## Product structure of planar graphs



Piotr Micek
Jagiellonian University
tutorial presentation for 9th Polish Combinatorial Conference
Będlewo, September 20, 2022

## plan of tutorial

Part I statements<br>background<br>proof<br>variants / generalizations

Part II quick applications

Part III application: adjacency labelling scheme open problems / further research

## the strategy is simple

$\triangleright \quad$ take a problem that is solved for bounded treewidth graphs but open for planar graphs

- use the product structure to lift the solution


## queue number

$(G,<) \quad$ graph with a linear order on vertices


## queue number

$(G,<) \quad$ graph with a linear order on vertices

rainbow in $(G,<)$ of size 3

## queue number

$(G,<) \quad$ graph with a linear order on vertices

rainbow in $(G,<)$ of size 3
$\mathrm{qn}(G) \quad$ queue number of $G$
smallest integer $k$ such that there is an ordering $<$ of $V(G)$ with each rainbow of size $\leqslant k$
(Heath, Leighton, Rosenberg 1991)
Is there a constant $C$ s.t. $G$ planar $\Longrightarrow \mathrm{qn}(G) \leqslant C$ ?

## history and related work

$\sigma$ (Heath, Leighton, Rosenberg 1991)
Is there a constant $C$ s.t. $G$ planar $\Longrightarrow \mathrm{qn}(G) \leqslant C$ ?

## history and related work

$\%$ (Heath, Leighton, Rosenberg 1991)
Is there a constant $C$ s.t. $G$ planar $\Longrightarrow \mathrm{qn}(G) \leqslant C$ ?
L(Dujmović, Morin, Wood 2005)

$$
\operatorname{tw}(G) \leqslant k \Longrightarrow \operatorname{qn}(G) \leqslant f(k)
$$

## history and related work

$\%$ (Heath, Leighton, Rosenberg 1991)
Is there a constant $C$ s.t. $G$ planar $\Longrightarrow \mathrm{qn}(G) \leqslant C$ ?
(Dujmović, Morin, Wood 2005)
$\mathrm{tw}(G) \leqslant k \Longrightarrow \mathrm{qn}(G) \leqslant f(k)$
(Di Battista, Frati, Pach 2013)
$G$ planar, $n$ vertices $\Longrightarrow \mathrm{qn}(G) \in O\left(\log ^{2}(n)\right)$
(Dujmović 2015)
$G$ planar, $n$ vertices $\Longrightarrow \mathrm{qn}(G) \in O(\log (n))$

## history and related work

$\%$ (Heath, Leighton, Rosenberg 1991)
Is there a constant $C$ s.t. $G$ planar $\Longrightarrow \mathrm{qn}(G) \leqslant C$ ?
(Dujmović, Morin, Wood 2005)
$\mathrm{tw}(G) \leqslant k \Longrightarrow \mathrm{qn}(G) \leqslant f(k)$
(Di Battista, Frati, Pach 2013)
$G$ planar, $n$ vertices $\Longrightarrow \mathrm{qn}(G) \in O\left(\log ^{2}(n)\right)$
(Dujmović 2015)
$G$ planar, $n$ vertices $\Longrightarrow \mathrm{qn}(G) \in O(\log (n))$
(Wiechert 2018)

$$
\operatorname{tw}(G) \leqslant k \Longrightarrow \operatorname{qn}(G) \leqslant 2^{k}-1
$$

## history and related work

$\%$ (Heath, Leighton, Rosenberg 1991)
Is there a constant $C$ s.t. $G$ planar $\Longrightarrow \mathrm{qn}(G) \leqslant C$ ?
(Dujmović, Morin, Wood 2005)
$\mathrm{tw}(G) \leqslant k \Longrightarrow \mathrm{qn}(G) \leqslant f(k)$
(Di Battista, Frati, Pach 2013)
$G$ planar, $n$ vertices $\Longrightarrow \mathrm{qn}(G) \in O\left(\log ^{2}(n)\right)$
(Dujmović 2015)
$G$ planar, $n$ vertices $\Longrightarrow \mathrm{qn}(G) \in O(\log (n))$
(Wiechert 2018)
$\operatorname{tw}(G) \leqslant k \Longrightarrow \operatorname{qn}(G) \leqslant 2^{k}-1$
(Bekos et al. 2019)
$G$ planar, maximum degree $\Delta \Longrightarrow \mathrm{qn}(G) \in O\left(\Delta^{6}\right)$

## history and related work

(Heath, Leighton, Rosenberg 1991)
Is there a constant $C$ s.t. $G$ planar $\Longrightarrow \mathrm{qn}(G) \leqslant C$ ?
(Dujmović, Morin, Wood 2005)
$\mathrm{tw}(G) \leqslant k \Longrightarrow \mathrm{qn}(G) \leqslant f(k)$
(Di Battista, Frati, Pach 2013)
$G$ planar, $n$ vertices $\Longrightarrow \mathrm{qn}(G) \in O\left(\log ^{2}(n)\right)$
(Dujmović 2015)
$G$ planar, $n$ vertices $\Longrightarrow \mathrm{qn}(G) \in O(\log (n))$
(Wiechert 2018)
$\operatorname{tw}(G) \leqslant k \Longrightarrow \operatorname{qn}(G) \leqslant 2^{k}-1$
(Bekos et al. 2019)
$G$ planar, maximum degree $\Delta \Longrightarrow \mathrm{qn}(G) \in O\left(\Delta^{6}\right)$
using Product Structure Theorem:
$G$ is planar $\Rightarrow \mathrm{qn}(G) \leqslant 49$

## proof

Lemma $\quad \mathrm{qn}(H \boxtimes P) \leqslant 3 \cdot \mathrm{qn}(H)+1 \quad$ for every path $P$

## proof

Lemma $\quad \mathrm{qn}(H \boxtimes P) \leqslant 3 \cdot \mathrm{qn}(H)+1 \quad$ for every path $P$

Corollary For every planar graph $G$

$$
G \subseteq H \boxtimes P \quad \text { with } \operatorname{tw}(H) \leqslant 8 \text { and } P \text { a path }
$$

$$
\operatorname{qn}(G) \leqslant \operatorname{qn}(H \boxtimes P) \leqslant 3 \mathrm{qn}(H)+1 \leqslant 3 \cdot\left(2^{8}-1\right)=766
$$

## proof

Lemma $\quad \mathrm{qn}(H \boxtimes P) \leqslant 3 \cdot \mathrm{qn}(H)+1 \quad$ for every path $P$

Corollary For every planar graph $G$
$G \subseteq H \boxtimes P \quad$ with $\operatorname{tw}(H) \leqslant 8$ and $P$ a path

$$
\begin{aligned}
& \text { monotonicity } \quad \text { lemma } \quad \operatorname{tw}(H) \leqslant 8 \\
& \mathrm{qn}(G) \leqslant \\
& \mathrm{qn}(H \boxtimes P) \leqslant
\end{aligned} \mathrm{q}^{\mathrm{qn}(H)+1 \leqslant 3 \cdot\left(2^{8}-1\right)=766} .
$$

## proof

Lemma $\quad \mathrm{qn}(H \boxtimes P) \leqslant 3 \cdot \mathrm{qn}(H)+1 \quad$ for every path $P$

Corollary For every planar graph $G$
$G \subseteq H \boxtimes P \quad$ with $\operatorname{tw}(H) \leqslant 8$ and $P$ a path
monotonicity lemma $\quad \operatorname{tw}(H) \leqslant 8$
$\mathrm{qn}(G) \leqslant$
$\mathrm{qn}(H \boxtimes P) \leqslant 3 \mathrm{qn}(H)+1 \leqslant 3 \cdot\left(2^{8}-1\right)=766$

Proof of the lemma at a blackboard

## centered colorings

color vertices of $G$ in such a way that
$\forall \quad$ (non-empty) connected subgraph $G^{\prime}$ of $G$ there is a color used exactly once in $G^{\prime}$

## centered colorings

color vertices of $G$ in such a way that
$\forall \quad$ (non-empty) connected subgraph $G^{\prime}$ of $G$
there is a color used exactly once in $G^{\prime}$

$\operatorname{cen}(G)$
min number of colors in such a coloring of $G$

## centered colorings

color vertices of $G$ in such a way that
$\forall \quad$ (non-empty) connected subgraph $G^{\prime}$ of $G$
there is a color used exactly once in $G^{\prime}$

$$
\chi(G) \leqslant \operatorname{cen}(G)
$$

## $\operatorname{cen}(G)$

min number of colors in such a coloring of $G$

## centered colorings

color vertices of $G$ in such a way that
$\forall \quad$ (non-empty) connected subgraph $G^{\prime}$ of $G$ there is a color used exactly once in $G^{\prime}$


## $\operatorname{cen}(G)$

min number of colors in such a coloring of $G$
actually this peculiar parameter coincides with ...

$$
\operatorname{cen}(G)=\operatorname{td}(G)
$$

Cthe treedepth of $G$

## centered coloring

The treedepth of $G$ is the minimum height of a rooted forest $F$ such that $\quad G \subseteq \operatorname{clos}(F)$.



so $\operatorname{td}(G) \leqslant 5$


## centered coloring

The treedepth of $G$ is the minimum height of a rooted forest $F$ such that $\quad G \subseteq \operatorname{clos}(F)$.

so $\operatorname{td}(G) \leqslant 5$


## between $\chi(G)$ and $\operatorname{td}(G)$

here is an idea how to interpolate between the two:
let $p \in\{1,2, \ldots, \infty\}$
A vertex coloring $\phi$ of $G$ is $p$-centered if
$\forall \quad$ (non-empty) connected subgraph $G^{\prime}$ of $G$ either $\phi$ uses more than $p$ colors on $G^{\prime}$, or there is a color that appears exactly once on $G^{\prime}$


## $p$-centered colorings

$$
\chi(G)=\chi_{1}(G) \leqslant \chi_{2}(G) \leqslant \cdots \leqslant \chi_{\infty}(G)=\operatorname{td}(G)
$$

1-centered coloring $\quad \equiv \quad$ proper coloring
2-centered coloring $\equiv$ star coloring
$\infty$-centered coloring $\quad \equiv \quad$ centered coloring
this family of parameters captures
important concepts in sparsity

$$
\chi(G)=\chi_{1}(G) \leqslant \chi_{2}(G) \leqslant \cdots \leqslant \chi_{\infty}(G)=\operatorname{td}(G)
$$

1-centered coloring $\quad \equiv \quad$ proper coloring
2-centered coloring $\quad \equiv \quad$ star coloring
$\infty$-centered coloring $\equiv$ centered coloring
this family of parameters captures
important concepts in sparsity

A class of graphs $\mathcal{C}$ has bounded expansion iff

$$
\exists_{f} \forall_{p \geqslant 1} \quad \forall_{G \in \mathcal{C}} \quad \chi_{p}(G) \leqslant f(p)
$$

## $p$-centered colorings

$$
\chi(G)=\chi_{1}(G) \leqslant \chi_{2}(G) \leqslant \cdots \leqslant \chi_{\infty}(G)=\operatorname{td}(G)
$$

1-centered coloring $\quad \equiv \quad$ proper coloring
2-centered coloring $\quad \equiv \quad$ star coloring
$\infty$-centered coloring $\equiv$ centered coloring
this family of parameters captures important concepts in sparsity

A class of graphs $\mathcal{C}$ has bounded expansion iff

$$
\exists_{f} \forall_{p \geqslant 1} \quad \forall_{G \in \mathcal{C}} \quad \chi_{p}(G) \leqslant f(p)
$$

this includes planar graphs, bounded degree graphs, and more

## bounds for planar graphs

when $G$ is planar

Is $\chi_{p}(G)$ bounded by a polynomial in $p$ ?
(Dvorák 2016)
$\chi_{p}(G)=\mathcal{O}\left(p^{19}\right)$
$\chi_{p}(G)=\mathcal{O}\left(p^{3} \log p\right)$
(Mi. Pilipczuk, Siebertz 2019)
(Dębski, Felsner, PM,

## bounds for planar graphs

when $G$ is planar

Is $\chi_{p}(G)$ bounded by a polynomial in $p$ ?
(Dvorák 2016)
$\chi_{p}(G)=\mathcal{O}\left(p^{19}\right)$
$\chi_{p}(G)=\mathcal{O}\left(p^{3} \log p\right)$
(Mi. Pilipczuk, Siebertz 2019)
(Dębski, Felsner, PM,
Schröder 2020)
this is a quick application of the product structure theorem

## bounds for planar graphs

when $G$ is planar

Is $\chi_{p}(G)$ bounded by a polynomial in $p$ ?
$\chi_{p}(G)=\mathcal{O}\left(p^{19}\right)$
$\chi_{p}(G)=\mathcal{O}\left(p^{3} \log p\right)$
(Dvořák 2016)
(Mi. Pilipczuk, Siebertz 2019)
(Dębski, Felsner, PM,
this is a quick application of the product structure theorem
we will need results for graphs of bounded tw
$\chi_{p}(G) \leqslant\binom{ p+k}{k}=\mathcal{O}\left(p^{k}\right) \quad$ when $\operatorname{tw}(G) \leqslant k$
$\chi_{p}(G)=\mathcal{O}\left(p^{k-1} \log p\right)$
when $\operatorname{stw}(G) \leqslant k$
$(k \geqslant 2)$
(DFMS 2020)

## product structure theorem

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2020)
For every planar graph $G$, we have


## proof strategy

Lemma $\quad \chi_{p}\left(H_{1} \boxtimes H_{2}\right) \leqslant \chi_{p}\left(H_{1}\right) \cdot \chi_{p}\left(H_{2}\right)$

## proof strategy

Lemma $\quad \chi_{p}\left(H_{1} \boxtimes H_{2}\right) \leqslant \chi_{p}\left(H_{1}\right) \cdot \chi_{p}\left(H_{2}\right)$
Morn

## proof strategy

Lemma $\quad \chi_{p}\left(H_{1} \boxtimes H_{2}\right) \leqslant \chi_{p}\left(H_{1}\right) \cdot \chi_{p}\left(H_{2}\right)$
n

Lemma $\quad \chi_{p}\left(H_{1} \boxtimes H_{2}\right) \leqslant \chi_{p}\left(H_{1}\right) \cdot \overline{\chi_{p}}\left(H_{2}\right)$


## proof strategy

Lemma $\quad \chi_{p}\left(H_{1} \boxtimes H_{2}\right) \leqslant \chi_{p}\left(H_{1}\right) \cdot \chi_{p}\left(H_{2}\right)$
$v_{\text {rom }}^{\text {or }}$

Lemma $\quad \chi_{p}\left(H_{1} \boxtimes H_{2}\right) \leqslant \chi_{p}\left(H_{1}\right) \cdot \overline{\chi_{p}}\left(H_{2}\right)$

## auxiliary coloring

let $\ell \in\{1,2, \ldots\}$
A vertex coloring $\psi$ of $G$ is distance- $\ell$ coloring if
$\forall$

$$
\text { if } \operatorname{dist}_{G}(u, v) \leqslant \ell \text { then } \psi(u) \neq \psi(v)
$$

$\overline{\chi \ell}(G)$
min number of colors
in such a coloring of $G$


## proof strategy

Lemma $\quad \chi_{p}\left(H_{1} \boxtimes H_{2}\right) \leqslant \chi_{p}\left(H_{1}\right) \cdot \chi_{p}\left(H_{2}\right)$
$v_{\text {ror }}^{\text {or }}$

Lemma $\quad \chi_{p}\left(H_{1} \boxtimes H_{2}\right) \leqslant \chi_{p}\left(H_{1}\right) \cdot \overline{\chi_{p}}\left(H_{2}\right)$

## auxilliary coloring

let $\ell \in\{1,2, \ldots\}$
A vertex coloring $\psi$ of $G$ is distance- $\ell$ coloring if
$\forall$

$$
u, v \text { in } G \quad \text { if } \operatorname{dist}_{G}(u, v) \leqslant \ell \text { then } \psi(u) \neq \psi(v)
$$

- every path connecting two distinct vertices of the same color contains $>\ell$ colors
- distance- $p$ coloring is $p$-centered


## proof strategy

$G$ planar $\rightarrow G \subseteq H \boxtimes P \boxtimes K_{3}$

## proof strategy

$G$ planar $\rightarrow G \subseteq H \boxtimes P \boxtimes K_{3}$

$$
\begin{aligned}
\chi_{p}(G) & \leqslant \chi_{p}\left(H \boxtimes P \boxtimes K_{3}\right) \leqslant \chi_{p}(H \boxtimes P) \cdot \overline{\chi_{p}}\left(K_{3}\right) \\
& \leqslant \chi_{p}(H) \cdot \overline{\chi_{p}}(P) \cdot \overline{\chi_{p}}\left(K_{3}\right) \\
& \leqslant \chi_{p}(H) \cdot(p+1) \cdot 3 \\
& =\mathcal{O}\left(p^{2} \log p\right) \cdot(p+1) \cdot 3 \\
& =\mathcal{O}\left(p^{3} \log p\right)
\end{aligned}
$$

## proof strategy

$G$ planar $\rightarrow G \subseteq H \boxtimes P \boxtimes K_{3}$

$$
\begin{aligned}
\chi_{p}(G) & \leqslant \chi_{p}\left(H \boxtimes P \boxtimes K_{3}\right) \leqslant \chi_{p}(H \boxtimes P) \cdot \overline{\chi_{p}}\left(K_{3}\right) \\
& \leqslant \chi_{p}(H) \cdot \overline{\chi_{p}}(P) \cdot \overline{\chi_{p}}\left(K_{3}\right) \\
& \leqslant \chi_{p}(H) \cdot(p+1) \cdot 3 \\
& =\mathcal{O}\left(p^{2} \log p\right) \cdot(p+1) \cdot 3 \\
& =\mathcal{O}\left(p^{3} \log p\right)
\end{aligned}
$$

## proof strategy

$G$ planar $\rightarrow G \subseteq H \boxtimes P \boxtimes K_{3}$

$$
\begin{aligned}
\chi_{p}(G) & \leqslant \chi_{p}\left(H \boxtimes P \boxtimes K_{3}\right) \leqslant \chi_{p}(H \boxtimes P) \cdot \overline{\chi_{p}}\left(K_{3}\right) \\
& \leqslant \chi_{p}(H) \cdot \overline{\chi_{p}}(P) \cdot \overline{\chi_{p}}\left(K_{3}\right) \\
& \leqslant \chi_{p}(H) \cdot(p+1) \cdot 3 \\
& =\mathcal{O}\left(p^{2} \log p\right) \cdot(p+1) \cdot 3 \\
& =\mathcal{O}\left(p^{3} \log p\right)
\end{aligned}
$$

## proof strategy

$G$ planar $\rightarrow G \subseteq H \boxtimes P \boxtimes K_{3}$

$$
\begin{aligned}
\chi_{p}(G) & \leqslant \chi_{p}\left(H \boxtimes P \boxtimes K_{3}\right) \leqslant \chi_{p}(H \boxtimes P) \cdot \overline{\chi_{p}}\left(K_{3}\right) \\
& \leqslant \chi_{p}(H) \cdot \overline{\chi_{p}}(P) \cdot \overline{\chi_{p}}\left(K_{3}\right) \\
& \leqslant \chi_{p}(H) \cdot(p+1) \cdot 3 \\
& =\mathcal{O}\left(p^{2} \log p\right) \cdot(p+1) \cdot 3 \\
& =\mathcal{O}\left(p^{3} \log p\right)
\end{aligned}
$$

## proof strategy

$G$ planar $\rightarrow G \subseteq H \boxtimes P \boxtimes K_{3}$

$$
\begin{aligned}
\chi_{p}(G) & \leqslant \chi_{p}\left(H \boxtimes P \boxtimes K_{3}\right) \leqslant \chi_{p}(H \boxtimes P) \cdot \overline{\chi_{p}}\left(K_{3}\right) \\
\text { lemma } & \leqslant \chi_{p}(H) \cdot \overline{\chi_{p}}(P) \cdot \overline{\chi_{p}}\left(K_{3}\right) \\
& \leqslant \chi_{p}(H) \cdot(p+1) \cdot 3 \\
& =\mathcal{O}\left(p^{2} \log p\right) \cdot(p+1) \cdot 3 \\
& =\mathcal{O}\left(p^{3} \log p\right)
\end{aligned}
$$

## proof of the lemma

$$
\chi_{p}\left(H_{1} \boxtimes H_{2}\right) \leqslant \chi_{p}\left(H_{1}\right) \cdot \overline{\chi_{p}}\left(H_{2}\right)
$$

Proof
$\psi_{1} \equiv p$-centered coloring of $H_{1}$
$\psi_{2} \equiv$ distance- $p$ coloring of $\mathrm{H}_{2}$

## proof of the lemma

$$
\chi_{p}\left(H_{1} \boxtimes H_{2}\right) \leqslant \chi_{p}\left(H_{1}\right) \cdot \overline{\chi_{p}}\left(H_{2}\right)
$$

Proof

$$
\psi_{1} \equiv p \text {-centered coloring of } H_{1}
$$

$$
\psi_{2} \equiv \text { distance- } p \text { coloring of } H_{2}
$$

$$
\phi((v, w))=\left(\psi_{1}(v), \psi_{2}(w)\right) \quad \text { for every }(v, w) \text { in } H_{1} \boxtimes H_{2}
$$

is a p-centered coloring of $H_{1} \boxtimes H_{2}$

## proof of the lemma

$$
\chi_{p}\left(H_{1} \boxtimes H_{2}\right) \leqslant \chi_{p}\left(H_{1}\right) \cdot \overline{\chi_{p}}\left(H_{2}\right)
$$

## Proof

$$
\psi_{1} \equiv p \text {-centered coloring of } H_{1}
$$

$$
\psi_{2} \equiv \text { distance- } p \text { coloring of } \mathrm{H}_{2}
$$

$$
\phi((v, w))=\left(\psi_{1}(v), \psi_{2}(w)\right) \quad \text { for every }(v, w) \text { in } H_{1} \boxtimes H_{2}
$$

is a $p$-centered coloring of $H_{1} \boxtimes H_{2}$
consider $G \subseteq H_{1} \boxtimes H_{2}$

$$
\longrightarrow \begin{array}{ccc}
G_{1}=\pi_{1}(G) & \text { are } & H_{1} \\
G_{2}=\pi_{2}(G) & \begin{array}{c}
\text { connected } \\
\text { subgraphs of }
\end{array} & H_{2}
\end{array}
$$

## proof of the lemma

$$
\chi_{p}\left(H_{1} \boxtimes H_{2}\right) \leqslant \chi_{p}\left(H_{1}\right) \cdot \overline{\chi_{p}}\left(H_{2}\right)
$$

## Proof

$$
\psi_{1} \equiv p \text {-centered coloring of } H_{1}
$$

$$
\psi_{2} \equiv \text { distance- } p \text { coloring of } \mathrm{H}_{2}
$$

$$
\phi((v, w))=\left(\psi_{1}(v), \psi_{2}(w)\right) \quad \text { for every }(v, w) \text { in } H_{1} \boxtimes H_{2}
$$

is a p-centered coloring of $H_{1} \boxtimes H_{2}$
consider $G \subseteq H_{1} \boxtimes H_{2}$

$\longrightarrow$| $G_{1}=\pi_{1}(G)$ | are <br> connected | $H_{1}$ |
| :---: | :---: | :---: |
| $G_{2}=\pi_{2}(G)$ | subgraphs of | $H_{2}$ |

either $\left|\psi_{1}\left(G_{1}\right)\right|>p$, or there is a $\psi_{1}$-color used exactly once in $G_{1}$

## proof of the lemma

$$
\chi_{p}\left(H_{1} \boxtimes H_{2}\right) \leqslant \chi_{p}\left(H_{1}\right) \cdot \overline{\chi_{p}}\left(H_{2}\right)
$$

## Proof

$$
\psi_{1} \equiv p \text {-centered coloring of } H_{1}
$$

$$
\psi_{2} \equiv \text { distance- } p \text { coloring of } H_{2}
$$

$$
\phi((v, w))=\left(\psi_{1}(v), \psi_{2}(w)\right) \quad \text { for every }(v, w) \text { in } H_{1} \boxtimes H_{2}
$$

is a $p$-centered coloring of $H_{1} \boxtimes H_{2}$


## proof of the lemma

$$
\chi_{p}\left(H_{1} \boxtimes H_{2}\right) \leqslant \chi_{p}\left(H_{1}\right) \cdot \overline{\chi_{p}}\left(H_{2}\right)
$$

## Proof

$$
\psi_{1} \equiv p \text {-centered coloring of } H_{1}
$$

$$
\psi_{2} \equiv \text { distance- } p \text { coloring of } H_{2}
$$

$$
\phi((v, w))=\left(\psi_{1}(v), \psi_{2}(w)\right) \quad \text { for every }(v, w) \text { in } H_{1} \boxtimes H_{2}
$$

is a $p$-centered coloring of $H_{1} \boxtimes H_{2}$


## proof of the lemma

there is a $\psi_{1}$-color used exactly once in $G_{1}$
fix a $\left(v_{1}, w\right) \quad$ in $G$
say at vertex $v_{1}$ in $G_{1}$

## proof of the lemma

there is a $\psi_{1}$-color used
exactly once in $G_{1}$
say at vertex $v_{1}$ in $G_{1}$
fix a $\left(v_{1}, w\right) \quad$ in $G$
either $\left(v_{1}, w\right)$ has a unique $\phi$-color in $G$, or
there is another vertex in $G$ of the same color

## proof of the lemma

there is a $\psi_{1}$-color used

## exactly once in $G_{1}$

say at vertex $v_{1}$ in $G_{1}$
fix a $\left(v_{1}, w\right) \quad$ in $G$
either $\left(v_{1}, w\right)$ has a unique $\phi$-color in $G$, or
there is another vertex in $G$ of the same color


## proof of the lemma

there is a $\psi_{1}$-color used

## exactly once in $G_{1}$

say at vertex $v_{1}$ in $G_{1}$
fix a $\left(v_{1}, w\right) \quad$ in $G$
either $\left(v_{1}, w\right)$ has a unique $\phi$-color in $G$, or
there is another vertex in $G$ of the same color


$$
\left|\psi_{2}\left(\pi_{2}(Q)\right)\right|>p
$$

$$
\text { so }|\phi(G)|>p
$$

$\pi_{2}(Q)$ is a lazy walk in $\mathrm{H}_{2}$ connecting two distinct vertices $w, w^{\prime}$ of the same $\psi_{2}$-color
as desired

## nonrepetitive sequences

square of a word $w: \quad w^{2}=w w$

$$
(a b)^{2}=a b a b
$$

A word is nonrepetitive if it contains no square

Example square is nonrepetitive<br>repetition has a repetition

## nonrepetitive sequences

square of a word $w$ :

$$
\begin{gathered}
w^{2}=w w \\
(a b)^{2}=a b a b
\end{gathered}
$$

A word is nonrepetitive if it contains no square
Example square is nonrepetitive
repetition has a repetition

Theorem (Thue 1906)
There is an infinite nonrepetitve word on 3 symbols abcabacabcbacbcacbabcabacabcb. . .

## nonrepetitive colorings

A coloring of vertices of $G$ is nonrepetitive if
for every path in $G$, the color sequence along the path
is nonrepetivive
$\pi(G)$
minimum number of colors in
a nonrepetitive coloring of $G$
Theorem (Thue 1906)
For every path $P, \quad \pi(P) \leqslant 3$
Question (Alon, Grytczuk, Hałuszczak, Riordan 2002)
Is there a constant $c$ such that for every planar graph $G$,

$$
\pi(G) \leqslant c \quad ?
$$

## nonrepetitive colorings

A coloring of vertices of $G$ is nonrepetitive if
for every path in $G$, the color sequence along the path
is nonrepetivive
$\pi(G)$
minimum number of colors in
a nonrepetitive coloring of $G$
Theorem (Thue 1906)
For every path $P, \quad \pi(P) \leqslant 3$
Question (Alon, Grytczuk, Hałuszczak, Riordan 2002)
Is there a constant $c$ such that for every planar graph $G$,

$$
\pi(G) \leqslant c \quad ?
$$

Theorem (Dujmović, Esperet, Joret, Walczak, Wood 2019)
For every planar graph $G$,

$$
\pi(G) \leqslant 768
$$

## nonrepetitive colorings

$$
\begin{aligned}
\pi(G) & \leqslant \pi\left(H \boxtimes P \boxtimes K_{3}\right) \\
& \leqslant \pi^{*}\left(H \boxtimes P \boxtimes K_{3}\right) \\
& \leqslant \pi^{*}(H \boxtimes P) \cdot 3 \\
& \leqslant \pi^{*}(H) \cdot 4 \cdot 3 \\
& \leqslant 4^{3} \cdot 4 \cdot 3=768
\end{aligned}
$$

## nonrepetitive colorings

## monotonicity

$$
\begin{aligned}
\pi(G) & \leqslant \pi\left(H \boxtimes P \boxtimes K_{3}\right) \\
& \leqslant \pi^{*}\left(H \boxtimes P \boxtimes K_{3}\right) \\
& \leqslant \pi^{*}(H \boxtimes P) \cdot 3 \\
& \leqslant \pi^{*}(H) \cdot 4 \cdot 3 \\
& \leqslant 4^{3} \cdot 4 \cdot 3=768
\end{aligned}
$$

## nonrepetitive colorings

## monotonicity

$$
\begin{aligned}
\pi(G) & \leqslant \pi\left(H \boxtimes P \boxtimes K_{3}\right) \\
& \leqslant \pi^{*}\left(H \boxtimes P \boxtimes K_{3}\right) \\
& \leqslant \pi^{*}(H \boxtimes P) \cdot 3 \\
& \leqslant \pi^{*}(H) \cdot 4 \cdot 3 \\
& \leqslant 4^{3} \cdot 4 \cdot 3=768
\end{aligned}
$$

$\pi^{*}(G) \quad$ minimum number of colors in $\quad$ a strongly nonrepetitive coloring of $G$
A coloring of vertices of $G$ is strongly nonrepetitive if for every lazy walk $\left(v_{1}, \ldots, v_{2 t}\right)$ in $G$, if the color sequence is a repetition then

$$
\exists i \text { st } v_{i}=v_{t+i}
$$

## nonrepetitive colorings

## monotonicity

$$
\begin{aligned}
\pi(G) & \leqslant \pi\left(H \boxtimes P \boxtimes K_{3}\right) \\
& \leqslant \pi^{*}\left(H \boxtimes P \boxtimes K_{3}\right)
\end{aligned}
$$

(Kündgen, Pelsmajer 2008)
$\leqslant \pi^{*}(H \boxtimes P) \cdot 3$
$\pi^{*}(H) \leqslant 4^{k}$
when $\operatorname{tw}(H) \leqslant k$
$\leqslant \pi^{*}(H) \cdot 4 \cdot 3$
$\leqslant 4^{3} \cdot 4 \cdot 3=768$

$$
\begin{array}{ll}
\pi^{*}(G) \quad \begin{array}{l}
\text { minimum number of colors in } \\
\text { a strongly nonrepetitive coloring of } G
\end{array}
\end{array}
$$

A coloring of vertices of $G$ is strongly nonrepetitive if for every lazy walk $\left(v_{1}, \ldots, v_{2 t}\right)$ in $G$, if the color sequence is a repetition then

$$
\exists i \text { st } v_{i}=v_{t+i}
$$

