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Indefinite Linear Algebra

• name Indefinite Linear Algebra invented by Gohberg, Lancaster,
Rodman in 2005;

• ±H? = H ∈ Fn×n invertible defines an inner product on Fn:

[x, y]H := y?Hx for all x, y ∈ Fn;

Here, ? either denotes the transpose T or the conjugate transpose ∗;

H = H∗ Hermitian sesquilinear form
H = −H∗ skew-Hermitian sesquilinear form

H = HT symmetric bilinear form

H = −HT skew-symmetric bilinear form

• the inner product may be indefinite (needs not be positive definite).



Indefinite inner products

The adjoint: For X ∈ Fn×n let X? be the matrix satisfying

[v,Xw]H = [X?v,w]H for all v, w ∈ Fn.

We have X? = H−1XTH resp. X? = H−1X∗H.

Matrices with symmetries in indefinite inner products:

adjoint yTHx y∗Hx

A H-selfadjoint A? = A ATH = HA A∗H = HA

S H-skew-adjoint S? = −S STH = −HS S∗H = −HS
U H-unitary U? = U−1 UTHU = H U ∗HU = H



Indefinite inner products in applications

The Linear Quadratic Optimal Control Problem: minimize the cost
functional ∞∫

0

[
x(t)
u(t)

]T [
Q S
ST R

] [
x(t)
u(t)

]
dt

subject to the dynamics

ẋ = Ax + Bu, x(0) = x0, t ∈ [0,∞),

where x(t), x0 ∈ Rn, u(t) ∈ Rm, A,Q ∈ Rn×n, S ∈ Rn×m, R ∈ Rm×m,[
Q S

ST R

]
≥ 0, R > 0.

The solution can be obtained by solving the eigenvalue problem for the
Hamiltonian matrix

H :=

[
A−BR−1ST −BR−1BT

SR−1ST −Q −AT + SR−1BT

]
.



Indefinite inner products in applications

• A matrix H ∈ F2n×2n is called Hamiltonian if

HTJ = −JH, where J =

[
0 In
−In 0

]
.

• Hamiltonian matrices are skew-adjoint with respect to the skew-symmetric
bilinear form induced by J .

J-selfadjoint N TJ = JN skew-Hamiltonian

J-skew-adjoint HTJ = −JH Hamiltonian

J-unitary STJS = J symplectic

• Symplectic matrices occur in discrete optimal control problems.



Indefinite inner products in applications

Classical Mechanics: vibration analysis of structural systems: solve
the second order system

Mẍ + Cẋ + Kx = 0.

•M ∈ Rn×n symmetric pos.def.: mass matrix;

• C ∈ Rn×n symmetric: damping matrix;

• K ∈ Rn×n symmetric pos.def.: stiffness matrix;

The ansatz x(t) = x0e
λt leads to the quadratic eigenvalue problem

(λ2M + λC + K)x0 = 0.

Linearization leads to an equivalent generalized symmetric eigenvalue
problem (

λ

[
M 0
0 −K

]
−
[
−C −K
−K 0

])[
λx0

x0

]
= 0.



Indefinite inner products in applications

There is Indefinite Linear Algebra in generalized symmetric eigenvalue
problems:

If H is invertible, then the generalized symmetric eigenvalue problem

(λH −G)x = 0

is equivalent to the standard eigenvalue problem

λx = H−1Gx.

H−1G is selfadjoint with respect to the inner product induced by H:

(H−1G)TH = GT = G = H(H−1G)



Indefinite inner products in applications

Vibration analysis of rail tracks excited by high speed trains

Finite element discretization of rail leads to a palindromic eigenvalue
problem (

λ2AT
0 + λA1 + A0

)
x = 0,

where A0, A1 ∈ Cn×n, and AT
1 = A1.



Indefinite inner products in applications

Palindromic eigenvalue problems are equivalent to standard eigenvalue pro-
blems with symplectic matrices if not both 1 and −1 are eigenvalues.

There are many more applications with Indefinite Linear Algebra inside!

Indefinite Linear Algebra is everywhere!



Definite versus Indefinite Linear Algebra

Outline for the remainder of the talk

1) Canonical forms

2) Normal matrices

3) Polar decompositions

4) Singular value decompositions



1) Canonical forms



Canonical forms

Definite Linear Algebra: Any Hermitian matrix is unitarily diagonalizable
and all its eigenvalues are real.

Indefinite Linear Algebra: Selfadjoint matrices with respect to indefinite
inner products may have complex eigenvalues and need not be diagonaliz-
able.

Example:

H =

[
0 1
1 0

]
, A1 =

[
2 1
0 2

]
, A2 =

[
i 0
0 −i

]
A1 and A2 are H-selfadjoint, i.e., A∗iH = HAi.



Canonical forms

Transformations that preserve structure:

• for bilinear forms: (H,A) 7→ (P THP, P−1AP ), P invertible;

• for sesquilinear forms: (H,A) 7→ (P ∗HP, P−1AP ), P invertible;

A is

H-selfadjoint
H-skew-adjoint
H-unitary

⇔ P−1AP is

 P?HP -selfadjoint
P?HP -skew-adjoint
P?HP -unitary


Here P? = P T or P? = P ∗, respectively.



Canonical forms

Theorem (Gohberg, Lancaster, Rodman, 1983, Thompson, 1976)
Let A ∈ Cn×n be H-selfadjoint. Then there exists P ∈ Cn×n invertible
such that

P−1AP = A1 ⊕ · · · ⊕ Ak, P ∗HP = H1 ⊕ · · · ⊕Hk,

where either

1) Ai = Jni(λ), and Hi = εFni, where λ ∈ R and ε = ±1; or

2) Ai =

[
Jni(µ) 0

0 Jni(µ)

]
, Hi =

[
0 Fni
Fni 0

]
, where µ 6∈ R.

Here Jm(λ) =


λ 1 0 0
0
. . .

. . . 0...
. . . λ 1

0 . . . 0 λ

 ∈ Cm×m and Fm =

 0 1
...

1 0

 ∈ Cm×m.



Canonical forms

There are similar results for H-skewadjoint and H-unitary matrices and for
real or complex bilinear forms.

Spectral symmetries:

yTHx y∗Hx yTHx

field F = C F = C F = R
H-selfadjoints λ λ, λ λ, λ

H-skew-adjoints λ,−λ λ,−λ λ,−λ, λ,−λ
H-unitaries λ, λ−1 λ, λ

−1
λ, λ−1, λ, λ

−1



The sign characteristic

Sign characteristic: There are additional invariants for real eigenvalues of
H-selfadjoint matrices: signs ε = ±1.

Example:

A =

[
1 0
0 2

]
, Hε =

[
ε 0
0 −1

]
, ε = ±1;

• There is no transformation P−1AP = A, P ∗H+1P = H−1, because of
Sylvester’s Law of Inertia;

• each Jordan block associated with a real eigenvalue of A has a corre-
sponding sign ε ∈ {+1,−1};

• the collection of all the signs is called the sign characteristic od A;



The sign characteristic

Interpretation of the sign characteristic for simple eigenvalues:

• let (λ, v) be an eigenpair of the selfadjoint matrix A, where λ ∈ R:

• let ε be the sign corresponding to λ;

• the inner product [v, v]H is positive if ε = +1;

• the inner product [v, v]H is negative if ε = −1.

Analogously:

• purely imaginary eigenvalues of H-skew-adjoint matrices have signs;

• unimodular eigenvalues of H-unitary matrices have signs.



What happens under structured perturbations?

The sign characteristic plays an important role in perturbation theory:

Example: symplectic matrices S ∈ R2n×2n;

• consider a slightly perturbed matrix S̃ that is still symplectic;

• the behavior of the unimodular eigenvalues under perturbation depends
on the sign characteristic;

• if two unimodular eigenvalues meet, the behavior is different if the cor-
responding signs are opposite or equal.



What happens under structured perturbations?

• let S have two close unimodular eigenvalues with opposite signs;

• if S is perturbed and the two eigenvalues meet, they generically form
a Jordan block; then they may split off as a pair of nonunimodular
reciprocal eigenvalues;
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What happens under structured perturbations?

• let S have two close unimodular eigenvalues with equal signs;

• if S is perturbed and the two eigenvalues meet, they cannot form a
Jordan block, and they must remain on the unit circle;
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What happens under structured perturbations?

• let S have two close unimodular eigenvalues with equal signs;

• if S is perturbed and the two eigenvalues meet, they cannot form a
Jordan block, and they must remain on the unit circle;



Canonical forms

Conclusions

• canonical forms are more complicated than in the definite case;

• sign characteristic is crucial for deeper understanding of structure-preserving
algorithms, e.g.,

– theory of structured perturbations;

– existence of Schur-like forms

– existence of Lagrangian subspaces (important in the solution of con-
trol problems and Riccati equations)



2) Normal matrices



Normal matrices

Definite Linear Algebra:

• A matrix X ∈ Cn×n is called normal if XX∗ = X∗X ;

• normal matrices generalize Hermitian, skew-Hermitian, and unitary ma-
trices;

• normal matrices have “nice properties”, because they are unitarily dia-
gonalizable;

• they are “good guys”.



Normal matrices

Indefinite Linear Algebra:

• Let H ∈ Cn×n be Hermitian and invertible;

• A matrix X ∈ Cn×n is called H-normal if X [∗]X = XX [∗];

• H-normal matrices generalize H-selfadjoint, H-skewadjoint, and H-
unitary matrices;

• Are H-normal matrices “good guys”, too?



Classification of normal matrices

H-Indecomposability:

A ∈ Cn×n is called H-decomposable, if there exists P ∈ Cn×n invertible
such that

P−1AP =

[
A1 0
0 A2

]
, P ∗HP =

[
H1 0
0 H2

]
, Aj, Hj ∈ Fnj×nj, nj > 0

Otherwise A is called H-indecomposable.

Clear: Any A ∈ Cn×n can be decomposed as

P−1AP = A1 ⊕ · · · ⊕ Ak, P ∗HP = H1 ⊕ · · · ⊕Hk,

where each Aj is Hj-indecomposable.



Classification of H-normal matrices

Example: nilpotent indecomposable matrices

• canonical form for H-selfadjoint matrices:

X =


0 1 0
. . .

. . .

. . . 1
0 0


n×n

, H = ε

 0 1
...

1 0


n×n

, ε = ±1;

• canonical form for H-normal matrices, when H has two negative eigen-
values: 17 different types of blocks, e.g.,

X =


0 1 ir isz
0 0 z 0
0 0 0 z2

0 0 0 0

 , H = ε


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , |z| = 1, r, s ∈ R, ε = ±1



Classification of H-normal matrices

• Gohberg/Reichstein 1990: The problem of classifying H-normal matrices
is as hard as the problem of classifying a pair of commuting matrices
under simultaneous similarity.

• Gohberg/Reichstein 1990: Complete classification when H has one ne-
gative eigenvalue.

• Holtz/Strauss 1996: Complete classification when H has two negative
eigenvalues.

Conclusion: The class of H-normal matrices is too large!



Classes of H-normal matrices

Question: Is there a “better” definition for H-normality?

Conditions equivalent to normality (in the case H = I):

• Grone/Johnson/Sa/Wolkowicz (1987): 69 conditions

• Elsner/Ikramov (1998): 20 conditions

• all together: conditions (1) – (89)

• Best candidate:

(17) There exists a polynomial p such that X [∗] = p(X).



Polynomially normal matrices

Definition: A matrix X ∈ Fn×n is called polynomially H-normal if
there exists a polynomial p ∈ F[t] such that X [∗] = p(X).

Properties:

• p is unique if it is of minimal degree and monic.

• X is polynomially H-normal ⇒ X is H-normal
6⇐

Examples:

• H-selfadjoint matrices are polynomially H-normal with p(t) = t;

• H-skew-adjoint matrices are polynomially H-normal with p(t) = −t;
• H-unitary matrices are polynomially H-normal (U−1 = p(U)).



Polynomially normal matrices

• M. 2006: Canonical forms for real and complex polynomially H-normal
matrices.

• Spectral symmetries:

y∗Hx yTHx yTHx

F = C F = C F = R
H-selfadjoints λ, λ λ λ, λ

H-skew-adjoints λ,−λ λ,−λ λ,−λ, λ,−λ
H-unitaries λ, λ

−1
λ, λ−1 λ, λ−1, λ, λ

−1

polynomially H-normals λ, p(λ) λ, p(λ) λ, p(λ), λ, p(λ)



Normal matrices

Conclusions

• The class of H-normal matrices is too large.
H-normal matrices are “bad guys”;

• Polynomially H-normals are “nicer guys”;

• Canonical forms for polynomially H-normals generalize H-selfadjoints,
H-skew-adjoints, H-unitaries;

• unifying theory (e.g. existence of semidefinite invariant subspaces).



3) Polar decompositions



H-polar decompositions

Definite Linear Algebra: Let A ∈ Cn×n. Then there exist a unitary
matrix U ∈ Cn×n and a Hermitian positive semidefinite matrix H ∈ Cn×n

such that
A = UH.

Indefinite Linear Algebra: H-polar decomposition of a matrix X ∈
Cn×n:

X = UA, U is H-unitary, A is H-selfadjoint

Note: Sometimes, additional assumptions on A are imposed, e.g.

• HA ≥ 0 (Bolshakov, van der Mee, Ran, Reichstein, Rodman, 1996);

• σ(A) ⊆ C+ (Higham, Mackey, Mackey, Tisseur, 2004).



How to construct H-polar decompositions

Observations for polar decompositions X = UA:

• X [∗] = A[∗]U [∗] = AU−1

• X [∗]X = AU−1UA = A2

• Ker X = Ker A.

Construction of H-polar decompositions:

i) compute H-selfadjoint square root A of X [∗]X s.t. Ker X = Ker A;

ii) compute H-unitary U such that X = UA



An example

X =

[
0 1
1 1

]
, H =

[
0 1
1 0

]
⇒ X [∗] =

[
1 1
1 0

]
i) computation of H-selfadjoint factor A:

X [∗]X =

[
1 2
0 1

]
take, e.g., A =

[
1 1
0 1

]
ii) computation of H-unitary factor U :

U = XA−1 =

[
0 1
1 0

]

Note: HA =

[
0 1
1 1

]
is NOT positive semidefinite, but σ(A) ⊆ C+.



Another example

X =

[
0 1
−1 1

]
, H =

[
0 1
1 0

]
⇒ X [∗] =

[
1 1
−1 0

]

X [∗]X =

[
−1 2
0 −1

]
?
= A2

• If A would be such an H-selfadjoint square root, then σ(A) ⊆ {−i, i}.

• The spectrum of H-selfadjoint matrices is symmetric w.r.t. real axis
⇒ σ(A) = {−i, i}.

• There is no H-selfadjoint square root for X [∗]X .



When do H-polar decompositions exist?

Question: When does X have an H-polar decomposition?

Theorem [Bolshakov, van der Mee, Ran, Reichstein, Rodman, 1996]: Let
X ∈ Cn×n. Then the following conditions are equivalent:

1) X has an H-polar decomposition.

2) X [∗]X has an H-selfadjoint square root A satisfying Ker X = Ker A.

3) a) each Jordan block Jp(λ) associated with λ < 0 in the canonical form
for (X [∗]X,H) occurs an even number (say 2m) of times such that
there are exactly m blocks with sign ε = +1;

b) several conditions on eigenvalue λ = 0 are satisfied.
(one set of conditions comes from X [∗]X = A2; a second set of
conditions comes from Ker X = Ker A.)



Polar decompositions of normal matrices

Question: Let X be H-normal. Does X have an H-polar decomposition?

Answers:

• Bolshakov, van der Mee, Ran, Reichstein, Rodman, 1996:
invertible H-normals have H-pd’s;

• Bolshakov, van der Mee, Ran, Reichstein, Rodman, 1996:
H-normals have H-pd’s if H has at most one negative eigenvalue;

• Lins, Meade, M., Rodman, 2001: H-normals have H-pd’s if H has at
most two negative eigenvalues;



Polar decompositions of normal matrices

Theorem [M., Ran, Rodman, 2004] Let X be H-normal. Then X admits
an H-polar decomposition.

Proof:

• induction on dim(Ker X);

• basic idea: construct an H-selfadjoint square root A of X [∗]X satisfying
Ker X = Ker A from an H-polar decomposition of a smaller submatrix;

Corollary [conjectured by Kintzel, 2002] X ∈ Cn×n admits an H-polar
decomposition X = UA if and only if XX [∗] and X [∗]X are H-unitarily
similar.



Polar decompositions

Conclusions:

• theory on polar decompositions in Indefinite Linear Algebra;

• applications in linear optics and Procrustes problems;

• H-normal matrices are the prototypes of matrices allowing an H-polar
decomposition, so they are good guys at the end;

• there has been progress in developing algorithms for computing H-
polar decompositions (Kintzel, Higham/Mackey/Mackey/Tisseur, Hig-
ham/M./Tisseur).



4) Singular value decompositions



The Singular Value Decomposition

Definite Linear Algebra: Let A ∈ Cm×n. Then there exist unitary ma-
trices U ∈ Cm×m and V ∈ Cn×n such that

U ∗AV =

[
Σ 0
0 0

]
=


σ1 0 0

. . .
...

0 σr 0
0 . . . 0 0


where σ1 ≥ · · · ≥ σr > 0. The parameters σ1, . . . , σr are uniquely defined
and the (nonzero) singular values of A.
Moreover,

AA∗ =

[
Σ2 0
0 0

]
m×m

and A∗A =

[
Σ2 0
0 0

]
n×n



The Singular Value Decomposition

Aspects: of the singular value decomposition:

• allows computation of the polar decomposition;

• displays eigenvalues of the Hermitian matrices AA∗ and A∗A;

• allows numerical computation of the rank of a matrix;

• allows construction of optimal low-rank approximations;

• useful tool in Numerical Linear Algebra;



Indefinite Singular Value Decompositions

Problem: Given A ∈ Cm×n, compute a canonical form that displays

• the Jordan canonical form of A[∗]A and AA[∗], where A[∗] = H−1A∗H is
the adjoint with respect to a Hermitian sesquilinear form [·, ·] = (H·, ·);
(A[∗]A and AA[∗] are selfadjoint with respect to [·, ·]);

• the Jordan canonical form of ATA and AAT ;
(these are complex symmetric matrices);

• the Jordan canonical form of A[T ]A and AA[T ], where A[T ] is the adjoint
with respect to a complex symmetric or complex skew-symmetric bilinear
form [·, ·];



Indefinite Singular Value Decompositions

General formulation of the problem: let A ∈ Cm×n and ? ∈ {∗, T};
• allow two inner products given by G ∈ Cm×m and Ĝ ∈ Cn×n;

• compute a canonical form for the triple (A,G, Ĝ) via

(ACF, GCF, ĜCF) = (Y ?AX,X?GX, Y ?ĜY ), where X, Y are nonsingular;

• let this form display the eigenvalues of

– the matrix Ĥ = Ĝ−1A?G−1A;

– the matrix H = G−1AĜ−1A?;

This makes sense, because

Y −1ĤY = Ĝ−1
CF A

?
CFG

−1
CF ACF and X−1HX = G−1

CF ACFĜ
−1
CF A

?
CF



Indefinite Singular Value Decompositions

General formulation of the problem: let A ∈ Cm×n and ? ∈ {∗, T};
• allow two inner products given by G ∈ Cm×m and Ĝ ∈ Cn×n;

• compute a canonical form for the triple (A,G, Ĝ) via

(ACF, GCF, ĜCF) = (Y ?AX,X?GX, Y ?ĜY ), where X, Y are nonsingular;

• let this form display the eigenvalues of

– the matrix Ĥ = Ĝ−1A?G−1A;

– the matrix H = G−1AĜ−1A?;

Then G = H−1, Ĝ = H, ? = ∗: ; forms for Ĥ = A[∗]A and H = AA[∗];



Indefinite Singular Value Decompositions

General formulation of the problem: let A ∈ Cm×n and ? ∈ {∗, T};
• allow two inner products given by G ∈ Cm×m and Ĝ ∈ Cn×n;

• compute a canonical form for the triple (A,G, Ĝ) via
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– the matrix Ĥ = Ĝ−1A?G−1A;
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Then G = I , Ĝ = I , ? = ∗: ; SVD if we require X∗GX = I , Y ∗ĜY = I ;



Indefinite Singular Value Decompositions

General formulation of the problem: let A ∈ Cm×n and ? ∈ {∗, T};
• allow two inner products given by G ∈ Cm×m and Ĝ ∈ Cn×n;

• compute a canonical form for the triple (A,G, Ĝ) via

(ACF, GCF, ĜCF) = (Y ?AX,X?GX, Y ?ĜY ), where X, Y are nonsingular;

• let this form display the eigenvalues of

– the matrix Ĥ = Ĝ−1A?G−1A;

– the matrix H = G−1AĜ−1A?;

Then G = I , Ĝ = I , ? = T : ; forms for Ĥ = ATA and H = AAT .



Indefinite Singular Value Decompositions

Problem: A ∈ Cn×n singular. Then H and Ĥ may have different Jordan
canonical forms.

Example

A =


0 0 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 , G =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , Ĝ =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



H = Ĝ−1ATG−1A =


0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , Ĥ = G−1AĜ−1AT =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 .
We have to allow rectangular blocks as “indefinite singular values”;



The singular values: ∗ and T case

Special case: G = Im, Ĝ = In. The singular values of A ∈ Cm×n are:

*-case: σ1, . . . , σmin(m,n) ≥ 0 (related to the eigenvalues of A∗A and AA∗);

T-case: Jξ1(µ1), ..., 0m0×n0, J2p1(0), ...,

[
0
Iq1

]
, ... ,

[
0 Ir1

]
, ...,

where arg(µj) ∈ [0, π) and the “values” are related to the Jordan blocks of
ATA and AAT .

Uniqueness: Singular values are unique both in the ∗-case and T -case!



Conclusions

• Indefinite Linear Algebra occurs frequently in applications.

• Indefinite Linear Algebra is challenging.

• There is much more to say... but not today!

Thank you for your attention!

Special thanks to ILAS and SIAM for their support!


