Product structure of planar graphs

 $\mathbf{\mathcal{G}}$

 $\langle \rangle$

Piotr Micek Jagiellonian University

tutorial presentation for **9th Polish Combinatorial Conference** Będlewo, September 20, 2022

plan of tutorial

- Part I statements background proof variants / generalizations
- Part II quick applications
- Part IIIapplication: adjacency labelling schemeopen problems / further research

the strategy is simple

- take a problem that is solved for **bounded treewidth** graphs but open for **planar** graphs
- ▷ use the product structure to lift the solution

(G, <) graph with a linear order on vertices

(G, <) graph with a linear order on vertices

rainbow in (G, <) of size 3

queue number

(G, <) graph with a linear order on vertices

rainbow in (G, <) of size 3

 $\begin{array}{ll} \operatorname{qn}(G) & \operatorname{queue\ number\ of\ }G\\ \text{smallest\ integer\ }k \text{ such\ that\ there\ is\ an\ ordering\ } < \operatorname{of\ }V(G)\\ \text{ with\ each\ rainbow\ of\ size\ }\leqslant\ k \end{array}$

(Heath, Leighton, Rosenberg 1991) Is there a constant C s.t. G planar $\implies qn(G) \leq C$?

(Heath, Leighton, Rosenberg 1991)

Is there a constant C s.t. G planar \implies qn(G) \leqslant C?

```
(Heath, Leighton, Rosenberg 1991)

Is there a constant C s.t. G planar \Longrightarrow qn(G) \leq C?

(Dujmović, Morin, Wood 2005)

tw(G) \leq k \Longrightarrow qn(G) \leq f(k)
```


Lemma $qn(H \boxtimes P) \leqslant 3 \cdot qn(H) + 1$ for every path P

Lemma $qn(H \boxtimes P) \leq 3 \cdot qn(H) + 1$ for every path P **Corollary** For every planar graph G $G \subseteq H \boxtimes P$ with $tw(H) \leq 8$ and P a path

 $qn(G) \leqslant qn(H \boxtimes P) \leqslant 3qn(H) + 1 \leqslant 3 \cdot (2^8 - 1) = 766$

Lemma $qn(H \boxtimes P) \leq 3 \cdot qn(H) + 1$ for every path P **Corollary** For every planar graph G $G \subseteq H \boxtimes P$ with $tw(H) \leq 8$ and P a path

monotonicity lemma $\operatorname{tw}(H) \leq 8$ $\operatorname{qn}(G) \leq \operatorname{qn}(H \boxtimes P) \leq 3 \operatorname{qn}(H) + 1 \leq 3 \cdot (2^8 - 1) = 766$

Lemma $qn(H \boxtimes P) \leq 3 \cdot qn(H) + 1$ for every path PCorollary For every planar graph G $G \subseteq H \boxtimes P$ with $tw(H) \leq 8$ and P a path monotonicity lemma $tw(H) \leq 8$ $qn(G) \leq qn(H \boxtimes P) \leq 3 qn(H) + 1 \leq 3 \cdot (2^8 - 1) = 766$

Proof of the lemma at a blackboard

color vertices of G in such a way that

 \forall (non-empty) connected subgraph G' of G

there is a color used exactly once in G'

color vertices of G in such a way that

 \forall (non-empty) connected subgraph G' of G

there is a color used exactly once in G'

$\operatorname{cen}(G)$

min number of colors in such a coloring of G

color vertices of ${\boldsymbol{G}}$ in such a way that

 \forall (non-empty) connected subgraph G' of G

there is a color used exactly once in G'

$\operatorname{cen}(G)$

min number of colors in such a coloring of G

color vertices of G in such a way that

 \forall (non-empty) connected subgraph G' of G

there is a color used exactly once in G'

$\operatorname{cen}(G)$

min number of colors in such a coloring of G

actually this peculiar parameter coincides with ...

$$\operatorname{cen}(G) = \operatorname{td}(G)$$

 \checkmark the treedepth of G

centered coloring

The treedepth of G is the minimum height of a rooted forest F such that $G \subseteq clos(F)$.

so $td(G) \leq 5$

The treedepth of G is the minimum height of a rooted forest F such that $G \subseteq clos(F)$.

here is an idea how to interpolate between the two:

let $p \in \{1, 2, \dots, \infty\}$

A vertex coloring ϕ of G is p-centered if

 \forall (non-empty) connected subgraph G' of G

either ϕ uses more than p colors on G', or there is a color that appears exactly once on G'

$$\chi(G) = \chi_1(G) \leqslant \chi_2(G) \leqslant \dots \leqslant \chi_\infty(G) = \operatorname{td}(G)$$

1-centered coloring \equiv proper coloring

2-centered coloring \equiv star coloring

 ∞ -centered coloring \equiv centered coloring

this family of parameters captures

important concepts in sparsity

$$\chi(G) = \chi_1(G) \leqslant \chi_2(G) \leqslant \dots \leqslant \chi_\infty(G) = \operatorname{td}(G)$$

1-centered coloring \equiv proper coloring

2-centered coloring \equiv star coloring

 ∞ -centered coloring \equiv centered coloring

this family of parameters captures important concepts in sparsity

A class of graphs \mathcal{C} has bounded expansion iff $\exists_{f} \forall_{p \ge 1} \forall_{G \in \mathcal{C}} \qquad \chi_{p}(G) \le f(p)$

$$\chi(G) = \chi_1(G) \leqslant \chi_2(G) \leqslant \dots \leqslant \chi_\infty(G) = \operatorname{td}(G)$$

1-centered coloring \equiv proper coloring

2-centered coloring \equiv star coloring

 ∞ -centered coloring \equiv centered coloring

this family of parameters captures important concepts in sparsity

A class of graphs C has bounded expansion iff $\exists_{f} \forall_{p \ge 1} \forall_{G \in C} \qquad \chi_{p}(G) \le f(p)$

this includes planar graphs, bounded degree graphs, and more

when G is planar

Is $\chi_p(G)$ bounded by a polynomial in p? (Dvořák 2016) $\chi_p(G) = \mathcal{O}(p^{19})$ (Mi. Pilipczuk, Siebertz 2019) $\chi_p(G) = \mathcal{O}(p^3 \log p)$ (Dębski, Felsner, PM,

Schröder 2020)

when G is planar

Is $\chi_p(G)$ bounded by a polynomial in p? (Dvořák 2016) $\chi_p(G) = \mathcal{O}(p^{19})$ (Mi. Pilipczuk, Siebertz 2019) $\chi_p(G) = \mathcal{O}(p^3 \log p)$ (Dębski, Felsner, PM, Schröder 2020) this is a quick application of the product structure theorem when G is planar

Is $\chi_p(G)$ bounded by a polynomial in p? (Dvořák 2016) $\chi_p(G) = \mathcal{O}(p^{19})$ (Mi. Pilipczuk, Siebertz 2019) $\chi_p(G) = \mathcal{O}(p^3 \log p)$ (Dębski, Felsner, PM, Schröder 2020) this is a quick application of the product structure theorem we will need results for graphs of bounded tw $\chi_p(G) \leqslant \binom{p+k}{k} = \mathcal{O}(p^k)$ when $tw(G) \leq k$ (PS 2019) $\chi_p(G) = \mathcal{O}(p^{k-1}\log p)$ when $stw(G) \leq k$ (DFMS 2020) $(k \ge 2)$

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2020) For every **planar graph** G, we have

Lemma $\chi_p(H_1 \boxtimes H_2) \leq \chi_p(H_1) \cdot \chi_p(H_2)$

Lemma

 $\chi_p(H_1 \boxtimes H_2) \leqslant \chi_p(H_1) \cdot \chi_p(H_2)$

$$\chi_p(H_1 \boxtimes H_2) \leqslant \chi_p(H_1) \cdot \chi_p(H_2)$$

Lemma

Lemma

 $\chi_p(H_1 \boxtimes H_2) \leqslant \chi_p(H_1) \cdot \overline{\chi_p}(H_2)$

Lemma
$$\chi_p(H_1 \boxtimes H_2) \leq \chi_p(H_1) \cdot \chi_p(H_2)$$

Correct

Lemma

$$\chi_p(H_1 \boxtimes H_2) \leqslant \chi_p(H_1) \cdot \overline{\chi_p}(H_2)$$

auxilliary coloring

let $\ell \in \{1, 2, \ldots\}$

A vertex coloring ψ of G is distance- ℓ coloring if \forall if $\operatorname{dist}_G(u, v) \leq \ell$ then $\psi(u) \neq \psi(v)$ $\overline{\chi_\ell}(G)$ min number of colors in such a coloring of G

proof strategyLemma $\chi_p(H_1 \boxtimes H_2) \leqslant \chi_p(H_1) \cdot \chi_p(H_2)$

Lemma $\chi_p(H_1 \boxtimes H_2) \leq \chi_p(H_1) \cdot \overline{\chi_p}(H_2)$

auxilliary coloring

let $\ell \in \{1, 2, \ldots\}$

A vertex coloring ψ of G is distance- ℓ coloring if $\bigvee_{u, v \text{ in } G}$ if $\operatorname{dist}_G(u, v) \leq \ell$ then $\psi(u) \neq \psi(v)$

- every path connecting two distinct vertices of the same color contains $> \ell$ colors
- \bullet distance-p coloring is p-centered

proof of the lemma

$$\chi_p(H_1 \boxtimes H_2) \leqslant \chi_p(H_1) \cdot \overline{\chi_p}(H_2)$$

Proof

 $\psi_1 \equiv p$ -centered coloring of H_1

$$\psi_2 \equiv \text{distance-}p \text{ coloring of } H_2$$

proof of the lemma

$$\chi_p(H_1 \boxtimes H_2) \leqslant \chi_p(H_1) \cdot \overline{\chi_p}(H_2)$$
Proof
 $\psi_1 \equiv p$ -centered coloring of H_1
 $\psi_2 \equiv \text{distance-}p \text{ coloring of } H_2$
Goal
 $\phi((v,w)) = (\psi_1(v), \psi_2(w))$ for every (v,w) in $H_1 \boxtimes H_2$
is a *p*-centered coloring of $H_1 \boxtimes H_2$

$$\chi_p(H_1 \boxtimes H_2) \leqslant \chi_p(H_1) \cdot \overline{\chi_p}(H_2)$$
Proof

$$\psi_1 \equiv p \text{-centered coloring of } H_1$$

$$\psi_2 \equiv \text{distance-} p \text{ coloring of } H_2$$
Goal

$$\phi((v,w)) = (\psi_1(v), \psi_2(w)) \text{ for every } (v,w) \text{ in } H_1 \boxtimes H_2$$
is a *p*-centered coloring of $H_1 \boxtimes H_2$
consider $G \subseteq H_1 \boxtimes H_2$

$$\bigoplus_{\substack{i = n_1(G) \\ G_2 = \pi_2(G)} are H_1$$

$$\bigoplus_{\substack{i = n_1(G) \\ Subgraphs of}} H_2$$

$$\chi_p(H_1 \boxtimes H_2) \leqslant \chi_p(H_1) \cdot \overline{\chi_p}(H_2)$$
Proof
 $\psi_1 \equiv p$ -centered coloring of H_1
 $\psi_2 \equiv \text{distance-}p \text{ coloring of } H_2$
Goal
 $\phi((v,w)) = (\psi_1(v), \psi_2(w))$ for every (v,w) in $H_1 \boxtimes H_2$
is a *p*-centered coloring of $H_1 \boxtimes H_2$
consider $G \subseteq H_1 \boxtimes H_2$
 $G_1 = \pi_1(G)$ are H_1
 $G_2 = \pi_2(G)$ subgraphs of H_2
either $|\psi_1(G_1)| > p$, or
there is a ψ_1 -color used
exactly once in G_1

$$\chi_p(H_1 \boxtimes H_2) \leqslant \chi_p(H_1) \cdot \overline{\chi_p}(H_2)$$
Proof

$$\psi_1 \equiv p\text{-centered coloring of } H_1$$

$$\psi_2 \equiv \text{distance-} p \text{ coloring of } H_2$$
Goal

$$\phi((v,w)) = (\psi_1(v), \psi_2(w)) \quad \text{for every } (v,w) \text{ in } H_1 \boxtimes H_2$$
is a *p*-centered coloring of $H_1 \boxtimes H_2$
consider $G \subseteq H_1 \boxtimes H_2$

$$G_1 = \pi_1(G) \quad \text{are} \quad H_1$$

$$G_2 = \pi_2(G) \quad \text{connected} \quad H_2$$
either $|\psi_1(G_1)| > p$, or
there is a ψ_1 -color used
exactly once in G_1

$$\psi_1(h_1) = h_1 \otimes h_2$$

$$\chi_p(H_1 \boxtimes H_2) \leqslant \chi_p(H_1) \cdot \overline{\chi_p}(H_2)$$
Proof
 $\psi_1 \equiv p$ -centered coloring of H_1
 $\psi_2 \equiv \text{distance-}p \text{ coloring of } H_2$
Goal
 $\phi((v,w)) = (\psi_1(v), \psi_2(w))$ for every (v,w) in $H_1 \boxtimes H_2$
is a *p*-centered coloring of $H_1 \boxtimes H_2$
consider $G \subseteq H_1 \boxtimes H_2$
 $G_2 = \pi_2(G)$ are H_1
 $G_2 = \pi_2(G)$ by $G_1 = \pi_1(G)$ are H_1
 $G_2 = \pi_2(G)$ by H_2
 $G_1 = \pi_1(G)$ are H_1
 $G_2 = \pi_2(G)$ by H_2
 $G_2 = \pi_2(G)$ by H_2
 $(\phi(G)| > p)$
 $\phi(G)| > p$
 $\phi($

there is a ψ_1 -color used exactly once in G_1

say at vertex v_1 in G_1

fix a (v_1, w) in G

square of a word w:

$$w^2 = ww$$
$$(ab)^2 = abab$$

A word is nonrepetitive if it contains no square

Example square is nonrepetitive repetition has a repetition

square of a word w:

$$w^2 = ww$$
$$(ab)^2 = abab$$

A word is nonrepetitive if it contains no square

Example square is nonrepetitive repetition has a repetition

Theorem (Thue 1906) There is an infinite nonrepetitve word on 3 symbols

abcabacabcbacbcacbabcabacabcb...

A coloring of vertices of G is nonrepetitive if for every path in G, the color sequence along the path

is nonrepetivive

 $\pi(G)$

minimum number of colors in a nonrepetitive coloring of G

Theorem (Thue 1906) For every path P, $\pi(P) \leqslant 3$

Question (Alon, Grytczuk, Hałuszczak, Riordan 2002) Is there a constant c such that for every planar graph G, $\pi(G) \leq c$? A coloring of vertices of G is nonrepetitive if for every path in G, the color sequence along the path

is nonrepetivive

 $\pi(G)$

minimum number of colors in a nonrepetitive coloring of G

Theorem (Thue 1906) For every path P, $\pi(P) \leqslant 3$

Question (Alon, Grytczuk, Hałuszczak, Riordan 2002) Is there a constant c such that for every planar graph G, $\pi(G) \leq c$?

Theorem (Dujmović, Esperet, Joret, Walczak, Wood 2019) For every planar graph G, $\pi(G) \leq 768$

 $\pi(G) \leq \pi(H \boxtimes P \boxtimes K_3)$ $\leq \pi^*(H \boxtimes P \boxtimes K_3)$ $\leq \pi^*(H \boxtimes P) \cdot 3$ $\leq \pi^*(H) \cdot 4 \cdot 3$ $\leq 4^3 \cdot 4 \cdot 3 = 768$

 $\pi^*(G) \qquad \begin{array}{l} \mbox{minimum number of colors in} \\ \mbox{a strongly nonrepetitive coloring of } G \end{array}$

A coloring of vertices of G is strongly nonrepetitive if for every lazy walk (v_1, \ldots, v_{2t}) in G, if the color sequence is a repetition then $\exists i \text{ st } v_i = v_{t+i}$

 $\pi^*(G) \qquad \begin{array}{l} \mbox{minimum number of colors in} \\ \mbox{a strongly nonrepetitive coloring of } G \end{array}$

A coloring of vertices of G is strongly nonrepetitive if for every lazy walk (v_1, \ldots, v_{2t}) in G, if the color sequence is a repetition then $\exists i \text{ st } v_i = v_{t+i}$