Product structure of planar graphs

 $\mathbf{\mathcal{G}}$

 $\langle \rangle$

Piotr Micek Jagiellonian University

tutorial presentation for **9th Polish Combinatorial Conference** Będlewo, September 20, 2022

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019) Every planar graph G is a subgraph of a strong product $H \boxtimes P$ where H is a graph of treewidth at most 8 and P is a path.

Every planar graph G is a subgraph of a strong product $H \boxtimes P$ where H is a graph of treewidth at most 8 and P is a path.

Every planar graph G is a subgraph of a strong product $H \boxtimes P$ where H is a graph of treewidth at most 8 and P is a path. (Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019) queue layouts of planar graphs with 49 queues

Every **planar graph** G is a subgraph of a strong product $H \boxtimes P$ where H is a graph of treewidth at most 8 and P is a path.

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019) queue layouts of planar graphs with 49 queues

(Dujmović, Esperet, Joret, Walczak, Wood 2020) nonrepetitive colorings of planar graphs with 768 colors

Every **planar graph** G is a subgraph of a strong product $H \boxtimes P$ where H is a graph of treewidth at most 8 and P is a path.

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019) queue layouts of planar graphs with 49 queues (Dujmović, Esperet, Joret, Walczak, Wood 2020)

nonrepetitive colorings of planar graphs with 768 colors

(Dębski, Felsner, PM, Schröder 2020)

p-center colorings of planar graphs with $\mathcal{O}(p^3\log p)$ colors

Every **planar graph** G is a subgraph of a strong product $H \boxtimes P$ where H is a graph of treewidth at most 8 and P is a path.

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019) queue layouts of planar graphs with 49 queues

(Dujmović, Esperet, Joret, Walczak, Wood 2020) nonrepetitive colorings of planar graphs with 768 colors

(Dębski, Felsner, PM, Schröder 2020)

 $p\text{-center colorings of planar graphs with }\mathcal{O}(p^3\log p)$ colors

(Dvořák, Sereni 2020)

planar graphs are fractionally td-fragile at rate $\mathcal{O}(a^3 \log a)$

Every **planar graph** G is a subgraph of a strong product $H \boxtimes P$ where H is a graph of treewidth at most 8 and P is a path.

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019) queue layouts of planar graphs with 49 queues

(Dujmović, Esperet, Joret, Walczak, Wood 2020) nonrepetitive colorings of planar graphs with 768 colors

(Dębski, Felsner, PM, Schröder 2020)

 $p\text{-center colorings of planar graphs with }\mathcal{O}(p^3\log p)$ colors

(Dvořák, Sereni 2020)

planar graphs are fractionally td-fragile at rate $\mathcal{O}(a^3\log a)$

(Dujmović, Esperet, Gavoillle, Joret, PM, Morin 2020) planar graphs have a $(1 + o(1)) \log n$ -bit adjacency labelling scheme

plan of tutorial

- Part I statements background proof variants / generalizations
- Part II quick applications
- Part IIIapplication: adjacency labelling schemeopen problems / further research

Product structure of planar graphs

Part Istatementsbackgroundproofvariants / generalizations

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019) Every planar graph G is a subgraph of a strong product $H \boxtimes P$ where H is a graph of treewidth at most 8 and P is a path.

$$x_1, x_2 \in E(H) \text{ and } y_1 = y_2 \qquad \text{or} \qquad x_1 = x_2 \text{ and } y_1 y_2 \in E(P)$$

or
$$x_1 x_2 \in E(H) \text{ and } y_1 y_2 \in E(P)$$

$$x_1, x_2 \in E(H) \text{ and } y_1 = y_2 \qquad \text{or} \qquad x_1 = x_2 \text{ and } y_1 y_2 \in E(P)$$

or
$$x_1 x_2 \in E(H) \text{ and } y_1 y_2 \in E(P)$$

$$x_1, x_2 \in E(H) \text{ and } y_1 = y_2 \qquad \text{or} \qquad x_1 = x_2 \text{ and } y_1 y_2 \in E(P)$$

or
$$x_1 x_2 \in E(H) \text{ and } y_1 y_2 \in E(P)$$

$$x_1, x_2 \in E(H) \text{ and } y_1 = y_2 \qquad \text{or} \qquad x_1 = x_2 \text{ and } y_1 y_2 \in E(P)$$

or
$$x_1 x_2 \in E(H) \text{ and } y_1 y_2 \in E(P)$$

tree-decomposition and treewidth

A tree-decomposition of G is a pair (T, \mathcal{B}) where

$$\begin{array}{l} \triangleright \ T \ \text{is a tree;} \\ \triangleright \ \mathcal{B} = (B_t \mid t \in V(T)) \ \text{is a family of subsets of } V(G) \\ \text{such that} \\ \triangleright \ \bigvee_{uv \in E(G)} \ f \in V(T) \\ e \\ \bigvee_{v \in V(G)} \\ \text{the set } \{t \mid v \in B_t\} \ \text{is a subtree of } T. \\ \end{array}$$

width of
$$(T, \mathcal{B})$$
: $\max_{t \in V(T)} |B_t| - 1$

treewidth of G: $\operatorname{tw}(G) = \min_{(T,\mathcal{B})} \max_{t \in V(T)} |B_t| - 1$

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019) Every **planar graph** G is a subgraph of a **strong product** $H \boxtimes P$ where H is a graph of **treewidth** at most 8 and P is a path.

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)

Every planar graph G is a subgraph of a strong product $H \boxtimes P$ where H is a graph of treewidth at most 8 and P is a path.

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)

Every planar graph G is a subgraph of a strong product $H \boxtimes P \boxtimes K_3$ where H is a planar graph of treewidth at most 3 and P is a path.

Observation Let G be a triangulation. Then G has a vertex-partition \mathcal{P} into **paths** such that $\operatorname{tw}(G/\mathcal{P}) \leq 2$

(Mi. Pilipczuk, Siebertz 2019) Every planar graph G has a vertex partition \mathcal{P} into **geodesics** in G such that

 $\operatorname{tw}(G/\mathcal{P}) \leqslant 8$

between its endpoints

Observation Let G be a triangulation. Then G has a vertex-partition \mathcal{P} into **paths** such that $\operatorname{tw}(G/\mathcal{P}) \leq 2$

(Mi. Pilipczuk, Siebertz 2019) Every planar graph G has a vertex partition \mathcal{P} into geodesics in G such that

```
\operatorname{tw}(G/\mathcal{P}) \leqslant 8
```

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)

Every connected planar graph G with a rooted spanning tree T has a vertex partition \mathcal{P} into **vertical paths** in T such that

 $\operatorname{tw}(G/\mathcal{P}) \leqslant 8$

Observation Let G be a triangulation. Then G has a vertex-partition \mathcal{P} into **paths** such that $\operatorname{tw}(G/\mathcal{P}) \leq 2$

(Mi. Pilipczuk, Siebertz 2019) Every planar graph G has a vertex partition \mathcal{P} into geodesics in G such that $\operatorname{tw}(G/\mathcal{P}) \leq 8$ (Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019) Every connected planar graph G with a rooted spanning tree T has

 $\operatorname{tw}(G/\mathcal{P}) \leqslant 8$

vertical path in a rooted tree

u a vertex partition $\mathcal P$ into **vertical paths** in T such that

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)

Every connected planar graph G with a rooted spanning tree T has \checkmark a vertex partition \mathcal{P} into **vertical paths** in T such that

 $\operatorname{tw}(G/\mathcal{P}) \leqslant 8$

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)

Every **planar graph** G is a subgraph of a strong product $H \boxtimes P$ where H is a graph of treewidth at most 8 and P is a path.

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)

Every connected planar graph G with a rooted spanning tree T has a vertex partition \mathcal{P} into **vertical paths** in T such that

 $\operatorname{tw}(G/\mathcal{P}) \leqslant 8$

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)

Every **planar graph** G is a subgraph of a strong product $H \boxtimes P$ where H is a graph of treewidth at most 8 and P is a path.

main technical statement

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019) Every connected planar graph G with a rooted spanning tree T has a vertex partition \mathcal{P} into vertical paths in T such that $\operatorname{tw}(G/\mathcal{P}) \leq 8$ (Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019) Every triangulation G with a rooted spanning tree T has a vertex partition \mathcal{P} into tripods in T such that $\operatorname{tw}(G/\mathcal{P}) \leq 3$ (and G/\mathcal{P} is planar)

main technical statement

setting: region bounded by at most three tripods root of T on the boundary or outside

setting: region bounded by at most three tripods root of T on the boundary or outside

Every triangulation G with a rooted spanning tree T has a vertex partition \mathcal{P} into tripods in T such that

 $\operatorname{tw}(G/\mathcal{P}) \leqslant 3$ (and G/\mathcal{P} is planar)

Every triangulation G with a rooted spanning tree T has a vertex partition \mathcal{P} into **tripods** in T such that $\operatorname{tw}(G/\mathcal{P}) \leq 3$ (and G/\mathcal{P} is planar)

replace each tripod with its three legs: $4 \cdot 3 = 12$

Every connected planar graph G with a rooted spanning tree T has a vertex partition \mathcal{P} into **vertical paths** in T such that $\operatorname{tw}(G/\mathcal{P}) \leqslant 11$

Every triangulation G with a rooted spanning tree T has a vertex partition \mathcal{P} into **tripods** in T such that $\operatorname{tw}(G/\mathcal{P}) \leq 3$ (and G/\mathcal{P} is planar)

replace each tripod with its three legs: $4 \cdot 3 = 12$

Every connected planar graph G with a rooted spanning tree T has a vertex partition \mathcal{P} into **vertical paths** in T such that $\frac{-\operatorname{tw}(G/\mathcal{P}) \leqslant 11}{-\operatorname{tw}(G/\mathcal{P}) \leqslant 11}$

 $\operatorname{tw}(G/\mathcal{P}) \leqslant 8$

Every triangulation G with a rooted spanning tree T has a vertex partition \mathcal{P} into **tripods** in T such that $\operatorname{tw}(G/\mathcal{P}) \leq 3$ (and G/\mathcal{P} is planar)

replace each tripod with its three legs: $4 \cdot 3 = 12$

Every connected planar graph G with a rooted spanning tree T has a vertex partition \mathcal{P} into **vertical paths** in T such that $\frac{\operatorname{tw}(G/\mathcal{P}) \leqslant 11}{\operatorname{tw}(G/\mathcal{P}) \leqslant 2}$

 $\operatorname{tw}(G/\mathcal{P}) \leqslant \Pi$ $\operatorname{tw}(G/\mathcal{P}) \leqslant 8$ $\operatorname{tw}(G/\mathcal{P}) \leqslant 6$ (Ueckerdt, Wood, Yi 2022)