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Introduction

Partially ordered sets, also known as posets, are ubiquitous objects in com-
binatorics. Every finite poset is isomorphic to a subposet of the product
of a number of linear orders (equipped with the product order), and the
least number of linear orders for which such an isomorphic subposet can be
found is called the dimension of the poset. The notion of poset dimension
was introduced in 1941 by Dushnik and Miller 6], and it is an important
measure of poset complexity with many applications in theoretical com-
puter science. For instance, posets of small dimension can be efficiently
stored in memory, requiring much less space than when storing the matrix
of poset comparabilities. Dimension is also intriguing from the perspec-
tive of computational complexity. Already the problem of determining
whether a poset has dimension 3 is NP-complete [36], and no polynomial
time algorithm exists that approximates the dimension within a factor of
O(n'~¢) for any € > 0 [_3]]. We do not know any nontrivial poset classes for
which dimension can be effectively computed.

The theory of dimension for partial orders is a rich part of combinatorics
which has many deep connections with graph theory. For instance, poset
dimension can be used to characterize planar graphs [27]] and nowhere
dense classes of graphs [[15]. Recent research explores dim-boundedness,
which is a poset-theoretic counterpart of x-boundedness from the realm of
graphs. Classes of posets known to be dim-bounded include posets with
cover graphs of bounded pathwidth [[13]] or treewidth [[16], and some of
the recent results [20]] provide a promising approach to solving a more
than 40 years old conjecture that posets with planar cover graphs are dim-
bounded.

In this thesis I explore links between dimension of posets and properties
of the graphs associated with them. My goal is to address the following
question.



Which minor-closed graph classes C have the property that
posets with cover graphs in C have dimension bounded by a constant?

This question deserves providing some context.

There are several ways to associate a graph with a poset. In the simplest
one, the vertices are the elements of the poset, and two distinct vertices are
adjacent when they are comparable in the poset. That graph is called the
comparability graph of the poset. Intuitively, posets with “sparse” compa-
rability graph should have small dimension. The simplest way to formal-
ize sparsity is to consider graphs of bounded degree, and the dimension of
posets with comparability graph of bounded degree has been studied ex-
tensively [[10, 7, 28]]. Scott and Wood [28]] proved that posets with compa-
rability graphs of maximum degree A have dimension A log' ™" A, which,
by a result of Erdds, Kierstead and Trotter [[7] is within a log®™ A factor of
optimal.

Every chain in a poset forms a clique in the comparability graph, so any
poset with a comparability graph of maximum degree A has height at most
A + 1. It turns out that in the bounded height setting, for the dimension to
be bounded it suffices to assume sparsity of its cover graph.

The cover graph of a poset is the subgraph of its comparability graph
consisting of only those edges which are not implied by transitivity of the
order relation. In other words, the cover graph of a poset is its Hasse dia-
gram seen as an abstract undirected graph. In 2014, Streib and Trotter [[30]]
proved that posets with planar cover graphs have dimension bounded in
terms of height. This discovery initiated a line of research aiming to un-
derstand, for which graph classes C it is true that all posets with cover
graphs from C have dimension bounded by a function of height. The afore-
mentioned bound on the dimension for posets with comparability graph
of bounded maximum degree implies that this holds when C has bounded
maximum degree. A sequence of results revealed that this also holds when
C is a class of bounded treewidth [[14], a class excluding a fixed graph as
a minor or as a topological minor [34] 24/, or a class of bounded expan-
sion [[18]]. Note that graphs excluding a fixed graph as a minor generalize
planar graphs and graphs of bounded treewidth, and graphs excluding a
fixed graph as a topological minor generalize graph of bounded degree and
graphs excluding a fixed graph as a minor. Classes of bounded expansion
generalize all classes mentioned before.

This brings us back to our initial question. When does there exist a
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(a) Trotter’s construction (b) Kelly’s construction

Figure 1: Two posets with planar cover graph and dimension 6. Both con-
structions contain a standard example of dimension 6, which is a poset
consisting of the elements a;, ..., ag, b1, ..., b such that each a; is incompa-
rable with b, and a; < b; for i # j.

bound on the dimension which does not depend on height? In 1977, Trot-
ter and Moore [[33]] showed that every poset whose cover graph is a forest,
has dimension at most 3. Soon after, Trotter [32]] found a construction of
posets with planar cover graphs and arbitrarily large dimension, see Fig-
ure[lal This shows that only for some proper minor-closed classes there ex-
ists a constant bound. Furthermore, in 1981, Kelly [[19] constructed posets
with arbitrarily large dimension and planar cover graphs of treewidth (and
pathwidth) 3, see Figure

Nevertheless, a constant bound is known for several examples of minor-
closed classes other than the class of forests. Felsner, Trotter and Wiechert
proved that the dimension is at most 4 for the class of outerplanar graphs.
For the class of graphs of pathwidth at most 2, Bir6, Keller and Young [[1]]
showed that the dimension is at most 17, which was later improved to 6 by
Wiechert [[35]. Joret, Micek, Trotter, Wang and Wiechert [[17]], showed that
for the class of graphs of treewidth at most 2 (which are exactly the graphs
which exclude K, as a minor) the dimension is at most 1276. Finally, it
is an easy consequence of folklore results that for any class of bounded
treedepth the dimension is bounded as well.

Where exactly is the boundary between the minor-closed classes for
which the dimension is bounded and those for which it is unbounded? The



necessary condition for a class to have bounded dimension is to exclude the
cover graph of some poset from the Kelly’s construction. It is conjectured,
that this condition is also sufficient because the cover graphs of posets from
Kelly’s construction can be found as minors in all known constructions of
posets of large dimension. Although the conjecture remains open, the re-
sults presented in this thesis make a substantial progress in finding the
answer to the question. Moreover, the work on this question has led to
new discoveries in other areas: a qualitative structure theorem for graphs
excluding long ladders and an improved bound on the dimension in terms
of height for posets with planar cover graphs.

In this thesis, I present four major results. The first result, is an im-
proved bound on the dimension for posets with cover graphs of treewidth
at most 2, published in [29]]. The new proof not only gives a substantially
better bound (12 in place of 1276), but also is much simpler than the orig-
inal proof by Joret et al. [17]].

The second result is my unpublished result that for a fixed n, posets
excluding K, ,-minors in their cover graphs have bounded dimension. The
proof relies on a characterization of graphs without large K5 ,,-minors by
Ding [5]].

The third result shows that posets excluding a 2 x n grid (a ladder)
as a minor for a fixed n have bounded dimension. This is a joint work
with Huynh, Joret, Micek and Wollan [12]]. In our work, we developed a
new structure theorem for graphs without long ladders, which is of inde-
pendent interest. We present some applications of this structure theorem
outside poset theory.

The final main result is a theorem, which I proved together with Gorsky
[11]], that posets with k-outerplanar cover graphs have bounded dimen-
sion. Our bound is O(k?). This generalizes the fact that posets with outer-
planar (that is 1-outerplanar) cover graphs have bounded dimension. An
important consequence of this is that height-h posets with planar cover
graph have dimension O(h?*). Previously, the best known bound was O(h9).



Chapter 1

Preliminaries

Graphs

In order to make the thesis self-contained, we introduce the standard def-
initions and notation from graph theory in this and the following section.
For a broader introduction to graphs, we refer the reader to the excellent
textbook on graph theory by Diestel [4].

A graph is a pair G = (V, E) where V is a set whose elements are called
vertices and E is a set whose elements are 2-element subsets of V' called
edges. We always assume the sets V' and £ to be disjoint and finite. A graph
with vertex set V' is said to be on V. The vertex set and the edge set of a
graph G are referred to as V(G) and E(G), regardless of any actual names
of these sets. For instance, the vertex set of a graph H = (W, F) is referred
toas V(H), not as W(H). The empty graph is (J, &).

An edge e = {z, y} is usually written as xy or yz, and the vertices = and
y are called ends of e. We also say that the vertices = and y are incident with
the edge e. We mainly use the notation {x, y} for pairs which may or may
not be edges of the graph. When a graph G has an edge zy, the vertices =
and y are called adjacent or neighbors. The set of neighbors of a vertex z in
a graph G is denoted by N¢(x), and the number of neighbors of z is the
degree of x. A graph is complete if all its vertices are pairwise adjacent. We
denote by K, a complete graph with n vertices. A graph G is bipartite if
its vertex set admits a partition into two sets A and B such that each edge
of G has ends in A and B. If additionally G contains all possible edges
with ends in A and B, we call G complete bipartite. We denote by K, ,, a



complete bipartite graph with a corresponding partition {A, B} satisfying
|A| = nand |B| = m.

Two graphs G; and G, are isomorphic if there exists an isomorphism be-
tween them, that is a bijection ¢: V(G) — V(G2) such that for any pair
of distinct vertices = and y of G; we have {z,y} € E(G,) if and only if
{o(x),p(y)} € E(G2). The isomorphism class of a graph G is the collection
of all graphs isomorphic to G (If GG is nonempty, then this collection does
not form a set, as the vertices can be arbitrary sets and there is no set of all
sets). Since we only consider finite graphs, there are only countably many
distinct isomorphism classes of graphs. A class of graphs (or a graph class)
is any collection C of graphs such that whenever a graph belongs to it, so
do all graphs isomorphic to it. Hence, every class of graphs is the union of
(at most countably many) isomorphism classes of some graphs.

The union and intersection of two graphs GGy and G are defined as

Gi1n Gy = (V(G1) nV(Ga), E(G1) n E(G2))

and
G1 UGy = (V(G1) uV(Gy), BE(Gy) U E(Gy))

respectively. The graphs G; and G5, are disjoint when G n G is the empty
graph (which is equivalent to V(G1) n V(G2) = ).

If H and G are two graphs such that V(H) < V(G) and E(H) < E(G),
then H is a subgraph of G, G is a supergraph of H, and we write H < G.
If additionally H contains all edges xy € E(G) with {z,y} < V(H), then
H is called an induced subgraph. For a subset of vertices U < V(G), the
induced subgraph of GG with the vertex set U is called the subgraph induced
by U and denoted by G[U]. We denote by G — U the subgraph induced
by V(G)\U, that is the graph obtained by deleting all vertices in U and all
edges incident with them. For a set I’ of 2-element subsets of V' (G) which
may or may not be edges of G, we define G — F' = (V(G), E(G)\F') and
G+ F=(V(G),EG)uF)

A path is a graph W which consists of distinct vertices z, ..., x5 such
that E(W) = {x;x;41 : i € {0,..., k — 1}}. When there is no ambiguity with
the notation zy for edges, we denote such a path by x - - - x. The length of
a path is the number of its edges. A path of length 0 is trivial. The vertices
xo and zj, are the ends of the path while x4, ..., x;_; are the inner vertices.
Two or more paths are internally disjoint if none of them contains an inner
vertex of another.



When A and B are sets of vertices and W is a path xz - - - x, such that
VIW)n A = {29} and V(W) n B = {x}}, we call W an A-B path. We
simplify notation when either of the sets A and B is a singleton, so that for
instance we write a—B path rather than {a}-B path.

A graph is connected if it is nonempty and for any two vertices = and
y, the graph contains an -y path. Equivalently, a nonempty graph G is
connected if and only if and only if for every partition of V(&) into two
nonempty sets A and B there exists an edge with ends in both sets A and
B. A subset of vertices U < V(G) is connected if the induced subgraph
G|U] is connected. Every graph can be uniquely represented as the union
of disjoint connected graphs, called the components of the graph.

For vertex subsets A, B and X in a graph G, we say that X separates A
and B if every A-B path contains a vertex from X. If for a vertex z € V(G)
there exists vertices a,b € V(G)\{z} lying in one component of G such that
{z} separates {a} and {b}, we call = a cutvertex. Thus, z is a cutvertex in G
if the graph G — {2} has more components than G.

A graph G is k-connected if |V (G)| > k and G — X is connected whenever
X < V(G) and |X| < k. A block of a graph G is a maximal connected
subgraph of G without a cutvertex. A block can be a vertex of degree 0, an
edge e with its ends, or a 2-connected subgraph of G.

A cycle is a graph of the form W + {e}, where IV is a path ;- - - z;, with
k > 2,and e = xgz;. A Hamiltonian cycle in a graph G is a cycle in G (that
is a cycle which is a subgraph of () which contains all vertices of G.

A graph which does not contain a cycle is a forest, and a connected forest
is a tree. In a tree T, there is a unique z—y path between each pair of vertices
x and y, and we denote it by 2T'y. A rooted tree is a tree with a distinguished
vertex called a root. We sometimes refer to the vertices of trees as nodes. If
T is a rooted tree with a root vy and © and v are two nodes such that u €
V(uoTv), then w is an ancestor of v, and v is a descendant of . If additionally
wand v are adjacent, then w is the parent of v, and v is a child of u. The lowest
common ancestor of nodes u and v is the unique node w which is an ancestor
of u and v but does not have a child which is an ancestor of v and v. A leaf
is a node without a child, and a node with at least one child is inner. The
height of a rooted tree is the maximum length of a path between the root
and a leaf.



Minors, planarity and tree-decompositions

The simplest way in which a graph can contain another graph, is as a sub-
graph. Another way in which a graph can be contained is as “minor”. This
section introduces the basics of the graph minors and some important ex-
amples of minor-closed classes of graphs.

When (' is a graph and y is a vertex of G with exactly two neighbors x
and z, we say the graph (G—{y})+ {xz} is obtained from G by suppressing y.
The operation inverse to suppressing is subdividing. Subdividing an edge
e = zz in a graph G yields the graph (V(G) u {y}, (E(G)\{e}) v {zy, yz})
where y is a new vertex not appearing in GG. A graph obtained from G by
repeatedly subdividing edges is called a subdivision of G. If G does not have
vertices of degree 0, then every subdivision of G is the union of a family
of internally disjoint paths {W.}.cg () such that each path W, has the same
ends as the edge e. A graph H is a topological minor of a graph G when G
has a subgraph isomorphic to a subdivision of G.

Suppressing vertices of degree 2 is generalized by edge contraction.
When G is a graph with an edge e = xy, one can contract the edge e to
the vertex z to obtain the graph (G — {y}) + {zz : z € Ng(y)\{z}}. Note that
if the degree of y is 2, then contracting e to x is equivalent to suppressing
y. We say that a graph H is a minor of a graph G (or G contains H as a mi-
nor) if a graph isomorphic to H can be obtained from a subgraph of G by
repeatedly contracting edges. Equivalently, H is a minor of G if and only
if there exists an indexed family {U, },cv (1) of pairwise-disjoint connected
subsets of vertices in G such that for every edge xy € E(H), the graph G
contains an edge with ends in U, and U, in G. Every topological minor of
a graph G is a minor of GG, and every minor of a graph G in which every
vertex has degree at most 3 is a topological minor of G. If H is not a minor
of G, we say that G is H-minor-free.

A class of graphs C is minor-closed if for every G € C, all minors of G
belong to C. A seminal result by Robertson and Seymour [26]] states that
for every minor-closed class C there exists a finite set { 1, . . . , H} of graphs
such that C consists of exactly those graphs which do not contain any of the
graphs H,, ..., H; as a minor.

A planar drawing of a graph G is a drawing where the vertices are repre-
sented by points on a plane and the edges are represented by non-crossing
curves between the vertices. More formally, in a planar drawing of GG, each
vertex z € V(G) is represented by a point p, € R? and each edge zy € E(G)
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is represented by a simple curve v,, < R? with endpoints in p, and p, so
that (1) p, # p, for distinct z,y € V(G), (2) p, ¢ 7y for zy € E(G) and
z e V(G)\{z,y}, and (3) vuy N Varyy S {pa, py} for distinct zy, 2’y € E(G). A
graph is planar if it admits a planar drawing. Planar graphs form a minor-
closed class of graphs consisting of exactly those graphs which do not con-
tain K5 nor K33 as minors.

Let G be a graph with a planar drawing ({p}sev(c): {7e}eer(c)). For
every subgraph H < G, we define an inherited planar drawing of H as
({ps}aev s {Ve}eer(m)- The components (in the topological sense) of R*\{p, :
z € V(G)} Y U er(o) 7e are called faces of the drawing. Exactly one face ina
drawing is unbounded, and we call it the outer face. A graph is outerplanar
if it admits a planar drawing such that every vertex lies on the bound-
ary of the outer face. A graph is outerplanar if and only if it does not
contain /K, nor K,3 as a minor. The m x n grid is a planar graph on

,...,mgxql, ..., nywhere two vertices (7, 7) and (', J°) are adjacent when
1 1 h ices (i,7)and (7', ;' dj h
1—1|+ |73 —7| =1 EkEver anar graph is a minor of the n x n grid for
| — 4 | — j'| = 1. Every pl graph i i f th grid f
some n.

A k-tree is any graph obtained from a complete graph on k + 1 vertices
by repeatedly adding vertices in such a way that the neighbors of every
added vertex form a k-clique (for instance, 1-trees are exactly trees on at
least 2 vertices). A partial k-tree is any subgraph of a k-tree. The treewidth
of a graph GG, denoted by tw(() is the least k£ such that G is a partial k-tree.

For every nonnegative integer £, graphs of treewidth at most £ form
a minor-closed class of graphs. Graphs of treewidth 0 are graphs without
edges, and graphs of treewidth 1 are forests which contain at least one edge.
For k € {0, 1,2}, graphs of treewidth at most k are exactly K o-minor-free
graphs. Graphs of treewidth at most 3 can be characterized by a list of 4
forbidden minors, and for £ > 4 the complete list of forbidden minors for
graphs of treewidth at most k is not known.

A more complex, but also more useful definition of treewidth involves
tree-decompositions. A pair (7', {V, }uev(r)) is called a tree-decomposition of
a graph G when T is a tree and {V,,},cv (1) is a family of subsets of V (G)
such that

(T1) Unevry Vo = V(G),
(T2) for each zy € E(G) there exists u € V(T') such that {z,y} < V,, and

(T3) for any nodes u;, us and uw of T', if u € V(u;T'us), then V,,, n'V,,, € V,,.
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The width of (T, {Vy}uev(r)) is max{|V,| : v € V(T)} — 1. The treewidth
of a graph can be equivalently defined as the minimum width of its tree-
decomposition. The pathwidth of a graph is the minimum width of its tree-
decomposition (7', {V, }uev (1)) such that 7' is a path.

Lemma 1.1. Let (T, {V,}uev (1)) be a tree-decomposition of a graph G, let v, and
v be two nodes of T, and let e = uyus € E(vTvs). If W is a path in G with ends
in V,, and V,,,, then W contains a vertex from V,,, N V,,,.

Proof. For i € {1,2}, let T; denote the component of 7" — {e} containing v;,
and let G; = G[U,cy (1) Vol By (T1) and (T2), we have G = G1 v Gy,
so there are no edges between V (G1)\V (G2) and V(G2)\V (Gy) in G. Since
W is a connected subgraph of G intersecting both V(G;) and V(Gs), this
implies that W intersects V (G1) "V (G2). By (T3), wehave V (G1)nV (G2) <
Vi, N Vi, which implies the lemma. O

For each n > 1, the treewidth of the n x n grid is n. Furthermore,
the Grid-Minor Theorem by Robertson and Seymour [25] states that the
treewidth of a graph is bounded in terms of the size of its largest n x n
grid minor. These results imply a deep connection between planarity and
treewidth: A graph H is planar if and only if there exists an integer c such
that any H-minor-free graph has treewidth at most c.

Posets

A partial order on a set V is a binary relation < on V' such that for any ele-
ments z,y, z € V, the following hold:

(1) z < x (reflexivity),
(2) ifx <yand y < z, then = y (antisymmetry), and
(3) ifx <yandy < z, then z < z (transitivity).

A partial order < is called a linear order if for any =,y € V we have z < y or
y < x. When a linear order is named with a letter, say L, we usually write
“r < yin L” rather than “x Ly”.

A strict partial order on a set V' is a binary relation < on V' such that for
any elements z,y, z € V, the following hold:
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(1) not z < z (irreflexivity),
(2) if x < y thennot y < x (asymmetry), and
(3) ifx <yand y < 2, then z < z (transitivity).

A poset is a pair P = (V,<p), where V is a set and <p is a partial order
on V. The set V is called the ground set of P, and its elements are called
the elements of P. In this thesis, we always assume the ground set to be
finite. Often, we do not give an explicit name to the ground set and the
partial order of a poset, but instead we write + € P when z € Vp, and
we use the same relation symbol < for all posets. We avoid ambiguity by
always explicitly specifying to which poset the symbol refers, for example
we write “z < yin P” when = <p y. When we do not have = < y, we write
x Ly.

In a poset P, elements x and y are comparable when z < yory < z.
When = < y, we also write y > x, and we write x < yory > x when z < y
and = # y. When z and y are not comparable, they are incomparable and we
write x || y. For a linear order L, we analogously define the notation y > z,
r < yand y > z. An element z in a poset P is minimal if there does not
exist an element z with 2z < z in P, and maximal if there does not exist an
element z with z < z in P. In a poset P, we denote by Min(P) and Max(P)
respectively the set of minimal elements and the set of maximal elements
of P.

For two elements = and y of a poset P, we say that z is covered by y if
x < yin P and there does not exist an element z such that z < z < y in P.
The cover graph of P is a graph on the ground set of P in which two elements
are adjacent if one of them is covered by the other. For two elements z and
y of P, we have x < y in P if and only if there is a path z( - - -z} in the
cover graph such that vy = z, ;, = y and x,_; is covered by z; for each
i€ {l,...,k}. Such a path is called a witnessing path from x to y.

Posets are usually visualized with diagrams. A diagram of a poset is
obtained by identifying each element of the poset with a distinct point on
the plane and drawing an upward curve from z to y for each pair of ele-
ments such that x is covered by y in the poset. The curves in a diagram
may intersect arbitrarily.

When U is a subset of elements of a poset P, we denote by P[U] the
poset with U as the ground set such that for any =,y € Y we have z < y in
P[U] if and only if z < y in P. The poset P[U] is the subposet of P induced

13



by U. If V is the ground set of P, we denote by P — U the subposet induced
by V\U.

In general, the cover graph of a subposet of a poset P is not a subgraph
of the cover graph of P. A subset of elements U in a poset P is convex if
whenever z < y < zin Pand {z, 2z} < U, wehavey € U. Ifaset U is convex
in P, then P[U] is a convex subposet of P, and the cover graph of P[U] is
an induced subgraph of the cover graph of P.

In a poset, a subset of pairwise comparable elements is called a chain.
The height of a poset is the size of a largest chain in it. The height of a poset
is the maximum number of vertices in a witnessing path in the poset. We
note that unlike in the height of a tree, we count vertices, not edges.

For an element z of a poset P, we define its upset Up(x) and downset
Dp(z) as

Up(x) ={ye P:y=>a2inP} and Dp(z)={yeP:y<zin P}

Similarly, for a subset U of elements of elements of a poset P, the upset
and the downset of U are defined as Up(U) = |J,o; Up(z) and Dp(U) =
U.c Dp(2), respectively.

A realizer of a poset P is a nonempty set of linear orders {L, ..., Ly} of
the ground set of P such that for any pair of elements z,y € P we have

r<yin P ifandonlyif x <yinL,foreachie{l,..., d}.

The dimension of a poset P, denoted dim(P), is the size of its smallest real-
izer. Note that according to this definition, every poset has positive dimen-
sion, and a poset with at most one element has dimension 1.

A linear extension of a poset P is a linear order L on the ground set of
P such that z < y in L whenever x < y in P. The linear orders in any
realizer of P are linear extensions of P, and the set of all linear extensions
of P is a realizer of P. We denote by Inc(P) the set of all ordered pairs of
incomparable elements in P. A linear extension L reverses a pair (a,b) €
Inc(P) if b < ain L, and a subset I < Inc(P) is reversible if there exists a
linear extension L of P which reverses all pairs from /.

The definition of a poset can be reformulated in terms of partitions of
Inc(P) into reversible sets. Commonly, the sets in a partition are required
to be nonempty, but for convenience we allow empty sets in partitions.
Hence, a partition of a set [ is a family {I;, ..., I;} of pairwise disjoint sets
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whose union is /, and zero or more of these sets may be empty. For a sub-
set I < Inc(P), we denote by dimp(I), the least integer d > 1 such that /
can be partitioned into d reversible sets. Note that just like in the case of
the dimension of a poset, dimp(/) is always a positive integer (even if I is

empty).

Proposition 1.2. For every poset P, we have
dimp(Inc(P)) = dim(P).

Proof. Let d = dimp(Inc(P)). If Inc(P) = J, then the partial order of P is
linear and dim(P) = 1 = d, so let us assume that Inc(P) # .

Let {I,...,1;} bea partition of Inc(P) into the smallest possible number
of reversible sets. For each i € {1,...,d}, let L, be a linear extension of P
reversing all pairs from [;. We show that {L,..., L,} is a realizer of P.
For any elements z,y € P, if x < y in P, then we have z < y in every
linear extension of P, in particular in each of the linear extensions L, ...,
L. Now suppose that we have x < yineach of L;, ..., Ly. If z and y were
incomparable in P, we would have (z,y) € I; for some 7, and thus y < z in
L;, so x and y must be comparable in P. Since we have = < y in the linear

extension L;, we have = < y in P. Therefore {L4, ..., L,} is a realizer of P,
so dim(P) < d = dimp(Inc(P)).
Now, let {L1,..., Laim(p)} be a smallest realizer of P, and for each i €

{1,...,dim(P)}, let I; denote the set of pairs from Inc(P) which are reversed
in L, but not in any of Ly, ..., L;_;. By definition of realizer, every (z,y) €
Inc(P) is reversed in some L;, and therefore {Ii, ..., lqm(p)} is a partition
of Inc(P) into reversible sets. This proves dimp(Inc(P)) < dim(P). O

A sequence ((a1,b1), ..., (ax, b)) of pairs from Inc(P) with £ > 2 is an
alternating cycle if a; < b;1, in P foreachi € {1, ..., k} (in alternating cycles
we always interpret the indices cyclically, so that b, = b;). An alternating
cycle ((a1,b1), ..., (ax, by)) is strict if a; || b; whenever j # i + 1.

It is well-known that alternating cycles can be used to characterize re-
versible sets.

Lemma 1.3. Let P be a poset, and let I < Inc(P). The following are equivalent:
(1) I is reversible;

(2) there does not exist an alternating cycle in I;
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(3) there does not exist a strict alternating cycle in 1.

Proof. We start with a proof of the implication (I)=(2)). Let L be a linear
extension of P which reverses all pairs from /. Towards a contradiction,
suppose that there is an alternating cycle ((a4, 1), . .., (ag, b;)) in I. In L we
have

a1 <by<ay<bg<---<ap<b <ay,

which is a contradiction.

Next, we prove (2)=(T]). Suppose that there does not exist an alternat-
ing cycle in /. Let <; denote a binary relation on the same ground set of
P such that for any elements = and y, we have x <; y if either x < y in P,
or there exists an alternating path ((ay,b1), ..., (ax, b)) with k& > 2 consist-
ing of elements of I such that in the poset P we have < by, a; < y, and
a; < biyr forie {1,...,k — 1}. The reflexivity and transitivity of < is obvi-
ous. If there existed distinct elements x and y such that x <; y and y <; z,
then combining the corresponding alternating paths we would obtain an
alternating cycle, contradicting our assumption. Hence <; is a partial or-
der such that z <; y when z < y in P and b <; a for (a,b) € I. Therefore
any linear extension of < is a linear extension of P reversing all pairs from
I.

The implication (2))= (3] is trivial, so it remains to prove (3)=(2). By
contraposition, it suffices to show that if / contains an alternating cycle
then it contains a strict alternating cycle. We claim that an alternating cy-
cle ((a1,b1), ..., (ak, b)) in I with the smallest possible value of £ is strict.
Suppose to the contrary that there exist indices i and j such that j # ¢ + 1
and a; is comparable with b; in P. If b; < a;, thenfori = j—1land j' = i+1
wehaveay < b; < a; < byin Pand 7/ =i+ 1 # j = ¢ + 1. Hence,
possibly after replacing i and j with ¢’ and j’, respectively, we assume that
a; < b;. After shifting the cycle, we may also assume that j < 4, so that

((aj,b)),...,(a;b;)) is an alternating cycle of length less than £ (because
j # i+ 1). The contradiction proves that there is a strict alternating cycle
in 1. [

For subsets A and B of the ground set of a poset P, we define
Incp(A,B) =Inc(P)n (A x B) and dimp(A, B) = dimp(Incp(A, B)).

The dual of a poset P is the poset P? with the same ground set as P such
that z < y in P?if an only if y < x in P. Note that P and P? have the same
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cover graph and the same dimension. More generally, for any I < Inc(P),
we have dimp(I) = dimps(I~1), where I7! = {(b,a) : (a,b) € I}.

The following lemma appeared first implicitly in [34]. We include a
proof for completeness.

Lemma 1.4. Let P be a poset with a cover graph G, and let X < V(G) be a
vertex subset such that every poset whose cover graph is a subgraph of G — X has
dimension at most d. Then dim(P) < 2X!. d.

Proof. By a simple induction, it suffices to prove the case | X| = 1. Sup-
pose that X consists of a single element . Let V' = V(G). Every ele-
ment of Dp(z) is comparable with every element of Up(x), so for every
(a,b) € Inc(P) we have a ¢ Dp(z) or b ¢ Up(x), that is

Inc(P) = Inc(V\Dp(z),V) U Incp(V, V\ Up(z)).

We need to prove that dim(P) < 2d, so because of duality, it suffices to
show that dimp(V\ Dp(x), V) < d.

The poset P — Dp(z) is a convex subposet of P whose cover graph is
a subgraph of G — {z}, so its dimension is at most d. Let {I;,...,1;} be
a partition of Inc(P — Dp(z)) into reversible sets. Suppose that the set
I u Inc(V\Dp(x),Dp(x)) is not reversible in P. By Lemma we can
find in it an alternating cycle ((aq,b1),. .., (ax,b;)). Foreachi e {1,...,k}
we have a;,_; ¢ Dp(z) and therefore b, ¢ Dp(z), so the alternating cy-
cle is contained in Iy, contradicting its reversibility. Hence the set I; U
Incp(V\Dp(z), Dp(x)) must be reversible. A partition of Incp(V\ Dp(x), V)
into d reversible sets can be obtained as

{Il ) II]CP(V\DP(ZE), DP(ZE)), ]2, e ,]d}.
[l

A connected poset is a poset with a connected cover graph, and a com-
ponent of a poset is a subposet induced by the vertex set of a component of
the cover graph.

Lemma 1.5. Let P be a poset, and let I < Inc(P). If dimp(I) > 3, then P
has a component () such that dimg(I N Inc(Q)) = dimp(I). In particular, if
dim(P) = 3, then P has a component @) such that dim(Q) = dim(P).
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Proof. Let )4, ..., Qi be the components of P, and for each i € {1,...,k},
let d; = dimg, (I N Inc(Q;)). Since I N Inc(Q;) < I, we have d; < dimp(]).
Let d = max{dy,...,ds,2}. To complete the proof it suffices to show that
dimp(I) < d: In such case we have 3 < dimp(I) = d, so there exists i €
{1,...,k}such thatd = d; = dimg, (I n Inc(Q;)).
Foreachi e {1,...,k}, let V; be the ground set of Q;, and let {1}, ..., I¢

be a partition of I n Inc(Q);) into reversible sets. For each j € {1,...,d}, let
=T} U--- U I. Define

I.=1n (] Incp(Vi,Vi,) and L =1n | Incp(V;, V).

i1 <io 11>12

We claim that for each j € {1,...,d}, the set I U I_ is reversible in P. Sup-
pose to the contrary that there is an alternating cycle ((a1,b1), .. ., (ax, bx))
in 7 uI.. Foreachie{l,... k}, ifa; € V;, and b; € V,,, then i; < iy. How-
ever, a; and b;;; are comparable and thus lie in one component. Therefore
all a; and b; belong to the same component, so all pairs of the cycle are in
one I/, contradicting its reversibility. Hence I/ U I (and in particular ) is
reversible. A symmetric argument shows that I/ u I. is reversible. Hence
the inequality dimp(/) < d is witnessed by the partition

(I'vI IPul., I3 .. 1%,
O

When bounding the dimension of a poset, we may restrict our attention
not only to a component, but actually to a block. A block of a poset is a
subposet induced by the vertex set of a block of the cover graph. A block
of a poset P is a convex subposet, so its cover graph is an induced subgraph
which either has at most 2 elements, or is 2-connected.

Lemma 1.6 (Trotter, Walczak, Wang [31]]). If every block of a poset P has
dimension at most d, then the dimension of P is at most d + 2.
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Chapter 2

Tree-width at most 2

Already in 1977, Trotter and Moore [33]] showed that posets whose cover
graphs are forests have dimension at most 3. Forests are exactly graphs
of treewidth at most 1, and it is natural to ask whether posets with cover
graphs of bounded treewidth have bounded dimension. The answer to
this question is negative: Kelly [[19] constructed posets of arbitrarily large
dimension with cover graphs of treewidth (and pathwidth) at most 3.

Do posets with cover graphs of treewidth 2 have bounded dimension?
There are several special cases for which an affirmative answer has a sim-
ple proof. Felsner, Trotter and Wiechert [[9] showed that posets with outer-
planar cover graphs have dimension at most 4. Bir6, Keller and Young [[1]]
showed that posets with cover graphs of pathwidth 2 have dimension at
most 17. Wiechert [35]] generalized this result by showing that the dimen-
sion of a poset is at most 6 if its cover graph can be obtained from an outer-
planar graph by subdividing each edge at most once.

The general case was eventually settled by Joret, Micek, Trotter, Wang
and Wiechert [[17]], who showed that posets with cover graphs of treewidth
2 have dimension at most 1276. The proof introduces many techniques
which prove themselves useful in subsequent work, but as the authors ad-
mit, it is “lengthy and technical”, and they “believe there is still room for
improvements”. In this chapter we present a simple proof with a signifi-
cantly better bound.

Theorem 2.1 (Seweryn [29]]). Every poset with a cover graph of treewidth at
most 2 has dimension at most 12.

The key idea of our proof is to facilitate the characterization of graphs of
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treewidth at most 2 as subgraphs of series-parallel graphs. Working with
a series-parallel supergraph of the cover graph introduces more structure
than just an arbitrary tree-decomposition of width 2.

Felsner, Trotter and Wiechert [[9]] showed that there exists a poset with
an outerplanar cover graph and dimension 4, so the largest dimension of
a poset with a cover graph of treewidth 2 is at least 4 and at most 12. We
do not know the exact value, but it seems that it should be greater than
4. However, proving that is not an easy task, because, in general, lower
bounds for dimension are more difficult to prove than upper bounds.
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2.1 Series-parallel graphs

A two-terminal graph (TTG) is a triple (G, s,t) where G is a graph, and s and
t are distinct vertices of G called source and sink, respectively. If G consists
only of the vertices s and ¢ and an edge between them, we call (G, s,t) a
single edge.

Let G, and G5 be two TTGs with G; = (G}, s;,t;) fori € {1,2}. If t; = s
and V' (G1) n V(G2) = {t1}, we define the series composition of G| and G5 as
the TTG

S(Gl, GQ) = (Gl ) GQ, S1, tg).

If tl = tg, S1 = Sog, V(Gl) M V(Gz) = {817151} and E(Gl) M E(Gg) = @, we
define the parallel composition of G; and G as the TTG

P(Gl,Gg) = (Gl U GQ,Sl,tl).

(Note that P(G1, Gs) = P(G,, G4).)

A TTG is series-parallel if it can be produced by a sequence of series and
parallel compositions from single edges, and a graph G is series-parallel if it
contains vertices s and ¢ such that the TTG (G, s, t) is series-parallel.

A recursive construction of a series-parallel TTG G can be represented
by a binary tree. Here, a binary tree is a rooted tree in which every inner
node u has exactly two children: a left child ((u) and a right child r(u). A
series-parallel decomposition of a TTG G is a pair (T, {G.} .y () Where T is
a binary tree with a root up and {G.},cy () is a family of TTGs such that
G, = G and for each u € V(T'), one of the following holds:
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Figure 2.1: A series-parallel decomposition of a TTG. In each of the graphs,
the leftmost vertex is its source, and the rightmost vertex is its sink.

(1) uis an inner node such that G, = S(Gy), Gr(w)),
(2) wis an inner node such that G, = P(G), G()), or

(3) wisaleaf and G, is a single edge.
(See Figure[2.1])

An inner node u is called an S-node if it satisfies (1), or a P-node if it
satisfies (2). For every S-node u, the vertices ;) and s,(,) are the same
vertex which we denote by m, when the decomposition is clear from the
context. Clearly, a TTG admits a series-parallel decomposition if and only
if it is series-parallel.

Swapping the source and the sink in the series-parallel TTG (G, s,t)
yields the TTG (G, t, s) which is also series-parallel, and its decomposi-
tion can be obtained by reversing the decomposition of (G, s,t). The re-
versed series-parallel decomposition is (77, {(Gu; tu; Su)} ey (7)), Where T is
obtained from 7" by swapping left and right children of every inner node.

Observe that if « is a child of a node u in a series-parallel decomposi-
tion (T, {(Gu, 5, tw) }uev(r)), then V(Gy) < V(G,) and V(Gy)\{sw,tw} =
V(Gy)\{54,t.}. By a simple induction, it suffices that ' is a descendant of
u for these inclusions to hold.

It is well-known that a graph has treewidth at most 2 if and only if itis a
subgraph of a series-parallel graph. This is a consequence of the following
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two lemmas.
Lemma 2.2. Every 2-tree is a series-parallel graph.

Proof. A complete graph on 3 vertices is series-parallel, so it suffices to
show that if (G, s,t) is a series-parallel TTG and G’ is obtained from G
by adding a vertex x adjacent to the ends of an edge of G, then the TTG
(G', s,t) is still series-parallel. We prove this by induction on |V (G)|. In the
base case, (G, s,t) is a single edge. The graph G is the complete graph on
{s,t,z} and (G', s,t) is indeed series-parallel.
For the inductive step, assume that |V (G)| > 3,. The TTG (G, s, t) is
a series or parallel composition of two series-parallel TTGs (G, s1,t1) and
(Ga, $2,t2). The neighbors of x in G’ are adjacent in G and the edge between
them lies in G; for some ¢ € {1,2}. Fix that i, let G, = G'[V(G;) u {z}] and
let G5_, = G5_;. By the induction hypothesis, the TTG (G, s;,t;) is series-
parallel. Since (G, s,t) can be obtained as a series or parallel composition
of (GY,s1,t1) and (G, s2,t2), we conclude that (G, s,t) is series-parallel.
This completes the inductive proof.
O

Lemma 2.3. Let (T, {(Gy, Su, tu) }uev (1)) be a series-parallel decomposition of a
TTG (G, s,t), and for each w € V(T') let

_ JHswmu, tu} if uis an S-node,
“ {Su,tu} if u is a P-node or a leaf.

Then (T, {Vu}uev (1)) is a tree-decomposition of G.

Proof. For every edge xzy € E(G) there exists a leaf u of T" such that s,t, =
xy, and thus {z,y} < V,, so the condition (T2) of a tree-decomposition
holds. Furthermore, since (G, s, t) is series-parallel, every vertex of G is an
end of an edge, so

- U eye U vwevie

zyeE(Q) ueV(T)

which means that .y ) Vu = V(G), so the condition (T1) of a tree-
decomposition holds.

For the proof of the condition (T3), fix nodes w;, uy and u of T" such
that u € V(u1Tuz). Suppose first that u, is an ancestor of u,. The inclusion
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o U2

Figure 2.2: The order of nodes on the path u;T'u;. A solid line represents
an edge and a dashed line represents a path of length 0 or more.

Vi, 0 Vi, €V, holds true if u € {uy, us}, so let us assume that u; # u # us.
Let u} denote the child of u; which is an ancestor of u, and let v’ denote the
child of u which is an ancestor of u, (see Figure[2.2)). We have

Vi, € V(Gy,) € VI(Gy)
S (V(Gu)\{sw,tw}) U Vi © (V(Gu)\{8u, tuy }) U V.

Since Vi, 0 (V(Gu)\{5u;, tu; }) = &, we conclude thatindeed V,,, nV,,, =
V.. The case when u; is an ancestor of u; follows from symmetric argu-
ments.

It remains to consider the case when neither of v; and w5 is an ancestor
of the other. Let v be the lowest common ancestor of u; and u,. One of u;
and u, is a descendant of /(v) and one is a descendant of r(v), so

V;tl N %2 - V(Gul) N V(Gu2) - V(Gg(v)) N V(Gr(v)) cV,.

The node u lies on the path v7T'u; for some i € {1,2}. As v is an ancestor of u;,
we already know that V,, nV,, < V,,,and thus V,,, nV,,, € V,nV,, < V,,. O

In order to prove some properties of series-parallel decompositions, let
us fix a series-parallel TTG (G, s,t) with a series-parallel decomposition
(T, {(Gu, 54, tw) buev(r)), and let (T, {V,, }uev (1)) be the tree-decomposition of
G as in the statement of Lemma 2.3

Lemma 2.4. For each x € V(G)\{s, t}, there exists a unique S-node v such that
my = .

Proof. If u; and uy are two nodes of 7" such that v, is an ancestor of us and
r € V(Guy)\{Sus,tu,}, then z € V(Gy,)\{Su,, tw, }. Moreover, every inner
node u € V(T) with z € V(G,)\{su, t.} has at most one child «’ such that
x € V(Gy)\{Sw,tw}. Since x € V(G)\{s, 1}, this implies that there exists a
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unique node v such that for every u € V(T') we have z € V(G,)\{su, t.} if
and only if u is an ancestor of v. In particular, v is the only node such that
x € V(G,)\{Sv,t,} and for each child v' of v we have = ¢ V(G )\{Sv,tv}-
Hence v is the only S-node such that m, = z. O

Lemma 2.5. Let w;, and usy be nodes of T', and let W be a path with ends in V,,,
and V,,. Then for every node u which is an ancestor of exactly one of the nodes u,
and us, the path W contains s, or t,,.

Proof. Without loss of generality, assume that u is an ancestor of u; but not
of uy. Hence the parent v of u satisfies uv € E(u;Tuy) and V,, "'V, = {sy,tu},
so by Lemma W contains s, or t,,. O

Lemma 2.6. Let u; and u, be two nodes of T' such that one of them is an ancestor
of the other and let W be an s,,—t,, path in G. Then there exists v € V (u1T'us)
such that {s,,t,} < V().

Proof. Every inner node v on the path u;7u, is an ancestor of exactly one of
the nodes u; and uy, so by Lemma the path W contains s, or t,,. Since W
contains s,, and t,,, there must exist an edge v,v; € E(u;Tus) such that W
contains s,, and t¢,,. We have s,, = s,, or t,, = t,,, so for some v € {vy, v,}
the path IV contains s, and ¢,, as claimed.

O

2.2 The proof

Let P be a poset whose cover graph has treewidth at most 2. By Lemma
there exists a series-parallel TTG (G, s, t) such that the cover graph of Pisa
subgraph of G. Let us fix such (G, s, t). After replacing (G, s, t) with its se-
ries composition with two single edges, we assume that neither s nor ¢ is an
element of P. Let (T, {(Gu, Su, tu) }uev (1)) be a series-parallel decomposition
of (G, s,1), and let (T, {V.},cy (1)) be the corresponding tree-decomposition
as in Lemma Recall that for every S-node u, the vertices t(,) and s,y
are the same vertex, which we denote by m,,. As s and ¢ are not elements
of P, by Lemma for each element x € P there exists a unique S-node
v e V(T') such that m, = z, and we denote that node by v(z).

Let L;, denote the linear order in which the nodes of T" are visited in
the in-order traversal of 7. In other words, for two nodes u; and uy with a
lowest common ancestor v we have u; < uy in L;, if and only if u; is v or
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a descendant of /(v) and us is v or a descendant of 7(v). Let us partition
Inc(P) into two sets I and /. defined as

I. ={(a,b) € Inc(P) : v(a) < v(b) in Ly, }, and
I. ={(a,b) € Inc(P) : v(a) > v(b) in Ly,}.

Swapping the source s with the sink ¢ and reversing the series-parallel
decomposition swaps the sets I and I... Hence, without loss of generality
we assume that dim(/-.) < dim(/-), so that

dim(P) = dimp(Inc(P)) < dim(/-) + dim(/~) < 2 - dim(/-).

Therefore, to complete the proof of the theorem it remains to show that 7.
can be partitioned into six reversible sets.

For every (a,b) € I, let v(a,b) denote the lowest common ancestor of
v(a) and v(b) in T. Note that for every (a,b) € I, the node v(a, b) is inner
and we have v(a) < v(a,b) < v(b) in L;,. Let

I& = {(CL, b) € I< L a $ St(v(a,b)) and a $ t@(v(a,b)) in P}
Claim 2.7. The set I} is reversible.

Proof. Towards a contradiction, suppose that the set I; is not reversible.
Let ((a1,b1),. .., (ax, by)) be an alternating cycle in Ij. Leti € {1,...,k},
and let v = v(a;, b;). Since (a;,b;) € I;, we have a; < ty,), so in particular
v(a;) # v. As (a;,b;) € I, this means that v(a;) is a descendant of ¢(v). Let
W be a witnessing path from a; to b;;;. We have a; € sy, and a; € t)
in P because (a;,b;) € Ij, so the path W does not contain sy(,) NOr ty().
Hence, Lemma[2.5)implies that v(b;.1) is a descendant of ¢(v). In particular,
v(biy1) < vin L;,. This means that v(b;y1) < v = v(a;, b;) < v(b;) in Ly,.
Since i was chosen arbitrarily, this holds for each i € {1,..., k}, so we have
v(b) < -+ <wv(by) < v(bg) in Ly, a contradiction. O

A symmetric argument shows that the set I3 defined as
I2={(a,b)eI.: Sr(v(ap)) € band t,(yap)) € bin P}
is reversible as well. Therefore
dim(Iy U I7) < 2.
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Let I; = I.\(Ij U I3). It remains to show that /; can be partitioned into four
reversible sets.

Let us partition the pairs (a, b) from I; into two sets /s and Ip depending
on the type of the node v(a, b):

Is = {(a,b) € I; : v(a,b) is an S-node},
Ip ={(a,b) € I : v(a,b) is a P-node}.

Let (a,b) € Ip. For each v' € {{(v(a,b)),r(v(a,b))} we have s,y = Sy
and t,; = ty(ap). Since (a,b) ¢ Ij, we have a < sy(qp) OF a < ty(p) in P, and
since (a,b) ¢ I3, we have b > s,(qp) Or b = ty(ap) in P. Asa || bin P, there
does not exist ¢ € {Sy(a), tu(ap)} sSuch that a < cand ¢ < bin P. Hence we
can partition Ip into two sets I}, and I3 defined as follows:

Ih = {(a,b) € Ip : a4 < Sy(ap) < band a & tyiay) < bin P},
1723 = {(a’ab) € ]’P ta < tv(a,b) $ band a $ Sv(a,b) <bin P}
Let J = Is u I}. We aim to show that dim(.J) < 2. The key property

shared by the pairs from the sets Is and I}, is captured by the following
claim.

Claim 2.8. Let (a,b) € J and let = € P be such that v(x) is not a descendant of
v(a,b).

(1) Ifa<xin P, then a < syqp) < vin P.
(2) Ifb=ain P, then b > t, 3 = x in P.

Proof. We only show (J), as the proof for (2)) is dual. Let v = v(a,b). If
(a,b) € Is, then s,(,) = tyw) and t,,) = t,, so the fact that (a,b) ¢ I§ means
that #,) < bort, < bin P. On the other hand, if (a,b) € I, then ¢y, =
t, < bin P. Hence, in both cases we conclude that ¢,,) < bort¢, < bin P.
As a || bin P, this implies

a £ty ora < t,in P.
Let W be a witnessing path from a to z. If v(a) = v, then v is an S-node and

a = tyw) € Viw), and if v(a) # v, then v(a) is a descendant of /(v) . Hence,
there always exists a descendant v, of /(v) (and of v) such thata € V,,. The
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node v(x) is not a descendant of v (or ¢(v)), so by Lemma2.5/applied to W
we have

V(W) N {Sg(v),tg(v)} # @ and V(W) N {Sv,tv} # .

As a £ tyy) or a £ t, in P, this implies that s,y € V(W) or s, € V(IW). But
Sew) = S, 50 V(W) must contain s,, and therefore we have a < s, < z in
P, as claimed. O

Let us partition J into two sets J; and J, defined as

J1 ={(a,b) e J :a < s, and a < t, in P for some ancestor u of v(a, b)},
Jo = J\J..

We prove that J; and J; are reversible with a sequence of claims.

Claim 2.9. Let (a,b) € Inc(P) and suppose that there exists an ancestor v of
v(a,b) such that s, < band t, < bin P. Then there does not exist an ancestor u
of v(a,b) such that a < s, and a < t, in P. In particular, (a,b) ¢ J;.

Proof. Towards a contradiction, suppose that there exists such an ancestor
u of v(a,b). If u is a descendant of v, then by Lemma 2.5/ applied to a wit-
nessing path from s, to b, we have s, < bort, < b,and thusa < bin P,
contradicting @ || b in P. Similarly, if u is an ancestor of v, then by Lemma
applied to a witnessing path from «a to s,, we have a < s, ora < ¢, in
P, and thus a < b in P, again contradicting a || bin P. O

Claim 2.10. Let v € V/(T') and let ((a1,by), ..., (ag, by)) be an alternating cycle
in J such that v(a;, b;) = v foreachi € {1,..., k}. Then the cycle contains a pair
from Jy and a pair from J,.

Proof. Let W}, ; be a witnessing path from ay to b;, and let W 5 be a witness-
ing path from a, to b,. Since a; || by in P, the witnessing paths W}, ; and
W 2 are disjoint. Foreachi € {1,...,k}, wehave (a;, b;) € I, and thus there
exists a descendant u; of /(v) such that a; € V,,, and a descendant u5 of r(v)
such that b, € V,,,. Hence, by Lemma each of the witnessing paths W, ;
and W, ; has nonempty intersections with {sy.), tew)} and {s.(v), trw)}-

Towards a contradiction, suppose that v is a P-node. We have (a;, b;) €
I}, foreachi € {1,...,k}, s0 a1 € t, = typ) and sy = s, € by in P. This
contradicts IV » having a nonempty intersection with {s(,), ¢ }. It follows
that v must be an S-node.
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We have sy,) = 5y, tw) = Sp(v) = M, trw) = t,, and each of the witness-
ing paths Wj,; and W, » has nonempty intersections with the sets {s,, m,}
and {m,,t,}. Since the paths W} ; and W, , are disjoint, one of them does
not contain m, and thus contains s, and ¢,. If W}, ; contains s, and t,, then
ar < s, < by and a < t, < byin P, so (ay,bx) € Jy, and, by Claim 2.9}
(ay,b1) € Jo. Similarly, if W, contains s, and ¢,, then (a;,0,) € J; and
(ag, bg) € JQ. O

Claim 2.11. Let ((a1,by),. .., (ax, by)) be a strict alternating cycle in I, let j €
{1,...,k}, and let u be a node such that a; < s, < bj1and a; < t, < by, in P.
If at least one of the nodes v(a;, b;) and v(a;i1,b;+1) is a descendant of u, then for
eachie {1,...,k}, v(a;,b;) is a descendant of w.

Proof. We only prove the case when v(a; 41, bj41) is a descendant of u as the
proof for the case when v(a;, b;) is a descendant of u is symmetric.

Without loss of generality, we assume that j = k, that is u is an ancestor
of v(ay, by) such that

ap < S, <by and a, <t,<b; inP.

We prove the claim by induction on ¢. The base case i = 1 holds true.
For the inductive step, let i € {2,...,k} and suppose that v(a;_1,b;_1) is
a descendant of u. Since the alternating cycle is strict, a;_; € b, in P, and
therefore any witnessing path from a,_; to b; is disjoint from {s,,, . }. Hence,
by Lemma v(b;) is a descendant of u. Since (a;,b;) ¢ I3, there exists
a witnessing path from an element of Vs, to b;. Since the alternating
cycle is strict, we have a;, < b; in P, and therefore a witnessing path from
an element of V,,, 4,y to b; is disjoint from {s,,?,}. Hence, by Lemma
v(a;, b;) is a descendant of u. The inductive proof is complete. O

Claim 2.12. The sets J, and J are reversible.

Proof. We prove the claim by showing that every strict alternating cycle in
J contains a pair from J; and a pair from .J,. Fix a strict alternating cycle
((a1,b1),...,(ag,by)) in J. For each i € {1,...,k}, let v; = v(a;, b;). If all
nodes v; are equal, the claim follows from Claim Let us hence assume
that not all v; are equal. There must existi € {1,...,k} such that v; < v;44
in L;,. Without loss of generality, we assume that this holds for i = 1, that
is v; < vy in L;,. Let v denote the lowest common ancestor of v; and vy. To
complete the proof, it suffices to show that

a1 < S, <by and a; <t,<by inP.
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V1 e 3”(52)

Figure 2.3: The order of nodes on the path v;7v(b2). A solid line represents
an edge and a dashed line represents a path of length 0 or more.

as in such case we have (a1, b,) € J;, and, by Claim (ag,by) € Jy. Since
v1 # vg, we have v; # v or v, # v. The reasoning for both cases is sym-
metric, and therefore we assume without loss of generality that v; # w.
Since v; is a descendant of v such that v; < v in L;,, this means that v, is a
descendant of /(v), see Figure

Since v < vy < v(by) in Ly, the node v(by) is not a descendant of ¢(v).
Hence, by Lemma[2.5lapplied to a witnessing path from a, to by, there exists
¢ € {So(v), tow)} such that a; < ¢ < by in P. We claim that ¢ = s4(,). Suppose
to the contrary that ¢ = t4,). By Claim we have a; < s,, < ty) in
P, and by Lemma 2.6/ applied to a witnessing path from s,, to t.), there
exists u € V(£(v)Tv;) such that a; < s, < by and a; < t, < by in P. Hence,
by Claim u is an ancestor of vy, which contradicts v being the lowest
common ancestor of v; and v,. Hence, ¢ = s4,) = s, and a; < 5, < by in P.

By Claim we have s, < t,, < by in P, and by Lemma applied
to a witnessing path from s, to t,,, there exists u € V (vTvy) such that a; <
sy < by and a; < t, < by in P. By Claim [2.11} the node v, is a descendant
of u. This is possible only if u = v, and therefore we have a; < s, < b, and
a; < t, < byin P as desired. ]

Claim shows that dim(7s U I}) < 2. If in the above reasoning we
ignore the pairs from /s, we obtain a proof that dim(7}) < 2. Since the sets
I} and I} are defined symmetrically, we can use symmetric arguments to
show that

dim(I3) < 2.
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We now are equipped with all parts needed to complete the proof:

dim(P) = dim(Inc(P))

dim(I.) + dim(I.)

2-dim(/.)

- (dim(15) + dim(I3) + dim(1;))
(24 dim(1y))

(2 + dim(Is U Ip) + dim(13))
(24+2+2)=12.
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Chapter 3

Excluding a K5 ;,,-minor

In this chapter, we study the case when the cover graph of a poset excludes
the complete bipartite graph K, ,, as a minor for some fixed n. We prove
that in such case the dimension is bounded.

Theorem 3.1 (Seweryn). For every n > 1 there exists d > 1 such that every
poset with a cover graph excluding a K ,,-minor has dimension at most d.

The proof of Theorem 3.1]relies on a characterization of graphs without
large K, ,-minors by Ding [5]]. Ding’s result does not give a precise char-
acterization of K ,-minor-free graphs for every n. Instead, it describes the
approximate structure of graphs excluding a K ,-minor similarly as the
Grid-Minor Theorem describes the structure of graphs without large n x n
grid-minors. Namely, Ding constructed an infinite sequence G, < G; < - -
of graph classes with the property that any class of graphs H excludes a
K, ,-minor for some n if and only if there exists a nonnegative integer m
such that H < G,,,.
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3.1 Graphs without large K5 ,-minors

Ding’s characterization of graphs without large of K, is a bit complicated,
but, roughly speaking, it states that every 2-connected graph without a
large K ,,-minor can be obtained from parts of a simple structure in a small
number of iterations, where in each iteration we attach any number of parts
to already constructed graph. There is a minor technical detail in this the-
orem which makes it difficult to apply the original formulation. Without
going into too much detail, the problem arises when in some iteration we
attach one new part to parts which were constructed in different iterations.
However, a closer inspection of the proof reveals, that the described prob-
lematic case never occurs. Therefore, we state a more low-level variant of
the characterization of graphs without large K ,,-minors which is implicit
in Ding’s manuscript.

Let G be a graph with a specified Hamiltonian cycle C. The edges in
E(G)\E(C) are called chords. For two chords ac and bd without a com-
mon end, we say that ac crosses bd if {b,d} separates {a} from {c} in C.
Clearly, ac crosses bd if and only if bd crosses ac. Using this terminology,
the 2-connected outerplanar graphs can be characterized as those graphs
for which one can choose the Hamiltionian cycle C' so that no two chords
cross. At the base of the characterization of Ks,-minor-free graphs is a
graph class P which generalizes 2-connected outerplanar graphs so that
some pairs of edges may cross, but only in a very specific case. The class P
consists of all graphs G’ which admit a Hamiltonian cycle C' such that each
chord crosses at most one other chord and for every pair of crossing chords
ac and bd we have {ab, cd} < E(C) or {bc,da} < E(C). A Hamiltonian cycle
C with these properties is called a reference cycle for G. (See Figure3.1])

A labeled graph is a pair (G, L) consisting of a graph GG and a set L of pair-
wise nonadjacent vertices of degree 2 in G. If (G4, L1) and (G2, L) are two
labeled graphs and there exist vertices z, y and z such that V (G;)nV (Gs) =

Figure 3.1: A graph from P.
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Figure 3.2: Two labeled graphs (G4, L, ) and (G, L) and their 2-sum (G, L).
The white vertices are the elements of the sets L;, L, and L.

{z,y,2}, z € L1 n Ly and Ng,(2) = Ng,(2) = {z,y}, then (Gy, L;) and
(G3, Ly) are 2-summable, and we define the 2-sum of (G4, L1) and (G, Ls) as
the labeled graph (G, L) where G = (G; U Gs2) —zand L = (L; u Ls)\{z}.
See Figure[3.2}

For a graph G we recursively define a decomposition into labeled graphs as
either the singleton {(G, &)}, or a family obtained from another decompo-
sition by replacing its element (G, L") with two 2-summable labeled graphs
(G1, L) and (GY, L) whose 2-sum is (G', L’). We assume that whenever
we replace a labeled graph (G’, L) with (G}, L}) and (GY, L), the vertex
in L} n L} is a fresh vertex which does not appear in any labeled graph in
the decomposition. This way the labeled graph (G, L) can be restored by
2-summing the elements of the decomposition in any order.

With a decomposition of a graph G into labeled graphs we can asso-
ciate a tree 7" such that each node u corresponds to one element (G, L,,) of
the decomposition and two nodes u« and v are adjacent if L, and L, share
a vertex (in which case (G,, L,) and (G,, L,)) are 2-summable). The pair
(T, {(Gu, L) }uev(r)) is called a tree structure and G is called its 2-sum. Ob-
serve that (T, {V(G)\Ly}uev (1)) is a tree-decomposition of G.

A graph is internally 3-connected if it is obtained from a 3-connected
graph by subdividing each edge at most once. The following result is im-
plicit in the proof of [5, Lemma 2.1].

Lemma 3.2. Every 2-connected K, ,-minor free graph G is the 2-sum of a tree
structure (T',{(Gy, Ly) }uev (1)) such that T'is a tree of height at most n and for
each w € V(T'), the graph G, belongs to P or is an internally 3-connected K ,,-
minor-free graph.

This lemma combined with a result describing the structure of inter-
nally 3-connected K, ,-minor-free graph will yield a characterization of
graphs without large K ,,-minors.
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Figure 3.3: Two strips. The white vertices are the corners. The strip on the
right is a fan.

A strip is a graph of the form G — F' where G is a graph from P for which
there exists a reference cycle C' with edges e; and e, such that all chords in
G are between the two components of C' — {ey, e2}, and F' < {ey, e2} is such
that the minimum degree of G — F'is atleast 2. The ends of the edges ¢, and
ey are the corners of the strip. When one component of C' — {e;, e} consists
of a single vertex z, we call the strip a fan with a center in . See Figure
A fan has exactly 3 corners, and a strip which is not a fan has exactly 4
corners. An augmentation of a graph G is a graph of the form G° U | J_, H;
where each H; is a strip which intersects GGy exactly in its corners, and if two
strips H; and H; intersect, then H; and H; are two fans which intersect in
only one vertex which is their common center. We denote by A, the class
of all graphs which can be obtained as an augmentation of a graph on at
most m vertices.

Ding proved the following [5| Theorem 5.1].

Lemma 3.3. For every positive integer n there exists an integer m such that all
internally 3-connected K, ,,-minor free graphs belong to A,,.

Let G be a class of graphs. We denote by B(G) the class of all graphs
which have all their blocks in G, and for a positive integer m, let us denote
by G (m) the class of all graphs which can be obtained as the 2-sum of a tree
structure (7', {(Gy, Ly) uev(r)) such that T is a tree of height at most m and
each G, belongs to G. Lemmas [3.2]and [3.3|imply the following.

Theorem 3.4. If a graph class H excludes a K, ,-minor for some n, then there
exists an integer m such that H < B((P U A,,)™).

Although this does not play a role in our proof, we note that the exis-
tence of m as in the statement of Theorem 3.4]is not only necessary, but also
sufficient for the class H to exclude a K3 ,-minor for some n.

3.2 Posets with cover graphs in P

The goal of this section is to prove the following lemma.
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Lemma 3.5. Every poset whose cover graph is a subgraph of a graph from P has
dimension at most 6.

The following lemma shows that it suffices to consider induced sub-
graphs.

Lemma 3.6. Every subgraph of a graph from ‘P is an induced subgraph of some
graph from P.

Proof. Every subgraph of a graph can be obtained by a sequence of vertex
and edge deletions. Since removing a vertex preserves being an induced
subgraph, we only need to argue that if / is an induced subgraph of G € P
and e € E(H), then H — {e} is an induced subgraph of some graph G’ € P.
Let C be a reference cycle for G. If e is a chord of C, then we can take
G’ = G — {e}. Let us hence assume that e € E(C). If there exists crossing
chords ac and bd such that e = ab and cd € E(C), then G — {e} belongs to
P as witnessed by the reference cycle (C' — {ab, cd}) + {ac, bd} and we can
again take G’ = G — {e}. Finally if such chords ac and bd do not exist, then
we can take as G’ the graph obtained from G by subdividing e once. [

We proceed to the proof of Lemma

Let P be a poset whose cover graph is a subgraph of a graph G € P.
By Lemma [3.6) we may assume that the cover graph of P is an induced
subgraph of G. Fix a reference cycle C for G.

We claim that there exists an edge ¢, € E(C) such that for every pair
of crossing chords ac and bd we have {ab,cd} < E(C)\{eo} or {bc,da} <
E(C)\{eo}. When there are no crossing chords, we can take any edge of
C as ey. Otherwise, consider a pair of crossing chords ac and bd and an
a—d path W in C such that {ab, cd} < E(C) and the length of W is smallest
possible. In particular, there does not exist a pair of crossing chords with all
ends on . Since C' is a reference cycle for G, ac is the only chord crossed
by bd and bd is the only chord crossed by ac. Hence ac and bd are the only
chords with exactly one end on W. Therefore, no pair of crossing chords
distinct from (ac, bd) contains a vertex of W, and we can take any edge of
W as €o-

Let m = (%, ..., zy) denote the sequence consisting of all vertices of G
in the order in which they appear on the path C' — {ey} (starting from any
end of ey). A tuple of indices («,3,7,0) withl < a < f <y <d < Nis
called a cross if {z42,, 2325} < E(G) (in which case z,z, crosses z3z;5). By
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our choice of ey, for every cross (o, 3,7,9) we have § —a = § — = 1. For
two vertices z, and z3 of G we write z, <, zg when a < 3, and z, <, 23
when o < £.

We need to show that Inc(P) can be partitioned into six reversible sets.
For every (a,b) € Inc(P) we have a # b, so in particular either ¢ <, b or
b <. a. Let us partition Inc(P) into sets /- and /.. defined as

I. ={(a,b) € Inc(P) : a <, b}, and
I. ={(a,b) € Inc(P) : b <, a}

After possibly reversing the ordering of the vertices, we may assume that
dim(/.) < dim(/<), so that

dim(P) < dim(/<) + dim(/,) < 2 - dim(/<).

Therefore, it suffices to show that dim(7-) < 3. Let I} denote the subset of
I defined as

Iy = {(a,b) € I : y <, b for every y € P such thaty > a in P} .
Claim 3.7. The set I} is reversible.

Proof. Towards a contradiction, suppose that the set Ij is not reversible. Let
((a1,b1), ..., (a, b)) be an alternating cycle in I;. For eachi € {1,...,k},
we have b; 1 > a; in P and (a;, b;) € I3, 80 by 1 < b;. This implies that all b;
are equal, which is impossible in an alternating cycle. O

A symmetric argument shows that the set I3 defined as
It ={(a,b) € I : a <, x for every x € P such that z < bin P},

is reversible as well. Let I; = I_\(I} u I2). We need to show that the set I;
is reversible.

Claim 3.8. Let z, a, b, y be elements of P such that x <, a <. b <, y and we
have a < y, x < band a || bin P. Then there exists at a cross («, 3,7, ) such
that

T Xz Za <7rz,8 <z a and b<7‘rz'y <z Zs <7rya

and we have

a<zg<z <y and v<z,<z,<binP.
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(a) (b) (c)

Figure 3.4: Three possibilities for the position of the cross relative to the
vertices x, a, b, y.

Proof. Let W,, be a witnessing path from a to y in P, and let W,; be a wit-
nessing path from z to b in P. The paths W,, and W,;, must be disjoint
because a || bin P. Since z <, a <, b <, y, some edge of W,, must
cross some edge of W,,, that is, there is a cross (a, 3,7, ) such that one
of the edges 2,2, and z3zs belongs to W,, and the other to W,;,. Among
all such crosses (o, 3,7, d) choose one with the smallest difference § — a.
The only edges between {zg,...,z,} and V(G)\{zg,...,2,} are the edges
between {23, z,} and {z,, 25}, so each of the paths W,, and W, has exactly
one end in {23, ..., 2,}. Therefore we have three options, illustrated in Fig-

ure 3.4
(@) 2o <xr 2z <pranda <; 2z, < 25 <z b,
(b) = <z 20 <z 23 <paand b < z, < 25 < Yy, OF
(€) a <y 2a <z 23 <pgband y <; 2, < 2.

We claim that only the option [(b)]is possible.

Towards a contradiction, suppose that the vertices are ordered as in|(a)}
that is z3 <, = <, a <; %z, It is impossible that z,2z, € E(W,) and
2gzs € E(W,,) as then some edge of Wz, would have to cross some
edge of aW,,z3, contradicting minimality of the cross (o, 3,7v,d). Thus,
202y € E(Wy,) and zpz5 € E(W,y), so we have 25 < 25 < band a < z, < z,
in P. Since the cover graph of P is an induced subgraph of G, it contains
the edges 2,23 and z,25. It is impossible that z, is covered by zs; in P as
that would imply @ < 2z, < 25 < bin P. Hence z; is covered by z, in P,
so we have z3 < z; < 2, < z, in P, which contradicts 2,23 being an edge
of the cover graph. This contradiction excludes the option [(a)} and dual
arguments exclude the option so the vertices must indeed ordered as
in[(b)}

We have 23 <; a <; b < z,. Itis impossible that z,z, € E(W,,) and
2gz5 € E (W) as then some edge of alV,, 2, would have to cross some edge
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ar Zo 28 ai b1 Zy 25 Y1

Figure 3.5: A solid arrow from z to y means that x is covered by y and
a dashed arrow from z to y represent a witnessing path from z to y in P
(possibly of length 0).

of zgWyb contradicting minimality of the cross («a, 5,7,0). Hence z,z, €
E(Wy) and z3zs € E(W,,), which implies that we have a < 23 < z5 < y
and zr < z, < 2z, <bin P. O

Claim 3.9. The set I, is reversible.

Proof. Suppose to the contrary that /; is not reversible. Fix a strict alternat-
ing cycle ((a1,b1),. .., (ag, by)) in I;. There must exist an index i such that
a; <r a;41 (cyclically). Without loss of generality we assume that a;, < a;.
Since (a1, b) € I;, we have (a;,b;) ¢ I}, so there exists an element y; € P
such that b; <, y; and y; > a; in P. Let us fix any such ;.

By Claimapplied tor = a, a =ay, b= b and y = y;, there exists a
cross («, 3,7, 9) in (G, 7) with

ar <r 2o <g zs <r a1 and bl <z 2y <x 2§ Xr U1

such that a; < 23 < 25 < y1 and ax, < 2z, < 2, < by hold in P. Since
the cover graph of P is an induced subgraph of G, it contains the edges
2q23 and z, z;. It is impossible that 23 is covered by z, as that would imply
a1 < 23 < 2o < by in P. Therefore, z, is covered by z3 in P. Similarly, z,
must be covered by z; as otherwise we would have a; < z; < z, < by in P.

See Figure
We prove inductively that for each i € {1, ..., k}, we have
] <r @; <z bz <z Ry
This is true for the base case i = 1. For the inductive step, leti € {2,...,k},

and suppose that z3 <, a;—1 <z bi—1 <z 2.

We first show that 25 <. b, <, 2z,. Suppose to the contrary that b; ¢
{23,...,2y}, and let W be a witnessing path from a;_; to b, in P. Every
edge between {z3,...,2,} and V(G)\{zs,...,2,} in G has an end in z5 or
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2y, 50 W contains z3 or z,. Since a;, < 23 and a; < z, in P, we have a;, < b;
in P, which contradicts strictness of the cycle. Hence indeed 23 < b; < 2.
Since (a;, b;) € I, we have a; <, b;. It remains to show that z5 <, a;.
Suppose to the contrary thata; <. 25 (and thus a; < z,). Since (a;,b;) ¢ I3,
there exists an element = such that z < b; in P and = <, q;. Similarly as
earlier, a witnessing from z to b; has to contain z3 or z,, so a; < b; holds in
P, contradicting strictness of the cycle again. This completes the inductive
proof.
We have just shown that z3 <, a; forall i € {1, ..., k}. But we also have
ap <r Zo <r 23,50 we reach a contradiction. The proof follows.
OJ

The sets I}, I2 and I, partition - into reversible sets, so dim(/-) < 3.
Therefore,
dim(P) < 2-dim(/<) < 6.

This completes the proof of Lemma

3.3 Gadget extensions

Let P be a poset with a cover graph G, and let (T, {V,}.ev(r)) be a tree-
decomposition of G such that |V,, n V,| = 2 for each uv € E(T). In general,
even if each bag V,, induces a subposet of small dimension, the dimension
of P can be large. However, Walczak [34]] showed that when the height of P
is bounded, the dimension of P can be bounded in terms of the maximum
dimension of a ‘gadget extension’ of a subposet induced by a bag V,,. In
this section, we present a simple variant of gadget extensions suited for
tree-decompositions corresponding to tree structures. We will prove that
whenever all gadget extensions have bounded dimension and the height
of the tree 7" in the tree-decomposition is bounded, the dimension of P can
be bounded.

For a fixed poset P with a cover graph G and a tree-decomposition
(T, {Vu}uev(r)) of G, we define gadget extensions as follows. Let u € V(T),
and let X = {X,}yen,) and YV = {Y, }yeny(u) be two indexed families of
subsets of V,, such that X, vY, € V, nV, for each v € Nr(u). For such
X and ), we define two superposets of P[V,]: the weak gadget extension
Q.(X,Y) and the strong gadget extension Q)),(X,)). The poset Q,(X,)) is
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Figure 3.6: Gadget extensions of P[V,] in the simple case where u is adja-
cent to only one node vin T

obtained from P[V,] by adding a minimal element «} and a maximal el-
ement b} for each v € Nr(u), where a} is covered by the elements from
Min(P[Y,]) and b} covers the elements from Max(P[X,]). In particular, we
have Y, < Ug,xy(a}) and X, < Dg,x ) (b)), and we have a} < b} in
Q.(X,)) if and only if there exist + € X, and y € Y, such that y < z in
P. The poset )/,(X, ) has the same ground set as ),,(X,)), and we have
a<bin@Q,(X,Y)ifa <bin Q) (X,Y) or there exists v € Ny(u) such that
a = a) and b = b}. Note that the cover graph of @}, (X,Y) can be obtained
from the cover graph of Q),,(X, ) by adding an edge a;b} whenever a || b

in Q,(X,Y). See Figure[3.6 ’ ’

Lemma 3.10. Let P be a poset with a cover graph G and let (T, {V,,}uev (1)) be a
tree-decomposition of G such that T' is a rooted tree of height at most h, for each
wv € E(T) we have |V, n'V,| = 2, and for each w € V(T') all weak and strong
gadget extensions of P|V,,] have dimension at most d. Then

dim(P) < }f (16d)".

=1

Proof. We prove the lemma by induction on h. In the base case h = 0, T
consists of a single node w, and thus P = Q,,(, &), so dim(P) < d < 16d.

We proceed to the inductive step. Assume that ~ > 1 and the lemma
holds for tree-decompositions of height at most 2 — 1. Let w denote the root
of T', For each v € Np(w), let T,, denote the component of 7' — w containing
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v, and let P, = P[J,cy (1, Vul- Observe that every edge of the cover graph
of P, which is not an edge of the cover graph of P must have both of its
ends in V,, n V,. Hence, the pair (T, {V, }uev(z,)) is a tree-decomposition of
the cover graph of P,, and the gadget extensions of P[V, | with v € V(T},)
are the same in both tree-deompositions with a small exception: for u = v,
the gadget extensions of P[V,] in P, do not contain the elements « and
bk . Nevertheless, for each u € V(T,), each gadget extension of P[V,] in
P, is a subposet of a gadget extension of P[V,] in P. Hence, by induction
hypothesis, for each v € Ny(w) we have

dim(P,) < zh](mdy’.

i=1

For each v € Np(w), let Z, = V,, nV,, and let z! and 22 denote the
elements of Z,, in any order.

For each = € V(G)\V,, there exists a unique node v € Ny(w) such that
x € P,, and we denote that node by v(x). We define two functions oy and
op assigning subsets of {1, 2} to elements of P:

oo () = (%) if x €V,
v {ie{1,2}: 2, eUp(x)} ifzgV,.

and

op () = (%) if x eV,
{ie{l,2}: zfj(m) € Dp(z)} ifx¢V,.

The sets o' (S) with S < {1,2} partition the ground set of P, and likewise
do the sets o' (9) with S < {1,2}. We have

dim(P) = dimp(Inc(P)) < >, > dimp(oy'(Su), 05" (Sp))

SUQ{LQ} SDQ{I,Q}

Let (S7**, SB**) be a pair of subsets of {1, 2} which maximizes the value of
dimp(og'(Smex), op ! (SBaX)), let A = o' (S2*¥) and B = op' (S22). Since
there are 16 distinct pairs (Sy, Sp) of subsets of {1, 2}, we have

dim(P) < 16 - dimp(A, B),

so it suffices to partition Incp(A, B) into a sufficiently small number of re-
versible sets.
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For each v € Nr(w), let X, = {z! : i € SE*™} and Y, = {z{ : i € Sy},
Let X = {X,}venyw) and Y = {Y,}oenyw). Let @ = Qu(X,)Y) and Q' =
Q.,(X,Y). For a € A we denote by a* an element of ) and )’ defined as

L a if a e V,,
@y (a) ifa¢V,.

Similarly, for b € B, we denote by b' a n element of () and @’ defined as

B b if beV,,
| bEyy D¢ Vi

Let a € Aand b € B. By the definition of gadget extensions, we have
Up(a) n 'V, = Ug(a*) nV,, = Ug(a') NV,

and
Dp(b) N Vi = Dg(d") NV, = Di(b') A V.

If there does not exist v € Nr(w) such that a and b are elements of P, — 7,
then any witnessing path from a to bin P or from a* to b' in @ or Q' contains
a vertex from V,,, and hence the following are equivalent: (1) a < bin P,
(2) a* < b'in @, and (3) a* < b'in Q'. On the other hand, if a and b
are elements of P, — Z, for some v € Np(w), then a* < b' in @', and if
additionally a || bin P, then a* || b" in Q.

We partition the set Incp(A, B) into sets I; and I, where

L =Tnc(A,B)n | ] Inc(P,—2,) and I, =1Incp(A, B)\I.

veNT(w)

Let D = Z?’:l(l&i)i so that for each v € Nr(w) we have dim(P,) < D.
We claim that dimp(/;) < dD. We have dim(Q)) < d, so let us partition
Inc(Q) into reversible sets I, ..., I3

For each v € Np(w) we have dim(P, — Z,) < dim(P,) < D, so let us par-
tition Inc(P, — Z,) into D reversiblesets I}, , ..., Ip . Foreach j € {1,..., D},
let I, = | )If;v. Hence, for any j € {1,..., D} and v € Ny(w) the set
I, ~Inc(P, — Z,) is reversible.

veENT (w
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For each (a,b) € I, we have v(a) = v(b), and thus a* || b! in Q. To prove
dimp(/;) < dD it suffices to show that for each j, € {1,...,d} and each
j1€{1l,..., D}, the set

9 = {(a,b) e I : (a*, b)) e Iéo, (a,b) € I}

is reversible. Suppose to the contrary that it is not. Fix a strict alternating
cycle ((a1,b1), ..., (ag, b)) in I°7" so that (a},b]) € Ig?" and (a;,b;) € I} for
alli e {1,...,k}. Foreachi € {1,... k}, v(a;) and v(b;) are the same node
which we denote by v;. The set Ié; is reversible in Q, so the pairs (a}, b))
do not form an alternating cycle in (). Hence there must existi € {1, ..., k}
such that a} € b, , in Q (cyclically). As a; < b;y, in P, it must be the case
that v; = v;;1. Let us assume without loss of generality that v; = vs.

The set [ f} N Inc(P,, — Z,,) is reversible, so, not all pairs in the cycle
((a1,b1), ..., (ax, b)) belong to Inc(P,, — Z,,). Hence there must exist i €
{2,...,k} such that v; = v;_; # v;. A witnessing path from a,_; to b; has to
intersect Z,, in an element z. Since v; = vy = v;_; and oy(ay) = oy(az) =
oy(a;_1), we have a1 < z < b; and ay < z < b; in P, which contradicts
strictness of the cycle. Hence dimp(/;) < dD.

Next, we prove that dim(/;) < d. By our assumption, dim(Q’) < d, so
let us partition Inc(Q') into reversible sets I}, ..., Ig,. We claim that for
each (a,b) € I, we have a* || b' in '. Since a < b in P and there does not
exist v € Np(w) such that (a,b) € Inc(P, — Z,), we have a* € b'in @', so
suppose that we have a* > b' in )'. This implies that a* is not minimal and
b! is not maximal in @, so {a',b'} < V,, and therefore a = a* > b' = bin
P[V,,] contradicting a and b being incomparable. Therefore, for each alter-
nating cycle ((a, by), . . ., (ax, by)) in I, the sequence ((a}, b)), ..., (a},bl)) is
an alternating cycle in (). Hence for each j € {1,...,d} the set

{(a,b) e I, : (a*,b") € IZ?,}

is reversible. This proves dimp(/5) < d.
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Summarizing, we have

dim(P) < 16 - dimp(A, B)
< 16 - (dimp(I) + dimp(1y))
<1

6-(dD + d)

h
= 164 - > (16d)'
i=0
h+1 4
— N (16d)'
1

+

.
Il

as required. O

For a labeled graph (G, L), let G + L denote a graph obtained from G
where for each ¢ € L we add a copy ¢’ and all possible edges between the
vertices in Ng(c) U {c, ¢}. Observe that if G is the 2-sum of a tree structure
(T, {(Gu, L) buev(ry) and (T, { Vi, }uev (1)) is the tree-decomposition such that
Vi = V(Gy)\L, for each u € V(T), then for any poset P whose cover graph
is G, each gadget extension of P[V,,] is isomorphic to a subgraph of G, * L,,;
indeed, for each v € Nr(u) and the vertex ¢ € L, n L,, the vertices ¢ and ¢
of G # L can correspond to the elements «} and b} of a gadget extension of
P[V,].

Lemma 3.11. Let (G, L) be a labeled graph with G € P U A,,,. Then there exists
aset U < V(G = L) with |U| < 2m such that every component of (G » L) — U is
a subgraph of a graph from P.

Proof. Suppose first that GG is a graph from P with a reference cycle C'. Let
C* be the Hamiltonian cycle in G * L obtained from C by replacing each
c € L with the vertices c and ¢’ appearing next to each other. The resulting
cycle C* is a valid reference cycle for G = L because any new chords are
between the four consecutive vertices from N¢g(c) U {¢, '} for some c € L,
and these chords do not cross any other chords (because vertices in L are
pairwise nonadjacent). Hence G = L € P, and the lemma is satisfied by
U=.

Now suppose that G € A,,, that is G is an augmentation of a graph
G" on at most m vertices with strips Hj, ..., Hy. Every vertex in a strip has
degree at least 2, so if a vertex z € L belongs to V (H;) forsomei € {1,...,k},
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then both neighbors of x in G belong to H;. Hence every x € L has both
neighbors in one of the subgraphs G, Hy, ..., Hy. This implies

G+L=(G"+(LnV(G)))u

(LnV(H,))).

i

Let U = V(G° = (L n V(Gp))). We have |U| < 2|V(G")| < 2m, and every
component H’' of (G = L) — U is of the form

(H; = (V(G") n V(Hy))) = (L 0 V(H)\V(Go))-

Let us show that any such component is a subgraph of a graph from P. Let
us represent H; as G; — F' like in the definition of a strip, so that G; € P and
F < E(G,;) is a set of edges with ends in corners of H;. All corners of H;
belong to G, so every vertex from L n V (H;)\V(G?), has degree 2 not only
in H;, but also in G;. Therefore, H' is a subgraph of G, « (L n'V (H;)\V (Gy)).
Since (G;, L "V (H;)\V(Gyp)) is a labeled graph and G; € P, we deduce that
H'is a subgraph of a graph from P, as claimed. O

3.4 The proof

Let us prove Theorem [3.1]

By Theorem [3.4 there exists a posmve 1nteger m such that all K5 ,,-
minor-free graphs belong to B((P U A,,)™) Let us fix such m. We will
show that every poset with a K ,,-minor-free cover graph has dimension
at most (96 - 4™)™+2 4 2.

Let Py be a poset with a K, ,-minor-free cover graph G, let G’ be a block
of Gy, and let P = [V (G)]. Since G does not have a K ,,-minor, we have
G € (P u Ay,)™. Let (T,{(Gy, Lu)}uev(r)) be a tree structure whose 2-
sum is G such that the height of 7" is at most m and for each u € V(T
we have G, € P u A,,. For each u € V(T) let V,, = V(G,)\L,, so that
(T, {Vu}uev(r)) forms a tree-decomposition of G. Fix any u € V(T'). Every
gadget extension of P[V,] has cover graph isomorphic to a subgraph of
G, * L,. By Lemma there exists a subset U < V (G, * L,) with |U| <
2m such that every component of (G, * L,) — U is a subgraph of a graph
from P. By Lemmas [3.5|and [1.5} if in a poset every component of the cover
graph is a subgraph of a graph from P, then the dimension is at most 6.
Hence, by Lemma [1.4] every gadget extension of P[V,] has dimension at
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most 6 - 2>™. Since u was chosen arbitrarily, the Lemma implies that
dim(P) < 3"1(16-6-22™)7 < (96-4™)™+2, and since the block G of G was
also chosen arbitrarily, Theorem [1.6|implies that dim(F) < (96-4™)™+2+2,
so the proof is complete.
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Chapter 4

Excluding a ladder

The Grid-Minor Theorem shows that the size of a largest n x n grid-minor
is tied to treewidth: there exists a function f(n) such that in any graph G,
if n is the largest integer such that G has an n x n grid-minor, then we have
n < tw(G) < f(n).

What is the structure of graphs excluding & x n grid-minors for a fixed
value of k? In the case £ = 1, a 1 x n grid is simply a path on n vertices,
and a graph has an 1 x n grid-minor if and only if it contains a path on n
vertices (as a subgraph).

The size of a longest path in a graph G is tied to its treedepth td(G), which
is a graph parameter defined recursively as follows.

0 itV(G) =2,
td(G) = < 1 + min{td(G — {x}) : x € V(G)} if G is connected,
max{td(C') : C'is a component of G} otherwise.

If n is the number of vertices in a longest path in a graph G, then we have
[log,n| < td(G) < n.

2xn grids are called ladders, and in this chapter we show that the size of
alargestladder-minor is tied to a variant of treedepth obtained by replacing
components with blocks in the recursive definition of the parameter. As
a consequence, we prove that posets without long ladder-minors in their
cover graphs have bounded dimension.

Theorem 4.1 (Huynh, Joret, Micek, Seweryn, Wollan [12]]). For every pos-
itive integer n there exists an integer d such that every poset excluding a 2 x n
grid-minor has dimension at most d.
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4.1 Ladders and a variant of treedepth

For n > 1, we call the 2 x n grid a ladder and denote it by L,. Hence, the
vertex set of L, is {1,2} x {1,...,n} and two vertices (i, j) and (7', j') are
adjacentin L, if |i — /| + |j — j'| = 1.

For a graph G, we recursively define a parameter td,(G) as follows.

0 if V(G) = &,
tde(G) = { 14+ min{td(G — {z}) : € V(G)} if G has exactly 1 block,
max{td(B) : Bisablockof G}  otherwise.

Clearly, tds(H) < td2(G) whenever H < G, and every nonempty graph G
has a block B such that tdy(B) = td2(G). We have tdy(G) = 0 if and only if
G is empty, td2(G) < 1if and only if E(G) = ¢, and tdy(G) < 2if and only
it G is a forest.

Theorem 4.2. In any graph G, if n is the largest integer such that G has an L, -
minor, then
llogy n| + 2 < tdo(G) < (n+ 1)(n® + 2).

In particular, Theorem #.2/implies that a graph class G excludes an L,,-
minor for some n if and only if the graphs G' € G have bounded value of
tda(G).

In the proof of Theorem we use the following property of the pa-
rameter tdy(G).

Lemma 4.3. For every graph G and a k-element subset X < V(G), we have
tda(G) < tdo(G — X) + k.

Proof. We prove the lemma by induction on k. The lemma is trivial for
k = 0, so assume that £ > 1 and the lemma holds for (k — 1)-element
subsets of vertices. Let X < V/(G) satisfy | X| = k, and let zp € X. Let
B be a block of G such that tdy(B) = tda(G). If zy ¢ V(B), then we have
tda(G) = tda(B) < tda(G — {z0}), and if zy € V(B), then

tdo(G) = tdy(B) = 1 + min{td(B — {z}) : x € V(B)}
1+ tday(B — {xo})

<
<1+ tda(G — {o}).
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Hence we always have tdy(G) < 1 + tda(G — {x0}). By the induction hy-
pothesis we have

tda (G — {z0}) < tda((G —{xo}) — (X\{wo})) + (K —1) = tdo(G = X) + k — 1.
Hence td(G) < tdo(G — X) + k, which completes the inductive proof. [

The proof of Theorem {4.2|relies on two classical results: Menger’s The-
orem and Erdd&s-Szekeres Theorem.

Theorem 4.4 (Menger’s Theorem [22]). Let G be a graph, let A and B be
subsets of V(G). Then the minimum size of a vertex subset separating A and B is
equal to the maximum number of pairwise disjoint A-B paths in G.

Theorem 4.5 (ErdGs-Szekeres Theorem [8]]). Every sequence of (n — 1)* + 1
distinct integers contains an increasing or decreasing subsequence of length n.

We call a sequence (P, »; Q1, . .., Q,) an n-ladder model in a graph G if
(1) Py and P, are disjoint paths in G, each with an end in V' (@),
(2) @4, ..., Q, are pairwise disjoint V (P, )-V (FP2) paths in G, and
(3) each of P, and P, intersects the paths (), ..., @, in that order.

Note that the paths P, and P, are not required to have an end in V(Q,,).
Clearly, a graph G contains an n-ladder model if and only if L, is a topo-
logical minor of G. Since each vertex in L, has degree at most 3, this is
equivalent to L,, being a minor of G. Ann-ladder model (P, P»; (1, ..., Q)
is rooted at a pair of vertices (21, 22) if each P, is a V(Q1)-z; path.

Lemma 4.6. Let n and t be positive integers, let s = (n — 1)> + 2, let G be a
2-connected graph, and let z; and z, be distinct vertices of G. If td2(G) > ts, then
at least one of the following holds:

(1) G has an L,-minot, or
(2) G has a t-ladder model rooted at (z1, z5).

Proof. We prove the lemma by induction on t. Suppose first that t = 1.
Since G is 2-connected, it is connected, so there exists a z;—z, path @); in
G, and the desired 1-ladder model rooted at (21, z2) in G can be defined as
(P1, Py; (1) where each P, is the trivial path G[{z;}].
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Z1 Z2 Z1 22

P’ P’

Figure 4.1: Disjoint V (P)-V (P’) paths forming an n-ladder model.

Now suppose that ¢ > 2 and the lemma holds for ¢ — 1. Since G is 2-
connected, there exist internally disjoint z;—z; paths P and P’. Let us fix
any such P and P’. By Menger’s Theorem, either there exist s + 1 pairwise
disjoint V' (P)-V (P’) paths, or there exists a set of at most s vertices which
separates V' (P) and V(P’). We consider these two cases separately.

Suppose first that there exist pairwise disjoint V(P)-V (P’) paths @1,
voey Qsi1. Forie {1,... s+ 1}, let z; and 2, denote the ends of (); on P and
P’, respectively. Without loss of generality, we assume that the vertices x,
..., Tsy1 appear on P in that order. Let7: {1,...,s+1} — {1,...,s+ 1} be
a permutation such that the vertices 7, ..., 27 ;) appear on P' in that
order. Since the paths P and P’ are internally disjoint, the paths (), ..., Q,
are nontrivial. We have s — 1 = (n—1)? + 1, so by Erd8s-Szekeres Theorem
there exist indices 2 < iy < - -+ < i, < s such thateither 7(i;) < --- < 7(i,),
or (iy) > --- > 7(ip). In either case (v;, Px;,, x; P'x} ;Qi,...,Q;,) is an
n-ladder model in G (see Figure[4.T)). Thus G has an L,-minor.

Now suppose that there exists a set X < V(G) with |X| < s which
separates V' (P) and V(P’). We have tdy(G) > ts, so by Lemma[4.3we have

tdo(G — X) 2 tda(G) —s >ts —s = (t — 1)s.

Let B be a block of G — X with tdy(B) = td2(G — X) > (t — 1)s. In particu-
lar, we have td(B) > 2, so |V (B)| > 2, which means that B is 2-connected.
As X separates V(P) and V (P’), the block B intersects at most one of the
sets V(P) and V(P’). Without loss of generality we assume that B is dis-
joint from V/(P). Since G is 2-connected, there exist disjoint V' (P)-V (B)
paths Ry and Ry. For i € {1,2}, let z; and z/ denote the ends of R; ly-
ing in V' (P) and V' (B), respectively. Without loss of generality we assume
that the vertices 2y, z1, 23, 22 lie on P in that order (with a possibility that
2 = xp and/or x; = z3). We have tdy(B) > (t — 1)s, so we can apply the
induction hypothesis to B and the vertices 2] and z5. If B has an L,-minor,
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Figure 4.2: Extending a ({—1)-ladder model in B to a t-ladder model rooted
at (21, Zg).

then so does G. Let us hence assume that there is a (¢t — 1)-ladder model
(P, Py; Q1,...,Q4 1) rooted at (21, 25) in B. We can extend it to an ¢t-ladder
model (P, Py; Q1, ..., Q) rooted at (21, 2o) where P/ = P, U R; U x; Pz; and
Q) = x1Px,, see Figure This completes the inductive proof. O

Proof of Theorem Lemma {4.6|applied with ¢ = n shows that a graph G
has an L,-minor whenever tdy(G) > n((n — 1)* + 2). Hence, if n is the
largest integer such that G has an L,-minor, then tdy(G) < (n + 1)(n? + 2).
To show that td2(G) > |log, n| + 2, it suffices to prove that tdy(G) = d + 2
whenever G has an Lys-minor. We prove this by induction on d. In the
base case d = 0, G has an L;-minor, and thus F(G) # J, so tds(G) > 2.
For the inductive step, suppose that d > 1 and G has an Lys-minor. Since
Lsya is 2-connected, G has a block B with an Lys-minor. Hence B contains
two disjoint 27~ !-ladder models. By definition of td,(G), the block B has a
vertex = such that td(B) = 1 + td(B — {z}). At least one of the two 2¢71-
ladder models survives in B — {z}, so by induction hypothesis we have
tda(B — {z}) = (d—1) + 2 = d + 1. Hence

tda(G) 2 tde(B) =1 +tda(B—{z}) =214+ ((d—1)+2) =d + 2.
The proof is complete. O

Lemma 4.7. Let P be a poset with a cover graph G and let m = tdy(G). Then
dim(P) < 2m+1 — 2.
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Proof. We prove the lemma by induction onm. In the base case m = 1, there
are no edges in the cover graph of P, and thus dim(P) < 2 = 2™*! — 2. For
the inductive step, assume that m > 2. Let B be a block of G which max-
imizes the dimension dim(P[V(B)]). By Theorem we have dim(P) <
dim(P[V(B)]) + 2. We also have tds(B) < tda(G) = m, so there exists a ver-
tex x € V(B) such that tdy(B — ) < m — 1. Hence for each H € B — z we
have tdy(H) < m — 1, so by induction hypothesis we can apply Lemma
with X = {z} to deduce that dim(P[V(B)]) < 2-(2™—2) = 2™ —4. Hence

dim(P) < dim(P[V(B)]) + 2 < 2™ — 4 +2 = 2™+ _ 9,
[

Proof of Theorem 4.1} 1f P is a poset with an L,,-minor-free cover graph G,
then by Theorem 4.2 we have tdy(G) < (n + 1)(n* + 2), and by Lemmal[4.7]
we have dim(P) < 20D 42+ _ 9 5o  — 2+D(*+2)+1 _ 9 satisfies the
theorem. O

Let us mention another application of Theorem It is a well-known
fact that any two longest paths in a connected graph G intersect. This is
equivalent to saying that if a connected graph G contains two disjoint paths
each on n vertices, then it contains a path on n + 1 vertices. Ladder minors
have a similar property.

Theorem 4.8 (Huynh, Joret, Micek, Seweryn, Wollan [12]). For every n,
there exists an integer k such that every 3-connected graph G which contains k
pairwise disjoint copies of L,, as a minor, has an L, ,-minor.

The proof of Theorem is not included in this thesis because of its
technical nature.

4.2 Centered colorings

An alternative way to define treedepth is via centered colorings. A vertex-
coloring of a graph G is a function ¢: V(G) — N, and the values of ¢ are
called colors. Let GG be a graph with a fixed vertex-coloring ¢. In a subgraph
H < G, avertex x € V(G) is called a center if the color of z is unique in H,
that is ¢(x) # ¢(2') for every o’ € V(H)\{z}. We call ¢ a centered coloring if
every connected subgraph of G has a center. It turns out that for any graph
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G, the minimum number of colors used by a centered coloring of G is equal
to td(G).

We can analogously define a variant of centered coloring related to our
graph parameter td,(G). Let us call a vertex-coloring ¢ of G a 2-connected
centered coloring if ¢(z) # ¢(y) for each zy € E(G) and every 2-connected
subgraph of G has a center.

Lemma 4.9. The minimum number of colors used by a 2-connected centered col-
oring of a graph G is exactly tds(G).

Proof. We prove the lemma by induction on the number of vertices in G.
The base case V(G) = & is trivial.

For the inductive step, assume that |V (G)| > 1. Let m be the smallest
number of colors in a 2-connected centered coloring of G, and let us show
that tdy(G) = m.

Suppose first that G’ does not have a cutvertex, so it is a single block. Fix
a 2-connected centered coloring of GG which uses m colors, and let x be a
center of G. The coloring uses m — 1 colors on V(G — {z}), so by induction
hypothesis tds(G — {z}) < m — 1. Hence tdy(G) < tdo(G — {z}) + 1 < m.
Now let x € V(G) be a vertex such that tdy(G) = td2(G — {z}) + 1. By
induction hypothesis, G — {z} has a 2-connected centered coloring using
td2(G) — 1 colors. Extend such a coloring by assigning a brand new color
to z. The resulting coloring is a 2-connected centered coloring of G which
uses tdy(G) colors, so m < tda(G).

Now let By, ..., By, be the blocks of G' and suppose that £ > 2. Each
of the blocks admits a 2-connected centered coloring using m colors, so
by induction hypothesis, we have td,(B;) < m for each i € {1,...,k}, and
hence tdy(G) < m. By induction hypothesis, each block B; admits a 2-
connected centered coloring using at most td,(G) colors. After renaming
the colors in the colorings of the blocks, we may assume that they agree
on the cutvertices of G. Combining the colorings we obtain a 2-connected
centered coloring of G which uses tds(G) colors, so m < tda(G). O

Centered colorings are related to linear colorings. A linear coloring of a
graph G is a vertex-coloring of G such that every path in G has a center.
We denote by xii,(G) the minimum number of colors used by a linear col-
oring of GG. Every centered coloring is linear, and therefore we always have
Xiin(G) < td(G). If P is a path on 2™ vertices, then x;i, (P) > m, and there-
fore the length of a longest path in a graph G is less than 2Xi=(%). Hence the
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parameters xj,(G) and td(G) are tied:
Xiin(G) < td(G) < 20m(©),

Analogously to linear colorings we can define cycle centered coloring as
a vertex-coloring in which every cycle has a center. Note that in such a
coloring some pairs of adjacent vertices may have the same color. Using
Theorem 4.2} we show that the minimum number used by a cycle centered
coloring of a graph G is tied to td»(G).

Lemma 4.10. Let G be a graph, let ¢ be a cycle centered coloring of G using at
most m colors, and let (Py, Py; Q1, . .., Qn) be an n-ladder model in G. If ¢ uses
exactly the same set of colors on the paths QQ4, ..., Q,, then n < 2™.

Proof. We prove the lemma by induction on m. The lemma holds in the
base case m = 0: if ¢ uses 0 colors, then ¢ must be an empty graph and
thus n = 0. For the inductive step, let us assume that m > 1, and towards a
contradiction, suppose that n > 2. Without loss of generality we assume
that each of the paths P, and P, has an end in V((Q,,). Consider the cycle
C =P uPu@uQ,, and let x be a center of C'. The vertex x must be a
center of the union H := P, u P, U@y U --- U Q,: the color of z is unique in
C' and if there existed 2’ € V(Q;) with ¢(2’) = ¢(z), then by our assumption
on ¢ we would find vertices of color ¢(x) onboth ); and @,,, contradicting =
being a center of C'. Since n > 2™, our n-ladder model contains two disjoint
2"~ 1-ladder models of the form (P}, P}; Q}, ..., Q%.-1) where P/ = P, for
i€ {l,2},and {Q],...,Q%1} S {Q1,...,Qn}. One of these models does
not contain z, fix such (P, Py; QY ..., Q%._.). By induction hypothesis, ¢
uses more than m — 1 colors on that model, which together with the color
¢(z) give more than m colors, contradiction. Hence indeed n < 2™. O

Theorem 4.11. Let G be class of graphs. The following are equivalent:
(1) there exists an integer n such that no graph in G has an L,-minor.
(2) there exists an integer m such that tdy(G) < m for every G € G,

(3) there exists an integer m such that every graph in G has a 2-connected cen-
tered coloring using at most m colors;

(4) there exists an integer m such that every graph in G has a cycle centered
coloring using at most m colors.
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Proof. By Theorem[.2)the items (1)) and (2)) are equivalent, and by Lemma
4.9|the items ([2)) and (3] are equivalent. Since every 2-connected centered
coloring is a cycle centered coloring, the item (3 implies the item (4 To
complete the proof we show that () implies (). Namely, we show that if
a graph G admits a cycle centered coloring using at most m colors, then G
does not have an L,»-minor.

Suppose to the contrary that the graph G admits a cycle centered color-
ing¢: V(G) — {1,...,m}and Lym isaminor of G. Let (P, P»; @1, ..., Q4m)
be a 4™-ladder model in GG. The coloring ¢ uses a nonempty subset of
{1,...,m} on each V(@Q;). Since there are 2™ — 1 nonempty subsets of col-
ors, by the pigeonhole principle there exists indices 1 < i; < - -+ < igm < 4™
such that ¢ colors the paths Q);,, ..., Q;,.. with the same set of colors. Let P
and P, be V(Q;, )~V (Qi,. ) paths contained in P, and P, respectively. This
way we obtain a 2™-ladder model (Pj, P;; Q;,, - . ., @i, ) Which contradicts
Lemma This completes the proof. O

Let xcyc(G) denote the minimum number of colors used by a cycle cen-
tered coloring of a graph GG. We conclude this section with a short discus-
sion about the asymptotic of the function tying tds(G) with xcy(G).

As we have already mentioned, for any graph G we have td(G) < 2xin(@),
What is the best bound on td(G) in terms of xy,(G)? Kun et al. [21]] con-
structed graphs R, R, ... such that lim,,_,, ’113‘(553) = 2, and they conjec-
tured that td(G) < 2 x1in(G) for every graph GG. They also gave a polynomial
bound on td(G) in terms of x1,(G), and the best known bound is by Bose
et al. [2]], who showed that td(G) € (xin(G))!°*°W). These results suggests
that tdy(G) may be linearly bounded in terms of yy.(G).

Conjecture 4.12. There exists a constant c such that for every graph G we have

td2(G) < ¢+ Xeye(G).
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Chapter 5

k-Outerplanarity

Felsner, Trotter and Wiechert [9]] showed that posets with outerplanar cover
graphs have dimension at most 4. A well-studied and useful generaliza-
tion of outerplanar graphs are k-outerplanar graphs. A planar drawing of
a graph is k-outerplanar if after k-fold removal of the vertices on the bound-
ary of the outer face there are no vertices left, and a k-outerplanar graph is
a graph which has a k-outerplanar drawing. For each k > 1, k-outerplanar
graphs form a minor-closed class of graphs. In this chapter, we show that
posets with k-outerplanar cover graphs have dimension O(k?).

Theorem 5.1. There exists a function f(k) € O(k*) such that every poset with a
k-outerplanar cover graph has dimension at most f (k).

As a consequence of this result, we improve the bound on the dimen-
sion of posets with planar cover graphs in terms of their height.

Theorem 5.2. There exists a function g(h) € O(h*) such that every poset of height
h with a planar cover graph has dimension at most g(h).

Previously, the best known bound was O(h°).
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5.1 Min-max reduction and unfolding

In this section we introduce two standard techniques from dimension the-
ory: min-max reduction and unfolding.

The min-max dimension of a poset P is dimp(Min(P), Max(P)). The fol-
lowing well-known lemma shows that in order to bound the dimension of
a poset, it suffices to bound the min-max dimension of a poset with similar
properties as P.

Lemma 5.3 (Min-max reduction). For each poset P there exists a poset P’ such
that

(1) the cover graph of P’ can be obtained from the cover graph of P by adding
zero or more degree-1 vertices,

(2) the height of P' is equal to the height of P, and
(3) dim(P) < dimp/(Min(P"), Max(P’)).

Proof. Let P’ be a superposet of P obtained by adding the following new
elements to P: for every non-minimal element = € P introduce a new min-
imal element z~ covered only by 7, and for every non-maximal element
x € P introduce a new maximal element z* covering only x. Furthermore,
for each x € Min(P), let = denote the element x itself, and similarly, for
each x € Max(P) let z* denote the element z. Observe that for any ele-
ments a and b of P, ifa < bin P, thena™ < b*in P/,and if a || bin P, then
a” || b* in P’. The cover graph of P’ is obtained from the cover graph of P
by adding degree-1 vertices, and P’ has the same height as P. It remains
to show that dim(P) < d, where d = dimp/(Min(P’), Max(P’)).

Let {I],..., I} be a partition of Incp/(Min(P’), Max(P’)) into reversible
sets. For each j € {1,...,d}, let [; = {(a,b) € Inc(P) : (a7,0") € I}}.
For every (a,b) € Inc(P) we have (a=,b") € Incp(Min(P’), Max(P’)), so
{I,...,1;} is a partition of Inc(P). Observe that each I, is reversible in P;

otherwise, some /; would contain an alternating cycle ((a1, b1), . .., (ag, bx))
and the set I} would contain the alternating cycle ((a;,by), ..., (a;,b})),
contradicting its reversibility. Hence, dim(P) < d. O

Let us observe that adding a degree-1 vertex to a graph preserves its
k-outerplanarity. For suppose that G is a graph with a k-outerplanar draw-
ing, and for each i € {1,..., k}, let V; denote the set of vertices lying on the
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Figure 5.1: Unfolding a poset from a minimal element x, and from a max-
imal element y.

boundary of the outer face after (i — 1)-fold removal of the vertices on the
boundary of the outer face. Hence V(G) = V; u --- UV}, and if G’ is the
graph obtained from G by adding a degree-1 vertex z attached to a vertex
y € V;, then we can extend the drawing of G to a drawing of G’ such that
x is on the outer face of G[V; u - - - U Vj]. This way, in the iterative process
of removing the vertices from the boundary of the outer face, the vertex x
will be removed together with y in the i-th iteration, so the drawing of G
is k-outerplanar.

Let P be a connected poset with at least two elements (so that Min(P) n
Max(P) = ). Let zp € Min(P) u Max(P). Define an infinite alternating
sequence of sets (Ao, B1, A1, Bs, . ..) as follows. If zy € Min(P), then let
Ap = {xo} and By = Up(zy) n Max(P), and if zy € Max(P), then let Ay = &
and By = {x¢}. For every i > 1, define inductively

A; = (Dp(B;) n Min(P))\A;_1, and
Bi+1 = (Up(AZ) M 1\/IELX(P))\BZ

(See Figure[5.1}) Such a sequence (Ao, By, A1, Bs, . . .) is the unfolding of P
from z. Since P is connected, the sets A,, A, ... partition Min(P), and
the sets By, By, ... partition Max(P). Note that the set A, may be empty,
and since P is finite, starting from some point all sets in the unfolding are
empty. Moreover, an element of A;, can be comparable with an element
of B;, only if i3 € {i1,i; + 1}, and for each i > 1, every element of A, is
comparable with an element of B; and every element of B; is comparable
with an element of A;_; (unless ¢ € Max(P) and i = 1).
The following lemma is well-known.

Lemma 5.4. Let (Ag, By, A1, Bs, .. .) be an unfolding of a poset P. Then there
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exists an index 1 = 1 such that
dimp(Min(P), Max(P)) < 2 - max{dimp(A;, B;),dimp(A;, Bi41)}.

Proof. Let us partition Incp(Min(P), Max(P)) into two sets /. and I-, so
that for each pair (a,b) € Incp(Min(P), Max(P)) witha € A;, and b € B;,
we have (a,b) € I if A; appears in the unfolding earlier than B;, (that is
i1 < i) and (a,b) € L. if A;, appears in the unfolding later than B;, (that is
i1 = i2). Let d denote the largest among all of the values dimp(A4;, B;) and
dimp(A;, Biy1) with ¢ > 1. To complete the proof it suffices to show that
dimp(I.) < d and dimp(I.) < d. The proofs of these bounds are dual, so
we only show the latter.

For each i > 1, let {I},..., I} be a partition of Incp(A4;, B;) into d re-
versible sets, and for every j € {1,...,d}, define I = J,., . Let I, =
U, =, Incp(Ai, B;,). Note that the sets I, ..., I9, I partition I... We claim
that for each j € {1,...,d}, the set I/ U I, is reversible. Towards a contra-
diction, suppose that there is an alternating cycle ((aq,b;),. .., (ax, b)) in
I’ U Iy. Foreach i € {1,...,k},if i; is the index such that a; € A;,, then the
index iy such that b; € B, satisfies i; > iy (because (a;,b;) € I..), and the
index i, such that b;;; € B;, satisfies i € {i1,4; + 1}, so, in particular, i > ;.
Since these inequalities hold cyclically for all ¢, there must exist an index
i such that for all i € {1,...,k} we have (a;,b;) € I/ n Inc(A;,, B;,) = I,
contradicting reversibility of I, 2]1 Hence I’ U I is indeed reversible, and in
particular [’ is reversible. Therefore, {I' U Iy, I?, ... %} is a partition into d
reversible sets witnessing that dimp(/-.) < d. O

11

Lemma 5.4l can be reformulated as follows.

Lemma 5.5. Let P be a connected poset with at least two elements, and let z, €
Min(P) u Max(P). Then there exist P' € { P, P%} and an index i > 1 such that
in the unfolding (Ao, B1, A1, Ba, . ..) of P’ from x we have x¢ ¢ Up/(A;) and

dimp(Min(P), Max(P)) < 2 - dimp/(A;, By).

Proof. Without loss of generality assume that x, is a minimal element in P.
Let (Aj, By, A, BS, . ..) be the unfolding of P from z,. Then the unfolding
of P4 from zg is (A, B, A}, By, ...) where A} = &5 and for i > 1 we have
B = A;_, and A} = B]. By Lemma 5.4 there exist i > 1 and j € {i,i + 1}
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such that dimp(Min(P), Max(P)) < 2 - dimp(Aj, B}). If j = i, then x¢ ¢
Up(A;), so P and i satisfy the lemma, and if j = ¢ + 1, then

dimp(Min(P), Max(P)) < 2 - dimp(A}, Bl,)
=2 dimpa(Bj,, 4;) = 2 - dimpa(47, 1, B},4)

and zo ¢ Dp(B! ;) = Upa(Al,;), so P and i + 1 satisfy the lemma. H

Lemma 5.5/allows us to reduce a poset to another one whose min-max
dimension is at most 2 times smaller, and which has stronger structural
properties than the original poset.

Lemma 5.6. Let P be a connected poset with at least two elements, let x, €
Min(P) uMax(P), and let G be the cover graph of P. Then for some P’ € { P, P%}
there exist a convex subposet () of P' and a component C of G — @ such that
zo € V(C), Max(Q) < Up/(V(C)), Min(Q) n Dp/(V(C)) = &, and

dimp(Min(P), Max(P)) < 2 - dimg(Min(Q), Max(Q)).

The following easy lemma will be used in the proof of Lemmal5.6| (and
also later on, in the proof of Theorem [5.1)).

Lemma 5.7. For every poset P with two subsets of elements A and B we have
dimp(A, B) = dlmp(A, B n UP(A))

Proof. Since B n Up(A) < B, we have dimp(A, B n Up(A)) < dimp(A, B).
Let d = dimp(A, B n Up(A)). It remains to argue that dimp(A, B) < d.
Let {I,...,1;} be a partition of Incp(A, B n Up(A)) into reversible sets.
If ((a1,b1),- .., (ak,bg)) is an alternating cycle in Incp(A, B), then for each
i € {l,...,k} we have a; ;1 < b; in P, and thus b, € Up(A). Hence no
alternating cycle in Incp(A, B) contains a pair from Incp(A, B\ Up(A)), so
the set I; U Incp(A, B\ Up(A)) is reversible. Therefore the partition {/; U
Incp(A, B\Up(A)), L5, ..., 1;} witnesses that dimp(A, B) < d. O

Proof of Lemmal[5.6] Apply Lemma [5.5/to P and z, to obtain P’ € {P, P%}
and an index i > 1 so that for the unfolding (A, B;, A1, B, ...) of P’ from
xo we have zy ¢ Up/(4;) and

dimp(Min(P), Max(P)) = dimp/(Min(P"), Max(P")) < 2 - dimp/(A;, B;).
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Let @ = P'[Up/(A;) n Dpi(B;)]. We have Min(Q)) = A, since every
element of A; is comparable with an element of B; in ), and Max(Q) =
B; n Ug(A4;), so by Lemmal5.7jwe have

dimp/ (A;, B;) = dimp/(A;, B; n Upn(A4;)) = dimg(Min(Q), Max(Q)).

Hence, dimp(Min(P), Max(P)) < 2 - dimg(Min(Q), Max(Q)).

Since z¢ ¢ Upi(A;), it is not the case that z( is maximal and i = 1. In
particular, o ¢ @ and Max(Q) < Upi(A4;-1). Let C be the component of
G — Q containing x(. By definition of unfolding, for each a € A;_; thereis a
(not necessarily witnessing) z¢—a path in G— (@), and every x(—U p/(4;) path
in G contains an element of ). Hence, Max(Q) < Up/(4;-1) < Up/(V(C))
and Min(Q) n Dp/(V(C)) = A; n Dp/(V(C)) = .

O

When P is a poset with a planar cover graph, Lemma [5.6| gives us a
poset () in which every maximal element is comparable with an element
on the boundary of the outer face.

Lemma 5.8. For every height-h poset P with a fixed planar drawing of its cover
graph G, there exists a poset () of height at most h such that its cover graph H is a
subgraph of G, every maximal element of () is comparable with an element on the
boundary of the outer face in the inherited drawing of H, and

dimp(Min(P), Max(P)) < 2 - dimg(Min(Q), Max(Q)).

Proof. 1f dimp(Min(P), Max(P)) < 2, then the lemma is satisfied with the
empty poset as (). Hence we assume that dim(Min(P), Max(P)) > 3. By
Lemma (1.5 we may assume that P is connected.

No two minimal elements of P are adjacent in GG, so there must exists a
non-minimal element on the boundary of the outer face of G. Let P’ be a
superposet of P obtained by adding a minimal element z, covered only by
one non-minimal element of P on the boundary of the outer face of G, let
G’ denote the cover graph of F’, and extend the drawing of G to a planar
drawing of G’ by adding x, and the incident edge on the outer face.

Let P” € {P',(P")", Q < P"and C < G — @ be obtained by applying
Lemma[5.5to P’ and z,. We have

dimp(Min(P), Min(P)) < dimp/(Min(P"), Max(P"))
= dimp//(Min(P”), MaX<P”))
< 2 - dimg(Min(Q), Max(Q)),
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and the height of () is at most ~. The ground set of () is disjoint from V' (C'),
so in particular, ¢ ¢ (), so the cover graph H of () is a subgraph of G. It
remains to argue that every b € Max((Q) is comparable with an element on
the boundary of the outer face of H.

Since Max(Q) < Upr(V(C)), for every b € Max(Q) there exists a wit-
nessing path W from an element z € V(C) to bin P”. C is a connected
subgraph of G’ which contains the vertex x, belonging the the outer face
of H, so the path IV has to intersect the boundary of the outer face of H.
This proves that every b € Max(()) is comparable in () with an element on
the boundary of the outer face of H. O

5.2 The roadmap

In this section we formulate three lemmas and show how they imply The-
orems5.T|and 5.2} Lemma(5.10]is a result by Kozik, Micek and Trotter [20],
and the proofs of Lemmas [5.9 and are presented in the Sections
and 5.4} respectively.

Let P be a poset with a planar drawing of its cover graph, and let I <
Inc(P). If zy and y, are two vertices on the boundary of the outer face such
that o < 1 in P and for each (a,b) € [ we have a < ypand b > x¢ in P,
we say that I is doubly exposed by (xo, yo) in the drawing. The pair (x¢, yo) is
called a min-max pair if o € Min(P) and y, € Max(P). Note that if (zo, yo)
is a min-max pair, then P — {z¢, o} is a convex subposet of P, and thus,
the cover graph of P — {z¢, yo} is a subgraph of the cover graph of P. The
following is the first lemma used in the proof of the main theorem.

Lemma 5.9. For every poset P with a k-outerplanar cover graph, there exist a
poset R, a drawing of the cover graph of R and a subset I < Inc(R) doubly exposed
by a min-max pair (xo, yo) such that the inherited drawing of the cover graph of
R — {xo, yo} is k-outerplanar, and

dim(P) < 4k - dimg(1).

A standard example of size n is a poset consisting of n minimal elements
ai, ..., a, and n maximal elements by, ..., b, such that a; < b; if and only if
i # j. For n > 3, a standard example of size n is a smallest and canonical
poset of dimension n. Given a poset P, a subset I < Inc(P) such that for
any distinct (aq, b1), (a2, b2) € I in we have a; < by and ay < by in P is also
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called a standard example. For any subset I < Inc(P), we denote by pp(I)
the size of a largest standard example contained in /. The second lemma
is a result by Kozik, Micek and Trotter [20]].

Lemma 5.10 ([20]]). Let P be a poset with a planar drawing of its cover graph,
and let I < Inc(P) be a doubly exposed set in the drawing. Then

We note that very recently, Micek, Smith Blake and Trotter [23] an-
nounced that they improved the bound in Lemma from quadratic to
linear. This improvement, together with our proof gives an O(k?) bound
for the dimension of posets with k-outerplanar cover graphs.

The third lemma is as follows.

Lemma 5.11. Let P be a poset with a planar drawing of its cover graph, let I <
Inc(P) be a set doubly exposed by a min-max pair (xo, yo) such that the inherited
drawing of the cover graph of P — {x, yo} is k-outerplanar. Then

pp(I) < 440(k + 1).

The multiplicative factor 440 in Lemma is quite large and subop-
timal, but we did not try to optimize it as the proof is already long and
technical.

In the proof of Lemma we show that if in a poset with a planar
drawing of its cover graph there is a doubly exposed standard example of
size 440(k + 1), then it contains a subposet isomorphic to Kelly,, ., 5, where
Kelly, denotes the Kelly poset defined as follows. The ground set of Kelly,,
is the family

{al,...,an}u{bl,...,bn}u{cg,...,cn,Q}u{dz,...,dn,g}

of subsets of {1,...,n}, where a; = {i}, b; = {1,...,n}\{i}, ¢; = {1,...,i},
d; = {i+1,...,n}, and we have < y in Kelly, when = < y (See Fig-
ure [5.2). Kelly posets were discovered by Kelly [[19] as a construction of
planar posets with unbounded dimension (since Kelly, contains a stan-
dard example of size n, its dimension is at least n). We show that the oc-
currence of a subposet isomorphic to Kelly,, , 5 prevents the drawing of the
cover graph from being k-outerplanar.
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Figure 5.2: The poset Kelly.

Proof of Theorem Let P be a poset with a k-outerplanar cover graph. By
Lemma [5.9| there exist a poset R with a planar drawing of its cover graph
and a subset I < Inc(P) which is doubly exposed by a min-max pair (zo, yo)
such that dim(P) < 4k - dimg(/) and the inherited drawing of the cover

graph of R — {zg, yo} is k-outerplanar. Hence, by Lemmas and
dim(P) < 4k - dimg([) < 4k - pr(I)? < 4k - (440(k + 1))*.
[

Proof of Theorem Let P be a height-h poset with a planar cover graph.
Adding degree-1 vertices to a graph preserves its planarity, so by Lemma
there exists a height-h poset P’ with a planar cover graph G such that
dim(P) < dimp/(Min(P’), Max(P")). Apply Lemma5.8|to such P’ to obtain
a poset () of height at most h with a planar drawing of its cover graph H
such thatevery b € Max(()) is comparable with an element on the boundary
of the outer face and

dim(P) < dimp(Min(P"), Max(P"))
2

<
< 2 - dimg(Min(Q), Max(Q)) < 2 - dim(Q).

We claim that the drawing of H is (2h — 1)-outerplanar. For every z € ()
there exist b € Max(()) and an element y from the boundary of the outer
face such that x < b and y < bin ). Since the height of () is at most &,
the union of witnessing paths from z to b and from y to b contains an z—y
path on at most 2h — 1 vertices. Hence, after removing the vertices from the
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boundary of the outer face in H at most 2h — 1 times, = will be removed.
This proves that H is (2h — 1)-outerplanar.

We just showed that for every height-h poset P with a planar cover
graph there exists a poset () with a (2h — 1)-outerplanar cover graph such
that dim(P) < 2 - dim(Q). Hence, if f (k) e O(k?) is a function satisfying
Theorem[5.1} then the function g(h) := 2- f(2h—1) satisfies Theorem[5.2l [

5.3 Reduction to doubly exposed posets

In this section we prove Lemma

Let P be a poset with a k-outerplanar cover graph. If dim(P) < 4k, then
the lemma is satisfied by any poset R with a k-outerplanar cover graph
and any set / which is doubly exposed by a min-max pair (even I = ¥).
Therefore we may assume that dim(P) > 4k. Adding degree-1 vertices
preserves k-outerplanarity, so by Lemma 5.3/ there exists a poset P’ with a
k-outerplanar cover graph such that

4k < dim(P) < dimp/(Min(P'), Max(P")).

Let G be the cover graph of P’ and let us fix a k-outerplanar drawing
of G. When a planar drawing of a graph G’ is clear from the context (for
instance, when G’ < (), we denote by 0G’ the set of vertices of G’ which
lie on the boundary of the outer face in the drawing of G'.

By Lemma there exists a poset () such that the cover graph H of ()
is a subgraph of G, every b € Max((Q) is comparable in () with an element
in 0H and

dimp (Min(P'), Max(P")) < 2 - dimg(Min(Q), Max(Q)).

Fix such Q and H.

Let H, = H, and define recursively H; = H;_y — 0H;_ fori e {2,... k}.
Since the drawing of G is k-outerplanar, the inherited drawing of H is k-
outerplanar as well, so the sets 0H, ..., 0Hj partition the set V (H). Define
a function a: Min(Q) — {1,...,k} such that for each a € Min(Q), a(a) is
the smallest index ¢ such that a is comparable with an element from 0H;
in Q. Foreachi € {1,...,k}, let A; = a~'(i), let Q; = Q[Ug(A;)], and let
H! denote its cover graph H[Ug(A,)] of Q;. Observe that H; < H,. Every
a € Min(Q);) is comparable with an element of 0H/: since Min(Q;) = A;,
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there exists = € 0H; comparable with a, and since H/ < H,, such an element
x belongs to 0H;.

Let )’ denote one of the posets ()}, ..., @}, which has the largest min-
max dimension. Let H’ denote the cover graph of (). We have

k

dimq (Min(Q), Max(Q)) < )| dimg(A;, Max(Q))

i=1

-

= Y dimg(A;, Ug(4;) n Max(Q)) by Lemma[5.7]

1

%

Z dime (Min(Q;), Max(Qy))

i=1

< k - dimg (Min(Q'), Max(Q")),

Ea

and every minimal element of ()’ is comparable with an element from 0H".
Furthermore, since ' is a convex subposet of (), also every maximal ele-
ment of ()’ is comparable with an element from 0H'.

We already know that

4k < dim(P) < dimp/(Min(P'), Max(P'))
<2. dlmQ(MID(Q)> MaX(Q))
<2

k- dimQ/ (MlIl(Q,) , MaX(Q,)) y

so dimg (Min(Q'), Max(Q')) > 2. By Lemma(I.5, Q’ has a component Q" of
the same min-max dimension as )’. Fix such a component ), so that

2 < dimg (Min(Q"), Max(Q")) = dimg,(Min(Q"), Max(Q")).

and let H” denote the cover graph of Q)".

It remains to construct a poset R with a subset I < Inc(R) doubly ex-
posed by a min-max pair (zg, o) such that dimg(Min(Q"), Max(Q")) <
2 -dimpg(/) and the cover graph of R — {x, yo} is k-outerplanar. To achieve
this we need to unfold the poset.

Since dimgr(Min(Q"), Max(Q")) > 2, Q" is not a 1-element poset, so H"”
must contain two adjacent vertices on the boundary of the outer face. At
most one of those vertices can be a minimal element of ()", so ¢ H” contains
a non-minimal element of Q”. Let Q| be a superposet of Q" obtained by
adding a minimal element z, covered by a non-minimal element of Q)" from
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0H", and let H’ denote the cover graph of ()",. Extend the drawing of H”
to a planar drawing of H'| with z, on the boundary of the outer face. Let
Q"7 € {Q",(Q")%, Ry < Q7 and C = H| — R, be obtained by applying
Lemma5.6/to Q. and z, so that

2 < dimgr(Min(Q"), Max(Q")) < dimgy (Min(Q’} ), Max(Q'}))
< 2 - dimpg,(Min(Ry), Max(Ry)).
In particular, dimpg,(Min(Ry), Max(Ry)) > 1, so Ry is not empty. Let J;
denote the cover graph of Ry, and note that J; is a subgraph of H” and
hence the induced drawing of J; is k-outerplanar. We shall construct the
poset R as a superposet of R, obtained by adding a minimal element x, and
a maximal element y, so that Incg,(Min(Ry), Max(Ry)) is doubly exposed
by (o, yo)-

The graph C'is a component of H — R, so in H, the vertices of C
are adjacent only to each other and to elements of R,. Since D (V/(C)) N
Min(Ry) = &, no element of R, is covered by an element of V' (C') in Q. In
particular, V' (C) is convex in Q" .

We distinguish two subsets D; and D, of d.J;. Let D; denote the set of
those vertices y € 0.J, which cover some element of V(C) in Q”, and let
Dy = 0(HY[V(C) v V(Jy)])\V(C). Obtain the poset R from R, by adding
a minimal element z, covered by the elements in the set Min(R,[D;]) and
a maximal element y, covering the elements in the set Max(Ry[D-]), see
Figure This way we have Dy < Ug(xy). Since Max(Ry) < Uqr(V(C)),
we have Max(R) < UQﬂ(Dl), and therefore Max(Ry) < Ug(zo). Moreover,
for every a € Min(Ry), a witnessing path in Q”/ from a to an element of 0 H"
is disjoint from C, and thus intersects o(H"[V (C) u V(Jp)])) in an element
of Ds,. Since Dy < Dg(yo), this implies Min(Ry) < Dg(yo). Finally, observe
that some element of D, is adjacent to a vertex of C'in H”, so Dy n Dy # (.
Since Dy < Ug(zo) and Dy < Dg(yo), this implies that =y < yo in R.

It remains to show that there exists a planar drawing of the cover graph
of R with xy and y, on the boundary of the outer face. The cover graph of
R — {yo} is a minor of H obtained by contracting all edges in V' (C) to
and deleting some vertices and edges. Since C' contains the vertex x, which
lies in 0H”, the drawing of J; can be extended to a planar drawing of the
cover graph of R — {y,} with z, in the same point as in the drawing of H7,
such that z, and all elements of D are still on the boundary of the outer
face. Since yj is adjacent in the cover graph of R only to elements in D,, we
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Figure 5.3: Obtaining R from ("/. The gray part represents R,, the blue
vertices are the elements of Max(Ry), the red vertices are the elements of
Min(Ry), and an arrow from z to y represents a witnessing path from x to

Y.

can extend the drawing of the cover graph of R — {y,} as described above
to a planar drawing of R with x, and y, on the boundary of the outer face.

5.4 From a standard example to a Kelly subposet

In this section we prove Lemma The setting of this lemma is the same
as the one considered in [20], and we use some terminology and notation
from there. However, our terminology and notation are not completely
consistent with the final version of [20]] as our proof is based on an early
version of that manuscript.

Throughout this section we assume that P is a poset with a fixed planar
drawing of its cover graph G, and z, € Min(P) and y, € Max(P) are two
elements of P with zy < y in P which lie on the boundary of the outer
face in the drawing of G. Let A = Dp(yo) and B = Up(zy), so that every set
doubly exposed by (zo, yo) is a subset of Incp(A, B). Thus, we need to show
that if Incp(A, B) contains a standard example of size 440(k + 1) then the
inherited drawing of the cover graph of P — {z¢, yo} is not k-outerplanar.

If H is a nonempty subgraph of a witnessing path in P, we denote by
min(H) the only minimal element of P[V(H)], and by max(H) the only
maximal element of P[V (H)].

Whenever z < y in P, there exists at least one witnessing path from x to
y in P. We find it convenient to fix a “canonical” witnessing path W (z,y)
from = and y. We require these paths to have the property that the inter-
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section W (z1,y1) n W (x2,y2) of any two of them is either empty or a path
of the form W (z, y). One way to construct such paths is as follows. For any
z,y € Pwithz < yin P, let W(x,y) be the witnessing path z; - - - z, with
zp = x and z, = y for which the sequence (z, . . ., 2,) is earliest in the lexico-
graphical order with respect to any fixed linear order on the ground set of
P. This way for any i, j € {0, ..., p} with ¢ < j, the z;—z; subpath of W (z, y)
is W(z;, z;). Hence, if the intersection W (x1,y1) n W (3, y2) is nonempty,
then W (z1,y1) nW(xg,y2) = W(x,y) where x = min(W (zq, y1) n W (22, y2))
and y = max(W (z1,y1) 0 W(x2,42)).

By our choice of the witnessing paths W (z,y), for any a;,a, € A, the
intersection W (ay, yo) " W (az, yo) is a path with an end in y,. Hence we can
define a rooted tree

S = U W(a,yo)

acA

with y, as the root. Similarly we define a rooted tree

T = W(xo,b)

beB

with z( as the root. Observe that for any vertices x and y, if = is a descendant
of y in S or an ancestor of y in 7', then x < y in P. We refer to S as the red
tree and to T as the blue tree.

In the drawing of GG, add in the outer face an imaginary edge e_, at-
tached to zy and an imaginary edge e, ., attached to y,. We use the imagi-
nary edges to define partial orderings of the vertex sets of the trees S and
T. For U € {T, S}, we define a strict partial order <;; on V' (U) as follows.
Let x and y be two vertices of U, let z be their lowest common ancestor and
let e be an edge between z and the parent of z in U (or the imaginary edge
incident with z if z is the root of U). We write z <y y if z ¢ {z,y} and the
edge e and the paths zUx and zUy leave the vertex in a clockwise manner
in our drawing. See Figure[5.4, Clearly, <y is a strict partial order. Observe
that if z,y € V(U) are incomparable in P, then none of them is an ancestor
of the other in U, and therefore either x <y y or y <y .

For a cycle C' in G, the region bounded by C'is the bounded face of C' to-
gether with the points on the closed curve representing C. Clearly, every
connected subgraph of G which contains a vertex in the region bounded
by C and a vertex outside the region bounded by C' has a nonempty inter-
section with C. For a subset X of elements of P we say that a vertex x is
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Figure 5.4: a1 <g as and by <7 bs.

enclosed by X if there exists a cycle C in G such that V(C') € X and « lies in
the region bounded by C.

Lemma 5.12. Let {(a1,b1), ..., (am,bn)} < Incp(A, B) be a standard example
and let i,j € {1,...,m} be distinct. Then a; is not enclosed by Up(a;) and b; is
not enclosed by Dp(b;).

Proof. Towards a contradiction, suppose that a; is enclosed by Up(a;). Let
C'beacyclein G such that V(C') < Up(a;) and g, lies in the region bounded
by C. The graph H = W (x,b;) U W(a;, b;) is a connected subgraph of G.
Since x lies on the boundary of the outer face of G, either xy € V(C) or z,
lies outside the region bounded by C, Hence H intersects C' in a vertex z.
Since V(C) < Up(a;) we have a; < zin P, and since V(H) < Dp(b;), we
have z < b; in P. This implies a; < z < b; in P, which is a contradiction.
Hence qa; is not enclosed by Up(a;). The proof that b; is not enclosed by
Dp(b,) is dual. O

We generalize the notation Uy for the z—y subpath of a tree U to mul-
tiple trees. If trees U, ..., U, are subgraphs of G and z, ..., z, are vertices
of G with {z,_1, 2} € V(U;) foreachi e {1,...,p}, thenby 20U, 21U; ... U,z,
we denote the union | J/_, z;_1U;z;. We only use this notation to denote a
path or a cycle.

Lemma 5.13. Let {(a1,b1), ..., (@m,bm)} S Incp(A, B) be a standard example,
leti,j,ke{l,...,m}, and let W be a witnessing path in P.

(1) Ifa; <s a; <g a,and W intersects both a; Sy, and a,Svyo, then W intersects
aijo.
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(2) If by <7 bj <7 by and W intersects xoT'b; and xoT'by, then W intersects
330Tbj.

Figure 5.5: The vertex a; lies in the region bounded by the cycle v; W v}, Sv;.

Proof. For the proof of ([I]), we may assume that W has its ends on a;Sy,
and a;Syy and no inner vertex of W lies on any of these two paths. Let v;
and v, denote the ends of IV on the paths a;Syy and a;Sy, respectively. If
W is disjoint from a; Sy, then none of the vertices v; and v, is an ancestor
of a; in S, so we have v; <s a; <g v and a; lies in the region bounded
by the cycle C' = v;Wv;,Sv;. See Figure However, if v; < v, in P, then
V(C) < Up(v;) < Up(a;), and if v, < v; in P, then V(C) < Up(vy) <
Up(ag). By Lemmanone of these can hold, so W must intersect a;Syj.
This proves (1), and the proof of (2)) is dual. O

For every pair of elements a € A and b € B with a < bin P we define
two vertices v(a,b) and u(a,b) as follows. If the paths aSy, and 2,7 in-
tersect, then let v(a, b) and u(a, b) be one and the same arbitrary vertex on
aSyo N xoTh, and if the paths aSy, and z,T'b are disjoint, then let v(a, b) =
max (W (a,b) N aSyp) and u(a,b) = min(W(a,b) N zoTh). This way we have
a < v(a,b) < u(a,b) < bin P. The separating path N(a,b) associated with
the comparability a < b is an zy—y, path defined as N(a,b) = zoTulWvSy,,
where u = u(a,b), v = v(a,b) and W = W(a,b). (See Figure[5.6]) The wit-
nessing paths xz¢T'u(a, b), W(v(a, b), u(a, b)) and v(a, b) Sy, are referred to as
the blue part, the black part and the red part of N (a, b), respectively.

Every z¢—y, path in G splits the graph into two parts: “left” and “right”.
To formalize this, let N be an z¢—y, path in G and let z € V(G)\V(N).
Choose a z-V(N) path M and let w denote the end of M lying on N. Let
wNe_,, denote the path obtained from wNz, by adding the edge e_, at-
tached to o, and let wNe ., denote the path obtained from w Ny, by adding
the edge e, attached to y,. Since the drawing of G is planar and the ver-
tices z and y, lie on the boundary of the outer face, either for every choice

74



Zo

Figure 5.6: a; < by and a; < by in P. The x¢—y, paths N(as, b1) and N (ay, b2)
are bolded.

of M the paths wNe_,, wNe,, and M leave the vertex w in a clockwise
manner, or for every choice of M the paths wNe_,, wNe,,, and M leave
the vertex w in a counter-clockwise manner. In the former case we say that
z is right of N and in the latter case, we say that z is left of N. For instance,
in Figure the vertices as and b, are left of N(as,b;), and the vertices a;
and b, are right of N(az, b1).

The following is a simple but very useful consequence of the definition
of being left/right to an xy—y, path.

Lemma 5.14. Let {(a1,b1),..., (am,bn)} S Incp(A, B) be a standard example
and leti,j € {1,...,m} be distinct.

(1) For every v € A, if vSyy is disjoint from the black and the blue part of
N(a;, b)), then v(a;, b;) <g v if and only if v is left of N(a;,b;).

(2) For every uw € B, if xoTu is disjoint from the red and the black part of
N(ai, bj), then u <r u(a;,b;) if and only if u is left of N(a;, b;).

Proof. The items () and (2]) are dual, so we only prove (). Let w =
min(vSyo N N(a;,b;)), so that vSw intersects N (a;, b;) only in w. Since vSy,
is disjoint from the black and the blue part of N(a;, b;), the vertex w lies on
the red part of N(a;,b;) and is distinct from v(a;, b;). Hence, the equiva-
lence of v(a;, b;) <5 v and v being left of N(a;, b;) is a tautology:. O
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Figure 5.7: The vertex a; is left of N(a;, b;) and the vertex u(a;, bx) is not.

Lemma 5.15. Let {(a1,b1),. .., (am,bm)} S Incp(A, B) be a standard example,
and let i, j, k € {1,...,m} be such that a; <g a; and b; <r by. Then v(a;,b;) <
u(aj, by) in P.

Proof. The vertex v(a;, b;) is not an ancestor of a; in S as that would imply
a; < v(a;, b;) < bjin P. Since v(a;, b;) is an ancestor of ¢; in S and a; <g a;
in P, this implies v(a;, b;) <s a;. The path a;Sy is disjoint from the black
and the blue part of N (a;, b;) as otherwise we would have a; < u(a;, b;) < b;
in P. Hence, by Lemma 5.14} a; is left of N(a;, b;).

Since b; <7 by, it is impossible for w(a;, by) <7 u(a;, b;) to hold. Hence,
if u(a;,bg) is left of N(a;,b;), then by Lemma the path x¢Tu(a;, by)
intersects the blue or the black part of N(a;,b;), and therefore we have
v(a;,b;) < u(aj,by) in P, so the lemma is satisfied. Hence we assume that
u(aj, by) is not left of N(a;, b;) (See Figure.7)). As a; is left of N (a;, b;), the
witnessing path W (a;, u(a;, b)) intersects N (a;, b;) in a vertex z. The vertex
z does not lie on the black or the blue part of N(a;, b;) as that would imply
a; < z < u(a;,b;) < b; in P. Hence z lies on the red part of N(a;,b;), and
therefore we have v(a;, b;) < z < u(a;, by) in P. O

In a standard example {(a1,b1),. .., (@m, bm)} < Incp(A, B), for distinct
i,j € {l,...,m}, we have q; || a; and b; || b; in P, and therefore we have
either a; < a; or a; <g a;, and we have either b, <7 b; or b; <7 b;.

Lemma 5.16. Let {(a1,b1),. .., (Gm,bn)} S Incp(A, B) be a standard example
and leti,j € {1,...,m} be distinct. Then a; <g a; if and only if b; <r b;.

Proof. Suppose to the contrary that there exist i, j € {1,...,m} such that
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a; <s ajand b; <7 b;. By Lemma5.15|{we have a; < v(a;, b;) < u(a;, b;) <b;
in P, which is a contradiction. O

For two pairs (a,b), (a’,0') € Incp(A, B), let us write (a,b) < (a’,V) if

a <g aand b <y /. Lemma implies that the pairs of every standard
example in Incp(A, B) are linearly ordered by <.

5.4.1 Finding a tree-disjoint standard example

For a standard example [ in Incp(A, B) we define trees

S(I)= |J aSyw and T(I)= | woT0.

(a,b)el (a,b)el

We say that I is tree-disjoint if the trees S(I) and T'(I) are disjoint. In this
section we prove the following.

Lemma 5.17. Let m > 1. If Incp(A, B) contains a standard example of size m,
then Incp(A, B) contains a tree-disjoint standard example of size [m/11].

Given two pairs (a,b), (¢’,0') € Incp(A, B) belonging to one standard
example, we write (a,b) — (d’,b’) when the paths aSy, and z,TV have a
nonempty intersection. Note that the relation — is independent of the or-
der <, and for a pair with (a,b) — (a’,V’) we can have either (a,b) < (a’,V)
or (a/,b') < (a,b). If {(a1,b1),...,(ap,b,)} < Incp(A, B) is a standard ex-

ample with (a;,b;) — (ait+1,bi41) for each i € {1,...,p — 1}, then we call
the sequence (a1,b,) — --- — (ap,b,) a directed path. A directed path
(a1,b1) — -+ — (ap,b,) is increasing if (a1,b) < --- < (ap,b,), and de-

creasing if (a,,b,) < --+ < (ay,by). Figure[5.8 shows an increasing directed
path consisting of 6 pairs.

Lemma 5.18. Every increasing or decreasing directed path in Incp(A, B) consists
of at most 6 pairs.

Proof. Because of symmetry, it suffices to show that every increasing path
has at most 6 pairs. Suppose to the contrary that there exists a directed
path (al,bl) — > (a7,b7) with (al,bl) < - < ((17,67). For every
i € {1,...,6}, the paths a;Syy and z,T'b;;, intersect, so the black part of
N(a;,bi+1) consists of one vertex which we denote by ¢;. By Lemma 5.15)
foreachie {1,...,5} we have ¢; = v(a;, b;11) < u(air1,bir2) = ¢;41in P, so

$0<61<“'<66<y0
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Figure 5.8: An increasing path (a;,b1) — -+ — (ag,bs). The paths
W (a1, b;) are drawn in black. The union of these paths and the red and
blue trees contains a witnessing path from a; to b; for each pair of distinct
7and j.

holds in P. Let Wy = 2T ciW (¢1, ¢a)ca -+ - esW (e, ¢6)csSYyo.-

Foreachie {1,...,7},lets; = min(a;SyonWy), and lett; = max(x¢Th; N
Wy). Thus, s; is the only vertex of a;S's; which lies on W, and ¢; is the only
vertex of t;Tb; which lies on Wj,. Since each ¢; lies on both x¢7°b; 1 and a; Sy,
we have s; < ¢; < t;41in Pforeachi e {1,...,6}. Moreover, we have t; < s;
in P for each i € {1,...,7} as otherwise we would have a; < s; < ; < b; in
P. Hence we have

$0<t1<81<t2<82<"'<t7<87<y0 in P.

Claim 5.18.1. Foranyi,j € {1,...,7} withi > j, the witnessing path W (a;, b;)
is disjoint from W.

Proof. Suppose to the contrary that W (a;, b;) intersects Wy in a vertex w.
Since j < i, the vertices s; and t; of W, satisty zp < s; < t; < yo in P, so we
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have w < t; or s; < w in P. In the former case we have a; < w <'t; < b; in
P, and in the latter we have a; < s; < w < b; in P. As both cases lead to a
contradiction, the claim follows. O

Claim 5.18.2. The vertices as, ..., a; and by, ..., bg are left of W,

Proof. Let us first show that b; is left of Wj,. In the tree 7T, ¢, is an ancestor of
by, and the vertex t; is an ancestor of ¢; since zoWyc; = z¢Tc;. Since t; < ¢;
in P and b; <7 by, this means that b; <t ¢;, and therefore b, is left of Wj.
By Claim for each i € {2,...,7}, the witnessing path W (a;, by)
is disjoint from W,. Since b, is left of W), this implies that the vertices a,,
..., ar are left of W,. Again by Claim [5.18.1} for each j € {1,...,6} the
witnessing path W (as, b;) is disjoint from W;. Since a; is left of W, this
implies that the vertices by, ..., b are left of W O

Claim 5.18.3. The paths a,Ss1, ..., a7Ss7 are pairwise disjoint, and the paths
t17by, ..., tzTb; are pairwise disjoint.

Proof. Forany i € {1,...,7} and v € V(a;Ss;), we have min(vSy, n Wy) =
s;. Since the vertices s, ..., s; are pairwise distinct, this implies that the
paths a;Ssy, ..., a7Ss; are pairwise disjoint. The paths ¢t,70,, ..., t;1b; are
pairwise disjoint by a dual argument. O

Claim 5.18.4. Foranyi,j € {2,...,6} with j # i+ 1, the paths a;Ss; and t;Tb;
are disjoint.

Proof. The witnessing path «;Sy, intersects z¢7'b;;; and is disjoint from
zoTb; since a; || b; in P. Hence, by Lemma the path a;Sy, is disjoint
from the paths 2,70y, ..., 2yTb;, and therefore a;S’s; is disjoint from ¢,;7b,
if j < i. Now suppose that j > i + 2. We have s; < t; in P, so for any
v € V(a;Ss;) and u € V(¢;7b;) we have v < w in P. Therefore the paths
a;Ss; and t;Tb; are disjoint. O

By Claims 5.18.2) and |5.18.1} for any 7,5 € {1,...,7} with i > j, all
vertices of W (a;,b;) are left of Wy. In particular, all vertices of the paths
a;Sv(a;, b;) and u(a;, b;)Th; are left of . Therefore, the vertices s; and ¢;
lie on N(a;, b;) and all inner vertices of the path ¢, N(a;, b;)s; are left of .

Claim 5.18.5. Either the black part of N (a4, by) intersects agS's¢ or the black part
of N (ag, by) intersects t,Ttg. (See Figure[5.9)
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Figure 5.9: Two possible outcomes of Claim [5.18.5

Proof. Since ty < t4 < 54 < s¢ in P, the paths toN (a4, b)ss and t4N (ag, bs)Se
must intersect in a vertex z. By Claims [5.18.3|and [5.18.4] the paths ¢,Tb,,
t4Thy, aySsq and agSse are pairwise disjoint. Hence, z must lie on the black
part of N(ag,b2) or N(ag,bs). If 2 lies on the black part of N (a4, bs), then z
must lie on the red part of N (as, b4) as otherwise we would have a, < z <
u(ag, by) < by in P. If z lies on the black part of N(ag, bs), then z must lie on
the blue part of N (a4, by) as otherwise we would have a4 < v(a4,bs) < z <
b4 in P. <>

The two alternatives in the statement of Claim [5.18.5|are dual, so with-
out loss of generality we assume that the black part of N(ay4, b,) intersects
agSse. Let W = W(ay, bs), let v = v(ay, b2) and let v' denote any vertex of
the intersection of aSs¢ with the black part of N (a4, bs). We claim that
the witnessing paths vIWv'Sss and vSs;Wyss are internally disjoint. By
Claim the paths vWv' and s,W;sg are disjoint, and by Claim
the paths v'Ssg and vS's, are disjoint. Since v = v(aq, b2), the paths vWv’
and vSs, are internally disjoint, and by definition of s the paths v'S'sq and
s4Wyse are internally disjoint. Hence the witnessing paths vIWv'Ss¢ and
vSs4Wysg are internally disjoint and their union is a cycle which we denote
by C.

We have V(C) = Dp(sg) = Dp(t7) = Dp(br), so by Lemmal5.12} bs does
not lie in the region bounded by C'. The intersection of C' with W}, is s,Wj s
and t¢ is an inner vertex of s,Wyss. Hence the path ¢370s has to intersect
the cycle C' in a vertex z distinct from ¢. Since t; is the only vertex of t57'bs
on W, the vertex z does not lie on Wy, and by Claim[5.18.4} ~ does not lie on
vSs, or v'Ssg. Thus, z lies on vWv’, which implies that IV is a witnessing
path intersecting both (T, and x,Tbs. (See Figure[5.10}) By Lemmal5.13}
W intersects x¢Tby. Since W = W (ay, b), this implies ay < b, in P, which
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Figure 5.10: Illustration of Lemma The gray area is the region boun-
ded by C.

is a contradiction. Hence there is no increasing directed path on more than
6 pairs. [

Proof of Lemma[5.17} Let I < Incp(A, B) be a standard example of size m.
For each (a,b) € I, let p(a,b) € {1,...,6} denote the maximum number of
pairs in an increasing directed path which starts with (a, b) and has all pairs
from the set I, and let ¢(a,b) € {1,...,6} denote the maximum number of
pairs in a decreasing directed path with starts with (a, b) and has all pairs
from the set /.

We claim that for every (a,b) € I we have p(a,b) = 1 or ¢(a,b) = 1.
Suppose to the contrary that p(a,b) > 2 and ¢(a,b) > 2. Therefore there
exist pairs (a',b'), (a”, V") € I with (a,b) — (¢/,0') and (a,b) — (a”,b") such
that (a/,0') < (a,b) < (a",V"), and thus ¥’ <7 b <7 b". The witnessing
path aSy, intersects 270" and x¢Tb", so by Lemma it intersects x(T.
This implies @ < b in P, which is a contradiction, so indeed p(a,b) = 1 or
q(a,b) = 1.

There are 11 different pairs (p, ¢) with p,q € {1,...,6} such thatp = 1
or ¢ = 1. Hence, by the pigeonhole principle, there exist a pair (p, ¢) and a
subset I’ < [ with |I’| = [m/11] such thatp(a,b) = pand ¢(a,b) = ¢ for each
(a,b) € I'. We claim that the standard example I’ is tree-disjoint. Suppose
to the contrary that the trees S(I’) and 7T'(I’) intersect. Hence there exist
pairs (a, b), (¢/, V') € I' such that aSy, intersects zo T/, thatis (a, b) — (a’,1').
The pairs (a,b) and (a’,V’') must be distinct, so either (a,b) < (a’,V') or
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(a',b') < (a,b). If (a,b) < (', V'), then any increasing directed path starting
with (¢, V') can be extended by prepending (a, b), so p(a,b) > p(da’, V'), and
if (a’, V') < (a,b), then any decreasing directed path starting with (a’, V')
can be extended by prepending (a,b), so q(a,b) > ¢(a’,b’). Hence, either
pla,b) # p(a’,b), or q(a,b) # q(a’,b"), which is a contradiction. This com-
pletes the proof. O

5.4.2 Finding a path-separated standard example

For m > 1, we say that a standard example {(ai,b1), ..., (am+2,bmi2)} in
Incp(A, B) with (a1,b1) < -+ < (Gm+2, bny2) is path-separated if it is tree-
disjoint and either

(1) there exist a* € {am+1, mi2} and b* € {by11, binso} With a* < b* in
P such that a4, ..., an, are right of N(a*,b*), and by, ..., by, are left of
N(a*,b*), or

(2) there exist a* € {a;, as} and b* € {by, by} with a* < b* in P such that ag,
wee, Qo are left of N(a*,b*), and bs, ..., by,42 are right of N(a*, b*).

In this subsection we prove the following.

Lemma 5.19. Let m > 1. IfIncp(A, B) contains a tree-disjoint standard example
of size 2m + 1, then it contains a path-separated standard example of size m + 2.

We prove it with a sequence of lemmas. Let us first observe that in
the case of tree-disjoint standard examples, the statement of Lemma [5.14]
simplifies a bit.

Lemma 5.20. Let I = {(a1,b1),...,(am,bm)} < Incp(A, B) be a tree-disjoint

standard example and let i, j € {1,...,m} be distinct.

(1) Foreveryv e V(S(I)), if vSyy is disjoint from the black part of N(a;,b;),
then v(a;, b;) <g v if and only if v is left of N (a;, b;).

(2) Foreveryue V(T(1)), if zoTu is disjoint from the black part of N(a;,b;),
then u <r u(a;, b;) if and only if w is left of N (a;, b;).

Proof. Since the standard example is tree-disjoint, for any v € V(S({)),
the path vSy, does not intersect the blue part of N(a;,b;), and for any
u e V(T(I)), the path zoTu does not intersect the red part of N(a;,b;), so
the lemma is an immediate consequence of Lemma [
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Lemma 5.21. Let {(a1,b1), ..., (@, bn)} be a standard example in Incp(A, B)
with
(al, bl) <. < (am,bm).

and let i,j € {1,...,m} satisfy © < j. Then the vertices a;, ..., a,, and by, ..., b;
are left of N (a;,b;).

Proof. Letk € {j,...,m}. The path W (a;, b;) intersects a;Sy, and is disjoint
from a;Sy, since a; || b; in P. We have i < j < k, so by Lemma the
path a;, Sy is disjoint from W (a;, b;). Since a; || b; in P, the vertex v(a;, b;)
is not an ancestor of a;. As a; <g a;, this implies v(a;, b;) <gs a;, and thus
v(a;,b;) <g ai. By Lemmal5.20} a;, is left of N(a;, b;). Dual arguments show
that the vertices by, ..., b; are left of N(a;,b;). O

Observe that if {(a1,b1), ..., (am,bn)} is a tree-disjoint standard exam-
ple in Incp(A, B) and i,j € {1,...,m} are distinct, then N(a;,b;) does not
contain any a, with k # : since the standard example is tree-disjoint, a;,
does not lie on the blue part, and if a;, lied on the red or the black part of
N (a;,b;), we would have a; < a; in P, which is impossible. Hence, every
a with k # i is either left or right of N(a;, b;). By a symmetric argument,
every b, with k # j is either left of or right of N(a;, b;).

Lemma 5.22. Let {(ay,b1), ..., (am,bn)} be a tree-disjoint standard example in
Incp(A, B), and let i, j, k € {1,...,m} be such that (a;,b;) < (a;,b;) < (ag, by).
Then a; is right of N (a;, by) or by, is right of N(a;, b;).

Proof. Suppose that q; is left of N(a;, by), and let us show that b, is right of
N(a;,b;). We have a; <g a; and v(a;, b;) is an ancestor of a; in S, so we do
not have v(a;, b;) <s a;. By Lemma the path a;Sy, must intersect the
black part of N(aj;, b;). By our choice of the canonical witnessing paths, the
intersection a;Syo N W (v(a;, bi), u(a;, b)) is a witnessing path of the form
W (wy,w) (with a possibility that v(a;,b;) = wy = wy). Observe that all
vertices of a;Sw; except w; are left of N(a;,b;), and all vertices of w.Syo
except w, either lie on the red part of N(a;,0b;) or are right of N(a;, by).
Since the standard example is separated, we have wy < u(a;,by) in P, and
we have v(a;,b;) < wy in P as otherwise we would have a; < v(a;,b;) <
wy < v(a;,b;) < b; in P. See Figure5.11]

Observe that the path W (w,, by,) intersects N (a;, b;) only in w,; indeed,
by our choice of ws, W (ws, by) intersects the red part of N(a;, b;) only in ws,
and if W (ws, by,) intersected the black or the blue part of N (a;, b;), we would
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Zo

Figure 5.11: If q; is left of N(a;, by), then b, must be right of N(a;, b;).

have Q; < Wo < u(ai, bj) < bj in P. The paths U)QN(CLi, bj)xo, ’UJQN(CLZ‘, bj)yO
and W (wy, by,) leave the vertex w, in a clockwise manner, so by, is right of
N(ai, b]) ]

Lemma 5.23. Let {(a1,b1), ..., (am,bn)} be a tree-disjoint standard example in
Incp(A, B) with
(alﬁ bl) << (am7bm>a

and leti,j. ke {1,...,m} satisfyi < j <k.
(1) If a; is right of N(aj, by), then all a,, ..., a; are right of N (a;, by).
(2) If by is right of N(a;,b;), then all bj, ..., by, are right of N(a;, ;).

Proof. Because of symmetry, we only prove ([I). Let N = N(a;,b;), and
suppose towards a contradiction that forsome ¢ € {1,...,i—1}, the vertex a,
isleftof N. Since a; <s a;, we donothave v(a;, b;) <g as, soby Lemmal5.20}
the path a,Sy, intersects the black part of N(a;,by). Let z = min(a,Syo N
W(v(a;,by),u(a;,by))), and consider the cycle C' = zSv(a;, by) N z. We have
ay <g a; <g a; and q; is right of N, so the vertex a; clearly lies in the region
bounded by C. Since a; < v(a;,by) < zin P, we have V(C) < Up(a;), so ay
is enclosed by Up(a;), contrary to Lemma Hence a, is right of N. [J

Proof of Lemma Let {(a1,01), ..., (a2m+1, bam+1)} be a tree-disjoint stan-
dard example in Incp(A, B), and assume without loss of generality that
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(a1,b1) < ... < (azm+1, bam+1). By Lemmal5.22} ay, is right of N (am+1, bpr2)
Or by, is right of N (ay,, byi1)-

Suppose that a,, is right of N (a1 1,bm12). By Lemma the vertices
ai, ..., Gym—1 are also right of N(a,11,bm+2). By Lemma the vertices
by, ..., by, are left of N(a,,41,bm2). Hence {(a1,b1),..., (ami2,bmi2)} is a
path-separated standard example of size m + 2 in Incp(A, B). By sym-
metric arguments, if b, is right of N(a,,, by,+1), then the vertices b2,
..., bam1 are right of N(ay,,by,11), and the vertices an,42, ..., Gami1 are
left of N(am,bmn+1), and therefore {(a,,,by),- .., (@2m+1,b2m+1)} is a path-
separated standard example of size m + 2 in Incp(A4, B). O

5.4.3 Finding a Kelly subposet
We prove one more lemma before the proof of Lemma

Lemma 5.24. Let {(ay,b1), . .., (@m, bi,) } bea tree-disjoint standard example with

(alabl) << (aTmbm)a

leti,j, ke {l,...,m — 2} satisfy i < j < k and suppose that b,, is right of the
paths N(a;, b;+1) and N(ag, bgi1). Then by, is right of N (a;, bj11).

PTOOf. For each ¢ € {i,j, k?}, let Vy = ’U(CL@, bg.,.l), Upy1 = u(ag, bg.,.l), W&g.;_l =
W(CL@, b£+1) and NZ,EH = N(@b b£+1)-

Suppose that the claim is not true, that is b,, is right of N; ;11 and Ny, ;41
and left of NV; ;1.

Consider the union # = N, ;11 U Nj 1 U Ni 41 and its drawing in-
herited from the drawing of GG. Since b,, is right of V; ;;; (and Ny ;+1) and
left of N; 4, it is easy to see that b,, does not lie on the outer face of H.
Hence, the boundary of the face of H containing b,, is a cycle, which we
denote by C'. Observe that no vertex in the region bounded by C is left
of N; ;11 or Ny 41, or right of N; ;1. We complete the proof by showing
that V(C') < Dp(bg+1) and hence b,, is enclosed by D p (b 1), contradicting
Lemma

Let us redraw the cycle C as a circle so that the clockwise cyclic ordering
of the vertices is the same as in the drawing of G' and the edges are repre-
sented as arcs of equal length. We orient the edges of C so that each edge
xy with x < y in P is oriented from x to y. Now, it suffices to show that for
every vertex y without an outgoing edge we have y < by, in P.
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Assign to each edge of C' one of the colors: red, black or blue, so that
every edge of a given color belongs to the part of the same color in at least
one of the paths N; ;. 1, N;;+1 and N ;+1. See Figure[5.12

Yo

Niit1

Njj+1

" Nigt1

xo

Figure 5.12: A potential configuration in Lemma and the correspond-
ing orientation of the edges on the circle.

We claim that every red edge of C' belongs to the red part of N, ;1. Sup-
pose that it is not the case. Hence, there exists a vertex v on C' which lies on
the red part of N; ;1 or N ;.1 but does not lie on the red part of N, ;1. The
witnessing path W, ;;, intersects a;Sy, and is disjoint from a;;, Sy, since
aiy1 || biy1 in P. Hence, by Lemma the path W, ., is disjoint from
the paths v;Syo and v Syp. In particular, v is not a descendant of v; in S, so
v; <g v. Since v lies on C, it is not left of N; ;,1, so, by Lemma[5.20} the path
vSyy intersects the black part of V;;.1. Hence, the witnessing path W; ;.4
intersects one of the paths a;Sy, or a;Sy,, which, as we already argued,
is not possible. Hence indeed every red edge in C belongs to the red part
of N, ;41. Since the region bounded by C' is on the right side of N; ;, this
implies that all red edges in C are oriented clockwise.

Lety € V(C), let z; and z, be the neighbors of y in C, and suppose that
the edges =,y and x,y are oriented towards y. Since all red edges are ori-
ented clockwise, the edges z,y and x,y are not both red. Since the standard
example is tree-disjoint, it is impossible that one of the edges z,y and x5y
is blue and the other one is red. It is also impossible that both edges z1y
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and z,y are blue: a blue edge from z; to y means that z; is the parent of y
in T', and we have x; # x,. Hence at least one of the edges z,y and z,y is
black, so in particular, y lies on the black part of N; ; 1, Nj j+1 or N pi1.

If y lies on the black part of Ny 41, then we have y < w41 < bgyq in
P. Let us hence assume that y lies on the black part of N(ay, by41) for some
¢ € {i,j}. Since y is a vertex of C, it is not left of Ny .1, and sincei < j < k,
we have / + 1 < k, so by Lemma bey1 is left of Ny j41. Hence, the
path yW s41be41 must intersect Ny 41 in a vertex z. The vertex =z does not
belong to the red part of IV ;.1 because then W, ,,; would be a witnessing
path intersecting a,Sy, and a;,Syo, so by Lemma[5.13} the path W, ,.; would
intersect a1 Sy, and we would have a,.; < b,y in P. Hence z belongs to
the blue or the black part of Ny 541, which implies y < z < w11 < bppy
in P. Therefore V(C) < Dp(bg+1), S0 by, is enclosed by D p(by+1), which by
Lemma is a contradiction. This concludes the proof. O

Proof of Lemma Suppose that Incp(A, B) contains a standard example
of size 440(k + 1). We need to show that the inherited drawing of the cover
graph of P — {zo,yo} is not k-outerplanar. By Lemma there exists
a tree-disjoint standard example of size 40(k + 1) in Incp(A4, B), and by
Lemma there exists a path-separated standard example of size m + 2
in Incp(A, B) where m = 20k + 19. Let us fix any such a standard example

I ={(a1,b1),...,(@ms2, bymyo)} With
(al,bl) <...< (am+2,bm+2).

Let a* and b* be vertices witnessing that [ is path-separated, let N* =
N(a*,b*), v* = v(a*, b*) and v* = u(a*, b*). Because of symmetry, we may
assume without loss of generality that a* € {a,,+1, @m+2}, 0 € {bimt1, b},
the vertices ay, ..., a,, are right of N* and the vertices 0, ..., by, are left of
N*.

For each i € {1,...,m — 1}, a; is right of N* and b, is left of N*.
Hence the path W (a;, b;+1) must intersect N*. Observe that W (a;, b;+1)
does not intersect the red part of N* as otherwise, by Lemma[5.13} the path
W (a;, b;+1) would intersect a;.1Syo, implying a;1 < b;41 in P. Hence the
path W(a;, b;11) must intersect the black part W (v*, u*) or the blue part
zoTu* of N*, and v* is not right of N(a;, b;11).

We claim that for each i € {2,...,m — 2}, the path W (a;, b;11) is disjoint
from uw*Tb*. Suppose to the contrary that for some i € {2,...,m — 2} the
path W (a;, b;+1) intersects w*Tb*. This implies that v* < b;4; in P. Since
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N —

Figure 5.13: In this example, the vertex b* is right of the paths N (a3, bs),
N((l4, b5) and N((I5, b6>, so =t = {37 4, 5}

the path W (a;;1, b;42) intersects the black or the blue part of N*, we obtain
a;+1 < u* < b4y in P, which is a contradiction. Hence the path u*T0* is
disjoint from W (a;, b;+1) for each i € {2,...,m — 2}. Since b;+1 <7 b*, this
implies that if b* is left of N(a;, b;+1), then u* is left of N(a;, b;11) too, and if
b* is right of N(a;, b;+1), then u* is either right of N(a;, b;11) or on the blue
part of N(a;, b;1). In particular, u* is left of N(a;,b;+1) if and only if b* is
left of N(Cl,i7 bi+1)-

Let =* denote the set of all indices i € {2,...,m — 2} such that b* is right
of N(a;, b;+1) (and thus u* is not left of N(a;, b;+1)). The set =* consists of
consecutive indices; this follows from Lemma applied to the standard

example {(a1,b1) ..., (@m, bm), (a,b*)} where a € {an11, @2} is the element
which belongs to one pair with 0* in our original standard example. See
Figure

Foreachi € {2,...,m — 2}, if i € =7, then the vertex u* is not left of
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N(a;, bi11), and therefore W(a;, b;1) intersects W (v*,v*), and if ¢ ¢ =7,
then the vertex u* is left of N(a;, b;11), and therefore W (a;, b;;1) intersects
xolu*.

Let == denote the set of all i € {2,...,m — 2} such that a* is left of
N(ait1,b;). By dual arguments, =~ consists of consecutive indices, and for
eachi e {2,...,m—2},ifi e =7, then the vertex v* is not right of N (a;41,b;),
and therefore W (a;,1, b;) intersects W (v*, u*), and if i ¢ =~, then the vertex
v* is right of N(a;11,b;), and therefore W (a1, b;) intersects v*Syq.

Note that the sets =* and =~ are disjoint: If there existed i belonging to
E* and =7, then both witnessing paths W (a;, b;4+1) and W (a;41,b;) would
intersect W (v*, u*) which would imply a; < b; or a;+1 < b1 in P.

Each of the sets =t and =~ is an interval of consecutive indices, and
the endpoints of these intervals split the set {2,...,m — 2} into at most
five intervals. Since [(m — 3)/5] = [(20k + 16)/5] = 4k + 4, there exist
4k + 4 consecutive indices in {2, ..., m — 2} such that either none of them
belongs to =" or all of them belong to =*, and either none of them belongs
to =~ or all of them belong to =~. Choose such 4k + 4 consecutive indices,
and let 7; denote the least of them, so that the set of these indices is = =
{i1,...,i1 + 4k + 3}. Since =" N =~ = (J, the set = contains indices from at
most one of the sets =+ and =~.

Let W™ denote the witnessing path W (v*, u*) if = < =7, or the witness-
ing path zTu* if = n : = (J. Symmetrically, let W~ denote the Witness—
ing path W (v*, u*) if = < =7, or the witnessing path v*Sy, if = n =" = .
This way, for each i € Z, the path W (a;, b;41) intersects W+, and the path
W (a;s1,b;) intersects W~

Foreach i € {1,...,4k + 5}, leta} = a;, i 1 b, = bzlJrZ 1, and for each
ied{l,... 4k+4},let W/, | = W(az,bgﬂ) and W}, ; = W(a},,,b}). The path
Wiin mtersects W™ and the path W}, , ; intersects W ~, so we can define
¢; = min(V(Wi,4,) n W),

i = maX(V(Wi/,i—i-l) N W),

d; = min(V(W{H,Z-) NnW7),

di = max(V/( i/+1,i) NnW7).
Foreachi e {1,...,4k + 3} we do not have C;+1 < cdord; <d!,in P as
that would 1mp1y aHl <y < <V, ora,, <d d;’H < b, in P.
Hence, we have ¢/ < ¢,,; and d ; < dg in P, which means that

/ /!
C1<01<C2<02<"‘<C4k+4<04k+4
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and
! U ! A ! U4
thrd S gy < dypig <dg, 3 < <dy <dj

hold in P. We note that the set

{a1, s b o {0 Vst U s st U A, i)

induces a copy of Kelly,;, ., 5.

We complete the proof by finding k + 1 pairwise disjoint cycles in the
cover graph of P —{x, yo} such that one of them lies in the region bounded
by each of the remaining ones. Such cycles prevent the drawing of the cover
graph of P — {zg, yo} from being k-outerplanar since after k-fold removal
of vertices on the boundary of the outer face we remove vertices from at
most k of these cycles.

Suppose first that = is disjoint from the sets =* and ==, so W+ = zoTu*
and W~ = v*Sy,. For eachi € {2,...,2k + 2}, let v; = max(W/;,, n W/, ;)
and u; = min(W;_, ; n W}, ;), and define paths M, M/ and a cycle C; as

M = Wi i oW di_y,
M} = AWy guiWi_y ey,
C; = M Sdi M ¢} Tc.
(See Figure 5.14) We have V(M) < Up(v;) < Up(a}) and V(M}) <
Dp(u;) < Dp(bl), so the paths M and M} are disjoint and therefore C;
is indeed a cycle. Clearly, no vertex of M/ is left of N* and no vertex of M}
is right of N*.

Suppose that for some i € {3, ..., 2k + 2}, the paths M/, and M} inter-
sect in a vertex z. In particular, we have ¢/ ; < z and a] < zin P. Since
al_y || ¥i_; and d;_, < b_, in P, the vertex z does not lie on the subpath
vW/,_yd;_, of M. Since af || b and ¢_, < b in P, the vertex z does not lie

)

on the subpath ¢;_, W/ | jv;_; of M. Hence,
R R / ! / ! ! /
M n M;" = Uiflvvifl,ifzdi—Q N CiVVi,iJrlvi = W(vi—1, d;_y) 0 W(vs, &),

so in particular M2, n M} is a path. Therefore, foreachi € {3,...,2k + 1},
the path M7 is “sandwiched” between M, and M/i,: no vertex of the
path M} is right of x0T'¢,_; ME,d,_,Syo or left of xoTc, M2 d;Sy. Tt is
hence easy to see that the paths M, and M}, are disjoint. By symmetric
arguments, the paths M} | and M} are disjoint. As a consequence, the
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Figure 5.14: The cycle C; is bolded. The cycle C;_; (dotted) may intersect
C;inavertex z (orange) lying on the intersection of v; M/, and v;_; M2, d!.

cycle C;_; and C; 4, are disjoint. Therefore, the cycles of the form C5; with
j€{l,...,k + 1} are pairwise disjoint, and for each j € {2,...,k + 1}, the
cycle Cy; lies in the region bounded by Cy;_s.

Let us show that for each j € {1,...,k + 1}, the cycle C; does not con-
tain xo. Since ay;_; < ¢y ; and zp < by, in P, we have ¢y 1 # o,
As Cy; n zgTu* = cy;_Tcy,, this implies that Cy; does not contain zy. A
symmetric argument shows that C'5; does not contain y,. Hence the cycles
Oy, ..., Copyo prevent the drawing of the cover graph of P — {x¢, yo} from
being k-outerplanar.

It remains to consider the cases when = < =* or = < =Z~. Because of
duality, we assume without loss of generality that = < =", and therefore
W+ =W(v*, u*),and W~ = v*Syp.

Recall that d},_,, ..., d; are distinct vertices which appear in that or-
der on the witnessing path W~ = v*Sy,. The paths a}W/, ,di_, with
i € {2,...,4k + 5} have no vertices left of N*. We claim that these paths
are pairwise disjoint. Suppose to the contrary that there exist indices ¢, j €
{2,...,4k + 5} with i < j such that the paths ¢;W}, ,d;_, and a;W},; ,d; ,
intersect, and choose a pair of such indices with the smallest difference
J —i. It is impossible that j — i = 1 as that would imply o} < d;_; <
v,y = b;in P,s0 j —i > 2. By minimality of the difference j — i, the path
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Figure 5.15: The witnessing path W, ; must intersect the cycle C' (bound-
ing the shaded region) on the path yVV’,j_lal;_1

a; Wity ,d; is disjoint from a; W/, _,d;_, and a’; W , d;_l Now, for the ver-
texw = max(a I/VZ’Z Wiy nd, Wi ds ), thecyclew Liads Sy 1VVZ’Z W
witnesses that a; ; is enclosed by U p( ). This contradicts Lemma5.12} so
the paths a;WW/, ,d; , must be pairwise dls]omt

Next, we show that for any i,j € {2,...,4k + 4} with j < i, the path
Wi, intersects the path W . ,. We prove this by induction on i. The base
case i = 2 holds true: the paths W, ; and W, intersect in the vertex daf,.

Leti € {3,...,4k + 4}. The paths VVZ’ZJr1 and W _, intersect in a}, so it

suffices to show for j € {2,...,i — 1} that if W’ mtersects Wi, then
Wi, intersects W7, | as well. Lety = maX(WZ’ i N W), and let 2 =
min(yW;_, ;0; n W(v*,u*)). Consider the cycle C' = yW/ | ,zN*d; W}, y,

see Figure @}

We claim that the vertex a; lies in the region bounded by C. The path
a;Wi,; 1d’ , intersects v*Syq only in the vertex d;_, and is disjoint from the
path a;W;,;_d;_,. Furthermore, a;W;, ,d;_, is dls]omt from yW/ | ;2 N*v*
since V(yW’,MzN* v*) € Dp(z) < Dp(b’) Hence a;W;, ,d; , intersects C
only in d;_, which is an inner vertex of v*Sd’;_,. Asno vertex of ;W ,d;_,
or C'is left of N*, the vertex a; must lie in the region bounded by C.

The vertex b}, , is left of N*, so it does not lie in the region bounded by
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!/
Wi, Wiktaak+s

A
, W2k~+3,2k+4
W2k+3,2k+2

[ ]
/ /
Agp+s Aok+3

Figure 5.16: The cycles (4, ... Cj41 are bolded.

C. The path W/, ,, must therefore intersect C. However, the path W/, , is
disjoint from yW; , ;zN*v* since V (yW]_, ;zN*v*) < Dp(z) < Dp(b}). Itis
also disjoint from v*Syy, so W/, ,, must intersect the cycle C' on the path
yWi,_,d;_,. This completes the inductive proof.

Forany j € {2,...,2k + 3} and i € {2k + 3,...,4k + 4}, we have j < i,
so the paths W;,,, and W7, | intersect. For every i € {2k + 3,...,4k +
3}, we have a;,, || b;,, in P, so there do not exist z € V/(W/;,,) and y €
V(W{,1..2) such that y < x in P. Hence, each witnessing path W, | with
J €12,...,2k+ 3} must intersect the paths W5, 550y, -+, Wiy 4,5 in that
order. By a symmetric argument, each path W, ; withi e {2k+3,... 4k +
4} intersects the paths Wy, , 35, .5, ..., W5, in that order. Hence the paths
Wir s Wo s opgo @0 Wop g o gy ooy Wigyy a5 forma (2k +2) x (2k +2)
grid. It is hence easy to see that there exist £ + 1 “nested” cycles C, ...,
Cr+1 such that foreach a € {1,...,k + 1} we have

/ /
CO( g U ijj—l U U 7;72'_,’_1,

je{l+a,2k+4—a} 1€{2k+2+a,dk+5—a}

and for each a € {1,...,k}, the cycle C, 1 has all vertices in the region
bounded by C,,. (See Figure[5.16})

Observe that none of the cycles (', ..., Ci41 contains x, or yo: every
vertex z of any of these cycles lies on a witnessing path of the form W; , ,
so a; <z < bj, in P. Since zy < b, and a;, < yo in P, we have z ¢ {zo, yo}.
Therefore, the cycles Cj, ..., Cy41 witness that the drawing of the cover
graph of P — {zg,y} is not k-outerplanar. The proof of Lemma is

complete. O
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