Definite versus Indefinite Linear Algebra

Christian Mehl Institut für Mathematik TU Berlin Germany

10th SIAM Conference on Applied Linear Algebra

Monterey Bay – Seaside, October 26-29, 2009

Indefinite Linear Algebra

- name **Indefinite Linear Algebra** invented by Gohberg, Lancaster, Rodman in 2005;
- $\pm H^{\star} = H \in \mathbb{F}^{n \times n}$ invertible defines an inner product on \mathbb{F}^n :

 $[x,y]_H := y^{\star} H x \quad \text{for all } x, y \in \mathbb{F}^n;$

Here, \star either denotes the transpose T or the conjugate transpose *;

$H = H^*$	Hermitian sesquilinear form		
$H = -H^*$	skew-Hermitian sesquilinear form		
$H = H^T$	symmetric bilinear form		
$H = -H^T$	skew-symmetric bilinear form		

• the inner product may be indefinite (needs not be positive definite).

Indefinite inner products

The adjoint: For $X \in \mathbb{F}^{n \times n}$ let X^{\star} be the matrix satisfying

 $[v, Xw]_H = [X^{\star}v, w]_H$ for all $v, w \in \mathbb{F}^n$.

We have $X^{\star} = H^{-1}X^TH$ resp. $X^{\star} = H^{-1}X^*H$.

Matrices with symmetries in indefinite inner products:

	adjoint	$y^T H x$	y^*Hx
A H-selfadjoint	$A^{\star} = A$	$A^T H = H A$	$A^*H = HA$
S H-skew-adjoint	$S^{\star} = -S$	$S^T H = -HS$	$S^*H = -HS$
U H-unitary	$U^{\star} = U^{-1}$	$U^T H U = H$	$U^*HU = H$

The Linear Quadratic Optimal Control Problem: minimize the cost functional

$$\int_{0}^{\infty} \begin{bmatrix} x(t) \\ u(t) \end{bmatrix}^{T} \begin{bmatrix} Q & S \\ S^{T} & R \end{bmatrix} \begin{bmatrix} x(t) \\ u(t) \end{bmatrix} dt$$

subject to the dynamics

$$\begin{split} \dot{x} &= Ax + Bu, \quad x(0) = x_0, \quad t \in [0, \infty), \\ \text{where } x(t), x_0 \in \mathbb{R}^n, \; u(t) \in \mathbb{R}^m, \; A, Q \in \mathbb{R}^{n \times n}, \; S \in \mathbb{R}^{n \times m}, \; R \in \mathbb{R}^{m \times m}, \\ \begin{bmatrix} Q & S \\ S^T & R \end{bmatrix} \ge 0, \; R > 0. \end{split}$$

The solution can be obtained by solving the eigenvalue problem for the Hamiltonian matrix

$$\mathcal{H} := \begin{bmatrix} A - BR^{-1}S^T & -BR^{-1}B^T \\ SR^{-1}S^T - Q & -A^T + SR^{-1}B^T \end{bmatrix}.$$

• A matrix $\mathcal{H} \in \mathbb{F}^{2n \times 2n}$ is called Hamiltonian if

$$\mathcal{H}^T J = -J\mathcal{H}, \text{ where } J = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}.$$

• Hamiltonian matrices are skew-adjoint with respect to the skew-symmetric bilinear form induced by J.

J-selfadjoint	$\mathcal{N}^T J = J \mathcal{N}$	skew-Hamiltonian
J-skew-adjoint	$\mathcal{H}^T J = -J\mathcal{H}$	Hamiltonian
J-unitary	$\mathcal{S}^T J \mathcal{S} = J$	symplectic

• Symplectic matrices occur in discrete optimal control problems.

Classical Mechanics: vibration analysis of structural systems: solve the second order system

$$M\ddot{x} + C\dot{x} + Kx = 0.$$

- $M \in \mathbb{R}^{n \times n}$ symmetric pos.def.: mass matrix;
- $C \in \mathbb{R}^{n \times n}$ symmetric: **damping matrix**;
- $K \in \mathbb{R}^{n \times n}$ symmetric pos.def.: stiffness matrix;

The ansatz $x(t) = x_0 e^{\lambda t}$ leads to the quadratic eigenvalue problem $(\lambda^2 M + \lambda C + K)x_0 = 0.$

Linearization leads to an equivalent generalized symmetric eigenvalue problem

$$\left(\lambda \begin{bmatrix} M & 0\\ 0 & -K \end{bmatrix} - \begin{bmatrix} -C & -K\\ -K & 0 \end{bmatrix}\right) \begin{bmatrix} \lambda x_0\\ x_0 \end{bmatrix} = 0.$$

There is **Indefinite Linear Algebra** in generalized symmetric eigenvalue problems:

If H is invertible, then the **generalized symmetric eigenvalue problem**

$$(\lambda H - G)x = 0$$

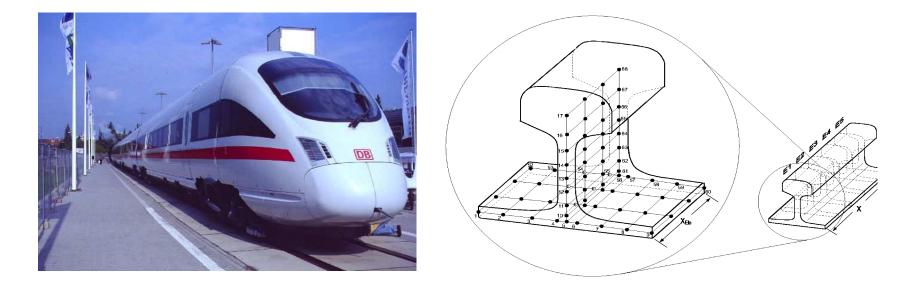
is equivalent to the standard eigenvalue problem

$$\lambda x = H^{-1}Gx.$$

 $H^{-1}G$ is **selfadjoint** with respect to the inner product induced by H:

$$(H^{-1}G)^T H = G^T = G = H(H^{-1}G)$$

Vibration analysis of rail tracks excited by high speed trains



Finite element discretization of rail leads to a **palindromic eigenvalue problem**

$$\left(\lambda^2 A_0^T + \lambda A_1 + A_0\right) x = 0,$$

where $A_0, A_1 \in \mathbb{C}^{n \times n}$, and $A_1^T = A_1$.

Palindromic eigenvalue problems are equivalent to standard eigenvalue problems with symplectic matrices if not both 1 and -1 are eigenvalues.

There are many more applications with **Indefinite Linear Algebra** inside!

Indefinite Linear Algebra is everywhere!

Definite versus Indefinite Linear Algebra

Outline for the remainder of the talk

- 1) Canonical forms
- 2) Normal matrices
- 3) Polar decompositions
- 4) Singular value decompositions

Definite Linear Algebra: Any Hermitian matrix is unitarily diagonalizable and all its eigenvalues are real.

Indefinite Linear Algebra: Selfadjoint matrices with respect to indefinite inner products may have complex eigenvalues and need not be diagonalizable.

Example:

$$H = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad A_1 = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}, \quad A_2 = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$$

 A_1 and A_2 are *H*-selfadjoint, i.e., $A_i^*H = HA_i$.

Transformations that preserve structure:

- for bilinear forms: $(H, A) \mapsto (P^T H P, P^{-1} A P), P$ invertible;
- for sesquilinear forms: $(H, A) \mapsto (P^*HP, P^{-1}AP), P$ invertible;

$$A \text{ is } \left\{ \begin{array}{l} H \text{-selfadjoint} \\ H \text{-skew-adjoint} \\ H \text{-unitary} \end{array} \right\} \Leftrightarrow P^{-1}AP \text{ is } \left\{ \begin{array}{l} P^{\star}HP \text{-selfadjoint} \\ P^{\star}HP \text{-skew-adjoint} \\ P^{\star}HP \text{-unitary} \end{array} \right\}$$

Here $P^{\star} = P^T$ or $P^{\star} = P^*$, respectively.

Theorem (Gohberg, Lancaster, Rodman, 1983, Thompson, 1976) Let $A \in \mathbb{C}^{n \times n}$ be *H*-selfadjoint. Then there exists $P \in \mathbb{C}^{n \times n}$ invertible such that

$$P^{-1}AP = A_1 \oplus \cdots \oplus A_k, \quad P^*HP = H_1 \oplus \cdots \oplus H_k,$$

where either

1)
$$A_i = \mathcal{J}_{n_i}(\lambda)$$
, and $H_i = \varepsilon F_{n_i}$, where $\lambda \in \mathbb{R}$ and $\varepsilon = \pm 1$; or
2) $A_i = \begin{bmatrix} \mathcal{J}_{n_i}(\mu) & 0\\ 0 & \mathcal{J}_{n_i}(\overline{\mu}) \end{bmatrix}$, $H_i = \begin{bmatrix} 0 & F_{n_i}\\ F_{n_i} & 0 \end{bmatrix}$, where $\mu \notin \mathbb{R}$.
Here $\mathcal{J}_m(\lambda) = \begin{bmatrix} \lambda & 1 & 0 & 0\\ 0 & \ddots & \ddots & 0\\ \vdots & \ddots & \lambda & 1\\ 0 & \dots & 0 & \lambda \end{bmatrix} \in \mathbb{C}^{m \times m}$ and $F_m = \begin{bmatrix} 0 & 1\\ & \ddots & \\ 1 & 0 \end{bmatrix} \in \mathbb{C}^{m \times m}$.

There are similar results for H-skewadjoint and H-unitary matrices and for real or complex bilinear forms.

Spectral symmetries:

	$y^T H x$	y^*Hx	$y^T H x$
field	$\mathbb{F}=\mathbb{C}$	$\mathbb{F}=\mathbb{C}$	$\mathbb{F}=\mathbb{R}$
H-selfadjoints	λ	$\lambda,\overline{\lambda}$	$\lambda,\overline{\lambda}$
H-skew-adjoints	$\lambda, -\lambda$	$\lambda, -\overline{\lambda}$	$\lambda, -\lambda, \overline{\lambda}, -\overline{\lambda}$
H-unitaries	λ,λ^{-1}	$\lambda,\overline{\lambda}^{-1}$	$\lambda, \lambda^{-1}, \overline{\lambda}, \overline{\lambda}^{-1}$

The sign characteristic

Sign characteristic: There are additional invariants for real eigenvalues of H-selfadjoint matrices: signs $\varepsilon = \pm 1$.

Example:

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \quad H_{\varepsilon} = \begin{bmatrix} \varepsilon & 0 \\ 0 & -1 \end{bmatrix}, \quad \varepsilon = \pm 1;$$

- There is no transformation $P^{-1}AP = A$, $P^*H_{+1}P = H_{-1}$, because of Sylvester's Law of Inertia;
- each Jordan block associated with a real eigenvalue of A has a corresponding sign $\varepsilon \in \{+1, -1\};$
- the collection of all the signs is called the **sign characteristic** od A;

The sign characteristic

Interpretation of the sign characteristic for simple eigenvalues:

- let (λ, v) be an eigenpair of the selfadjoint matrix A, where $\lambda \in \mathbb{R}$:
- let ε be the sign corresponding to λ ;
- the inner product $[v, v]_H$ is positive if $\varepsilon = +1$;
- the inner product $[v, v]_H$ is negative if $\varepsilon = -1$.

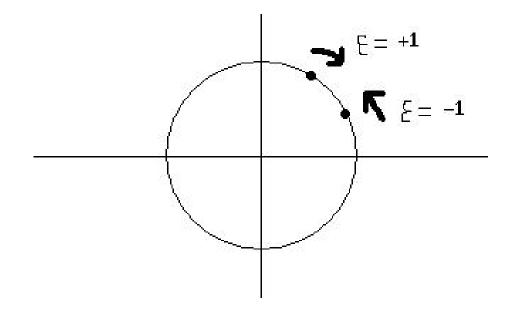
Analogously:

- purely imaginary eigenvalues of *H*-skew-adjoint matrices have signs;
- unimodular eigenvalues of H-unitary matrices have signs.

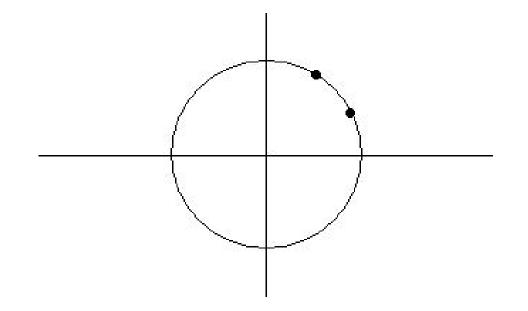
The sign characteristic plays an important role in perturbation theory:

Example: symplectic matrices $S \in \mathbb{R}^{2n \times 2n}$;

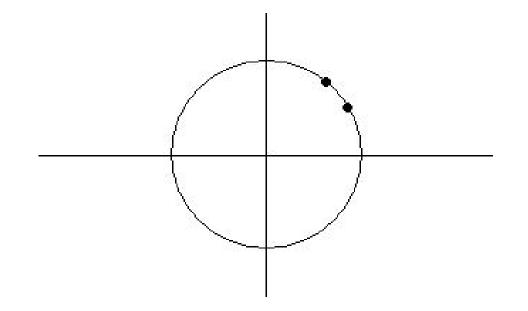
- consider a slightly perturbed matrix \widetilde{S} that is still symplectic;
- the behavior of the unimodular eigenvalues under perturbation depends on the sign characteristic;
- if two unimodular eigenvalues meet, the behavior is different if the corresponding signs are opposite or equal.



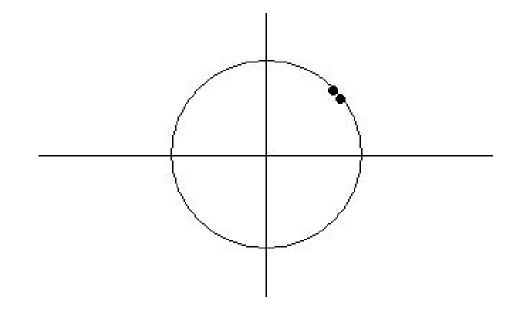
- let S have two close unimodular eigenvalues with opposite signs;
- if S is perturbed and the two eigenvalues meet, they generically form a Jordan block; then they may split off as a pair of nonunimodular reciprocal eigenvalues;



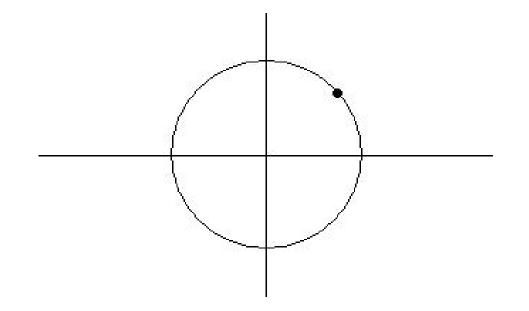
- let S have two close unimodular eigenvalues with opposite signs;
- if S is perturbed and the two eigenvalues meet, they generically form a Jordan block; then they may split off as a pair of nonunimodular reciprocal eigenvalues;



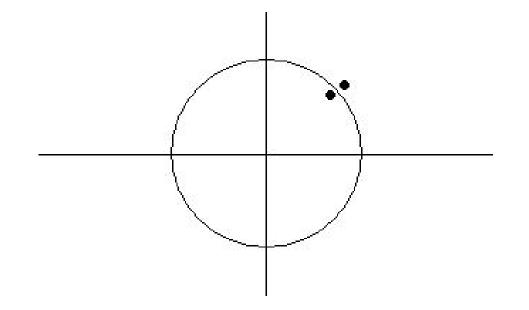
- let S have two close unimodular eigenvalues with opposite signs;
- if S is perturbed and the two eigenvalues meet, they generically form a Jordan block; then they may split off as a pair of nonunimodular reciprocal eigenvalues;



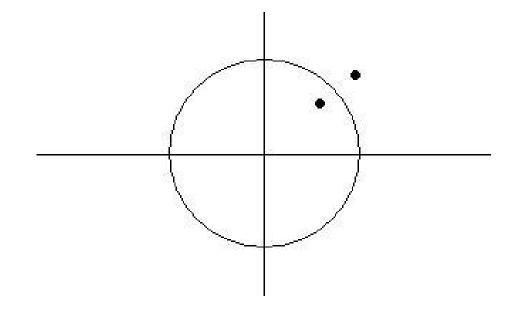
- let S have two close unimodular eigenvalues with opposite signs;
- if S is perturbed and the two eigenvalues meet, they generically form a Jordan block; then they may split off as a pair of nonunimodular reciprocal eigenvalues;



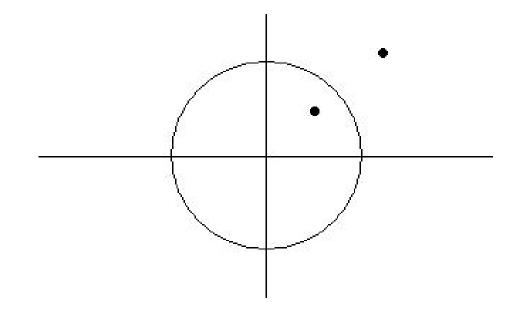
- let S have two close unimodular eigenvalues with opposite signs;
- if S is perturbed and the two eigenvalues meet, they generically form a Jordan block; then they may split off as a pair of nonunimodular reciprocal eigenvalues;



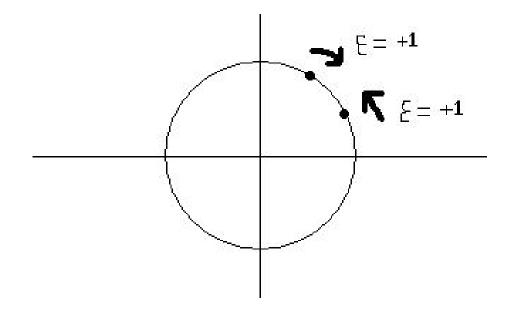
- let S have two close unimodular eigenvalues with opposite signs;
- if S is perturbed and the two eigenvalues meet, they generically form a Jordan block; then they may split off as a pair of nonunimodular reciprocal eigenvalues;



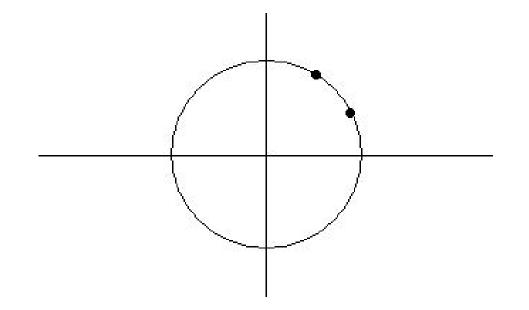
- let S have two close unimodular eigenvalues with opposite signs;
- if S is perturbed and the two eigenvalues meet, they generically form a Jordan block; then they may split off as a pair of nonunimodular reciprocal eigenvalues;



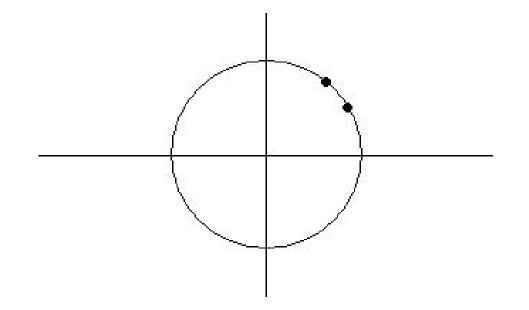
- let S have two close unimodular eigenvalues with opposite signs;
- if S is perturbed and the two eigenvalues meet, they generically form a Jordan block; then they may split off as a pair of nonunimodular reciprocal eigenvalues;



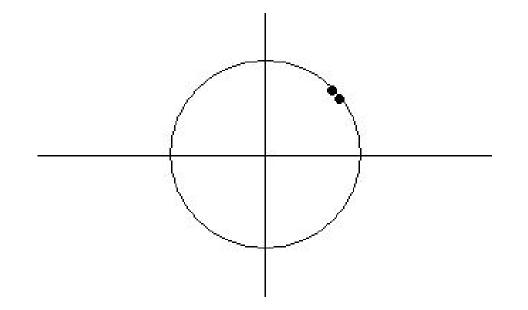
- let S have two close **unimodular eigenvalues** with **equal signs**;
- if S is perturbed and the two eigenvalues meet, they *cannot* form a Jordan block, and they *must* remain on the unit circle;



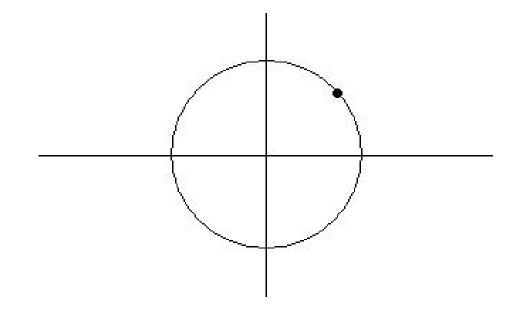
- let S have two close **unimodular eigenvalues** with **equal signs**;
- if S is perturbed and the two eigenvalues meet, they *cannot* form a Jordan block, and they *must* remain on the unit circle;



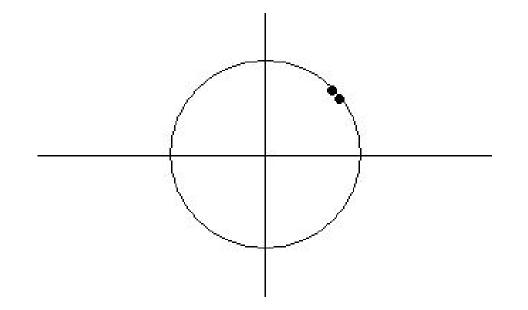
- let S have two close **unimodular eigenvalues** with **equal signs**;
- if S is perturbed and the two eigenvalues meet, they *cannot* form a Jordan block, and they *must* remain on the unit circle;



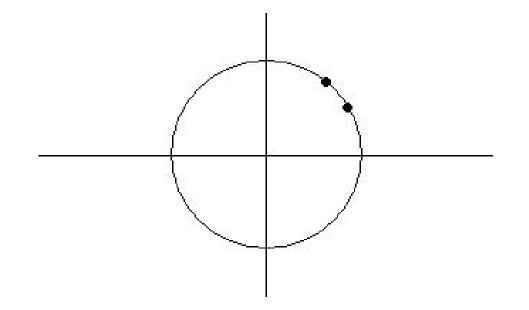
- let S have two close **unimodular eigenvalues** with **equal signs**;
- if S is perturbed and the two eigenvalues meet, they *cannot* form a Jordan block, and they *must* remain on the unit circle;



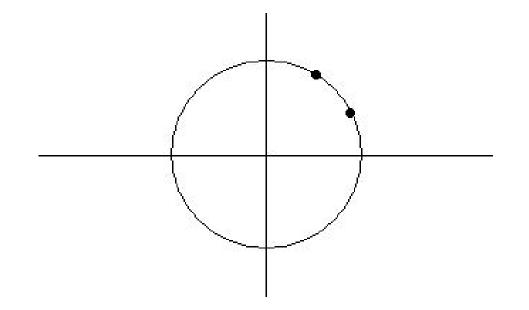
- let S have two close **unimodular eigenvalues** with **equal signs**;
- if S is perturbed and the two eigenvalues meet, they *cannot* form a Jordan block, and they *must* remain on the unit circle;



- let S have two close **unimodular eigenvalues** with **equal signs**;
- if S is perturbed and the two eigenvalues meet, they *cannot* form a Jordan block, and they *must* remain on the unit circle;



- let S have two close **unimodular eigenvalues** with **equal signs**;
- if S is perturbed and the two eigenvalues meet, they *cannot* form a Jordan block, and they *must* remain on the unit circle;



- let S have two close **unimodular eigenvalues** with **equal signs**;
- if S is perturbed and the two eigenvalues meet, they *cannot* form a Jordan block, and they *must* remain on the unit circle;

Conclusions

- canonical forms are more complicated than in the definite case;
- sign characteristic is crucial for deeper understanding of structure-preserving algorithms, e.g.,
 - theory of structured perturbations;
 - existence of Schur-like forms
 - existence of Lagrangian subspaces (important in the solution of control problems and Riccati equations)

2) Normal matrices

Normal matrices

Definite Linear Algebra:

- A matrix $X \in \mathbb{C}^{n \times n}$ is called **normal** if $XX^* = X^*X$;
- normal matrices generalize Hermitian, skew-Hermitian, and unitary matrices;
- normal matrices have "nice properties", because they are unitarily diagonalizable;
- they are "good guys".

Normal matrices

Indefinite Linear Algebra:

- Let $H \in \mathbb{C}^{n \times n}$ be Hermitian and invertible;
- A matrix $X \in \mathbb{C}^{n \times n}$ is called *H*-normal if $X^{[*]}X = XX^{[*]}$;
- H-normal matrices generalize H-selfadjoint, H-skewadjoint, and H-unitary matrices;
- Are *H*-normal matrices "good guys", too?

Classification of normal matrices

H-Indecomposability:

 $A \in \mathbb{C}^{n \times n}$ is called *H*-decomposable, if there exists $P \in \mathbb{C}^{n \times n}$ invertible such that

$$P^{-1}AP = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}, \quad P^*HP = \begin{bmatrix} H_1 & 0 \\ 0 & H_2 \end{bmatrix}, \quad A_j, H_j \in \mathbb{F}^{n_j \times n_j}, n_j > 0$$

Otherwise A is called H-indecomposable.

Clear: Any $A \in \mathbb{C}^{n \times n}$ can be decomposed as

 $P^{-1}AP = A_1 \oplus \cdots \oplus A_k, \quad P^*HP = H_1 \oplus \cdots \oplus H_k,$

where each A_j is H_j -indecomposable.

Classification of *H***-normal matrices**

Example: nilpotent indecomposable matrices

• canonical form for H-selfadjoint matrices:

$$X = \begin{bmatrix} 0 & 1 & 0 \\ & \ddots & \ddots \\ & & \ddots & 1 \\ 0 & & 0 \end{bmatrix}_{n \times n}, \quad H = \varepsilon \begin{bmatrix} 0 & 1 \\ & \ddots & \\ 1 & 0 \end{bmatrix}_{n \times n}, \quad \varepsilon = \pm 1;$$

• canonical form for *H*-normal matrices, when *H* has two negative eigenvalues: 17 different types of blocks, e.g.,

$$X = \begin{bmatrix} 0 & 1 & ir & isz \\ 0 & 0 & z & 0 \\ 0 & 0 & 0 & z^2 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad H = \varepsilon \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}, \quad |z| = 1, \ r, s \in \mathbb{R}, \varepsilon = \pm 1$$

Classification of *H***-normal matrices**

- Gohberg/Reichstein 1990: The problem of classifying *H*-normal matrices is as hard as the problem of classifying a pair of commuting matrices under simultaneous similarity.
- \bullet Gohberg/Reichstein 1990: Complete classification when H has one negative eigenvalue.
- Holtz/Strauss 1996: Complete classification when H has two negative eigenvalues.

Conclusion: The class of *H*-normal matrices is **too large**!

Classes of *H***-normal matrices**

Question: Is there a "better" definition for *H*-normality?

Conditions equivalent to normality (in the case H = I):

- Grone/Johnson/Sa/Wolkowicz (1987): 69 conditions
- Elsner/Ikramov (1998): 20 conditions
- all together: conditions (1) (89)
- Best candidate:

(17) There exists a polynomial p such that $X^{[*]} = p(X)$.

Polynomially normal matrices

Definition: A matrix $X \in \mathbb{F}^{n \times n}$ is called **polynomially** *H*-normal if there exists a polynomial $p \in \mathbb{F}[t]$ such that $X^{[*]} = p(X)$.

Properties:

- $\bullet~p$ is unique if it is of minimal degree and monic.
- X is polynomially H-normal \Rightarrow X is H-normal

 $\not\models$

Examples:

- *H*-selfadjoint matrices are polynomially *H*-normal with p(t) = t;
- *H*-skew-adjoint matrices are polynomially *H*-normal with p(t) = -t;
- *H*-unitary matrices are polynomially *H*-normal $(U^{-1} = p(U))$.

Polynomially normal matrices

- M. 2006: Canonical forms for real and complex polynomially *H*-normal matrices.
- Spectral symmetries:

	y^*Hx	$y^T H x$	$y^T H x$
	$\mathbb{F}=\mathbb{C}$	$\mathbb{F}=\mathbb{C}$	$\mathbb{F}=\mathbb{R}$
H-selfadjoints	$\lambda,\overline{\lambda}$	λ	$\lambda,\overline{\lambda}$
H-skew-adjoints	$\lambda, -\overline{\lambda}$	$\lambda, -\lambda$	$\lambda, -\lambda, \overline{\lambda}, -\overline{\lambda}$
H-unitaries	$\lambda,\overline{\lambda}^{-1}$	λ,λ^{-1}	$\lambda, \lambda^{-1}, \overline{\lambda}, \overline{\lambda}^{-1}$
polynomially H -normals	$\lambda, \overline{p(\lambda)}$	$\lambda, p(\lambda)$	$\lambda, p(\lambda), \overline{\lambda}, \overline{p(\lambda)}$

Normal matrices

Conclusions

- The class of *H*-normal matrices is too large. *H*-normal matrices are "**bad guys**";
- Polynomially *H*-normals are "**nicer guys**";
- Canonical forms for polynomially *H*-normals generalize *H*-selfadjoints, *H*-skew-adjoints, *H*-unitaries;
- unifying theory (e.g. existence of semidefinite invariant subspaces).

3) Polar decompositions

H-polar decompositions

Definite Linear Algebra: Let $A \in \mathbb{C}^{n \times n}$. Then there exist a unitary matrix $U \in \mathbb{C}^{n \times n}$ and a Hermitian positive semidefinite matrix $H \in \mathbb{C}^{n \times n}$ such that

A = UH.

Indefinite Linear Algebra: *H*-**polar decomposition** of a matrix $X \in \mathbb{C}^{n \times n}$:

$$X = UA$$
, U is H-unitary, A is H-selfadjoint

Note: Sometimes, additional assumptions on A are imposed, e.g.

- $HA \ge 0$ (Bolshakov, van der Mee, Ran, Reichstein, Rodman, 1996);
- $\sigma(A) \subseteq \mathbb{C}_+$ (Higham, Mackey, Mackey, Tisseur, 2004).

How to construct H-polar decompositions

Observations for polar decompositions X = UA:

- $\bullet \; X^{[*]} = A^{[*]} U^{[*]} = A U^{-1}$
- $\bullet \; X^{[*]}X = AU^{-1}UA = A^2$
- Ker X = Ker A.

Construction of *H***-polar decompositions**:

i) compute *H*-selfadjoint square root *A* of $X^{[*]}X$ s.t. Ker X = Ker A;

ii) compute H-unitary U such that X = UA

An example

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad H = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \Rightarrow \quad X^{[*]} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

i) computation of H-selfadjoint factor A:

$$X^{[*]}X = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \quad \text{take, e.g., } A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

ii) computation of H-unitary factor U:

$$U = XA^{-1} = \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}$$

Note: $HA = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ is NOT positive semidefinite, but $\sigma(A) \subseteq \mathbb{C}_+$.

Another example

$$X = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}, \quad H = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \Rightarrow X^{[*]} = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}$$
$$X^{[*]}X = \begin{bmatrix} -1 & 2 \\ 0 & -1 \end{bmatrix} \stackrel{?}{=} A^2$$

- If A would be such an H-selfadjoint square root, then $\sigma(A) \subseteq \{-i, i\}$.
- The spectrum of H-selfadjoint matrices is symmetric w.r.t. real axis $\Rightarrow \sigma(A) = \{-i, i\}.$
- There is no *H*-selfadjoint square root for $X^{[*]}X$.

When do *H*-polar decompositions exist?

Question: When does X have an H-polar decomposition?

Theorem [Bolshakov, van der Mee, Ran, Reichstein, Rodman, 1996]: Let $X \in \mathbb{C}^{n \times n}$. Then the following conditions are equivalent:

- 1) X has an H-polar decomposition.
- 2) $X^{[*]}X$ has an *H*-selfadjoint square root *A* satisfying Ker X = Ker A.
- a) each Jordan block J_p(λ) associated with λ < 0 in the canonical form for (X^[*]X, H) occurs an even number (say 2m) of times such that there are exactly m blocks with sign ε = +1;
 - b) several conditions on eigenvalue $\lambda = 0$ are satisfied. (one set of conditions comes from $X^{[*]}X = A^2$; a second set of conditions comes from Ker X = Ker A.)

Polar decompositions of normal matrices

Question: Let X be H-normal. Does X have an H-polar decomposition?

Answers:

- Bolshakov, van der Mee, Ran, Reichstein, Rodman, 1996: invertible *H*-normals have *H*-pd's;
- Bolshakov, van der Mee, Ran, Reichstein, Rodman, 1996: *H*-normals have *H*-pd's if *H* has at most one negative eigenvalue;
- Lins, Meade, M., Rodman, 2001: *H*-normals have *H*-pd's if *H* has at most two negative eigenvalues;

Polar decompositions of normal matrices

Theorem [M., Ran, Rodman, 2004] Let X be H-normal. Then X admits an H-polar decomposition.

Proof:

- induction on dim(Ker X);
- basic idea: construct an *H*-selfadjoint square root *A* of *X*^[*]*X* satisfying Ker *X* = Ker *A* from an *H*-polar decomposition of a smaller submatrix;

Corollary [conjectured by Kintzel, 2002] $X \in \mathbb{C}^{n \times n}$ admits an *H*-polar decomposition X = UA if and only if $XX^{[*]}$ and $X^{[*]}X$ are *H*-unitarily similar.

Polar decompositions

Conclusions:

- theory on polar decompositions in Indefinite Linear Algebra;
- applications in linear optics and Procrustes problems;
- *H*-normal matrices are the prototypes of matrices allowing an *H*-polar decomposition, so they are **good guys** at the end;
- there has been progress in developing algorithms for computing *H*-polar decompositions (Kintzel, Higham/Mackey/Mackey/Tisseur, Higham/M./Tisseur).

4) Singular value decompositions

The Singular Value Decomposition

Definite Linear Algebra: Let $A \in \mathbb{C}^{m \times n}$. Then there exist unitary matrices $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ such that

$$U^*AV = \begin{bmatrix} \underline{\Sigma} \mid 0\\ \hline 0 \mid 0 \end{bmatrix} = \begin{bmatrix} \sigma_1 & 0 \mid 0\\ & \ddots & \vdots\\ \hline 0 & \sigma_r \mid 0\\ \hline 0 & \dots & 0 \mid 0 \end{bmatrix}$$

where $\sigma_1 \geq \cdots \geq \sigma_r > 0$. The parameters $\sigma_1, \ldots, \sigma_r$ are uniquely defined and the (nonzero) singular values of A.

Moreover,

$$AA^* = \begin{bmatrix} \frac{\Sigma^2 \mid 0}{0 \mid 0} \end{bmatrix}_{m \times m} \quad \text{and} \quad A^*A = \begin{bmatrix} \frac{\Sigma^2 \mid 0}{0 \mid 0} \end{bmatrix}_{n \times n}$$

The Singular Value Decomposition

Aspects: of the singular value decomposition:

- allows computation of the polar decomposition;
- displays eigenvalues of the Hermitian matrices AA^* and A^*A ;
- allows numerical computation of the rank of a matrix;
- allows construction of optimal low-rank approximations;
- useful tool in Numerical Linear Algebra;

Problem: Given $A \in \mathbb{C}^{m \times n}$, compute a canonical form that displays

- the Jordan canonical form of A^[*]A and AA^[*], where A^[*] = H⁻¹A^{*}H is the adjoint with respect to a Hermitian sesquilinear form [·, ·] = (H·, ·); (A^[*]A and AA^[*] are selfadjoint with respect to [·, ·]);
- the Jordan canonical form of $A^T A$ and $A A^T$; (these are complex symmetric matrices);
- the Jordan canonical form of A^[T]A and AA^[T], where A^[T] is the adjoint with respect to a complex symmetric or complex skew-symmetric bilinear form [·, ·];

General formulation of the problem: let $A \in \mathbb{C}^{m \times n}$ and $\star \in \{*, T\}$;

- allow two inner products given by $G \in \mathbb{C}^{m \times m}$ and $\hat{G} \in \mathbb{C}^{n \times n}$;
- ullet compute a canonical form for the triple (A,G,\hat{G}) via

 $(A_{\mathsf{CF}}, G_{\mathsf{CF}}, \hat{G}_{\mathsf{CF}}) = (Y^{\star}AX, X^{\star}GX, Y^{\star}\hat{G}Y), \quad \text{where } X, Y \text{ are nonsingular};$

• let this form display the eigenvalues of

— the matrix
$$\hat{\mathcal{H}}=\hat{G}^{-1}A^{\bigstar}G^{-1}A;$$

- the matrix $\mathcal{H} = G^{-1}A\hat{G}^{-1}A^{\star}$;

This makes sense, because

$$Y^{-1}\hat{\mathcal{H}}Y = \hat{G}_{\mathsf{CF}}^{-1}A_{\mathsf{CF}}^{\star}G_{\mathsf{CF}}^{-1}A_{\mathsf{CF}} \quad \text{and} \quad X^{-1}\mathcal{H}X = G_{\mathsf{CF}}^{-1}A_{\mathsf{CF}}\hat{G}_{\mathsf{CF}}^{-1}A_{\mathsf{CF}}^{\star}$$

General formulation of the problem: let $A \in \mathbb{C}^{m \times n}$ and $\star \in \{*, T\}$;

- allow two inner products given by $G \in \mathbb{C}^{m \times m}$ and $\hat{G} \in \mathbb{C}^{n \times n}$;
- compute a canonical form for the triple (A, G, \hat{G}) via $(A_{CF}, G_{CF}, \hat{G}_{CF}) = (Y^{\star}AX, X^{\star}GX, Y^{\star}\hat{G}Y), \text{ where } X, Y \text{ are nonsingular};$
- let this form display the eigenvalues of

- the matrix
$$\hat{\mathcal{H}} = \hat{G}^{-1}A^{\star}G^{-1}A_{\star}$$

- the matrix $\mathcal{H} = G^{-1}A\hat{G}^{-1}A^{\star}$;

Then
$$G=H^{-1}$$
, $\hat{G}=H$, $\star=st$: \rightsquigarrow forms for $\hat{\mathcal{H}}=A^{[st]}A$ and $\mathcal{H}=AA^{[st]}$;

General formulation of the problem: let $A \in \mathbb{C}^{m \times n}$ and $\star \in \{*, T\}$;

- allow two inner products given by $G \in \mathbb{C}^{m \times m}$ and $\hat{G} \in \mathbb{C}^{n \times n}$;
- compute a canonical form for the triple (A, G, \hat{G}) via $(A_{CF}, G_{CF}, \hat{G}_{CF}) = (Y^*AX, X^*GX, Y^*\hat{G}Y),$ where X, Y are nonsingular;
- let this form display the eigenvalues of

- the matrix
$$\hat{\mathcal{H}} = \hat{G}^{-1}A^{\star}G^{-1}A;$$

- the matrix $\mathcal{H} = G^{-1}A\hat{G}^{-1}A^{\star}$;

Then G = I, $\hat{G} = I$, $\star = *: \rightsquigarrow$ SVD if we require $X^*GX = I$, $Y^*\hat{G}Y = I$;

General formulation of the problem: let $A \in \mathbb{C}^{m \times n}$ and $\star \in \{*, T\}$;

- allow two inner products given by $G \in \mathbb{C}^{m \times m}$ and $\hat{G} \in \mathbb{C}^{n \times n}$;
- compute a canonical form for the triple (A, G, \hat{G}) via $(A_{CF}, G_{CF}, \hat{G}_{CF}) = (Y^{\star}AX, X^{\star}GX, Y^{\star}\hat{G}Y), \text{ where } X, Y \text{ are nonsingular};$
- let this form display the eigenvalues of

- the matrix
$$\hat{\mathcal{H}} = \hat{G}^{-1}A^{\star}G^{-1}A_{\star}$$

- the matrix $\mathcal{H} = G^{-1}A\hat{G}^{-1}A^{\star}$;

Then
$$G = I$$
, $\hat{G} = I$, $\star = T$: \rightsquigarrow forms for $\hat{\mathcal{H}} = A^T A$ and $\mathcal{H} = A A^T$.

Problem: $A \in \mathbb{C}^{n \times n}$ singular. Then \mathcal{H} and $\hat{\mathcal{H}}$ may have different Jordan canonical forms.

Example

We have to allow rectangular blocks as "indefinite singular values";

The singular values: * and T case

Special case: $G = I_m$, $\hat{G} = I_n$. The singular values of $A \in \mathbb{C}^{m \times n}$ are:

*-case: $\sigma_1, \ldots, \sigma_{\min(m,n)} \ge 0$ (related to the eigenvalues of A^*A and AA^*);

T-case:
$$\mathcal{J}_{\xi_1}(\mu_1)$$
, ..., $0_{m_0 \times n_0}$, $\mathcal{J}_{2p_1}(0)$, ..., $\begin{bmatrix} 0 \\ I_{q_1} \end{bmatrix}$, ..., $\begin{bmatrix} 0 & I_{r_1} \end{bmatrix}$, ..., where $\arg(\mu_j) \in [0, \pi)$ and the "values" are related to the Jordan blocks of $A^T A$ and $A A^T$.

Uniqueness: Singular values are unique both in the *-case and *T*-case!

Conclusions

- Indefinite Linear Algebra occurs frequently in applications.
- Indefinite Linear Algebra is challenging.
- There is much more to say... but not today!

Thank you for your attention!

Special thanks to ILAS and SIAM for their support!