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Abstract. The existence of an on-line competitive algorithm for color-
ing bipartite graphs remains a tantalizing open problem. So far there
are only partial positive results for bipartite graphs with certain small
forbidden graphs as induced subgraphs, in particular for P7-free bipar-
tite graphs. We propose a new on-line competitive coloring algorithm for
P8-free bipartite graphs. Our proof technique improves the result, and
shortens the proof, for P7-free bipartite graphs.

1 Introduction

A proper coloring of a graph is an assignment of colors to its vertices such that
adjacent vertices receive distinct colors. It is easy to devise an (linear time)
algorithm 2-coloring bipartite graphs. Now, imagine that an algorithm receives
vertices of a graph to be colored one by one knowing only the adjacency status
of the vertex to vertices already colored. The color of a vertex must be fixed
before the algorithm sees the next vertices and it cannot be changed afterwards.
This kind of algorithm is called an on-line coloring algorithm.

Formally, an on-line graph (G, π) is a graph G with a permutation π of
its vertices. An on-line coloring algorithm A takes an on-line graph (G, π), say
π = (v1, . . . , vn) as an input. It produces a proper coloring of the vertices of G
where the color of a vertex vi, for i = 1, . . . , n, depends only on the subgraph
of G induced by v1, . . . , vi. It is convenient to imagine that consecutive vertices
along π are revealed by some adaptive (malicious) adversary and the coloring
process is a game between that adversary and an on-line algorithm.

Still, it is an easy exercise that if an adversary presents a bipartite graph
and all the time the graph presented so far is connected then there is an on-line
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algorithm 2-coloring these graphs. But if an adversary can present a bipartite
graph without any additional constraints then (s)he can trick out any on-line
algorithm to use an arbitrary number of colors!

Indeed, there is a strategy for adversary forcing any on-line algorithm to use
at least blog nc+ 1 colors on a forest of size n. On the other hand, the First-Fit
algorithm (that is an on-line algorithm coloring each incoming vertex with the
least admissible natural number) uses at most blog nc+1 colors on forests of size
n. When the game is played on bipartite graphs, an adversary can easily trick
out First-Fit and force dn2 e colors on a bipartite graph of size n. Lovász, Saks
and Trotter [12] proposed a simple on-line algorithm (in fact as an exercise; see
also [8]) using at most 2 log n+1 colors on bipartite graphs of size n. This is best
possible up to an additive constant as Gutowski et al. [4] showed that there is a
strategy for adversary forcing any on-line algorithm to use at least 2 log n − 10
colors on a bipartite graph of size n.

For an on-line algorithm A by A(G, π) we mean the number of colors that A
uses against an adversary presenting graph G with presentation order π.

An on-line coloring algorithm A is competitive on a class of graphs G if there
is a function f such that for every G ∈ G and permutation π of vertices of G
we have A(G, π) 6 f(χ(G)). As we have discussed, there is no competitive col-
oring algorithm for forests. But there are reasonable classes of graphs admitting
competitive algorithms, e.g., interval graphs can be colored on-line with at most
3χ − 2 (where χ is the chromatic number of the presented graph; see [11]) and
cocomparability graphs can be colored on-line with a number of colors bounded
by a tower function in terms of χ (see [9]). Also classes of graphs defined in terms
of forbidden induced subgraphs were investigated in this context. For example,
P4-free graphs (also known as cographs) are colored by First-Fit optimally, i.e.
with χ colors, since any maximal independent set meets all maximal cliques in
a P4-free graph. Also P5-free graphs can be colored on-line with O(4χ) colors
(see [10]). And to complete the picture there is no competitive algorithm for
P6-free graphs as Gyárfás and Lehel [6] showed a strategy for adversary forcing
any on-line algorithm to use an arbitrary number of colors on bipartite P6-free
graphs.

Confronted with so many negative results, it is not surprising that Gyárfás,
Király and Lehel [5] introduced a relaxed version of competitiveness of an on-line
algorithm. The idea is to measure the efficiency of an on-line algorithm compared
to the best on-line algorithm for a given input (instead of the chromatic number).
Hence, the on-line chromatic number of a graph G is defined as

χ∗(G) = inf
A

max
π

A(G, π),

where the infimum is taken over all on-line algorithms A and the maximum is
taken over all permutation π of vertices of G. An on-line algorithm A is on-line
competitive for a class of graphs G, if there is a function f such that for every
G ∈ G and permutation π of vertices of G we have A(G, π) 6 f(χ∗(G)).

Why are on-line competitive algorithms interesting? Imagine that you design
an algorithm and the input graph is not known in advance. If your algorithm is
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on-line competitive then you have an insurance that whenever your algorithm
uses many colors on some graph G with presentation order π then any other
on-line algorithm may be also forced to use many colors on the same graph G
with some presentation order π′ (and it includes also those on-line algorithms
which are designed only for this single graph G!). The idea of comparing the
outputs of two on-line algorithms directly (not via the optimal off-line result) is
present in the literature. We refer the reader to [1], where a number of measures
are discussed in the context of on-line bin packing problems. In particular, the
relative worst case ratio, introduced there, is closely related to our setting for
on-line colorings.

It may be true that there is an on-line competitive algorithm for all graphs.
This is open as well for the class of all bipartite graphs. To the best of the
authors knowledge, there is no promissing approach for the negative answer for
these questions. However, there are some partial positive results. Gyárfás and
Lehel [7] have shown that First-Fit is on-line competitive for forests and it is
even optimal in the sense that if First-Fit uses k colors on G then the on-line
chromatic number of G is k as well. They also have shown [5] that First-Fit is
competitive (with an exponential bounding function) for graphs of girth at least
5. Finally, Broersma, Capponi and Paulusma [2] proposed an on-line coloring
algorithm for P7-free bipartite graphs using at most 8χ∗ + 8 colors on graphs
with on-line chromatic number χ∗.

The contribution of this paper is the following theorem.

Theorem 1. There is an on-line competitive algorithm that properly colors P8-
free bipartite graphs. Moreover, there are on-line coloring algorithms for bipartite
graphs using at most

(i) 4χ∗ − 2 colors on P7-free graphs,
(ii) 3(χ∗ + 1)2 colors on P8-free graphs,

where χ∗ is the on-line chromatic number of the presented graph.

We wish to point out that we can improve the given bounds on the absolute
values. But since this would need a more involved analysis and on the other hand
the improvement would be small, we decided to present the weaker results. Fur-
thermore, we can use our techniques to show that there is an on-line competitive
algorithm for coloring P9-free bipartite graphs. This result is not presented in
this paper due to the page limitation.

2 Forcing structure

In this section we introduce a family of bipartite graphs without long induced
paths (P6-free) and with arbitrarily large on-line chromatic number. All the on-
line algorithms we are going to study have the property that whenever they use
many colors on a graph G then G has a large graph from our family as an induced
subgraph and therefore G has a large on-line chromatic number, as desired.

A connected bipartite graph G has a unique partition of vertices into two
independent sets. We call these partition sets the sides of G. A vertex v in a
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Fig. 1. Family of bipartite graphs

bipartite graph G is universal to a subgraph C of G if v is adjacent to all vertices
of C in one of the sides of G.

Consider a family of connected bipartite graphs {Xk}k>1 defined recursively
as follows. Each Xk has a distinguished vertex called the root. The side of Xk

containing the root of Xk, we call the root side of Xk, while the other side we
call the non-root side. X1 is a single vertex being the root. X2 is a single edge
with one of its vertices being the root. Xk, for k > 3, is a graph formed by two
disjoint copies of Xk−1, say X1

k−1 and X2
k−1, with no edge between the copies,

and one extra vertex v adjacent to all vertices on the root side of X1
k−1 and all

vertices on the non-root side of X2
k−1. The vertex v is the root of Xk. Note that

for each k, the root of Xk is adjacent to the whole non-root side of Xk, i.e.,
the root of Xk is universal in Xk. See Figure 1 for a schematic drawing of the
definition of Xk.

A family of P6-free bipartite graphs with arbitrarily large on-line chromatic
number was first presented in [6]. The family {Xk}k>1 was already studied in
[3], in particular Claim 2 is proved there. Due to page limitation we omit the
proof here. We encourage the reader to verify that Xk is P6-free for k > 1.

Claim 2 If G contains Xk as an induced subgraph, then χ∗(G) > k.

3 P7-free bipartite graphs

In this section we present an on-line algorithm using at most 4χ∗ − 2 colors on
P7-free bipartite graphs with on-line chromatic number χ∗. The algorithm itself,
see Algorithm 1, is taken from [3, 2] where it is called BicolorMax and proved
that it uses at most 2χ∗−1 colors on P6-free bipartite graphs and at most 8χ∗+8
colors on P7-free bipartite graphs with on-line chromatic number χ∗. Thus, we
improve the bounding function for the P7-free case and yet we present a much
simpler proof.

Algorithm 1 uses two disjoint pallettes of colors, {an}n>1 and {bn}n>1. In
the following whenever the algorithm fixes a color of a vertex v we are going
to refer to it by color(v). Also for any set of vertices X we denote color(X) =
{color(x) | x ∈ X}. We say that v has color index i if color(v) ∈ {ai, bi}.

Suppose an adversary presents a new vertex v. Let Gi[v] be the subgraph on
the vertices presented so far that have a color from {a1, . . . , ai, b1, . . . , bi} and
with one extra vertex, namely v, which is uncolored yet. Now, Ci[v] denotes the
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connected component of Gi[v] containing vertex v. Furthermore, let Ci(v) be
the graph Ci[v] without vertex v. The graph Ci(v) is not necessarily connected
and in fact, as we will show, whenever v has color index k > 2, Ci(v) contains
at least 2 connected components for 1 6 i < k. Note that by these definitions
it already follows that if w ∈ Ci(v) then Cj [w] ⊆ Ci(v) for all j 6 i since w is
presented before v and has a smaller color index than v. We say that a color c is
mixed in a connected induced subgraph C of G if c is used on vertices on both
sides of C.

Now we are ready for a description of Algorithm 1.

Algorithm 1: On-line competitive for P7-free bipartite graphs

an adversary introduces a new vertex v
m← max {i > 1 | ai is mixed in Ci[v]}+ 1 // max {} := 0
let I1, I2 be the sides of Cm[v] such that v ∈ I1
if am ∈ color(I2) then color(v) = bm
else color(v) = am

It is not hard to see that Algorithm 1 colors bipartite graphs properly. We
leave it as an exercise for the reader.

Claim 3 Algorithm 1 gives a proper coloring of on-line bipartite graphs.

The following claim is already proven in [3, 2], for the sake of completeness
we added it here. It is quite essential for the other proofs.

Claim 4 Suppose an adversary presents a bipartite graph G to Algorithm 1. Let
v ∈ G and let x, y be two vertices from opposite sides of Ci[v] both colored with
ai. Then x and y lie in different connected components of Ci(v).

Proof. Let v, x and y be like in the statement of the claim. We are going to
prove that at any moment after the introduction of x and y, x and y lie in
different connected components of the subgraph spanned by vertices colored
with a1, b1, . . . , ai, bi.

Say x is presented before y. First note that x 6∈ Ci[y] as otherwise x had to
be on the opposite side to y (because it is on the opposite side at the time v
is presented) and therefore y would receive color bi. Now consider any vertex w
presented after y and suppose the statement is true before w is introduced. If
x 6∈ Ci[w] or y 6∈ Ci[w] then whatever color is used for w this vertex does not
merge the components of x and y in the subgraph spanned by vertices presented
so far and colored with a1, b1, . . . , ai, bi. Otherwise x, y ∈ Ci[w]. This means that
color ai is mixed in Ci[w] and therefore w receives a color with an index at least
i + 1. Thus, the subgraph spanned by the vertices of the colors a1, b1, . . . , ai, bi
stays the same and x and y remain in different connected components of this
graph.

Since all vertices in Ci(v) are colored with a1, b1, . . . , ai, bi, we conclude that
x and y lie in different components of Ci(v). ut
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Fig. 2. Schematic drawing of some defined components. The color classes of G belong
to the top and bottom side of the boxes. Vertex v has color index k. Vertices x and y
certify that color ak−1 is mixed in Ck−1[v]. The component Ck−1[v] consists of both
green boxes and vertex v, which is merging these.

As a consequence of Claim 4 it holds that if v has color index k > 2 then
Ci(v) is disconnected for all 1 6 i < k. This is simply because there are vertices
x and y certifying that color ai is mixed in Ci[v]. It also means that if we forget
about the vertices presented so far that are not in Ci[v], vertex v is merging
independent connected subgraphs of G which are intuitively large in the case
i = k−1 as they contain vertices (x and y) with a high color index. See Figure 2
for a better understanding.

Claim 5 Suppose an adversary presents a P7-free bipartite graph to Algorithm 1.
Let v be a vertex with color index k and 1 6 i < k. Then v is universal to all
but possibly one component of Ci(v).

Proof. Suppose to the contrary that there are 2 components C1 and C2 in Ci(v)
to which v is not universal. Then there are vertices v1 ∈ C1 and v2 ∈ C2 that
both have distance at least 3 from v in Ci[v]. It follows that a shortest path
connecting v1 and v in Ci[v], combined with a shortest path connecting v and
v2 in Ci[v] results in an induced path of length at least 7, a contradiction. ut

Theorem 6. Algorithm 1 uses at most 4χ∗−2 colors on P7-free bipartite graphs
with an on-line chromatic number χ∗.

Proof. Let G be a P7-free bipartite graph that is presented by an adversary to
Algorithm 1. Suppose color a2k for some k > 1 is used on a vertex v of G. We
prove by induction on k that C2k−1[v] contains Xk+1 as an induced subgraph
such that v corresponds to the root of Xk+1.

If k = 1 then v is colored with a2 and v must have neighbors in C1[v]. We
embed X2 being a single edge onto v and its neighbor. So suppose k > 2 and
v is colored with a2k. Since color a2k−1 is mixed in C2k−1[v] there are vertices
x and y of color a2k−1 lying on opposite sides of C2k−1[v]. By Claim 4 vertices
x and y lie in different components of C2k−1(v), say Cx and Cy. If we forget
about the color index of v in Figure 2 then Cx corresponds to the left and Cy

to the right green box. Using Claim 5 we conclude that v must be universal to
at least one of Cx and Cy. We can assume that this is true for Cx. Since the
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color index of x is smaller than of v, we have that C2k−2[x] ⊆ Cx. Now consider
vertices u and w in C2k−2[x] certifying that color a2k−2 is mixed in C2k−2[x].
Let Cu and Cw be the components of C2k−2(x) containing u and v, respectively,
which are distinct by Claim 4 (see left and right brown box in Figure 2). Observe
that C2k−3[u] and C2k−3[w] are subgraphs of Cu and Cw, respectively. By the
induction hypothesis there are induced copies Xu and Xw of Xk in C2k−3[u]
and C2k−3[w], respectively, such the roots correspond to u and v (see Figure 2).
Since Xu ⊆ Cu and Xw ⊆ Cw, there is no edge between the copies and v is
universal to both them. Using the fact that u and w appear on opposite sides
of C2k−1[v] we conclude that v together with Xu and Xw form an Xk+1 with v
being the root of it. This completes the induction.

Let now k > 1 be maximal such that Algorithm 1 used the color a2k on
a vertex of G. It might be that also the colors b2k, a2k+1 and b2k+1 are used,
but not any aj or bj for j > 2k + 2. Thus, Algorithm 1 used at most 4k + 2
colors. On the other hand, G contains an Xk+1 and by Claim 2 it follows that
χ∗(G) > k+ 1. We conclude that Algorithm 1 used at most 4k+ 2 6 4χ∗(G)− 2
colors. ut

4 P8-free bipartite graphs

Inspired by Algorithm 1 and an argument from the previous section we present a
new on-line algorithm for bipartite graphs and refer to it by Algorithm 2. In this
section we prove that this algorithm is on-line competitive for P8-free bipartite
graphs.

Algorithm 2 uses three disjoint pallettes of colors, {an}n>1, {bn}n>1 and
{cn}n>1. Similar to the case of P7-freeness we make the following definitions.
Whenever the algorithm fixes a color of a vertex v we are going to refer to it by
color(v). Also for any set of vertices X we denote color(X) = {color(x) | x ∈ X}.
We say that a vertex v has color index i, if color(v) ∈ {ai, bi, ci}.

Now, suppose an adversary presents a new vertex v of a bipartite graph G.
Then let Gi[v] be the subgraph spanned by the vertices presented so far and
colored with a color from {a1, . . . , ai, b1, . . . , bi, c1, . . . , ci} and vertex v, which is
uncolored yet. With Ci[v] we denote the connected component ofGi[v] containing
v. For convenience put C0[v] = {v}. Furthermore, let Ci(v) be the graph Ci[v]
without vertex v. For a vertex x in Ci(v) it will be convenient to denote by
Cxi (v) the connected component of Ci(v) that contains x. We say that a color c
is mixed in a connected subgraph C of G if c is used on vertices on both sides
of C.

Again, a proof for the proper coloring we leave as a fair exercise.

Claim 7 Algorithm 2 gives a proper coloring of on-line bipartite graphs.

To prove the following claim, it is enough to follow the lines of the proof for
Claim 4.
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Algorithm 2: On-line competitive for P8-free bipartite graphs

an adversary introduces a new vertex v
m← max {i > 1 | ai is mixed in Ci[v]}+ 1 // max {} := 0
let I1, I2 be the sides of Cm[v] such that v ∈ I1
if am ∈ color(I2) then color(v) = bm
else if cm ∈ color(I2) then color(v) = am

else if ∃u ∈ I1 ∪ I2 and ∃u′ ∈ I2 such that u has color index
j > m− b

√
m− 1c and u′ is universal to Cj−1[u] then color(v) = cm

else color(v) = am

Claim 8 Suppose an adversary presents a bipartite graph G to Algorithm 2. Let
v ∈ G and let x, y be two vertices from opposite sides of Ci[v] both colored with
ai. Then x and y lie in different connected components of Ci(v).

Now, whenever a vertex v has color index k > 2, let v1 and v2 be the first
introduced vertices in Ck−1(v) that certify that color ak−1 is mixed in Ck−1(v).
By Claim 8 it follows that Cv1k−1(v) and Cv2k−1(v) are distinct (and in particular
no edge is between them). In the following we will refer to v1 and v2 as the
children of v.

In the contrast to the P7-free case, observe that v does not have to be univer-
sal to at least one of the components Cv1k−1(v) and Cv2k−1(v) if G is only P8-free.
However, as the next claim shows, we can expect a vertex on the other side of
v in Ck−1(v) that is universal to some component in this case. This component
will be only slightly smaller than Ck−1(v) whenever we use Claim 9 in our final
proof. Also note that Algorithm 2 is inspired by this observation.

Claim 9 Suppose an adversary presents a P8-free bipartite graph G to Algo-
rithm 2. Let x be a vertex with color index i > 2. Suppose that vertex y ∈ Ci−1(x),
with color index j, lies on the other side of x in G and y is not adjacent to x.
Then one of the following holds:

(i) x has a child x′ such that x is universal to Ci−2[x′], or
(ii) x has a neighbor in Cyi−1(x) that is universal to Cj−1[y].

Proof. We can assume that y has color index j > 2, as otherwise Cj−1[y] =
C0[y] = {y} and vacuosly any neighbor of x is universal to Cj−1[y] (as the side it
must be adjacent to is empty). Let x1 and x2 be the children of x. By Claim 8 the
components Cx1

i−1(x) and Cx2
i−1(x) are distinct. Vertex y is contained in at most

one of them, say y 6∈ Cx1
i−1(x), and therefore Cx1

i−1(x) and Cyi−1(x) are distinct. In
order to prove the claim suppose that (i) is not satisfied. Then x is not universal
to Ci−2[x1] and in particular not to Cx1

i−1(x). It follows that there is an induced
path of length 4 ending at x in Cx1

i−1[x]. As G is P8-free we conclude that Cyi−1[x]
does not contain an induced path of length 5 with one endpoint in x. With this
observation in mind we will prove (ii) now.

First, let us consider the case that x has a neighbor z in Cj−1[y] ⊆ Cyi−1(x)
(see Figure 3 for this case). Since x and y are not adjacent we have y 6= z.
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Fig. 3. Claim 9: Situation in which x has a neighbor z in Cj−1[y].

As Czj−1[y] is connected, there is an induced path P connecting x and y that
has only vertices of Czj−1(y) as inner vertices. Clearly, P has even length at
least 4. Now the color index of y, namely j > 2, assures the existence of a
mixed pair in Cj−1[y] and with Claim 8 it follows that Cj−1(y) has at least two
connected components. In particular, there is a component C ′ of Cj−1(y) other
than Czj−1(y). Clearly, y has a neighbor z′ in C ′, which we use to prolong P at
y. Since there is no edge between Czj−1(y) and C ′, vertex z′ is not adjacent to
the inner vertices of P . And as G is bipartite z′ cannot be adjacent to x. We
conclude the existence of an induced path of length 5 in Cyi−1[x] with x and z′

being its endpoints, a contradiction.
Second, we consider the case that x has no neighbor in Cj−1[y]. By our

assumptions a shortest path connecting x and y in Cyi−1[x] must have length
exactly 4. Let P = (x, r, s, y) be such a path. We claim that vertex r is uni-
versal to Cj−1[y]. Suppose to contrary that there is a vertex s′ in Cj−1[y]
which is on the other side of y and which is not adjacent to r. Let Q =
(y, s1, r1, . . . , s`−1, r`−1, s` = s′) be a shortest path connecting y and s′ in
Cj−1[y]. For convenience put s0 = s. Now we choose the minimal m > 0 such
that r is adjacent to sm but not to sm+1. Such an m exists since r is adjacent
to s0 = s but not to s`. If m = 0 then the path (x, r, s, y, s1) is an induced path
of length 5 and if m > 0 then the path (x, r, sm, rm, sm+1) has length 5 and
is induced unless x and rm are adjacent. But the latter is not possible since x
has no neighbor in Cj−1[y]. Thus, in both cases we get a contradiction and we
conclude that r is universal to Cj−1[y]. ut

In the following we write v →i w for v, w ∈ G, if there is a sequence v =
x1, . . . , xj = w with j 6 i and x`+1 is a child of x`, for all ` ∈ {1, . . . , j − 1}.
Moreover, we define Si(v) = {w | v →i w}.

We make some immediate observations concerning this definition. Let v ∈ G
be a vertex with color index k > 2. Then all vertices in Si(v) have color index at
least k−i+1. Furthermore, each vertex in Si(v) is connected to v by a path in G
and all vertices in the path, except v, have color index at most k−1. This proves
that Si(v) ⊆ Ck−1[v], for all i > 1. Note also that if v1 and v2 are the children
of v then we have Si(v) = {v} ∪ Si−1(v1) ∪ Si−1(v2) and Si−1(v1) ⊆ Cv1k−1(v),
Si−1(v2) ⊆ Cv2k−1(v). By Claim 8, we get that Cv1k−1(v) and Cv2k−1(v) are distinct.
In particular, Si−1(v1) and Si−1(v2) are disjoint and there is no edge between
them.
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For a vertex v ∈ G, Si(v) is complete in G if for every u,w ∈ Si(v) such that
u →i w and u,w lying on opposite sides of G, we have u and w being adjacent
in G. Note that v is a universal vertex in Si(v), provided Si(v) is complete.

Claim 10 Suppose an adversary presents a bipartite graph G to Algorithm 2.
Let v ∈ G be a vertex with color index k and let k > i > 1. If Si(v) is complete
then Si(v) contains an induced copy of Xi in G with v being the root of the copy.

Proof. We prove the claim by induction on i. For i = 1 we work with S1(v) and
X1 being graphs with one vertex only, so the statement is trivial. For i > 2, let v1
and v2 be the children of v. Recall that Si(v) = {v} ∪Si−1(v1)∪Si−1(v2). Since
Si(v) is complete it also follows that Si−1(v1) and Si−1(v2) are complete. So by
the induction hypothesis there are induced disjoint copies X1

i−1, X2
i−1 of Xi−1 in

Si−1(v1) and Si−1(v2), respectively, and rooted in v1, v2, respectively. Recall that
Si−1(v1) and Si−1(v1) are disjoint and there is no edge between them. Thus, the
copies X1

i−1 and X2
i−1 of Xi−1 are disjoint and there is no edge between them,

as well. Since Si(v) is complete v is universal to both of the copies, and since v1
and v2 lie on opposite sides in G we get that the vertices of X1

i−1 ∪X2
i−1 ∪ {v}

induce a copy of Xi in G. ut

Claim 11 Suppose an adversary presents a P8-free bipartite graph G to Algo-
rithm 2 and suppose vertex v is colored with ak. Then Ck[v] contains an induced
copy of Xb

√
kc such that its root lies on the same side as v in G.

Proof. The claim is easy to verify for 1 6 k 6 8. So suppose that k > 9. Consider
the set Sb

√
kc(v). If it is complete then by Claim 10 we get an induced copy of

Xb
√
kc with a root mapped to v. So we are done.

From now on we assume that Sb
√
kc(v) is not complete. Let (I1, I2) be the

bipartition of Ck[v] such that v ∈ I1. First, we will prove that there are vertices
z, z′ ∈ Ck[v] such that z′ ∈ I1, z has color index ` > k − b

√
k − 1c and z′ is

universal to C`−1[z]. To do so we consider the reason why Algorithm 2 colors v
with ak instead of bk or ck.

The first possible reason is that the second if-condition of the algorithm is
satisfied, that is, there is a vertex u ∈ I2 colored with ck. Now u can only receive
color ck if there are vertices w,w′ ∈ Ck[u] such that w′ is on the other side of
u in Ck[u], w has color index j > k − b

√
k − 1c and w′ is universal to Cj−1[w].

Since Ck(u) ⊆ Ck(v) and u ∈ I2 we have w′ ∈ I1. Therefore, w and w′ prove the
existence of vertices that we are looking for in this case.

The second reason for coloring v with ak is that Algorithm 2 reaches its last
line. In particular this means, that there is no vertex of color ak or ck in I2. Now
we are going to make use of the fact that Sb

√
kc(v) is not complete. There are

vertices x, y ∈ Sb√kc(v) ⊆ Ck[v] such that x →b√kc y, vertices x and y lie on

different sides of Ck[v] and are not adjacent. Let i and j be the color indices of x
and y, respectively. Note that k > i > j > k−b

√
kc+1. By Claim 9 vertex x has

a child x′ such that x is universal to Ci−2[x′] or x has a neighbor r ∈ Cyi−1(x)
that is universal to Cj−1[y]. In the first case let w′ be x and w be x′, and in the
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second case we set w′ to be r and w to be y. Then, in both cases it holds that
w′ is universal to C`−1[w], where ` is the color index of w. Furthermore we have

` > min{i− 1, j} > k − b
√
kc+ 1 > k − b

√
k − 1c

for all k > 1. Since w′ ∈ Ck[v] we have w′ ∈ I1 or w′ ∈ I2. However, the latter
is not possible as otherwise w and w′ would fulfill the conditions of the third
if-statement in Algorithm 2, which contradicts the fact that Algorithm 2 reached
the last line for v. We conclude that w′ ∈ I1, which completes the proof of our
subclaim.

So suppose we have vertices z and z′ like in our subclaim. Let z1 and z2 be
the children of z (they exist as ` > 2). Both vertices received color a`−1 and
are on different sides of G. By the induction hypothesis C`−1[z1] and C`−1[z2]
contain a copy of Xb

√
`−1c such that the roots are on the same side as z1 and z2,

respectively. Since there is no edge between C`−1[z1] and C`−1[z2] and both are
contained in C`[z], it follows that z′ together with the copies of Xb

√
`−1c induce

a copy of Xb
√
`−1c+1 that has z′ as its root. Since C`[z] is contained in Ck[v] and

z′ is on the same side as v and since

b
√
`− 1c+ 1 >

⌊√
k − b

√
k − 1c − 1

⌋
+ 1 > b

√
kc,

for all k > 1, this completes the proof. ut

Now we are able to prove our main theorem.

Theorem 12. On each on-line P8-free bipartite graph (G, π), Algorithm 2 uses
at most 3(χ∗(G) + 1)2 colors.

Proof. Let k be the highest color index on the vertices of G. By the definition
of Algorithm 2 the color ak appears on some vertex of G. Using Claim 11 it
follows that G contains Xb

√
kc. Now, by Claim 2, χ∗(G) > b

√
kc and therefore

Algorithm 2 uses at most 3k 6 3(b
√
kc+ 1)2 6 3(χ∗(G) + 1)2 colors. ut
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