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planar graphs have a (1 + o(1)) log n-bit adjacency labelling scheme
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background
proof
variants / generalizations

Part II quick applications
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tree-decomposition and treewidth

∀
uv∈E(G)
∃
t∈V (T )

u, v ∈ Bt;

∀
v∈V (G)

the set {t | v ∈ Bt} is a subtree of T .

width of (T,B): max
t∈V (T )

|Bt| − 1

tw(G) = min
(T,B)

max
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A tree-decomposition of G is a pair (T,B) where
▷ T is a tree;
▷ B = (Bt | t ∈ V (T )) is a family of subsets of V (G)

u

u
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such that

treewidth of G:

▷

▷
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product structure theorems

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)

Every planar graph G is a subgraph of a strong product H ⊠ P

where H is a graph of treewidth at most 8 and P is a path.

H ⊠

G

⊆

path P

⊠

K3

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)

Every planar graph G is a subgraph of a strong product H ⊠ P ⊠K3
where H is a planar graph of treewidth at most 3 and P is a path.

tw(H) ⩽ 8
tw(H) ⩽ 3

planar
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path is geodesic
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a vertex partition P into geodesics in G such that

vertical path in a rooted tree

take T to be a BFS tree
then vertical paths in T are geodesics
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(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)

Every planar graph G is a subgraph of a strong product H ⊠ P where
H is a graph of treewidth at most 8 and P is a path.

root of T

BFS layers
and

underlying tree T

PL0
L1
L2
L3
L4
L5
L6

H = G/PP partition into vertical paths
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a vertex partition P into tripods in T such that
(and G/P is planar)

at most three vertical paths in T
tripod

with connected starting points
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setting: region bounded by at most three tripods
root of T on the boundary or outside

Sperner’s lemma:

∃ a facial triangle
colored RGB
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statements

Every triangulation G with a rooted spanning tree T has

tw(G/P) ⩽ 3a vertex partition P into tripods in T such that
(and G/P is planar)

replace each tripod with its three legs: 4 · 3 = 12

Every connected planar graph G with a rooted spanning tree T has

tw(G/P) ⩽ 11
a vertex partition P into vertical paths in T such that

tw(G/P) ⩽ 8
tw(G/P) ⩽ 6(Ueckerdt, Wood, Yi 2022)


