Product structure of planar graphs

Piotr Micek
Jagiellonian University
tutorial presentation for 9th Polish Combinatorial Conference
Będlewo, September 20, 2022

product structure theorem

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)
Every planar graph G is a subgraph of a strong product $H \boxtimes P$ where H is a graph of treewidth at most 8 and P is a path.

${ }^{a}$ product structure theorem
Every planar graph G is a subgraph of a strong product $H \boxtimes P$ where H is a graph of treewidth at most 8 and P is a path.

product structure theorem

```
Every planar graph \(G\) is a subgraph of a strong product \(H \boxtimes P\) where \(H\) is a graph of treewidth at most 8 and \(P\) is a path.
(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019) queue layouts of planar graphs with 49 queues
(Dujmović, Esperet, Joret, Walczak, Wood 2020)
nonrepetitive colorings of planar graphs with 768 colors
```


product structure theorem

Every planar graph G is a subgraph of a strong product $H \boxtimes P$ where H is a graph of treewidth at most 8 and P is a path.
(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019) queue layouts of planar graphs with 49 queues
(Dujmović, Esperet, Joret, Walczak, Wood 2020)
nonrepetitive colorings of planar graphs with 768 colors
(Dębski, Felsner, PM, Schröder 2020)
p-center colorings of planar graphs with $\mathcal{O}\left(p^{3} \log p\right)$ colors

product structure theorem

Every planar graph G is a subgraph of a strong product $H \boxtimes P$ where H is a graph of treewidth at most 8 and P is a path.
(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019) queue layouts of planar graphs with 49 queues
(Dujmović, Esperet, Joret, Walczak, Wood 2020)
nonrepetitive colorings of planar graphs with 768 colors
(Dębski, Felsner, PM, Schröder 2020)
p-center colorings of planar graphs with $\mathcal{O}\left(p^{3} \log p\right)$ colors
(Dvořák, Sereni 2020)
planar graphs are fractionally td-fragile at rate $\mathcal{O}\left(a^{3} \log a\right)$

product structure theorem

Every planar graph G is a subgraph of a strong product $H \boxtimes P$ where H is a graph of treewidth at most 8 and P is a path.
(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019) queue layouts of planar graphs with 49 queues
(Dujmović, Esperet, Joret, Walczak, Wood 2020) nonrepetitive colorings of planar graphs with 768 colors
(Dębski, Felsner, PM, Schröder 2020)
p-center colorings of planar graphs with $\mathcal{O}\left(p^{3} \log p\right)$ colors
(Dvořák, Sereni 2020)
planar graphs are fractionally td-fragile at rate $\mathcal{O}\left(a^{3} \log a\right)$
(Dujmović, Esperet, Gavoillle, Joret, PM, Morin 2020)
planar graphs have a $(1+o(1)) \log n$-bit adjacency labelling scheme

plan of tutorial

Part I statements
background
proof
variants / generalizations

Part II quick applications

Part III application: adjacency labelling scheme open problems / further research

Product structure of planar graphs

Part I statements
background
proof
variants / generalizations

product structure theorem

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)
Every planar graph G is a subgraph of a strong product $H \boxtimes P$ where H is a graph of treewidth at most 8 and P is a path.

path P
;

strong product of graphs

The strong product $H \boxtimes P$ of two graphs H and P is the graphs whose vertex set is the Cartesian product $V(H \boxtimes P)=V(H) \times V(P)$ and in which two distinct vertices $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are adjacent if
$x_{1}, x_{2} \in E(H)$ and $y_{1}=y_{2} \quad$ or $\quad x_{1}=x_{2}$ and $y_{1} y_{2} \in E(P)$
or
$x_{1} x_{2} \in E(H)$ and $y_{1} y_{2} \in E(P)$

strong product of graphs

The strong product $H \boxtimes P$ of two graphs H and P is the graphs whose vertex set is the Cartesian product $V(H \boxtimes P)=V(H) \times V(P)$ and in which two distinct vertices $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are adjacent if
$x_{1}, x_{2} \in E(H)$ and $y_{1}=y_{2} \quad$ or $\quad x_{1}=x_{2}$ and $y_{1} y_{2} \in E(P)$
or
$x_{1} x_{2} \in E(H)$ and $y_{1} y_{2} \in E(P)$

strong product of graphs

The strong product $H \boxtimes P$ of two graphs H and P is the graphs whose vertex set is the Cartesian product $V(H \boxtimes P)=V(H) \times V(P)$ and in which two distinct vertices $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are adjacent if
$x_{1}, x_{2} \in E(H)$ and $y_{1}=y_{2} \quad$ or $\quad x_{1}=x_{2}$ and $y_{1} y_{2} \in E(P)$
or
$x_{1} x_{2} \in E(H)$ and $y_{1} y_{2} \in E(P)$

strong product of graphs

The strong product $H \boxtimes P$ of two graphs H and P is the graphs whose vertex set is the Cartesian product $V(H \boxtimes P)=V(H) \times V(P)$ and in which two distinct vertices $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are adjacent if

$$
x_{1}, x_{2} \in E(H) \text { and } y_{1}=y_{2} \quad \text { or } \quad x_{1}=x_{2} \text { and } y_{1} y_{2} \in E(P)
$$

or

$$
x_{1} x_{2} \in E(H) \text { and } y_{1} y_{2} \in E(P)
$$

tree-decomposition and treewidth

A tree-decomposition of G is a pair (T, \mathcal{B}) where
$\triangleright T$ is a tree;
$\triangleright \mathcal{B}=\left(B_{t} \mid t \in V(T)\right)$ is a family of subsets of $V(G)$
such that
$\triangleright \underset{u v \in E(G)}{\forall} \underset{t \in V(T)}{\exists} u, v \in B_{t}$;
$\triangleright \quad \forall$ the set $\left\{t \mid v \in B_{t}\right\}$ is a subtree of T.

width of (T, \mathcal{B}) : $\quad \max _{t \in V(T)}\left|B_{t}\right|-1$
treewidth of G :

$$
\operatorname{tw}(G)=\min _{(T, \mathcal{B})} \max _{t \in V(T)}\left|B_{t}\right|-1
$$

product structure theorems
(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)
Every planar graph G is a subgraph of a strong product $H \boxtimes P$ where H is a graph of treewidth at most 8 and P is a path.

product structure theorems
(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)
Every planar graph G is a subgraph of a strong product $H \boxtimes P$ where H is a graph of treewidth at most 8 and P is a path.
(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)
Every planar graph G is a subgraph of a strong product $H \boxtimes P \boxtimes K_{3}$ where H is a planar graph of treewidth at most 3 and P is a path.
$\operatorname{tw}(H) \leqslant 3$
 $\operatorname{tw}(H) \leqslant 8$

path $P \quad K_{3}$

collecting insights

Observation Let G be a triangulation.
Then G has a vertex-partition \mathcal{P} into paths such that $\quad \operatorname{tw}(G / \mathcal{P}) \leqslant 2$.

collecting insights

Observation Let G be a triangulation.
Then G has a vertex-partition \mathcal{P} into paths such that $\quad \operatorname{tw}(G / \mathcal{P}) \leqslant 2$.

collecting insights

Observation Let G be a triangulation.
Then G has a vertex-partition \mathcal{P} into paths such that $\quad \operatorname{tw}(G / \mathcal{P}) \leqslant 2$.

collecting insights

Observation Let G be a triangulation.
Then G has a vertex-partition \mathcal{P} into paths such that $\operatorname{tw}(G / \mathcal{P}) \leqslant 2$.

collecting insights

Observation Let G be a triangulation.
Then G has a vertex-partition \mathcal{P} into paths such that $\quad \operatorname{tw}(G / \mathcal{P}) \leqslant 2$.

collecting insights

Observation Let G be a triangulation.
Then G has a vertex-partition \mathcal{P} into paths such that $\quad \operatorname{tw}(G / \mathcal{P}) \leqslant 2$.

collecting insights

Observation Let G be a triangulation.
Then G has a vertex-partition \mathcal{P} into paths such that $\quad \operatorname{tw}(G / \mathcal{P}) \leqslant 2$.

collecting insights

Observation Let G be a triangulation.
Then G has a vertex-partition \mathcal{P} into paths such that $\operatorname{tw}(G / \mathcal{P}) \leqslant 2$
(Mi. Pilipczuk, Siebertz 2019)

Every planar graph G has
a vertex partition \mathcal{P} into geodesics in G such that $\quad \operatorname{tw}(G / \mathcal{P}) \leqslant 8$
if it is a shortest path
between its endpoints

collecting insights

Observation Let G be a triangulation.
Then G has a vertex-partition \mathcal{P} into paths such that $\operatorname{tw}(G / \mathcal{P}) \leqslant 2$
(Mi. Pilipczuk, Siebertz 2019)

Every planar graph G has
a vertex partition \mathcal{P} into geodesics in G such that $\quad \operatorname{tw}(G / \mathcal{P}) \leqslant 8$
(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)
Every connected planar graph G with a rooted spanning tree T has a vertex partition \mathcal{P} into vertical paths in T such that

$$
\operatorname{tw}(G / \mathcal{P}) \leqslant 8
$$

collecting insights

Observation Let G be a triangulation.
Then G has a vertex-partition \mathcal{P} into paths such that $\quad \operatorname{tw}(G / \mathcal{P}) \leqslant 2$
(Mi. Pilipczuk, Siebertz 2019)

Every planar graph G has
a vertex partition \mathcal{P} into geodesics in G such that $\quad \operatorname{tw}(G / \mathcal{P}) \leqslant 8$
(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)
Every connected planar graph G with a rooted spanning tree T has
a vertex partition \mathcal{P} into vertical paths in T such that

$$
\operatorname{tw}(G / \mathcal{P}) \leqslant 8
$$

take T to be a BFS tree then vertical paths in T are geodesics

collecting insights

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)
Every connected planar graph G with a rooted spanning tree T has
a vertex partition \mathcal{P} into vertical paths in T such that

$$
\operatorname{tw}(G / \mathcal{P}) \leqslant 8
$$

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)
Every planar graph G is a subgraph of a strong product $H \boxtimes P$ where H is a graph of treewidth at most 8 and P is a path.

collecting insights

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)

Every connected planar graph G with a rooted spanning tree T has a vertex partition \mathcal{P} into vertical paths in T such that

$$
\operatorname{tw}(G / \mathcal{P}) \leqslant 8
$$

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)
Every planar graph G is a subgraph of a strong product $H \boxtimes P$ where H is a graph of treewidth at most 8 and P is a path.

\mathcal{P} partition into vertical paths $\quad H=G / \mathcal{P}$

main technical statement

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)
Every connected planar graph G with a rooted spanning tree T has a vertex partition \mathcal{P} into vertical paths in T such that

$$
\operatorname{tw}(G / \mathcal{P}) \leqslant 8
$$

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)
Every triangulation G with a rooted spanning tree T has
a vertex partition \mathcal{P} into tripods in T such that
$\operatorname{tw}(G / \mathcal{P}) \leqslant 3$ (and G / \mathcal{P} is planar)

main technical statement

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)
Every connected planar graph G with a rooted spanning tree T has a vertex partition \mathcal{P} into vertical paths in T such that

$$
\operatorname{tw}(G / \mathcal{P}) \leqslant 8
$$

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)
Every triangulation G with a rooted spanning tree T has a vertex partition \mathcal{P} into tripods in T such that

$$
\begin{gathered}
\operatorname{tw}(G / \mathcal{P}) \leqslant 3 \\
\text { (and } G / \mathcal{P} \text { is planar) }
\end{gathered}
$$

with connected starting points

proof

setting: region bounded by at most three tripods root of T on the boundary or outside

proof

setting: region bounded by at most three tripods root of T on the boundary or outside

proof

setting: region bounded by at most three tripods root of T on the boundary or outside

proof

setting: region bounded by at most three tripods root of T on the boundary or outside
vertical path in T

proof

setting: region bounded by at most three tripods root of T on the boundary or outside
vertical path in T

proof

setting: region bounded by at most three tripods root of T on the boundary or outside

Sperner's lemma:
\exists a facial triangle colored RGB

proof

setting: region bounded by at most three tripods root of T on the boundary or outside

proof

setting: region bounded by at most three tripods root of T on the boundary or outside

statements

Every triangulation G with a rooted spanning tree T has
a vertex partition \mathcal{P} into tripods in T such that

statements

Every triangulation G with a rooted spanning tree T has
a vertex partition \mathcal{P} into tripods in T such that

$$
\begin{gathered}
\operatorname{tw}(G / \mathcal{P}) \leqslant 3 \\
\text { (and } G / \mathcal{P} \text { is planar) }
\end{gathered}
$$

replace each tripod with its three legs: $4 \cdot 3=12$

Every connected planar graph G with a rooted spanning tree T has a vertex partition \mathcal{P} into vertical paths in T such that

$$
\operatorname{tw}(G / \mathcal{P}) \leqslant 11
$$

statements

Every triangulation G with a rooted spanning tree T has
a vertex partition \mathcal{P} into tripods in T such that

$$
\begin{gathered}
\operatorname{tw}(G / \mathcal{P}) \leqslant 3 \\
\text { (and } G / \mathcal{P} \text { is planar) }
\end{gathered}
$$

replace each tripod with its three legs: $4 \cdot 3=12$

Every connected planar graph G with a rooted spanning tree T has a vertex partition \mathcal{P} into vertical paths in T such that

$$
\begin{aligned}
& \operatorname{tw}(G / \mathcal{P}) \leqslant 11 \\
& \operatorname{tw}(G / \mathcal{P}) \leqslant 8
\end{aligned}
$$

statements

Every triangulation G with a rooted spanning tree T has
a vertex partition \mathcal{P} into tripods in T such that

$$
\begin{gathered}
\operatorname{tw}(G / \mathcal{P}) \leqslant 3 \\
\text { (and } G / \mathcal{P} \text { is planar) }
\end{gathered}
$$

replace each tripod with its three legs: $4 \cdot 3=12$

Every connected planar graph G with a rooted spanning tree T has a vertex partition \mathcal{P} into vertical paths in T such that

$$
\begin{array}{r}
\operatorname{tw}(G / \mathcal{P}) \leqslant 11 \\
\operatorname{tw}(G / \mathcal{P}) \leqslant 8 \\
\operatorname{tw}(G / \mathcal{P}) \leqslant 6 \\
\text { (Ueckerdt, Wood, Yi 2022) }
\end{array}
$$

