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plan of tutorial

Part I statements
background
proof
variants / generalizations

Part II quick applications

Part III application: adjacency labelling scheme
open problems / further research



the strategy is simple

▷ take a problem that is solved for bounded treewidth graphs
but open for planar graphs

▷ use the product structure to lift the solution



queue number

(G,<) graph with a linear order on vertices



queue number

(G,<) graph with a linear order on vertices

rainbow in (G,<) of size 3



queue number

(G,<) graph with a linear order on vertices

rainbow in (G,<) of size 3

qn(G) queue number of G
smallest integer k such that there is an ordering < of V (G)
with each rainbow of size ⩽ k
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(Heath, Leighton, Rosenberg 1991)
Is there a constant C s.t. G planar =⇒ qn(G) ⩽ C?

(Dujmović, Morin, Wood 2005)
tw(G) ⩽ k =⇒ qn(G) ⩽ f(k)
(Di Battista, Frati, Pach 2013)
G planar, n vertices =⇒ qn(G) ∈ O(log2(n))
(Dujmović 2015)

(Wiechert 2018)
G planar, n vertices =⇒ qn(G) ∈ O(log(n))

tw(G) ⩽ k =⇒ qn(G) ⩽ 2k − 1
(Bekos et al. 2019)
G planar, maximum degree ∆ =⇒ qn(G) ∈ O(∆6)

G is planar ⇒ qn(G) ⩽ 49
using Product Structure Theorem:

history and related work
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proof

Lemma qn(H ⊠ P ) ⩽ 3 · qn(H) + 1 for every path P

Corollary For every planar graph G

qn(G) ⩽ qn(H ⊠ P )
monotonicity

⩽ 3 qn(H) + 1

G ⊆ H ⊠ P with tw(H) ⩽ 8 and P a path

lemma
⩽ 3 · (28 − 1) = 766

tw(H) ⩽ 8

Proof of the lemma at a blackboard
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centered colorings

color vertices of G in such a way that

∀ (non-empty) connected subgraph G′ of G

there is a color used exactly once in G′

G

G′

cen(G)
min number of colors
in such a coloring of G

χ(G) ⩽ cen(G)

cen(G) = td(G)

actually this peculiar parameter coincides with . . .

the treedepth of G



The treedepth of G is the minimum height of
a rooted forest F such that G ⊆ clos(F ).

G F
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The treedepth of G is the minimum height of
a rooted forest F such that G ⊆ clos(F ).

G F

clos(F )

⊆

so td(G) ⩽ 5

indeed
cen(G) = td(G)

centered coloring



here is an idea how to interpolate between the two:

let p ∈ {1, 2, . . . ,∞}

A vertex coloring φ of G is p-centered if

∀ (non-empty) connected subgraph G′ of G

either φ uses more than p colors on G′, or
there is a color that appears exactly once on G′

G

G′

> p colors
or

color used once

between χ(G) and td(G)

min number of colors
in p-centered coloring of G

χp(G)
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this family of parameters captures
important concepts in sparsity
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p-centered colorings

χ(G) = χ1(G) ⩽ χ2(G) ⩽ · · · ⩽ χ∞(G) = td(G)

1-centered coloring ≡ proper coloring

2-centered coloring ≡ star coloring

∞-centered coloring ≡ centered coloring

this family of parameters captures
important concepts in sparsity

A class of graphs C has bounded expansion iff

∃ f ∀ p ⩾ 1 ∀ G ∈ C
χp(G) ⩽ f(p)

this includes planar graphs, bounded degree graphs, and more
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bounds for planar graphs

(Mi. Pilipczuk, Siebertz 2019)χp(G) = O(p19)

when G is planar

χp(G) = O(p3 log p) (Dębski, Felsner, PM,
Schröder 2020)

Is χp(G) bounded by a polynomial in p? (Dvǒrák 2016)(Dvǒrák 2016)

this is a quick application of the product structure theorem

we will need results for graphs of bounded tw

χp(G) ⩽
(
p+k
k

)
= O(pk) when tw(G) ⩽ k

χp(G) = O(pk−1 log p) when stw(G) ⩽ k

(PS 2019)

(DFMS 2020)
(k ⩾ 2)



product structure theorem

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2020)

For every planar graph G, we have

H ⊠

G

⊆

tw(H) ⩽ 3
path P

⊠

K3H planar
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A vertex coloring ψ of G is distance-ℓ coloring if

∀
u, v in G
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u
v
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proof strategy

Lemma χp(H1 ⊠H2) ⩽ χp(H1) · χp(H2)
Wrong!

Lemma χp(H1 ⊠H2) ⩽ χp(H1) · χp(H2)

auxilliary coloring

let ℓ ∈ {1, 2, . . .}

A vertex coloring ψ of G is distance-ℓ coloring if

∀
u, v in G

if distG(u, v) ⩽ ℓ then ψ(u) ̸= ψ(v)

• every path connecting two distinct vertices of the same color
contains > ℓ colors
• distance-p coloring is p-centered

Correct
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proof strategy

G planar G ⊆ H ⊠ P ⊠K3

χp(G) ⩽ χp(H ⊠ P ⊠K3) ⩽ χp(H ⊠ P ) · χp(K3)

⩽ χp(H) · χp(P ) · χp(K3)

⩽ χp(H) · (p+ 1) · 3

= O(p2 log p) · (p+ 1) · 3

= O(p3 log p)

tw(H) ⩽ 3

monotonicity lemma

lemma H planar
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Proof
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≡
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p-centered coloring of H1

distance-p coloring of H2

φ((v, w)) = (ψ1(v), ψ2(w)) for every (v, w) in H1 ⊠H2

is a p-centered coloring of H1 ⊠H2

Goal

consider G ⊆ H1 ⊠H2
connected subgraph
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are
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subgraphs of

H1
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as desired

. . .
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there is a ψ1-color used
exactly once in G1

say at vertex v1 in G1

(v1, w)fix a in G

either (v1, w) has a unique φ-color in G, or
there is another vertex in G of the same color

(v1, w)

(v1, w′)

Q a path in G ⊆ H1 ⊠H2

π2(Q) is a lazy walk in H2
connecting two distinct vertices w, w′ of
the same ψ2-color

|ψ2(π2(Q))| > p

so |φ(G)| > p

as desired

as desired
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nonrepetitive sequences

square of a word w: w2 = ww
(ab)2 = abab

A word is nonrepetitive if it contains no square

square is nonrepetitive
repetition has a repetition

Example

Theorem (Thue 1906)
There is an infinite nonrepetitve word on 3 symbols

abcabacabcbacbcacbabcabacabcb. . .
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A coloring of vertices of G is nonrepetitive if

is nonrepetivive

π(G)
minimum number of colors in
a nonrepetitive coloring of G

for every path in G, the color sequence along the path

Theorem (Thue 1906)
For every path P , π(P ) ⩽ 3

Question (Alon, Grytczuk, Hałuszczak, Riordan 2002)
Is there a constant c such that
for every planar graph G,

π(G) ⩽ c ?

Theorem (Dujmović, Esperet, Joret, Walczak, Wood 2019)
For every planar graph G, π(G) ⩽ 768
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nonrepetitive colorings

π(G)

⩽ π∗(H ⊠ P ⊠K3)

⩽ π(H ⊠ P ⊠K3)

⩽ π∗(H ⊠ P ) · 3

⩽ π∗(H) · 4 · 3

⩽ 43 · 4 · 3 = 768

monotonicity

π∗(G)
minimum number of colors in
a strongly nonrepetitive coloring of G

A coloring of vertices of G is strongly nonrepetitive if

∃ i st vi = vt+ifor every lazy walk (v1, . . . , v2t) in G,
if the color sequence is a repetition then

π ⩽ π∗

π∗(H) ⩽ 4
k

(Kündgen, Pelsm
ajer 2008)

when tw(H) ⩽ k


