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Part II quick applications

Part III application: adjacency labelling scheme
open problems / further research
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▷ (G, ℓ) works with A

A family of graphs G has an
f(n)-bit adjacency labelling scheme

if∃ a function A : ({0, 1}∗)2 → {0, 1}

∀
such that

n-vertex graph G ∈ G ∃ ℓ : V (G) → {0, 1}∗ such that

▷ |ℓ(v)| ⩽ f(n) for each v in G

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)



▷ (G, ℓ) works with A

A family of graphs G has an
f(n)-bit adjacency labelling scheme

if∃ a function A : ({0, 1}∗)2 → {0, 1}

∀
such that

n-vertex graph G ∈ G ∃ ℓ : V (G) → {0, 1}∗ such that

▷ |ℓ(v)| ⩽ f(n) for each v in G

The family of planar graphs has a

(1 + o(1)) log n-bit adjacency labelling scheme.
(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)
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Examples

▷ when G contains a single n-vertex graph
labels ≡ unique ids of length
function A ≡ adjacency matrix

⌈log n⌉

▷ when G is a family of linear forests
labels ≡ unique ids assigned along the paths

plus an extra bit

100 · 0 111 · 1 if a vertex is adjacent
to a vertex to the left

indicating . . .

log n+O(1) scheme
▷ when G is a family of trees

root a tree and take any topological ordering of its vertices

assign unique ids
labels ≡ concatenation of

vertex id and id of its parent
2⌈log n⌉ scheme

than ⌈log n⌉
you cannot do better

010000 100010



Examples

▷ when G is a family of planar graphs
take a vertex ordering witnessing that G is 5-degenerate

⩽ 5 assign unique ids
labels ≡ concatenation of

vertex id and ids of left neighbors
6⌈log n⌉ scheme
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planar graphs have

(Chung 1990)

log n+O(log∗ n)-bit scheme
(Alstrup, Rauhe 2006)

Bounded treewidth graphs

(1 + o(1)) log n-bit scheme
(Gavoille, Labourel 2007)

every graph with no Kt-minor
can be edge 2-colored so that
each monochromatic subgraph has bounded tw

=⇒
(2 + o(1)) log n-bit

3 log n+O(1)-bit
scheme

scheme

Planar graphs

(
4
3 + o(1)

)
log n-bit scheme

(Bonamy, Gavoille, Mi. Pilipczuk 2020)

=⇒

history and related work

log n+O(1)-bit scheme
(Alstrup, Dahlgaard, Knudsen 2017) arboricity 3



product structure theorem

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2020)
Every planar graph G is a subgraph of a strong product H ⊠ P where
H is a graph of treewidth at most 8 and P is a path.

H ⊠

G

⊆

tw(H) ⩽ 8 path P



labelling scheme through the Product Structure Thm

H ⊠G ⊆

tw(H) ⩽ 8 path P

m vertices h vertices

(1 + o(1)) logm-bit (1 + o(1)) log h-bit schemes

(1 + o(1)) log(m · h)

n vertices

all we can say is m ⩽ n and h ⩽ n, so we get
(1 + o(1)) log(n · n)-bit

(2 + o(1)) log(n)-bit

plus 8 · 3 bits to check if
edge in H ⊠ P is present in G



(
4
3 + o(1)

)
log n-bit scheme

...

...

...

P


n1/3

H

{

{

▷ "remove" every other n1/3 edge of the path P

so that there are O(n2/3) vertices
in boundary layers

boundary

boundary
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in boundary layers

boundary
{
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boundary
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boundary
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...
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PH▷ "remove" every other n1/3 edge of the path P

so that there are O(n2/3) vertices
in boundary layers

▷ each piece between the cuts
is a subgraph of H ⊠ P ′

(1 + o(1)) log(n · n1/3) ≡
(
4
3 + o(1)

)
log n
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PH▷ "remove" every other n1/3 edge of the path P

so that there are O(n2/3) vertices
in boundary layers

▷ each piece between the cuts
is a subgraph of H ⊠ P ′

(1 + o(1)) log(n · n1/3) ≡
(
4
3 + o(1)

)
log n
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▷ boundary vertices get shorter labels(

2
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)
log n-bit length
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where |P ′| = n1/3
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4
3 + o(1)

)
log n-bit scheme

...

...

...

PH▷ "remove" every other n1/3 edge of the path P

so that there are O(n2/3) vertices
in boundary layers

▷ each piece between the cuts
is a subgraph of H ⊠ P ′

(1 + o(1)) log(n · n1/3) ≡
(
4
3 + o(1)

)
log n

-bit scheme
▷ boundary vertices get shorter labels(

2
3 + o(1)

)
log n-bit length

▷ the graph induced by boundary vertices
has bounded treewidth and size O(n2/3)(
2
3 + o(1)

)
log n-bit scheme

in total:
(
4
3 + o(1)

)
log n-bit scheme

boundary
{ 

n1/3

where |P ′| = n1/3
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special case: subgraphs of P ⊠ P

h

m

G is an n-vertex subgraph of this

n1

n2

nh

...

∑
ni = n

Idea: let the rows with many vertices have shorter labels



weighted scheme for paths: preliminaries (1)

A binary search tree T is a binary tree whose node set V (T ) consists of
distinct real numbers and that has the property:

For each node x in T ,
z < x for each node z in x’s left subtree and
z > x for each node z in x’s right subtree.

σT (x) is lexicographically less than σT (y)

x < y

⇕



weighted scheme for paths: preliminaries (2)

S finite subset of R
w : S → R+ weight function

There exists a binary search tree T with V (T ) = S such that
dT (y) ⩽ log(W )− log(w(y)), for each y ∈ S.

W =
∑

s∈S w(s)

Observation



To construct the tree:

weighted scheme for paths: preliminaries (2)

S finite subset of R
w : S → R+ weight function

There exists a binary search tree T with V (T ) = S such that
dT (y) ⩽ log(W )− log(w(y)), for each y ∈ S.

W =
∑

s∈S w(s)

∑
z∈S
z<s

w(z) ⩽ W/2 and
∑

z∈S
z>s

w(z) < W/2

▷ then recurse on {z | z ∈ S and z < s} and {z | z ∈ S and z < s}

▷ choose the root of T to be the unique node s ∈ S such that

to obtain the left and right subtrees of s, respectively.

Observation



x, y nodes in bst T such that x < y and there is no z in T with x < z < y,
so x and y are consecutive in the sort of V (T ).
Then
▷ if y has no left child, σT (x) is obtained from σT (y) by

removing all trailing 0’s and the last 1;
▷ if y has a left child, σT (x) is obtained from σT (y) by

appending a 0 followed by dT (y)− dT (x)− 1 1’s.

Thus, there exists a universal function D : ({0, 1}∗)2 → {0, 1}∗ such that
for every bst T with x, y being consecutive in V (T ), there exists
δT (y) ∈ {0, 1}∗ with |δT (y)| = O(log h(T )) such that

D(σT (y), δT (y)) = σT (x).

weighted scheme for paths: preliminaries (3)



weighted scheme for paths

There exists a universal function A : ({0, 1}∗)2 → {−1, 0, 1,⊥} such that,
for any h ∈ N, and any weight function w : {1, . . . , h} → R+

there is a prefix-free code α : {1, . . . , h} → {0, 1}∗ such that

▷ for each i ∈ {1, . . . , h}, |α(i)| = logW − logw(i) +O(log log h);

A(α(i), α(j)) =


0 if j = i;
1 if j = i+ 1;
−1 if j = i− 1;
⊥ otherwise.

▷ for any i, j ∈ {1, . . . , h}, where W =
∑h

i=1 w(i)
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define label(v)as a concatenation of
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∑
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Gi
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given label(v), label(w)
▷ if row(v) = row(w) then column labels will do
▷ if | row(v)− row(w)| > 1 then output NO
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Gi

given label(v), label(w)
▷ if row(v) = row(w) then column labels will do
▷ if | row(v)− row(w)| > 1 then output NO

YES
NO

▷ if | row(v)− row(w)| = 1 then ???

Gi+1
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row label: log n− log ni + o(log n)

column label: log ni + o(log n)

transition label: o(log n)
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fractional cascading



a-chunking sequence

X,Y ⊂ R a ⩾ 1

X a-chunks Y if, for any a+ 1-element subset S ⊆ Y , there exists x ∈ X,
such that

minS ⩽ x ⩽ maxS

V1, . . . , Vh is a-chunking if Vy a-chunks Vy+1 and Vy+1 a-chunks Vy



a-chunking sequence

Lemma For any finite sets S1, . . . , Sh ⊂ R and any integer a ⩾ 1,
there exist sets V1, . . . , Vh ⊂ R such that
▷ Vy ⊇ Sy, for each y ∈ {1, . . . , h};
▷ V1, . . . , Vh is a-chunking;

X,Y ⊂ R a ⩾ 1

X a-chunks Y if, for any a+ 1-element subset S ⊆ Y , there exists x ∈ X,
such that

minS ⩽ x ⩽ maxS

V1, . . . , Vh is a-chunking if Vy a-chunks Vy+1 and Vy+1 a-chunks Vy

▷
∑

|Vy| ⩽
(
a+1
a

)2 ·∑ |Sy|.



a-chunking sequence

Lemma
there exist sets V1, . . . , Vh ⊂ R such that
▷ Vy ⊇ Sy, for each y ∈ {1, . . . , h};

X,Y ⊂ R a ⩾ 1

X a-chunks Y if, for any a+ 1-element subset S ⊆ Y , there exists x ∈ X,
such that

minS ⩽ x ⩽ maxS

V1, . . . , Vh is a-chunking if Vy a-chunks Vy+1 and Vy+1 a-chunks Vy

a = 1

For any finite sets S1, . . . , Sh ⊂ R and any integer a = 1,

▷ V1, . . . , Vh is 1-chunking;
▷
∑

|Vy| ⩽ 4 ·
∑

|Sy|.
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(T1, T2, . . . , Th) – a trace of a single dynamic binary search tree

...

▷ insertions
▷ deletions
▷ rebalancing
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▷ insertions
h(T ′) ⩽ h(Ti) + 1

no impact on signatures of elements that are in both Ti and Ti+1

▷ deletions
with a standard bst algorithm

h(T ′′) ⩽ h(T ′)

signatures of elements in T ′′ are prefixes of their signatures in T ′

1
4 |T

′| ⩽ |T ′′| ⩽ |T ′| log |T ′| ⩽ log |T ′′|+ 2

▷ rebalancing
balance(x, k)
effect on signature can

be encoded in
O(k log log n) bits

















h(Ti) ⩽ log |Ti|+O( 1k log |Ti|)



so we have a trade-off:
transition code of length O(k log log n)

vs
signatures of length log |Ti|+O( 1k log |Ti|)



so we have a trade-off:
transition code of length O(k log log n)

vs
signatures of length log |Ti|+O( 1k log |Ti|)

optimized choice k =
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optimized choice k =
√

logn
log logn

resulting labels of length

log |Ti|+O(
√
log n log log n)

log n− log |Ti|+O(log log n)



optimized choice k =
√

logn
log logn

resulting labels of length

log |Ti|+O(
√
log n log log n)

log n− log |Ti|+O(log log n)
missing pieces?
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Observation [Kannan, Naor, Rudich 1988]
A class of graphs C has an f(n)-bit adjacency labelling iff

for each n ⩾ 1, there exists a graph Un such that
▷ |V (Un)| = 2f(n);
▷ G is an induced subgraph of Un, for each n-vertex G in C.
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universal graphs

Observation [Kannan, Naor, Rudich 1988]
A class of graphs C has an f(n)-bit adjacency labelling iff

for each n ⩾ 1, there exists a graph Un such that
▷ |V (Un)| = 2f(n);
▷ G is an induced subgraph of Un, for each n-vertex G in C.

Proof.
V (Un) = {0, 1}f(n)

E(Un) = {uv | A(u, v) = 1}

Corollary
n-vertex planar graphs have a universal graph on n1+o(1) vertices

Theorem [Esperet, Joret, Morin 2020+]
n-vertex planar graphs have a universal graph on n1+o(1) vertices

and n1+o(1) edges
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open problems

▷ what is the asymptotics of the lower order term?
log n+O(

√
log n log log n)

+Ω(1)

▷ adjacency labelling for Kt-minor free graphs?
2 log n+ o(log n)

Thank you.


