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Indefinite Linear Algebra |

e name Indefinite Linear Algebra invented by Gohberg, Lancaster,
Rodman in 2005;

o +tH* = H & F™" invertible defines an inner product on F":

x,ylg =y Hx forall z,y € F";

Here, * either denotes the transpose T or the conjugate transpose *;
H=H" Hermitian sesquilinear form
H = — H* | skew-Hermitian sesquilinear form
H=H" symmetric bilinear form
H = —H"| skew-symmetric bilinear form

e the inner product may be indefinite (needs not be positive definite).



Indefinite inner products |

The adjoint: For X € F™" let X* be the matrix satisfying
v, Xwlg = [X v, w]y forall v,w € F".

We have X* = H ' XTH resp. X* = H ' X*H.

Matrices with symmetries in indefinite inner products:

adjoint y' Hx y* Hzx
A H-selfadjoint (A=A | ATH=HA | A*\H=HA
S H-skew-adjoint | S* =-S5 |STH=—-HS S*H=—-HS
U H-unitary U*=U"'" U'HU=H | U'HU =H




Indefinite inner products in applications |

The Linear Quadratic Optimal Control Problem: minimize the cost

functional o
e [Q S]] .
u(t) ST R | | u(t)
0
subject to the dynamics
t = Ax + Bu, z(0)=uz, te€]|0,00),

where z(t), g € R", u(t) € R™, A,Q € R™", § € R"™™, R € R™™,

[gg]zo,R>o.

The solution can be obtained by solving the eigenvalue problem for the
Hamiltonian matrix
1 [A — BR7'ST —BR'BY
TSRS —-@Q AT+ SRTIBT



Indefinite inner products in applications |

e A matrix H € F?"*?" is called Hamiltonian if

Ty __ L 0 [n
H J=—-JH, whereJ—[_InO].

e Hamiltonian matrices are skew-adjoint with respect to the skew-symmetric
bilinear form induced by J.

J-selfadjoint | N1J = JN | skew-Hamiltonian
J-skew-adjoint | H!'J = —JH Hamiltonian
J-unitary STJS =17 symplectic

e Symplectic matrices occur in discrete optimal control problems.



Indefinite inner products in applications |

Classical Mechanics: vibration analysis of structural systems: solve
the second order system

Mz + Cz + Kz = 0.
o M € R"™" symmetric pos.def.. mass matrix;
o U € R"™" symmetric: damping matrix;

o { € R"™" symmetric pos.def.: stiffness matrix;

The ansatz z(t) = z¢e’ leads to the quadratic eigenvalue problem
(VM + MC + K)zy = 0.

Linearization leads to an equivalent generalized symmetric eigenvalue

e GIY ][00 5D ] =o



Indefinite inner products in applications |

There is Indefinite Linear Algebra in generalized symmetric eigenvalue
problems:

If H is invertible, then the generalized symmetric eigenvalue problem
(AH —G)x =0
is equivalent to the standard eigenvalue problem

\r = H 'Gx.

H~'G is selfadjoint with respect to the inner product induced by H:
(H'GY'H=G"=G=HH'G)



Indefinite inner products in applications

Vibration analysis of rail tracks excited by high speed trains

Finite element discretization of rail leads to a palindromic eigenvalue
problem

()\214% + A + Ao)x = 0,
where Ay, A; € C™", and AT = A;.



Indefinite inner products in applications

Palindromic eigenvalue problems are equivalent to standard eigenvalue pro-
blems with symplectic matrices if not both 1 and —1 are eigenvalues.

There are many more applications with Indefinite Linear Algebra inside!

ind LA

Indefinite Linear Algebra is everywhere!



Definite versus Indefinite Linear Algebra |

Outline for the remainder of the talk
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2
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)

4) Singular value decompositions



1) Canonical forms



Canonical forms |

Definite Linear Algebra: Any Hermitian matrix is unitarily diagonalizable
and all its eigenvalues are real.

Indefinite Linear Algebra: Selfadjoint matrices with respect to indefinite
inner products may have complex eigenvalues and need not be diagonaliz-
able.

Example:

01 21 i 0
H:Lo]’ Al:[oz]’ AQ:[O —i]

A; and Ay are H-selfadjoint, i.e., ATH = HA,.



Canonical forms |

Transformations that preserve structure:

e for bilinear forms: (H,A) — (PTHP, P"'AP), P invertible;
o for sesquilinear forms: (H, A) — (P*HP, P~*AP), P invertible;

H-selfadjoint P* H P-selfadjoint
Ais{ H-skew-adjoint » < P AP is{ P*H P-skew-adjoint
H-unitary P* H P-unitary

Here P* = PT or P* = P* respectively.



Canonical forms |

Theorem (Gohberg, Lancaster, Rodman, 1983, Thompson, 1976)
Let A € C"*" be H-selfadjoint. Then there exists P € C"*" invertible

such that
PlAP=A®---® A, PHP=H & ---& Hy,

where either

1) A; = J,.(N), and H; =¢F),,, where A € R and ¢ = £1; or

2) A; = [jm(u) Oﬁ)]’ H, = [ ! F"] where 11 & R.

0 Tl F, 0
‘A1 0 0] 0 1
Here J,(A) = ) )\ (1) € C™™ and F,, = - | eCmm
0.0 X R




Canonical forms |

There are similar results for H-skewadjoint and H-unitary matrices and for

real or complex bilinear forms.

Spectral symmetries:

yI Hx vy Hx yI Hx
field F=C F=C F=R
H-selfadjoints A A A A

H-skew-adjoints A, —A A, = A=A, =
H-unitaries A, A1 A AT, X




The sign characteristic |

Sign characteristic: There are additional invariants for real eigenvalues of
H-selfadjoint matrices: signs ¢ = +£1.

Example:

e There is no transformation P~'AP = A, P*H. P = H_, because of

Sylvester's Law of Inertia;

e cach Jordan block associated with a real eigenvalue of A has a corre-
sponding sign ¢ € {+1, —1};

e the collection of all the signs is called the sign characteristic od A;



The sign characteristic |

Interpretation of the sign characteristic for simple eigenvalues:

e let (), v) be an eigenpair of the selfadjoint matrix A, where A € R:
e let € be the sign corresponding to A;
e the inner product |v, v]y is positive if € = +1;

e the inner product [v, v]y is negative if ¢ = —1.

Analogously:

e purely imaginary eigenvalues of H-skew-adjoint matrices have signs;

e unimodular eigenvalues of H-unitary matrices have signs.



What happens under structured perturbations? |

The sign characteristic plays an important role in perturbation theory:

Example: symplectic matrices S € R*"*?".

e consider a slightly perturbed matrix S that is still symplectic;

e the behavior of the unimodular eigenvalues under perturbation depends
on the sign characteristic;

e if two unimodular eigenvalues meet, the behavior is different if the cor-
responding signs are opposite or equal.



What happens under structured perturbations? |

e let S have two close unimodular eigenvalues with opposite signs;

o if S is perturbed and the two eigenvalues meet, they generically form
a Jordan block; then they may split off as a pair of nonunimodular
reciprocal eigenvalues;
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What happens under structured perturbations? |

L= +1

Ne=n

=

e let S have two close unimodular eigenvalues with equal signs;

o if S is perturbed and the two eigenvalues meet, they cannot form a
Jordan block, and they must remain on the unit circle;
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What happens under structured perturbations? |

e let S have two close unimodular eigenvalues with equal signs;

o if S is perturbed and the two eigenvalues meet, they cannot form a
Jordan block, and they must remain on the unit circle;



Canonical forms |

Conclusions

e canonical forms are more complicated than in the definite case;

e sign characteristic is crucial for deeper understanding of structure-preserving
algorithms, e.g.,

— theory of structured perturbations;
— existence of Schur-like forms

— existence of Lagrangian subspaces (important in the solution of con-
trol problems and Riccati equations)



2) Normal matrices



Normal matrices |

Definite Linear Algebra:
e A matrix X € C"" is called normal if X X* = X*X:

e normal matrices generalize Hermitian, skew-Hermitian, and unitary ma-
trices;

e normal matrices have “nice properties’, because they are unitarily dia-
gonalizable;

e they are “good guys".



Normal matrices |

Indefinite Linear Algebra:

o Let H € C"" be Hermitian and invertible:

e A matrix X € C"™" s called H-normal if X*X = X X

e H-normal matrices generalize H-selfadjoint, H-skewadjoint, and H-
unitary matrices;

e Are H-normal matrices “good guys”, too?



Classification of normal matrices |

H-Indecomposability:

A € C"" is called H-decomposable, if there exists P € C"*" invertible
such that

A 0 Hy 0
0 A, 0 Hs

Otherwise A is called //-indecomposable.

PlAP:[ ], P*HP:[ ], Aj,HjEFnjxnj,nj>O

Clear: Any A € C"™" can be decomposed as
PlAP=A®---® A, PHP=H, & ---& Hy,

where each A; is Hj-indecomposable.



Classification of H-normal matrices |

Example: nilpotent indecomposable matrices

e canonical form for H-selfadjoint matrices:

0 1

0

0

S

0

nxn

|
™

d nXn

, €==l1;

e canonical form for H-normal matrices, when H has two negative eigen-

values: 17 different types of blocks, e.

X:

0 1 ir isz |
0
2

o O O
o O O
S O X

0

)

H=¢

g
0
0
1
0

, |zl =1, rseRe==+1



Classification of H-normal matrices |

e Gohberg/Reichstein 1990: The problem of classifying H-normal matrices
is as hard as the problem of classifying a pair of commuting matrices
under simultaneous similarity.

e Gohberg/Reichstein 1990: Complete classification when H has one ne-
gative eigenvalue.

e Holtz/Strauss 1996: Complete classification when H has two negative
eigenvalues.

Conclusion: The class of H-normal matrices is too large!



Classes of H-normal matrices |

Question: Is there a "better” definition for H-normality?

Conditions equivalent to normality (in the case H = I):

e Grone/Johnson/Sa/Wolkowicz (1987): 69 conditions
e Elsner/lkramov (1998): 20 conditions
e all together: conditions (1) — (89)

e Best candidate:

(17) There exists a polynomial p such that X = p(X).



Polynomially normal matrices |

Definition: A matrix X € F"*" is called polynomially /H-normal if
there exists a polynomial p € F[t] such that X = p(X).

Properties:

e p is unique if it is of minimal degree and monic.

e X is polynomially H-normal = X is H-normal

o+~

Examples:
e H-selfadjoint matrices are polynomially H-normal with p(t) = ¢;
e H-skew-adjoint matrices are polynomially H-normal with p(t) = —t;

e H-unitary matrices are polynomially H-normal (U~ = p(U)).



Polynomially normal matrices |

e M. 2006: Canonical forms for real and complex polynomially H-normal
matrices.

e Spectral symmetries:

vy Hax y! Hx yl' Hx
F=C F=C F=R
H-selfadjoints A A A A, A
H-skew-adjoints A, = A, —A A=A, =
H-unitaries A, X A1 ML, X
polynomially H-normals | X, p(\) A, p(A) A A, p(N)




Normal matrices |

Conclusions

e The class of H-normal matrices is too large.
H-normal matrices are “bad guys”;

e Polynomially H-normals are “nicer guys”;

e Canonical forms for polynomially H-normals generalize H-selfadjoints,
H-skew-adjoints, H-unitaries;

e unifying theory (e.g. existence of semidefinite invariant subspaces).



3) Polar decompositions



H-polar decompositions |

Definite Linear Algebra: Let A € C""". Then there exist a unitary
matrix U € C"*" and a Hermitian positive semidefinite matrix H € C"*"
such that

A=UH.

Indefinite Linear Algebra: //-polar decomposition of a matrix X €
Cnxn:
X =UA, U is H-unitary, A is H-selfadjoint

Note: Sometimes, additional assumptions on A are imposed, e.g.
e HA > 0 (Bolshakov, van der Mee, Ran, Reichstein, Rodman, 1996);
e 0(A) C C, (Higham, Mackey, Mackey, Tisseur, 2004).



How to construct /-polar decompositions |

Observations for polar decompositions X = U A:
o X[ — AHUlH = AUy
o XX = AUTIUA = A2

e Ker X = Ker A.

Construction of H-polar decompositions:

i) compute H-selfadjoint square root A of XHX st. Ker X = Ker A;

ii) compute H-unitary U such that X =UA



An example |

o1 fo1 b [11
A (R B F IR )

1) computation of H-selfadjoint factor A:

1 2 11
XMX [O 1] take, e.g.,, A [O 1]

ii) computation of H-unitary factor U:

B 41 |01
pexar 2[00

Note: HA = [(1) 1] is NOT positive semidefinite, but o(A) C C,.



Another example |

e If A would be such an H-selfadjoint square root, then o(A) C {—i,}.

e The spectrum of H-selfadjoint matrices is symmetric w.r.t. real axis

= o(A) = {—i,i).

e There is no H-selfadjoint square root for XX



When do H-polar decompositions exist? |

Question: When does X have an H-polar decomposition?

Theorem [Bolshakov, van der Mee, Ran, Reichstein, Rodman, 1996]: Let
X € C"" Then the following conditions are equivalent:

1) X has an H-polar decomposition.
2) XM X has an H-selfadjoint square root A satisfying Ker X = Ker A.

3) a) each Jordan block J,(\) associated with A < 0 in the canonical form
for (XX, H) occurs an even number (say 2m) of times such that
there are exactly m blocks with sign ¢ = +1;

b) several conditions on eigenvalue A = 0 are satisfied.
(one set of conditions comes from XX = A% 3 second set of
conditions comes from Ker X = Ker A.)



Polar decompositions of normal matrices |

Question: Let X be H-normal. Does X have an H-polar decomposition?

Answers:

e Bolshakov, van der Mee, Ran, Reichstein, Rodman, 1996:
invertible H-normals have H-pd’s;

e Bolshakov, van der Mee, Ran, Reichstein, Rodman, 1996:
H-normals have H-pd's if H has at most one negative eigenvalue;

e Lins, Meade, M., Rodman, 2001: H-normals have H-pd's if H has at

most two negative eigenvalues;



Polar decompositions of normal matrices |

Theorem [M., Ran, Rodman, 2004] Let X be H-normal. Then X admits
an H-polar decomposition.

Proof:

e induction on dim(Ker X);

e basic idea: construct an H-selfadjoint square root A of X ¥ X satisfying
Ker X = Ker A from an H-polar decomposition of a smaller submatrix;

Corollary [conjectured by Kintzel, 2002] X € C"*" admits an H-polar
decomposition X = UA if and only if XX and XX are H-unitarily

similar.



Polar decompositions |

Conclusions:

e theory on polar decompositions in Indefinite Linear Algebra;
e applications in linear optics and Procrustes problems;

e H-normal matrices are the prototypes of matrices allowing an H-polar
decomposition, so they are good guys at the end;

e there has been progress in developing algorithms for computing H-
polar decompositions (Kintzel, Higham /Mackey/Mackey/Tisseur, Hig-
ham /M. /Tisseur).



4) Singular value decompositions



The Singular Value Decomposition |

Definite Linear Algebra: Let A € C"*". Then there exist unitary ma-
trices U € C"*" and V € C"*" such that

01 010
2210 : ;
par=[30] 2|
010 0 0.0
0 ... 00
where 01 > --- > o, > 0. The parameters o1, ..., 0, are uniquely defined
and the (nonzero) singular values of A.

Moreover,

) 210 ) »210
AA _[O O]mxm and AA—[O O]nxn



The Singular Value Decomposition |

Aspects: of the singular value decomposition:

e allows computation of the polar decomposition;

e displays eigenvalues of the Hermitian matrices AA* and A* A;
e allows numerical computation of the rank of a matrix;

e allows construction of optimal low-rank approximations;

e useful tool in Numerical Linear Algebra;



Indefinite Singular Value Decompositions |

Problem: Given A € C™*", compute a canonical form that displays

e the Jordan canonical form of A A and AA® where A = H-1A*H is
the adjoint with respect to a Hermitian sesquilinear form |-, -] = (H-, -);
(A A and AAY are selfadjoint with respect to [, ]);

e the Jordan canonical form of AT A and AA”"

(these are complex symmetric matrices);

e the Jordan canonical form of A1 A and AAT! where AT is the adjoint

with respect to a complex symmetric or complex skew-symmetric bilinear
form |-, -];



Indefinite Singular Value Decompositions |

General formulation of the problem: let A € C"*" and x € {x,T'};
e allow two inner products given by G € C"*" and G € C™*™;

e compute a canonical form for the triple (A, G, é) via

(Acr, Ger, éCF) — (Y AX, X*GX, Y*GY), where X, Y are nonsingular;

e let this form display the eigenvalues of
— the matrix H = G_lA*G_lA;
— the matrix H = G LAGLA*:

This makes sense, because

YT'HY = Gl AXGI A and  XT'HX = Gl AGGL AX
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General formulation of the problem: let A € C"*" and x € {x,T'};
e allow two inner products given by G € C"*" and G € C™*™;

e compute a canonical form for the triple (A, G, é) via
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e let this form display the eigenvalues of
— the matrix H = G_lA*G_lA;
— the matrix H = G LAGLA*:

Then G = H !, G = H, % = #: ~ forms for H = A A and H = AAF:
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General formulation of the problem: let A € C"*" and x € {x,T'};
e allow two inner products given by G € C"*" and G € C™*™;

e compute a canonical form for the triple (A, G, é) via

(Acr, Ger, éCF) — (Y AX, X*GX, Y*GY), where X, Y are nonsingular;

e let this form display the eigenvalues of
— the matrix H = G_lA*G_lA;
— the matrix H = G LAGLA*:

Then G =1, é:],*:*:«»SVD if we require X*GX =1, Y*GY:I;



Indefinite Singular Value Decompositions |

General formulation of the problem: let A € C"*" and x € {x,T'};
e allow two inner products given by G € C"*" and G € C™*™;

e compute a canonical form for the triple (A, G, é) via

(Acr, Ger, éCF) — (Y AX, X*GX, Y*GY), where X, Y are nonsingular;

e let this form display the eigenvalues of
— the matrix H = G_lA*G_lA;
— the matrix H = G LAGLA*:

ThenG:I,é:],*:T:f\»formsforﬂ:ATAandH:AAT.



Indefinite Singular Value Decompositions |

Problem: A € C"™" singular. Then H and H may have different Jordan
canonical forms.

Example
0[000] (0110 0] (11000 ]
11000 1 000 A 0001
A= 0010 G = 000 1 G = 0010
10100 1] 10010 ] 1 0/1 00 |
000 0] (000 0|
A 1a4TA~—14 0010 Y w4 A1 a4 |1 000
H=G A G A= OOOl’H_GAGA_OOOO
101000 10010 ]

We have to allow rectangular blocks as “indefinite singular values”;



The singular values: x and T’ case |

Special case: G = [, G = I,,. The singular values of A € C"™*" are:

*-case: 01,. .., Opin(m.n) = 0 (related to the eigenvalues of A*A and AA*);

T-case: J¢,(111), -y Omgxngs J2py (0), .., []O ] ,[O I, }
a1

where arg(u;) € [0, 7) and the “values” are related to the Jordan blocks of
AT A and AAT

Uniqueness: Singular values are unique both in the x-case and T-case!



Conclusions |

e Indefinite Linear Algebra occurs frequently in applications.
e Indefinite Linear Algebra is challenging.

e There is much more to say... but not today!

Thank you for your attention!

Special thanks to ILAS and SIAM for their support!



