤⌊r⌋                                |
| Wiederholung des Arguments ergibt irgendwann w <sup>⊤</sup> x≤t'≤t und führt zu Fall 1 □                                                            |
| 8                                                                                                                                                   |
| Chvátal Hülle und Chvátal Rank                                                                                                                      |
| O Schnittebenenbeweise benutzen bereits erzeugte Schnittebenen im Beweis. Wir betrachten jetzt, was                                                 |
| geschieht, wenn man nur die ursprünglich gegebenen Schnittebenen Ax≤b benutzen darf                                                                 |
| Sei P = { x ∈ ℝ <sup>n</sup>   Ax ≤ b } ein rationales Polytop. Fügt man alle Gomory-Chvátal Schnitte y <sup>T</sup> Ax ≤ Ly <sup>T</sup> b ] mit y |
| ≥0, y <sup>T</sup> A ganzzahlig zu P hinzu, so erhält man die Chvatal Hülle P' von P.                                                               |
|                                                                                                                                                     |
| 7.27 (Eigenschaften der Chvatal Hülle)                                                                                                              |
| Die Chvátal Hülle eines rationalen Polytopes ist wieder ein rationales Polytop. Insbesondere braucht man zu                                         |
| seiner linearen Beschreibung nur Ax≤b und endlich viele der Gomory-Chvátal Schnitte.                                                                |

| Beweis                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------|
| Sei P = { x   Ax ≤ b } mit A und b ganzzahlig                                                                                        |
| Setze P' := P $\cap$ { x   y <sup>T</sup> Ax $\leq$ $\lfloor y^{T}b \rfloor$ mit y $\geq$ 0, y <sup>T</sup> A ganzzahlig }. Es gilt: |
| (7.13) P' = P ∩ { x   y <sup>T</sup> Ax ≤ ⊥y <sup>T</sup> b」 mit y ≥ 0, y <sup>T</sup> A ganzzahlig, 0 ≤ y < 1 }                     |
| Beweis (7.13):                                                                                                                       |
| Sei w <sup>T</sup> x ≤ Lt ⊥ ein Gomory-Chvátal Schnitt mit y ≥ 0, y <sup>T</sup> A = w, y <sup>T</sup> b = t                         |
| Sei y' ≔ y - ⌊y⌋ der fraktionale Teil von y und <mark>0 ≤ y' &lt; 1</mark>                                                           |
| Sei w' := $(y')^T A = y^T A - (\lfloor y \rfloor)^T A = w - (\lfloor y \rfloor)^T A$                                                 |
| => <mark>w' ist ganzzahlig</mark> , da w und A ganzzahlig sind                                                                       |
| Sei t' := $(y')^T b = y^T b - (\lfloor y \rfloor)^T b = t - (\lfloor y \rfloor)^T b$                                                 |
| => t und t' unterscheiden sich um eine ganze Zahl, nämlich (⊥y」) <sup>T</sup> b                                                      |
| Summe aus => w <sup>T</sup> x ≤ Lt ] ergibt sich als Summe aus                                                                       |
| (w') <sup>T</sup> × ≤ L†'] < gemäß (7.13) gebildet                                                                                   |
| + ( Ly」) <sup>T</sup> Ax ≤ ( Ly」) <sup>T</sup> b < redundant, da                                                                     |
| nichtnegative Linearkombination der Zeilen von Ax≤b                                                                                  |
| => die Ungleichungen gemäß (7.13) reichen zur Bildung der Hülle                                                                      |

| Es gibt nur endlich viele Ungleichungen gemäß (7.13)                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------|
| Seien a <sub>ij</sub> die Einträge der Matrix A und sei A <sub>j</sub> die j-te Spalte von A                                       |
| => y <sup>T</sup> A <sub>i</sub> ∈ [-Σ <sub>i</sub>  a <sub>ii</sub>  ,Σ <sub>i</sub>  a <sub>ii</sub>  ] und ganzzahlig für 0≤y<1 |
| => es gibt nur endlich viele $y^T A_j$ , die dies leisten                                                                          |
| Alle Ungleichungen der Form (7.13) haben ganzzahlige Koeffizienten                                                                 |
| => sie sind wieder rational 🗅                                                                                                      |
|                                                                                                                                    |
| Die Chvátal Hüllenbildung lässt sich natürlich iterieren und liefert eine Folge                                                    |
| $P = P^{(0)} \supseteq P^{(1)} \supseteq P^{(2)} \supseteq \dots \supseteq P_{T}$                                                  |
| 7.28 Satz (Die Hüllenbildung ist endlich)                                                                                          |
| Sei P ein rationales Polytop. Dann existiert ein $k \in \mathbb{N}$ mit $P_{I} = P^{(k)}$ .                                        |
| Insbesondere terminiert das Schnittebenenverfahren bei geigneter Auswahl von Gomory Chvátal Schnitten                              |
| nach endlich vielen Schritten.                                                                                                     |
| Beweis                                                                                                                             |
| P <sub>I</sub> ist ein Polytop und damit durch endlich viele Ungleichungen beschreibbar.                                           |
| Für jede dieser Ungleichungen existiert ein Schnittebenenbeweis einer endlichen Länge r,                                           |

|   | also mit Ungleichungen nur aus endlich vielen der P <sup>(i)</sup>                                                                |
|---|-----------------------------------------------------------------------------------------------------------------------------------|
|   | => das Maximum dieser r erfüllt die Behauptung 🗅                                                                                  |
| 0 | Gomory hat 1960 eine solche geeignete Auswahl beschrieben.                                                                        |
| 0 | Das kleinste k mit P <sub>I</sub> = P <sup>(k)</sup> heißt der Chvátal Rang von P. Dieser bildet eine Art Komplexitätsmaß für die |
|   | ganzzahlige Hülle von Polytopen. Er kann bereits für Polytope im $\mathbb{R}^2$ beliebig groß werden, ist jedoch für              |
|   | Polytope im 0/1-Würfel im $\mathbb{R}^n$ durch 6n $^3$ log n beschränkt.                                                          |
| Θ | 7.29 Beispiel (Ein Polytop mit Chvátal Rang 2)                                                                                    |
| ( | Das Ausgangspolytop P                                                                                                             |
|   | P sei gegeben durch                                                                                                               |
|   | $-2x_1 + x_2 \le 0$ (1)                                                                                                           |
|   | $2 x_1 + x_2 \le 6$ (2)                                                                                                           |
|   | $-x_2 \leq -1$ (3)                                                                                                                |



#### 7. Ganzzahlige Lineare Optimierung 7.5 Schnittebenenverfahren

![](_page_45_Figure_3.jpeg)

![](_page_46_Figure_1.jpeg)

![](_page_46_Figure_3.jpeg)

# 7. Ganzzahlige Lineare Optimierung 7.6 Optimierung und Separierung

| Separierung ist das Problem, zu einem gegebenem Punkt x* und einem Polyeder Q eine Hyperebene H zu             |
|----------------------------------------------------------------------------------------------------------------|
| Optimierung (OPT)                                                                                              |
| O Input:                                                                                                       |
| rationales Polyeder Q,                                                                                         |
| $c \in \mathbb{R}^n$ so dass $c^T x$ ist auf P nach unten beschränkt ist                                       |
|                                                                                                                |
| $x^* \in Q  \text{mit}  x^* = \min\{c^T x \mid x \in Q\}$                                                      |
| Separierung (SEP)                                                                                              |
| ⊖ Input:                                                                                                       |
| rationales Polyeder Q,                                                                                         |
| $\mathbf{y} \in \mathbb{R}^n$                                                                                  |
| Output:                                                                                                        |
| "Ja" falls y∈Q                                                                                                 |
| d∈ℝ <sup>n</sup> mit d <sup>T</sup> x < d <sup>T</sup> y für alle x∈Q falls y∉Q (eine separierende Hyperebene) |
|                                                                                                                |
| 7,30 Satz (Polynomiale Äguivalenz von Separierung und Optimierung; Grötschel, Lovasz, Schrijver 1984)          |

# 7. Ganzzahlige Lineare Optimierung

| 7.6 Optimierung und Separierung                                                                                  |
|------------------------------------------------------------------------------------------------------------------|
| OPT) polynomial lösbar <=> (SEP) polynomial lösbar                                                               |
| Dies gilt auch für E-Approximationen                                                                             |
| ohne Beweis,                                                                                                     |
| bei volldimensionalen Polyedern werden folgende Techniken benutzt                                                |
| "<=" Ellipsoidmethode und Dualitätssatz                                                                          |
| "=>" Antiblocking von Polyedern                                                                                  |
| Details siehe                                                                                                    |
| M. Grötschel, L. Lovász, and A. Schrijver,                                                                       |
| Geometric Algorithms and Combinatorial Optimization,                                                             |
| Springer-Verlag, Berlin, 2nd ed., 1993. 🗅                                                                        |
| ● Bemerkungen                                                                                                    |
| Ist (OPT) polynomial lösbar, so sind Schnittebenen effizient ermittelbar                                         |
| Ist (OPT) NP-schwer, so wird man (falls P ≠ NP) nicht alle Schnittebenen in polynomialer Zeit finden, aber unter |
| Umständen doch noch viele.                                                                                       |
| O Daher verwendet man polynomiale Algorithmen zur Ermittlung von Schnittebenen, bis diese keine mehr finden      |

| <br>und brancht dann nach fraktionalen Variablen. Für die entstehenden Unterprobleme sucht man wieder             |
|-------------------------------------------------------------------------------------------------------------------|
| <br>Schnittebenen bis man brachen muss usw.                                                                       |
| <br>Diese Kombination von Branch & Bound mit Schnittebenenverfahren nennt man Branch & Cut. Beispiele siehe       |
| <br>Kapitel 8.                                                                                                    |
| <br>Statt der Ellipsoidmethode (die sich als ineffizient für die Praxis erwiesen hat) verwendet man üblicherweise |
| <br>den dualen Simplexalgorithmus, der es einfach gestattet, neue Schnittebenen als zusätzliche Restriktionen     |
| <br>einzubauen.                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |