Product structure of planar graphs

 $\mathbf{\mathcal{G}}$

 $\langle \!\!\! \langle$

Piotr Micek Jagiellonian University

tutorial presentation for **9th Polish Combinatorial Conference** Będlewo, September 20, 2022

plan of tutorial

- Part Istatementsbackgroundproofvariants / generalizations
- Part II quick applications
- Part IIIapplication: adjacency labelling schemeopen problems / further research

 $(G, \ell) \text{ works with } A \text{ if}$ $A(\ell(v), \ell(w)) = \begin{cases} 0 & \text{if } vw \notin E(G) \\ 1 & \text{if } vw \in E(G) \end{cases}$

$$(G, \ell) \text{ works with } A \text{ if } A(\ell(v), \ell(w)) = \begin{cases} 0 & \text{if } vw \notin E(G) \\ 1 & \text{if } vw \in E(G) \end{cases}$$

adjacency tester $A: (\{0,1\}^*)^2 \rightarrow \{0,1\}$ labelling function $\ell: V(G) \rightarrow \{0,1\}^*$

 $(G, \ell) \text{ works with } A \text{ if}$ $A(\ell(v), \ell(w)) = \begin{cases} 0 & \text{if } vw \notin E(G) \\ 1 & \text{if } vw \in E(G) \end{cases}$

adjacency tester $A: (\{0,1\}^*)^2 \rightarrow \{0,1\}$ labelling function $\ell: V(G) \rightarrow \{0,1\}^*$

 $(G, \ell) \text{ works with } A \text{ if}$ $A(\ell(v), \ell(w)) = \begin{cases} 0 & \text{if } vw \notin E(G) \\ 1 & \text{if } vw \in E(G) \end{cases}$

A family of graphs \mathcal{G} has an if \exists a function $A : (\{0,1\}^*)^2 \to \{0,1\}$ such that $\bigvee n$ -vertex graph $G \in \mathcal{G} \quad \exists \quad \ell : V(G) \to \{0,1\}^*$ such that $\triangleright |\ell(v)| \leq f(n)$ for each v in G $\triangleright (G, \ell)$ works with A(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)

A family of graphs ${\mathcal G}\,$ has an f(n)-bit adjacency labelling scheme if $\neg \neg$ a function $A: (\{0,1\}^*)^2 \rightarrow \{0,1\}$ such that orall n -vertex graph $G \in \mathcal{G}$ $\neg \neg$ $\ell: V(G) \rightarrow \{0,1\}^*$ such that $arphi |\ell(v)| \leq f(n)$ for each v in G \triangleright (G, ℓ) works with A (Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019) $(1 + o(1)) \log n$ -bit adjacency labelling scheme. The family of **planar graphs** has a

▷ when G contains a single *n*-vertex graph labels \equiv unique ids of length $\lceil \log n \rceil$ function $A \equiv$ adjacency matrix

A	000	001	010	011	007	10^{1}	•••
000	0	1	1	0	1	0	
001	1	0	0	0	0	0	
010	1	0	0	1	1	0	
011	0	0	1	0	0	0	
100	1	0	0	1	0	0	
101	0	1	0	0	0	0	
·							

▷ when G contains a single *n*-vertex graph labels \equiv unique ids of length $\lceil \log n \rceil$ function $A \equiv$ adjacency matrix

you cannot do better than $\lceil \log n \rceil$

▷ when G contains a single *n*-vertex graph labels \equiv unique ids of length $\lceil \log n \rceil$ function $A \equiv$ adjacency matrix

 \triangleright when \mathcal{G} is a family of linear forests

you cannot do better than $\lceil \log n \rceil$

plus an extra bit indicating ...

000 001 010 011 100 101 110 111

labels \equiv unique ids assigned along the paths

▷ when G contains a single *n*-vertex graph labels \equiv unique ids of length $\lceil \log n \rceil$ function $A \equiv$ adjacency matrix

you cannot do better than $\lceil \log n \rceil$

▷ when \mathcal{G} is a family of linear forests labels \equiv unique ids assigned along the paths $100 \cdot 0$ $100 \cdot 0$ $111 \cdot 1$ if a vertex is adjacent to a vertex to the left

 $\log n + \mathcal{O}(1)$ scheme

▷ when G contains a single *n*-vertex graph labels \equiv unique ids of length $\lceil \log n \rceil$ function $A \equiv$ adjacency matrix

labels \equiv unique ids assigned along the paths

 $100 \cdot 0$

 \triangleright when \mathcal{G} is a family of linear forests

you cannot do better than $\lceil \log n \rceil$

plus an extra bit indicating

if a vertex is adjacent to a vertex to the left $\log n + O(1)$ scheme

 \triangleright when \mathcal{G} is a family of trees

root a tree and take any topological ordering of its vertices

 $111 \cdot 1$

assign unique ids labels \equiv concatenation of vertex id and id of its parent $2 \lceil \log n \rceil$ scheme

 \triangleright when \mathcal{G} contains a single *n*-vertex graph labels \equiv unique ids of length $\lceil \log n \rceil$ function $A \equiv$ adjacency matrix

 \triangleright when \mathcal{G} is a family of linear forests

you cannot do better than $\lceil \log n \rceil$

plus an extra bit labels \equiv unique ids assigned along the paths indicating ... $111 \cdot 1$ if a vertex is adjacent to a vertex to the left $\log n + \mathcal{O}(1)$ scheme

 \triangleright when \mathcal{G} is a family of trees

root a tree and take any topological ordering of its vertices

 $100 \cdot 0$

▷ when G contains a single *n*-vertex graph labels \equiv unique ids of length $\lceil \log n \rceil$ function $A \equiv$ adjacency matrix

labels \equiv unique ids assigned along the paths

 $100 \cdot 0$

 \triangleright when \mathcal{G} is a family of linear forests

you cannot do better than $\lceil \log n \rceil$

plus an extra bit indicating ...

if a vertex is adjacent to a vertex to the left $\log n + O(1)$ scheme

 \triangleright when \mathcal{G} is a family of trees

root a tree and take any topological ordering of its vertices

assign unique ids labels \equiv concatenation of vertex id and id of its parent $2 \lceil \log n \rceil$ scheme

 $111 \cdot 1$

 $\triangleright \text{ when } \mathcal{G} \text{ contains a single } n \text{-vertex graph} \\ \text{ labels} \equiv \text{ unique ids of length } \left\lceil \log n \right\rceil \\ \text{ function } A \equiv \text{ adjacency matrix} \end{cases}$

labels \equiv unique ids assigned along the paths

 $100 \cdot 0$

 \triangleright when \mathcal{G} is a family of linear forests

you cannot do better than $\lceil \log n \rceil$

plus an extra bit indicating ...

if a vertex is adjacent to a vertex to the left $\log n + O(1)$ scheme

 \triangleright when \mathcal{G} is a family of trees

root a tree and take any topological ordering of its vertices

assign unique ids labels \equiv concatenation of vertex id and id of its parent $2 \lceil \log n \rceil$ scheme

 $111 \cdot 1$

\triangleright when \mathcal{G} is a family of planar graphs

take a vertex ordering witnessing that ${\cal G}$ is 5-degenerate

assign unique ids

 $\mathsf{labels} \equiv \mathsf{concatenation} \ \mathsf{of}$

vertex id and ids of left neighbors

 $6\lceil \log n \rceil$ scheme

Forests history and related work (Chung 1990) $\log n + O(\log \log n)$ -bit scheme

Forests (Chung 1990) $\log n + O(\log \log n)$ -bit scheme (Alstrup, Rauhe 2006) $\log n + O(\log^* n)$ -bit scheme

Forests

```
(Chung 1990)

\log n + O(\log \log n)-bit scheme

(Alstrup, Rauhe 2006)

\log n + O(\log^* n)-bit scheme

(Alstrup, Dahlgaard, Knudsen 2017)

\log n + O(1)-bit scheme
```

Forests

```
Forests

(Chung 1990)

\log n + O(\log \log n)-bit scheme

(Alstrup, Rauhe 2006)

\log n + O(\log^* n)-bit scheme

(Alstrup, Dahlgaard, Knudsen 2017)

\log n + O(1)-bit scheme
```

planar graphs have arboricity 3 $3\log n + \mathcal{O}(1)$ -bit scheme

Forests

(Chung 1990) $\log n + O(\log \log n)$ -bit scheme (Alstrup, Rauhe 2006) $\log n + O(\log^* n)$ -bit scheme (Alstrup, Dahlgaard, Knudsen 2017) $\log n + O(1)$ -bit scheme Bounded treewidth graphs (Gavoille, Labourel 2007) $(1 + o(1)) \log n$ -bit scheme

planar graphs have arboricity 3 $3 \log n + O(1)$ -bit scheme

Forests

(Chung 1990) $\log n + O(\log \log n)$ -bit scheme (Alstrup, Rauhe 2006) $\log n + O(\log^* n)$ -bit scheme (Alstrup, Dahlgaard, Knudsen 2017) $\log n + O(1)$ -bit scheme Bounded treewidth graphs (Gavoille, Labourel 2007) $(1 + o(1)) \log n$ -bit scheme

every graph with no K_t -minor can be edge 2-colored so that each monochromatic subgraph has bounded tw

planar graphs have arboricity 3 $3 \log n + O(1)$ -bit scheme

Forests

(Chung 1990) $\log n + \mathcal{O}(\log \log n)$ -bit scheme (Alstrup, Rauhe 2006) $\log n + \mathcal{O}(\log^* n)$ -bit scheme (Alstrup, Dahlgaard, Knudsen 2017) $\log n + \mathcal{O}(1)$ -bit scheme Bounded treewidth graphs (Gavoille, Labourel 2007) $(1 + o(1)) \log n$ -bit scheme

> every graph with no K_t -minor can be edge 2-colored so that each monochromatic subgraph has bounded tw

Planar graphs (Bonamy, Gavoille, Mi. Pilipczuk 2020) $\left(\frac{4}{3} + o(1)\right) \log n$ -bit scheme

planar graphs have arboricity 3 $3\log n + \mathcal{O}(1)$ -bit scheme

product structure theorem

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2020) Every planar graph G is a subgraph of a strong product $H \boxtimes P$ where H is a graph of treewidth at most 8 and P is a path.

labelling scheme through the Product Structure Thm

special case: subgraphs of $P \boxtimes P$

h

G is an n-vertex subgraph of this

special case: subgraphs of $P \boxtimes P$

h

weighted scheme for paths: preliminaries (1)

A binary search tree T is a binary tree whose node set V(T) consists of distinct real numbers and that has the property:

weighted scheme for paths: preliminaries (2)

 $\begin{array}{ll} S \text{ finite subset of } \mathbb{R} \\ w:S \to \mathbb{R}^+ \text{ weight function} \end{array} \qquad W = \sum_{s \in S} w(s) \end{array}$

Observation

There exists a binary search tree T with V(T) = S such that $d_T(y) \leq \log(W) - \log(w(y))$, for each $y \in S$.
weighted scheme for paths: preliminaries (2)

 $\begin{array}{ll} S \text{ finite subset of } \mathbb{R} \\ w: S \to \mathbb{R}^+ \text{ weight function} \end{array} \qquad W = \sum_{s \in S} w(s) \end{array}$

Observation

There exists a binary search tree T with V(T) = S such that $d_T(y) \leq \log(W) - \log(w(y))$, for each $y \in S$.

To construct the tree:

 \triangleright choose the root of T to be the unique node $s \in S$ such that

$$\sum_{\substack{z \in S \\ z < s}} w(z) \leqslant W/2 \quad \text{and} \quad \sum_{\substack{z \in S \\ z > s}} w(z) < W/2$$

 \triangleright then recurse on $\{z \mid z \in S \text{ and } z < s\}$ and $\{z \mid z \in S \text{ and } z < s\}$ to obtain the left and right subtrees of s, respectively.

weighted scheme for paths: preliminaries (3)

- x, y nodes in bst T such that x < y and there is no z in T with x < z < y, so x and y are consecutive in the sort of V(T). Then
 - ▷ if y has no left child, $\sigma_T(x)$ is obtained from $\sigma_T(y)$ by removing all trailing 0's and the last 1;
 - ▷ if y has a left child, $\sigma_T(x)$ is obtained from $\sigma_T(y)$ by appending a 0 followed by $d_T(y) - d_T(x) - 1$ 1's.

Thus, there exists a universal function $D: (\{0,1\}^*)^2 \to \{0,1\}^*$ such that for every bst T with x, y being consecutive in V(T), there exists $\delta_T(y) \in \{0,1\}^*$ with $|\delta_T(y)| = \mathcal{O}(\log h(T))$ such that $D(\sigma_T(y), \delta_T(y)) = \sigma_T(x).$

weighted scheme for paths

There exists a universal function $A : (\{0,1\}^*)^2 \to \{-1,0,1,\bot\}$ such that, for any $h \in \mathbb{N}$, and any weight function $w : \{1,\ldots,h\} \to \mathbb{R}^+$ there is a prefix-free code $\alpha : \{1,\ldots,h\} \to \{0,1\}^*$ such that

 $\triangleright \text{ for each } i \in \{1, \dots, h\}, \ |\alpha(i)| = \log W - \log w(i) + \mathcal{O}(\log \log h); \\ \triangleright \text{ for any } i, j \in \{1, \dots, h\}, \qquad \qquad \text{where } W = \sum_{i=1}^{h} w(i)$

$$A(\alpha(i), \alpha(j)) = \begin{cases} 0 & \text{if } j = i; \\ 1 & \text{if } j = i+1; \\ -1 & \text{if } j = i-1; \\ \bot & \text{otherwise.} \end{cases}$$

h

10

given label(v), label(w)

h

•

h

rightarrow if $|\operatorname{row}(v) - \operatorname{row}(w)| > 1$ then output NO

h

row label: $\log n - \log n_i + o(\log n)$ column label: $\log n_i + o(\log n)$ transition label: $o(\log n)$

 (T_1, T_2, \ldots, T_h) – a trace of a single dynamic binary search tree

 (T_1, T_2, \ldots, T_h) – a trace of a single dynamic binary search tree

fractional cascading

a-chunking sequence

 $\begin{array}{ll} X,Y\subset \mathbb{R} & a\geqslant 1\\ X \text{ a-chunks }Y \text{ if, for any }a+1\text{-element subset }S\subseteq Y\text{, there exists }x\in X\text{,}\\ \text{ such that }& \min S\leqslant x\leqslant \max S\end{array}$

 V_1, \ldots, V_h is *a*-chunking if V_y *a*-chunks V_{y+1} and V_{y+1} *a*-chunks V_y

a-chunking sequence

 $\begin{array}{ll} X,Y\subset \mathbb{R} & a\geqslant 1\\ X \text{ a-chunks } Y \text{ if, for any } a+1\text{-element subset } S\subseteq Y \text{, there exists } x\in X \text{,}\\ \text{ such that } & \min S\leqslant x\leqslant \max S \end{array}$

 V_1, \ldots, V_h is *a*-chunking if V_y *a*-chunks V_{y+1} and V_{y+1} *a*-chunks V_y

Lemma For any finite sets $S_1, \ldots, S_h \subset \mathbb{R}$ and any integer $a \ge 1$, there exist sets $V_1, \ldots, V_h \subset \mathbb{R}$ such that $\triangleright V_y \supseteq S_y$, for each $y \in \{1, \ldots, h\}$; $\triangleright V_1, \ldots, V_h$ is *a*-chunking; $\triangleright \sum |V_y| \le \left(\frac{a+1}{a}\right)^2 \cdot \sum |S_y|$.

a-chunking sequence

 $\begin{array}{ll} X,Y\subset \mathbb{R} & a\geqslant 1\\ X \text{ a-chunks } Y \text{ if, for any } a+1\text{-element subset } S\subseteq Y \text{, there exists } x\in X \text{,}\\ \text{ such that } & \min S\leqslant x\leqslant \max S \end{array}$

 V_1, \ldots, V_h is *a*-chunking if V_y *a*-chunks V_{y+1} and V_{y+1} *a*-chunks V_y

Lemma For any finite sets $S_1, \ldots, S_h \subset \mathbb{R}$ and any integer a = 1, there exist sets $V_1, \ldots, V_h \subset \mathbb{R}$ such that $\triangleright V_y \supseteq S_y$, for each $y \in \{1, \ldots, h\}$; $\triangleright V_1, \ldots, V_h$ is 1-chunking; $\triangleright \sum |V_y| \leq 4 \cdot \sum |S_y|$.

 (T_1, T_2, \ldots, T_h) – a trace of a single dynamic binary search tree

m

▷ insertions

h

- \triangleright insertions
- ▷ deletions

- (T_1, T_2, \ldots, T_h) a trace of a single dynamic binary search tree > insertions
- ▷ deletions
- ▷ rebalancing

 $h(T') \leqslant h(T_i) + 1$

no impact on signatures of elements that are in both T_i and T_{i+1}

 $h(T') \leqslant h(T_i) + 1$

no impact on signatures of elements that are in both T_i and $T_{i+1} \triangleright$ deletions

with a standard bst algorithm

signatures of elements in T'' are prefixes of their signatures in T' $h(T'') \leq h(T')$ $\frac{1}{4}|T'| \leq |T''| \leq |T'| \longrightarrow \log |T'| \leq \log |T''| + 2$

 $h(T') \leqslant h(T_i) + 1$

no impact on signatures of elements that are in both T_i and $T_{i+1} \triangleright$ deletions

with a standard bst algorithm

signatures of elements in T'' are prefixes of their signatures in T' $h(T'') \leqslant h(T')$

 $\frac{1}{4}|T'| \leqslant |T''| \leqslant |T'| \longrightarrow \log |T'| \leqslant \log |T''| + 2$

▷ rebalancing

 $\mathsf{balance}(x,k)$

 $h(T') \leqslant h(T_i) + 1$

no impact on signatures of elements that are in both T_i and $T_{i+1} \triangleright$ deletions

with a standard bst algorithm

signatures of elements in T'' are prefixes of their signatures in T'h(T'') < h(T')

 $h(T'') \leqslant h(T')$

 $\frac{1}{4}|T'| \leqslant |T''| \leqslant |T'| \longrightarrow \log |T'| \leqslant \log |T''| + 2$

▷ rebalancing

 $\begin{array}{l} \mathsf{balance}(x,k)\\ \mathsf{effect} \ \mathsf{on} \ \mathsf{signature} \ \mathsf{can}\\ \mathsf{be} \ \mathsf{encoded} \ \mathsf{in}\\ \mathcal{O}(k\log\log n) \ \mathsf{bits} \end{array}$

 $h(T_i) \leq \log |T_i| + \mathcal{O}(\frac{1}{k} \log |T_i|)$

so we have a trade-off:

transition code of length $\mathcal{O}(k \log \log n)$

vs signatures of length $\log |T_i| + \mathcal{O}(\frac{1}{k} \log |T_i|)$

signatures of length $\log |T_i| + \mathcal{O}(\frac{1}{k} \log |T_i|)$

resulting labels of length

$$\log n - \log |T_i| + \mathcal{O}(\log \log n)$$

$$\log |T_i| + \mathcal{O}(\sqrt{\log n \log \log n})$$

optimized choice
$$k = \sqrt{\frac{\log n}{\log \log n}}$$

induced subgraphs of $P \boxtimes P$

G is an n-vertex subgraph of this

induced subgraphs of $P \boxtimes P$

G is an n-vertex subgraph of this

h

subgraphs of $H \boxtimes P$

subgraphs of $H \boxtimes P$

G is an n-vertex subgraph of this

h

Observation [Kannan, Naor, Rudich 1988] A class of graphs C has an f(n)-bit adjacency labelling iff for each $n \ge 1$, there exists a graph U_n such that $\triangleright |V(U_n)| = 2^{f(n)}$;

 \triangleright G is an induced subgraph of U_n , for each n-vertex G in C.

Observation [Kannan, Naor, Rudich 1988] A class of graphs C has an f(n)-bit adjacency labelling iff for each $n \ge 1$, there exists a graph U_n such that $\triangleright |V(U_n)| = 2^{f(n)}$;

 \triangleright G is an induced subgraph of U_n , for each n-vertex G in C.

Proof.

$$V(U_n) = \{0, 1\}^{f(n)}$$

$$E(U_n) = \{uv \mid A(u, v) = 1\}$$

Observation [Kannan, Naor, Rudich 1988] A class of graphs C has an f(n)-bit adjacency labelling iff for each $n \ge 1$, there exists a graph U_n such that $\triangleright |V(U_n)| = 2^{f(n)}$; $\triangleright C$ is an induced subgraph of U_n for each n vertex C in C

 \triangleright G is an induced subgraph of U_n , for each n-vertex G in C.

Proof.

 $V(U_n) = \{0, 1\}^{f(n)}$ $E(U_n) = \{uv \mid A(u, v) = 1\}$

Corollary

n-vertex planar graphs have a universal graph on $n^{1+o(1)}$ vertices

Observation [Kannan, Naor, Rudich 1988] A class of graphs C has an f(n)-bit adjacency labelling iff for each $n \ge 1$, there exists a graph U_n such that $\triangleright |V(U_n)| = 2^{f(n)}$; $\triangleright |C$ is an induced subgraph of U for each *n*-vertex C in C

 \triangleright G is an induced subgraph of U_n , for each n-vertex G in C.

Proof.

 $V(U_n) = \{0, 1\}^{f(n)}$ $E(U_n) = \{uv \mid A(u, v) = 1\}$

Corollary

n-vertex planar graphs have a universal graph on $n^{1+o(1)}$ vertices

Theorem [Esperet, Joret, Morin 2020+] *n*-vertex planar graphs have a universal graph on $n^{1+o(1)}$ vertices and $n^{1+o(1)}$ edges

open problems

 \triangleright what is the asymptotics of the lower order term?

 $\log n + \mathcal{O}(\sqrt{\log n \log \log n}) + \Omega(1)$

open problems

▷ what is the asymptotics of the lower order term? $\log n + O(\sqrt{\log n \log \log n}) + \Omega(1)$ ▷ adjacency labelling for K_t -minor free graphs? $2\log n + o(\log n)$

open problems

▷ what is the asymptotics of the lower order term? $\log n + O(\sqrt{\log n \log \log n}) + \Omega(1)$ ▷ adjacency labelling for K_t -minor free graphs? $2\log n + o(\log n)$

Thank you.