Product structure of planar graphs

Piotr Micek
Jagiellonian University
tutorial presentation for 9th Polish Combinatorial Conference Będlewo, September 20, 2022

plan of tutorial

Part I statements
background
proof
variants / generalizations

Part II quick applications

Part III application: adjacency labelling scheme open problems / further research
adjacency tester $A:\left(\{0,1\}^{*}\right)^{2} \rightarrow\{0,1\}$ labelling function $\quad \ell: V(G) \rightarrow\{0,1\}^{*}$
(G, ℓ) works with A if

$$
A(\ell(v), \ell(w))= \begin{cases}0 & \text { if } v w \notin E(G) \\ 1 & \text { if } v w \in E(G)\end{cases}
$$

adjacency tester $A:\left(\{0,1\}^{*}\right)^{2} \rightarrow\{0,1\}$ labelling function $\quad \ell: V(G) \rightarrow\{0,1\}^{*}$
(G, ℓ) works with A if

$$
A(\ell(v), \ell(w))= \begin{cases}0 & \text { if } v w \notin E(G) \\ 1 & \text { if } v w \in E(G)\end{cases}
$$

adjacency tester $A:\left(\{0,1\}^{*}\right)^{2} \rightarrow\{0,1\}$ labelling function $\quad \ell: V(G) \rightarrow\{0,1\}^{*}$
(G, ℓ) works with A if

$$
A(\ell(v), \ell(w))= \begin{cases}0 & \text { if } v w \notin E(G) \\ 1 & \text { if } v w \in E(G)\end{cases}
$$

adjacency tester $A:\left(\{0,1\}^{*}\right)^{2} \rightarrow\{0,1\}$ labelling function $\quad \ell: V(G) \rightarrow\{0,1\}^{*}$
(G, ℓ) works with A if

$$
A(\ell(v), \ell(w))= \begin{cases}0 & \text { if } v w \notin E(G) \\ 1 & \text { if } v w \in E(G)\end{cases}
$$

A family of graphs \mathcal{G} has an ${ }^{f(n) \text {-bit adjacency labelling scheme }}$ if \exists a function $A:\left(\{0,1\}^{*}\right)^{2} \rightarrow\{0,1\}$ such that
$\forall n$-vertex graph $G \in \mathcal{G} \quad \exists \quad \ell: V(G) \rightarrow\{0,1\}^{*}$ such that
$\triangleright|\ell(v)| \leqslant f(n)$ for each v in G
$\triangleright(G, \ell)$ works with A
(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)

A family of graphs \mathcal{G} has an ${ }^{f(n) \text {-bit adjacency labelling scheme }}$ if \exists a function $A:\left(\{0,1\}^{*}\right)^{2} \rightarrow\{0,1\}$ such that
$\forall n$-vertex graph $G \in \mathcal{G} \quad \exists \quad \ell: V(G) \rightarrow\{0,1\}^{*}$ such that
$\triangleright|\ell(v)| \leqslant f(n)$ for each v in G
$\triangleright(G, \ell)$ works with A
(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)
The family of planar graphs has a
$(1+o(1)) \log n$-bit adjacency labelling scheme.

Examples

\triangleright when \mathcal{G} contains a single n-vertex graph
labels \equiv unique ids of length $\lceil\log n\rceil$
function $A \equiv$ adjacency matrix

000	0	1	1	0	1	0
001	1	0	0	0	0	0
010	1	0	0	1	1	0
011	0	0	1	0	0	0
100	1	0	0	1	0	0
101	0	1	0	0	0	0

Examples

\triangleright when \mathcal{G} contains a single n-vertex graph labels \equiv unique ids of length $\lceil\log n\rceil$ function $A \equiv$ adjacency matrix
you cannot do better than $\lceil\log n\rceil$

Examples

\triangleright when \mathcal{G} contains a single n-vertex graph labels \equiv unique ids of length $\lceil\log n\rceil$ function $A \equiv$ adjacency matrix
\triangleright when \mathcal{G} is a family of linear forests
labels \equiv unique ids assigned along the paths
you cannot do better than $\lceil\log n\rceil$
plus an extra bit indicating...

Examples

\triangleright when \mathcal{G} contains a single n-vertex graph labels \equiv unique ids of length $\lceil\log n\rceil$ function $A \equiv$ adjacency matrix
\triangleright when \mathcal{G} is a family of linear forests labels \equiv unique ids assigned along the paths
you cannot do better than $\lceil\log n\rceil$
plus an extra bit indicating...
if a vertex is adjacent to a vertex to the left $\log n+\mathcal{O}(1) \quad$ scheme

Examples

\triangleright when \mathcal{G} contains a single n-vertex graph labels \equiv unique ids of length $\lceil\log n\rceil$ function $A \equiv$ adjacency matrix

you cannot do better than $\lceil\log n\rceil$

\triangleright when \mathcal{G} is a family of linear forests
labels \equiv unique ids assigned along the paths
plus an extra bit indicating...

\triangleright when \mathcal{G} is a family of trees

if a vertex is adjacent
to a vertex to the left $\log n+\mathcal{O}(1) \quad$ scheme root a tree and take any topological ordering of its vertices
assign unique ids labels \equiv concatenation of vertex id and id of its parent
$2\lceil\log n\rceil$ scheme

Examples

\triangleright when \mathcal{G} contains a single n-vertex graph labels \equiv unique ids of length $\lceil\log n\rceil$ function $A \equiv$ adjacency matrix

you cannot do better than $\lceil\log n\rceil$

\triangleright when \mathcal{G} is a family of linear forests
labels \equiv unique ids assigned along the paths
plus an extra bit indicating...

\triangleright when \mathcal{G} is a family of trees

if a vertex is adjacent
to a vertex to the left $\log n+\mathcal{O}(1) \quad$ scheme root a tree and take any topological ordering of its vertices

assign unique ids labels \equiv concatenation of vertex id and id of its parent
$2\lceil\log n\rceil$ scheme

Examples

\triangleright when \mathcal{G} contains a single n-vertex graph labels \equiv unique ids of length $\lceil\log n\rceil$ function $A \equiv$ adjacency matrix

you cannot do better than $\lceil\log n\rceil$

\triangleright when \mathcal{G} is a family of linear forests
labels \equiv unique ids assigned along the paths
plus an extra bit indicating...

\triangleright when \mathcal{G} is a family of trees

if a vertex is adjacent
to a vertex to the left $\log n+\mathcal{O}(1) \quad$ scheme root a tree and take any topological ordering of its vertices

Examples

\triangleright when \mathcal{G} contains a single n-vertex graph labels \equiv unique ids of length $\lceil\log n\rceil$ function $A \equiv$ adjacency matrix

you cannot do better than $\lceil\log n\rceil$

\triangleright when \mathcal{G} is a family of linear forests
labels \equiv unique ids assigned along the paths
plus an extra bit indicating...

\triangleright when \mathcal{G} is a family of trees

if a vertex is adjacent
to a vertex to the left $\log n+\mathcal{O}(1) \quad$ scheme root a tree and take any topological ordering of its vertices
 assign unique ids
labels \equiv concatenation of
vertex id and id of its parent
$2\lceil\log n\rceil$ scheme

Examples

\triangleright when \mathcal{G} is a family of planar graphs take a vertex ordering witnessing that G is 5 -degenerate

assign unique ids
labels \equiv concatenation of vertex id and ids of left neighbors $6\lceil\log n\rceil$ scheme
(Chung 1990)
$\log n+\mathcal{O}(\log \log n)$-bit scheme
(Chung 1990)
$\log n+\mathcal{O}(\log \log n)$-bit scheme
(Alstrup, Rauhe 2006)
$\log n+\mathcal{O}\left(\log ^{*} n\right)$-bit scheme

Forests

history and related work
(Chung 1990)
$\log n+\mathcal{O}(\log \log n)$-bit scheme
(Alstrup, Rauhe 2006)
$\log n+\mathcal{O}\left(\log ^{*} n\right)$-bit scheme
(Alstrup, Dahlgaard, Knudsen 2017)
$\log n+\mathcal{O}(1)$-bit scheme

Forests

history and related work
(Chung 1990)
$\log n+\mathcal{O}(\log \log n)$-bit scheme
(Alstrup, Rauhe 2006)
$\log n+\mathcal{O}\left(\log ^{*} n\right)$-bit scheme
(Alstrup, Dahlgaard, Knudsen 2017)
$\log n+\mathcal{O}(1)$-bit scheme
planar graphs have arboricity 3
$3 \log n+\mathcal{O}(1)$-bit scheme
(Chung 1990)
$\log n+\mathcal{O}(\log \log n)$-bit scheme
(Alstrup, Rauhe 2006)
$\log n+\mathcal{O}\left(\log ^{*} n\right)$-bit scheme
(Alstrup, Dahlgaard, Knudsen 2017)
$\log n+\mathcal{O}(1)$-bit scheme
Bounded treewidth graphs
planar graphs have arboricity 3
$3 \log n+\mathcal{O}(1)$-bit scheme
(Gavoille, Labourel 2007)
$(1+o(1)) \log n$-bit scheme

Forests

history and related work
(Chung 1990)
$\log n+\mathcal{O}(\log \log n)$-bit scheme
(Alstrup, Rauhe 2006)
$\log n+\mathcal{O}\left(\log ^{*} n\right)$-bit scheme
(Alstrup, Dahlgaard, Knudsen 2017) $\log n+\mathcal{O}(1)$-bit scheme
Bounded treewidth graphs
planar graphs have arboricity 3
$3 \log n+\mathcal{O}(1)$-bit scheme
(Gavoille, Labourel 2007)
$(1+o(1)) \log n$-bit scheme
every graph with no K_{t}-minor
 can be edge 2-colored so that each monochromatic subgraph has bounded tw
$\log n+\mathcal{O}(\log \log n)$-bit scheme
(Alstrup, Rauhe 2006)
$\log n+\mathcal{O}\left(\log ^{*} n\right)$-bit scheme
(Alstrup, Dahlgaard, Knudsen 2017) $\log n+\mathcal{O}(1)$-bit scheme
Bounded treewidth graphs
planar graphs have arboricity 3
$3 \log n+\mathcal{O}(1)$-bit scheme
(Gavoille, Labourel 2007)
$(1+o(1)) \log n$-bit scheme
every graph with no K_{t}-minor
 can be edge 2-colored so that each monochromatic subgraph has bounded tw

Planar graphs

(Bonamy, Gavoille, Mi. Pilipczuk 2020)
$\left(\frac{4}{3}+o(1)\right) \log n$-bit scheme

product structure theorem

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2020)
Every planar graph G is a subgraph of a strong product $H \boxtimes P$ where H is a graph of treewidth at most 8 and P is a path.

path P

labelling scheme through the Product Structure Thm

$$
\begin{array}{ll}
(1+o(1)) \log (m \cdot h) & \begin{array}{l}
\text { plus } 8 \cdot 3 \text { bits to check if } \\
\text { edge in } H \boxtimes P \text { is present in } G
\end{array}
\end{array}
$$

all we can say is $m \leqslant n$ and $h \leqslant n$, so we get

$$
\underset{\text { III }}{(1+o(1))} \log (n \cdot n) \text {-bit }
$$

$$
(2+o(1)) \log (n) \text {-bit }
$$

$$
\left(\frac{4}{3}+o(1)\right) \log n \text {-bit scheme }
$$

■ "remove" every other $n^{1 / 3}$ edge of the path $P \quad H \quad P$ so that there are $\mathcal{O}\left(n^{2 / 3}\right)$ vertices in boundary layers

$$
\left(\frac{4}{3}+o(1)\right) \log n \text {-bit scheme }
$$

\triangleright "remove" every other $n^{1 / 3}$ edge of the path $P \quad H \quad P$ so that there are $\mathcal{O}\left(n^{2 / 3}\right)$ vertices in boundary layers

$$
\left(\frac{4}{3}+o(1)\right) \log n \text {-bit scheme }
$$

\triangleright "remove" every other $n^{1 / 3}$ edge of the path $P \quad H \quad P$ so that there are $\mathcal{O}\left(n^{2 / 3}\right)$ vertices in boundary layers

$$
\left(\frac{4}{3}+o(1)\right) \log n \text {-bit scheme }
$$

■ "remove" every other $n^{1 / 3}$ edge of the path $P \quad H$ so that there are $\mathcal{O}\left(n^{2 / 3}\right)$ vertices in boundary layers
\triangleright each piece between the cuts is a subgraph of $H \boxtimes P^{\prime}$

$$
\text { where }\left|P^{\prime}\right|=n^{1 / 3}
$$

$$
(1+o(1)) \log \left(n \cdot n^{1 / 3}\right) \equiv\left(\frac{4}{3}+o(1)\right) \log n
$$

-bit scheme

$$
\left(\frac{4}{3}+o(1)\right) \log n \text {-bit scheme }
$$

\triangleright "remove" every other $n^{1 / 3}$ edge of the path $P \quad H$ so that there are $\mathcal{O}\left(n^{2 / 3}\right)$ vertices in boundary layers
\triangleright each piece between the cuts is a subgraph of $H \boxtimes P^{\prime}$

$$
\text { where }\left|P^{\prime}\right|=n^{1 / 3}
$$

$(1+o(1)) \log \left(n \cdot n^{1 / 3}\right) \equiv\left(\frac{4}{3}+o(1)\right) \log n$
-bit scheme
\triangleright boundary vertices get shorter labels $\left(\frac{2}{3}+o(1)\right) \log n$-bit length

$$
\left(\frac{4}{3}+o(1)\right) \log n \text {-bit scheme }
$$

- "remove" every other $n^{1 / 3}$ edge of the path $P \quad H \quad P$ so that there are $\mathcal{O}\left(n^{2 / 3}\right)$ vertices in boundary layers
\triangleright each piece between the cuts is a subgraph of $H \boxtimes P^{\prime}$

$$
\text { where }\left|P^{\prime}\right|=n^{1 / 3}
$$

$$
(1+o(1)) \log \left(n \cdot n^{1 / 3}\right) \equiv\left(\frac{4}{3}+o(1)\right) \log n
$$

-bit scheme
\triangleright boundary vertices get shorter labels $\left(\frac{2}{3}+o(1)\right) \log n$-bit length
\triangleright the graph induced by boundary vertices has bounded treewidth and size $\mathcal{O}\left(n^{2 / 3}\right)$ $\left(\frac{2}{3}+o(1)\right) \log n$-bit scheme
special case: subgraphs of $P \boxtimes P$

G is an n-vertex subgraph of this
special case: subgraphs of $P \boxtimes P$

Idea: let the rows with many vertices have shorter labels

weighted scheme for paths: preliminaries (1)

A binary search tree T is a binary tree whose node set $V(T)$ consists of distinct real numbers and that has the property:
For each node x in T,
$z<x$ for each node z in x 's left subtree and $z>x$ for each node z in x 's right subtree.

$$
\begin{gathered}
x<y \\
\Uparrow
\end{gathered}
$$

$\sigma_{T}(x)$ is lexicographically less than $\sigma_{T}(y)$

weighted scheme for paths: preliminaries (2)
S finite subset of \mathbb{R}
$w: S \rightarrow \mathbb{R}^{+}$weight function

$$
W=\sum_{s \in S} w(s)
$$

Observation
There exists a binary search tree T with $V(T)=S$ such that

$$
d_{T}(y) \leqslant \log (W)-\log (w(y)), \text { for each } y \in S \text {. }
$$

weighted scheme for paths: preliminaries (2)

S finite subset of \mathbb{R}
$w: S \rightarrow \mathbb{R}^{+}$weight function

$$
W=\sum_{s \in S} w(s)
$$

Observation

There exists a binary search tree T with $V(T)=S$ such that

$$
d_{T}(y) \leqslant \log (W)-\log (w(y)), \text { for each } y \in S \text {. }
$$

To construct the tree:
\triangleright choose the root of T to be the unique node $s \in S$ such that

$$
\sum_{\substack{z \in S \\ z<S}} w(z) \leqslant W / 2 \quad \text { and } \quad \sum_{\substack{z \in S \\ z>S}} w(z)<W / 2
$$

\triangleright then recurse on $\{z \mid z \in S$ and $z<s\}$ and $\{z \mid z \in S$ and $z<s\}$ to obtain the left and right subtrees of s, respectively.

weighted scheme for paths: preliminaries (3)

x, y nodes in bst T such that $x<y$ and there is no z in T with $x<z<y$, so x and y are consecutive in the sort of $V(T)$.
Then
\triangleright if y has no left child, $\sigma_{T}(x)$ is obtained from $\sigma_{T}(y)$ by
removing all trailing 0 's and the last 1 ;
\triangleright if y has a left child, $\sigma_{T}(x)$ is obtained from $\sigma_{T}(y)$ by
appending a 0 followed by $d_{T}(y)-d_{T}(x)-1$ 1's.

Thus, there exists a universal function $D:\left(\{0,1\}^{*}\right)^{2} \rightarrow\{0,1\}^{*}$ such that for every bst T with x, y being consecutive in $V(T)$, there exists

$$
\begin{gathered}
\delta_{T}(y) \in\{0,1\}^{*} \text { with }\left|\delta_{T}(y)\right|=\mathcal{O}(\log h(T)) \text { such that } \\
D\left(\sigma_{T}(y), \delta_{T}(y)\right)=\sigma_{T}(x) .
\end{gathered}
$$

weighted scheme for paths

There exists a universal function $A:\left(\{0,1\}^{*}\right)^{2} \rightarrow\{-1,0,1, \perp\}$ such that, for any $h \in \mathbb{N}$, and any weight function $w:\{1, \ldots, h\} \rightarrow \mathbb{R}^{+}$ there is a prefix-free code $\alpha:\{1, \ldots, h\} \rightarrow\{0,1\}^{*}$ such that
\triangleright for each $i \in\{1, \ldots, h\},|\alpha(i)|=\log W-\log w(i)+\mathcal{O}(\log \log h)$;
\triangleright for any $i, j \in\{1, \ldots, h\}$, where $W=\sum_{i=1}^{h} w(i)$

$$
A(\alpha(i), \alpha(j))= \begin{cases}0 & \text { if } j=i \\ 1 & \text { if } j=i+1 \\ -1 & \text { if } j=i-1 \\ \perp & \text { otherwise }\end{cases}
$$

given label $(v), \operatorname{label}(w)$

given $\operatorname{label}(v), \operatorname{label}(w)$
\triangleright if $\operatorname{row}(v)=\operatorname{row}(w)$ then column labels will do $\widetilde{\mathrm{YES}}$

given $\operatorname{label}(v), \operatorname{label}(w)$
\triangleright if $\operatorname{row}(v)=\operatorname{row}(w)$ then column labels will do $\stackrel{\mathrm{NES}}{\mathrm{NO}}$

given $\operatorname{label}(v), \operatorname{label}(w)$
\triangleright if $\operatorname{row}(v)=\operatorname{row}(w)$ then column labels will do NES
\triangleright if $|\operatorname{row}(v)-\operatorname{row}(w)|>1$ then output NO

given $\operatorname{label}(v), \operatorname{label}(w)$
\triangleright if $\operatorname{row}(v)=\operatorname{row}(w)$ then column labels will do YES
\triangleright if $|\operatorname{row}(v)-\operatorname{row}(w)|>1$ then output NO
$\triangleright \mathrm{if}|\operatorname{row}(v)-\operatorname{row}(w)|=1$ then ???

row label: $\log n-\log n_{i}+o(\log n)$ column label: $\quad \log n_{i}+o(\log n)$
transition label: $o(\log n)$

$\left(T_{1}, T_{2}, \ldots, T_{h}\right)$ - a trace of a single dynamic binary search tree

$\left(T_{1}, T_{2}, \ldots, T_{h}\right)$ - a trace of a single dynamic binary search tree fractional cascading

a-chunking sequence

$X, Y \subset \mathbb{R} \quad a \geqslant 1$
$X a$-chunks Y if, for any $a+1$-element subset $S \subseteq Y$, there exists $x \in X$, such that

$$
\min S \leqslant x \leqslant \max S
$$

V_{1}, \ldots, V_{h} is a-chunking if $V_{y} a$-chunks V_{y+1} and $V_{y+1} a$-chunks V_{y}

a-chunking sequence

$X, Y \subset \mathbb{R} \quad a \geqslant 1$
$X a$-chunks Y if, for any $a+1$-element subset $S \subseteq Y$, there exists $x \in X$, such that

$$
\min S \leqslant x \leqslant \max S
$$

V_{1}, \ldots, V_{h} is a-chunking if $V_{y} a$-chunks V_{y+1} and $V_{y+1} a$-chunks V_{y}

Lemma For any finite sets $S_{1}, \ldots, S_{h} \subset \mathbb{R}$ and any integer $a \geqslant 1$, there exist sets $V_{1}, \ldots, V_{h} \subset \mathbb{R}$ such that
$\triangleright V_{y} \supseteq S_{y}$, for each $y \in\{1, \ldots, h\}$;
$\triangleright V_{1}, \ldots, V_{h}$ is a-chunking;
$\triangleright \sum\left|V_{y}\right| \leqslant\left(\frac{a+1}{a}\right)^{2} \cdot \sum\left|S_{y}\right|$.
$X, Y \subset \mathbb{R} \quad a \geqslant 1$
$X a$-chunks Y if, for any $a+1$-element subset $S \subseteq Y$, there exists $x \in X$, such that

$$
\min S \leqslant x \leqslant \max S
$$

V_{1}, \ldots, V_{h} is a-chunking if $V_{y} a$-chunks V_{y+1} and $V_{y+1} a$-chunks V_{y}

Lemma For any finite sets $S_{1}, \ldots, S_{h} \subset \mathbb{R}$ and any integer $a=1$, there exist sets $V_{1}, \ldots, V_{h} \subset \mathbb{R}$ such that
$\triangleright V_{y} \supseteq S_{y}$, for each $y \in\{1, \ldots, h\}$;
$a=1$
$\triangleright V_{1}, \ldots, V_{h}$ is 1-chunking;
$\triangleright \sum\left|V_{y}\right| \leqslant 4 \cdot \sum\left|S_{y}\right|$.

$\left(T_{1}, T_{2}, \ldots, T_{h}\right)$ - a trace of a single dynamic binary search tree

$\left(T_{1}, T_{2}, \ldots, T_{h}\right)$ - a trace of a single dynamic binary search tree

$\left(T_{1}, T_{2}, \ldots, T_{h}\right)$ - a trace of a single dynamic binary search tree - insertions

$\left(T_{1}, T_{2}, \ldots, T_{h}\right)$ - a trace of a single dynamic binary search tree
\triangleright insertions
\triangleright deletions

$\left(T_{1}, T_{2}, \ldots, T_{h}\right)$ - a trace of a single dynamic binary search tree
\triangleright insertions
\triangleright deletions
\triangleright rebalancing
\triangleright insertions
$h\left(T^{\prime}\right) \leqslant h\left(T_{i}\right)+1$
no impact on signatures of elements that are in both T_{i} and T_{i+1}
\triangleright insertions

$$
h\left(T^{\prime}\right) \leqslant h\left(T_{i}\right)+1
$$

no impact on signatures of elements that are in both T_{i} and T_{i+1}
\triangleright deletions
with a standard bst algorithm
signatures of elements in $T^{\prime \prime}$ are prefixes of their signatures in T^{\prime}
$h\left(T^{\prime \prime}\right) \leqslant h\left(T^{\prime}\right)$
$\frac{1}{4}\left|T^{\prime}\right| \leqslant\left|T^{\prime \prime}\right| \leqslant\left|T^{\prime}\right| \longrightarrow \log \left|T^{\prime}\right| \leqslant \log \left|T^{\prime \prime}\right|+2$
\triangleright insertions

$$
h\left(T^{\prime}\right) \leqslant h\left(T_{i}\right)+1
$$

no impact on signatures of elements that are in both T_{i} and T_{i+1}
\triangleright deletions
with a standard bst algorithm
signatures of elements in $T^{\prime \prime}$ are prefixes of their signatures in T^{\prime}
$h\left(T^{\prime \prime}\right) \leqslant h\left(T^{\prime}\right)$
$\frac{1}{4}\left|T^{\prime}\right| \leqslant\left|T^{\prime \prime}\right| \leqslant\left|T^{\prime}\right| \longrightarrow \log \left|T^{\prime}\right| \leqslant \log \left|T^{\prime \prime}\right|+2$
\triangleright rebalancing
balance (x, k)

\triangleright insertions
$h\left(T^{\prime}\right) \leqslant h\left(T_{i}\right)+1$
no impact on signatures of elements that are in both T_{i} and T_{i+1}
\triangleright deletions
with a standard bst algorithm
signatures of elements in $T^{\prime \prime}$ are prefixes of their signatures in T^{\prime}
$h\left(T^{\prime \prime}\right) \leqslant h\left(T^{\prime}\right)$
$\frac{1}{4}\left|T^{\prime}\right| \leqslant\left|T^{\prime \prime}\right| \leqslant\left|T^{\prime}\right| \longrightarrow \log \left|T^{\prime}\right| \leqslant \log \left|T^{\prime \prime}\right|+2$
\triangleright rebalancing
balance (x, k)
effect on signature can be encoded in
$\mathcal{O}(k \log \log n)$ bits

a

$$
\Delta
$$

$$
h\left(T_{i}\right) \leqslant \log \left|T_{i}\right|+\mathcal{O}\left(\frac{1}{k} \log \left|T_{i}\right|\right)
$$

so we have a trade-off: transition code of length $\mathcal{O}(k \log \log n)$ VS
signatures of length $\log \left|T_{i}\right|+\mathcal{O}\left(\frac{1}{k} \log \left|T_{i}\right|\right)$

so we have a trade-off: transition code of length $\mathcal{O}(k \log \log n)$
vs
signatures of length $\log \left|T_{i}\right|+\mathcal{O}\left(\frac{1}{k} \log \left|T_{i}\right|\right)$

resulting labels of length

$$
\begin{aligned}
& \log n-\log \left|T_{i}\right|+\mathcal{O}(\log \log n) \\
& \log \left|T_{i}\right|+\mathcal{O}(\sqrt{\log n \log \log n})
\end{aligned}
$$

optimized choice $k=\sqrt{\frac{\log n}{\log \log n}}$

resulting labels of length

$$
\begin{aligned}
& \log n-\log \left|T_{i}\right|+\mathcal{O}(\log \log n) \\
& \log \left|T_{i}\right|+\mathcal{O}(\sqrt{\log n \log \log n})
\end{aligned}
$$

optimized choice $k=\sqrt{\frac{\log n}{\log \log n}}$
missing pieces?
induced subgraphs of $P \boxtimes P$

G is an n-vertex subgraph of this
induced subgraphs of $P \boxtimes P$

G is an n-vertex subgraph of this

subgraphs of $H \boxtimes P$

subgraphs of $H \boxtimes P$

G is an n-vertex subgraph of this

universal graphs

Observation [Kannan, Naor, Rudich 1988]

A class of graphs \mathcal{C} has an $f(n)$-bit adjacency labelling iff for each $n \geqslant 1$, there exists a graph U_{n} such that
$\triangleright\left|V\left(U_{n}\right)\right|=2^{f(n)}$;
$\triangleright \quad G$ is an induced subgraph of U_{n}, for each n-vertex G in \mathcal{C}.

universal graphs

Observation [Kannan, Naor, Rudich 1988]

A class of graphs \mathcal{C} has an $f(n)$-bit adjacency labelling iff for each $n \geqslant 1$, there exists a graph U_{n} such that
$\triangleright\left|V\left(U_{n}\right)\right|=2^{f(n)}$;
$\triangleright \quad G$ is an induced subgraph of U_{n}, for each n-vertex G in \mathcal{C}.
Proof.

$$
\begin{aligned}
& V\left(U_{n}\right)=\{0,1\}^{f(n)} \\
& E\left(U_{n}\right)=\{u v \mid A(u, v)=1\}
\end{aligned}
$$

universal graphs

Observation [Kannan, Naor, Rudich 1988]
A class of graphs \mathcal{C} has an $f(n)$-bit adjacency labelling iff for each $n \geqslant 1$, there exists a graph U_{n} such that
$\triangleright\left|V\left(U_{n}\right)\right|=2^{f(n)}$;
$\triangleright \quad G$ is an induced subgraph of U_{n}, for each n-vertex G in \mathcal{C}.
Proof.

$$
\begin{aligned}
& V\left(U_{n}\right)=\{0,1\}^{f(n)} \\
& E\left(U_{n}\right)=\{u v \mid A(u, v)=1\}
\end{aligned}
$$

Corollary

n-vertex planar graphs have a universal graph on $n^{1+o(1)}$ vertices

universal graphs

Observation [Kannan, Naor, Rudich 1988]
A class of graphs \mathcal{C} has an $f(n)$-bit adjacency labelling iff for each $n \geqslant 1$, there exists a graph U_{n} such that
$\triangleright\left|V\left(U_{n}\right)\right|=2^{f(n)}$;
$\triangleright \quad G$ is an induced subgraph of U_{n}, for each n-vertex G in \mathcal{C}.
Proof.

$$
\begin{aligned}
& V\left(U_{n}\right)=\{0,1\}^{f(n)} \\
& E\left(U_{n}\right)=\{u v \mid A(u, v)=1\}
\end{aligned}
$$

Corollary
n-vertex planar graphs have a universal graph on $n^{1+o(1)}$ vertices
Theorem [Esperet, Joret, Morin 2020+]
n-vertex planar graphs have a universal graph on $n^{1+o(1)}$ vertices and $n^{1+o(1)}$ edges

open problems

\triangleright what is the asymptotics of the lower order term?

$$
\begin{aligned}
\log n & +\mathcal{O}(\sqrt{\log n \log \log n}) \\
& +\Omega(1)
\end{aligned}
$$

open problems

\square what is the asymptotics of the lower order term?

$$
\begin{aligned}
\log n & +\mathcal{O}(\sqrt{\log n \log \log n}) \\
& +\Omega(1)
\end{aligned}
$$

\triangleright adjacency labelling for K_{t}-minor free graphs?

$$
2 \log n+o(\log n)
$$

open problems

\square what is the asymptotics of the lower order term?

$$
\begin{aligned}
\log n & +\mathcal{O}(\sqrt{\log n \log \log n}) \\
& +\Omega(1)
\end{aligned}
$$

\triangleright adjacency labelling for K_{t}-minor free graphs?

$$
2 \log n+o(\log n)
$$

Thank you.

