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H-structured matrices

H-adjoint of X is the matrix X [∗] satisfying

[x, Xy] = [X [∗]x, y] for all x, y ∈ Cn

⇔ y∗X∗Hx = y∗HX [∗]x for all x, y ∈ Cn ⇔ X [∗] = H−1X∗H.

A is H-selfadjoint A[∗] = A A∗H = HA

S is H-skew-adjoint S [∗] = −S S∗H = −HS

U is H-unitary U [∗] = U−1 U ∗HU = H



H-selfadjoint matrices

Example: H =

[
0 1
1 0

]
, A1 =

[
λ 1
0 λ

]
, λ ∈ R, A2 =

[
i 0
0 −i

]
.

• A1 and A2 are H-selfadjoint: A∗
1H = HA1 and A∗

2H = HA2;

• H-selfadjoint matrices need not be diagonalizable;

• the spectrum of H-selfadjoint matrices need not be real;

• but: the spectrum of H-selfadjoint matrices is symmetric with respect
to the real axis;

• canonical forms for H-selfadjoint matrices are known;



H-unitary matrices

Example: H =

[
0 1
1 0

]
, U1 =

[
1 i
0 1

]
, U2 =

[
a 0
0 a−1

]
, a 6= 0.

• U1 and U2 are H-unitary: U ∗
1HU1 = H and U ∗

2HU2 = H;

• H-unitary matrices satisfy [Ux, Uy] = [x, y] for all x, y;

• the spectrum of H-unitary matrices is symmetric with respect to the
unit circle;

• canonical forms for H-unitary matrices are known;



H-polar decompositions

polar decomposition of a matrix X ∈ Cn×n:

X = U · A, U is unitary, A is Hermitian, A ≥ 0

H-polar decomposition of a matrix X ∈ Cn×n:

X = U · A, U is H-unitary, A is H-selfadjoint

Note: there is no extra assumption on A (like HA ≥ 0 or σ(A) ⊆ C+).

Applications: • H-Procrustes problems

• linear optics

• matrix sign function
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Applications: H-Procrustes problems

Procrustes = “the one who stretches” (thief in Greek Mythology)



Applications: H-Procrustes problems

Procrustes Analysis: a method for comparing two sets of data:

• based on matching corresponding points (landmarks) from each of the
two data sets;

• minimize the sum of squared deviations between landmarks;

• do this by translation, reflection, rotation, and scaling;





Applications: H-Procrustes problems

Specific application: MDS (multidimensional scaling) in psychology:

• test persons estimate the similarity or dissimilarity of N objects
by pairwise comparison ; proximities pkl, k, l = 1, . . . , N ;

• proximities are transformed into distances dkl = f (pkl) ≥ 0
(triangle inequality must be satisfied);

• points xk ∈ Rn are constructed such that ‖xk − xl‖ = dkl;



Applications: H-Procrustes problems

Specific application: MDS (multidimensional scaling) in psychology:

• comparison of two constellations X = [x1, . . . , xN ] and Y = [y1, . . . , yN ]:
solve an orthogonal Procrustes problem first:

find U orthogonal such that
N∑

k=1

‖Uxk − yk‖2 is minimized



Applications: H-Procrustes problems

Specific application: MDS (multidimensional scaling) in psychology:

• comparison of two constellations X = [x1, . . . , xN ] and Y = [y1, . . . , yN ]:
solve an orthogonal Procrustes problem first:

find U orthogonal such that
N∑

k=1

‖Uxk − yk‖2 is minimized

• Solution: if
Y ∗X = UA

is a polar decomposition of Y ∗X, then U does the job!



Applications: H-Procrustes problems

Specific application: MDS (multidimensional scaling) in psychology:

• test persons estimate the similarity or dissimilarity of N objects
by pairwise comparison ; proximities pkl, k, l = 1, . . . , N ;

• Kintzel (2004) suggested: do not transform the proximities, but interpret
them as pseudo-Euclidean distances;

• construct an indefinite inner product [·, ·]H = (H·, ·);

• construct points xk ∈ Rn such that [xk − xl, xk − xl]H = pkl;



Applications: H-Procrustes problems

Specific application: MDS (multidimensional scaling) in psychology:

• comparison of two constellations X = [x1, . . . , xN ] and Y = [y1, . . . , yN ]:
solve an H-orthogonal Procrustes problem first:

find U H-unitary such that
N∑

k=1

[Uxk − yk, Uxk − yk] is optimal

• Solution (Kintzel 2004): if

Y ∗XH = UA, HA ≥ 0

is an H-polar decomposition of Y ∗XH with an H-nonnegative H-
selfadjoint factor A, then U does the job!



Applications: Linear Optics

beams of light: vectors I =
[
i q u v

]T
.

i > 0 intesity

q/i, u/i, v/i state of polarizations

p =
√

q2 + u2 + v2/i ∈ [0, 1] degree of polarization

I =
[
i q u v

]T
must satisfy the inequality i ≥

√
q2 + u2 + v2.



Applications: Linear Optics

Let [·, ·] be the inner product induced by H = diag(1,−1,−1,−1).

I =
[
i q u v

]T
satisfies the inequality i ≥

√
q2 + u2 + v2 if and only if

[I, I ] = i2 − q2 − v2 − u2 ≥ 0 and i > 0.

orthochronous Lorentz group: Matrices U = (uij) ∈ R4×4 that are
H-unitary and satisfy u11 > 0.

Clear: [Ux, Ux] = [x, x] for all x ∈ R4; also (Ux)1 > 0 if x1 > 0.



Applications: Linear Optics

M ∈ R4×4 satisfies the Stokes criterion if for all
[
i0 q0 u0 v0

]T
we

have

i0 ≥
√

q2
0 + u2

0 + v2
0 =⇒ i ≥

√
q2 + u2 + v2,

where
[
i q u v

]T
= M

[
i0 q0 u0 v0

]T
.

Such matrices transform one beam of light into another.

Example: Matrices from the orthochronous Lorentz group satisfy Stokes
criterion.



Applications: Linear Optics

Criterion: Let U1, U2 from the orthochronous Lorentz group.

M ∈ R4×4 satisfies Stokes criterion ⇔ U1MU2 satisfies Stokes criterion.

Test whether Stokes criterion is satisfied or not:

• compute H-polar decomposition M = UA with U from the orthochro-
nous Lorentz group;

• check if H-selfadjoint factor A satisfies Stokes criterion.
(This is easier than checking it for M directly!)



Applications: Matrix sign function

Matrix sign function: Let Z ∈ Rn×n be such that σ(Z) ∩ iR = ∅. If

Z = S

[
J+ 0
0 J−

]
S−1, where

• J+: Jordan blocks corresponding to the (say) k eigenvalues in the open
right half plane;

• J−: Jordan blocks corresponding to the n − k eigenvalues in the open
left half plane;

then

sign(Z) := S

[
Ik 0
0 −In−k

]
S−1.



Applications: Matrix sign function

Usage: computation of solutions of continuous-time algebraic Riccati equa-
tions

Theorem (Byers, 1984): X ∈ Cn×n nonsingular, X = UA polar decom-
position, then

sign

([
0 X

X∗ 0

])
=

[
0 U

U−1 0

]
.

Theorem (Higham, Mackey, Mackey, Tisseur, 2004): X ∈ Cn×n nonsin-
gular, X = UA an H-polar decomposition such that σ(A) ⊆ C+, then

sign

([
0 X

X [∗] 0

])
=

[
0 U

U−1 0

]
.
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How to construct H-polar decompositions

Observations for polar decompositions X = UA:

• X [∗] = A[∗]U [∗] = AU−1

• X [∗]X = AU−1UA = A2

• Ker X = Ker A.

Construction of H-polar decompositions:

i) compute H-selfadjoint square root A of X [∗]X s.t. Ker X = Ker A;

ii) compute H-unitary U such that X = UA



An example

X =

[
0 1
1 1

]
, H =

[
0 1
1 0

]
⇒ X [∗] =

[
1 1
1 0

]
i) computation of H-selfadjoint factor A:

X [∗]X =

[
1 2
0 1

]
take, e.g., A =

[
1 1
0 1

]
ii) computation of H-unitary factor U :

U = XA−1 =

[
0 1
1 0

]

Note: HA =

[
0 1
1 1

]
is NOT positive semidefinite.



Another example

X =

[
0 1
−1 1

]
, H =

[
0 1
1 0

]
⇒ X [∗] =

[
1 1
−1 0

]

X [∗]X =

[
−1 2
0 −1

]
?
= A2

• If A would be such an H-selfadjoint square root, then σ(A) ⊆ {−i, i}.

• The spectrum of H-selfadjoint matrices is symmetric w.r.t. real axis
⇒ σ(A) = {−i, i}.

• There is no H-selfadjoint square root for X [∗]X.



When do H-polar decompositions exist?

Construction of H-polar decompositions:

i) compute H-selfadjoint square root A of X [∗]X s.t. Ker X = Ker A;

ii) compute H-unitary U such that X = UA

Two questions:

i) When does X [∗]X have an H-selfadjoint square root?;

ii) When does there exist an H-unitary polar factor U?



When do H-polar decompositions exist?

Question: i) When does X [∗]X have an H-selfadjoint square root?

Theorem [Bolshakov, van der Mee, Ran, Reichstein, Rodman, 1996]: Let
X ∈ Cn×n. Then X [∗]X has an H-selfadjoint square root A satisfying
Ker X = Ker A if and only if

a) each Jordan block Jp(λ) associated with λ < 0 in the canonical form for
(X [∗]X, H) occurs an even number (say 2m) of times such that there
are exactly m blocks with sign ε = +1;

b) several conditions on eigenvalue λ = 0 are satisfied.

Note: λ < 0: e.g., H =

[
0 1
1 0

]
; A(ε) =

[
λ ε
0 λ

]
;

A(1) and A(−1) are NOT H-unitarily similar ; additional invariant ε = ±1



When do H-polar decompositions exist?

Question: i) When does X [∗]X have an H-selfadjoint square root?

Theorem [Bolshakov, van der Mee, Ran, Reichstein, Rodman, 1996]: Let
X ∈ Cn×n. Then X [∗]X has an H-selfadjoint square root A satisfying
Ker X = Ker A if and only if

a) each Jordan block Jp(λ) associated with λ < 0 in the canonical form for
(X [∗]X, H) occurs an even number (say 2m) of times such that there
are exactly m blocks with sign ε = +1;

b) several conditions on eigenvalue λ = 0 are satisfied.

Note: λ = 0: one set of conditions comes from X [∗]X = A2; a second set
of conditions comes from Ker X = Ker A.



When do H-polar decompositions exist?

Question: ii) When does there exist an H-unitary polar factor U?

Theorem [Bolschakov, Reichstein, 1995]: Let X, Y ∈ Cn×n. Then the
following are equivalent:

a) X = U0Y for an injective H-isometry U0 : Im Y → Im X

(i.e. [U0x, U0y] = [x, y] for all x, y ∈ Im Y );

b) X [∗]X = Y [∗]Y and Ker X = Ker Y

Idea of proof: define U0 : Im Y → Im X by U0(Y v) = Xv



When do H-polar decompositions exist?

Question: ii) When does there exist an H-unitary polar factor U?

Theorem [Witt]: V1,V2 ⊆ Cn subspaces of dimension m, U0 : V1 → V2

injective H-isometry, then there exists H-unitary U such that

U |V1 = U0.

Corollary: X has an H-polar decomposition iff X [∗]X has an H-selfadjoint
square root A such that Ker X = Ker A.
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Normal matrices

Definition: X ∈ Cn×n is called H-normal if X [∗]X = XX [∗].

Remark: H = I . Let X = UA be the polar decomposition of X. Then

X is normal ⇐⇒ UA = AU.

Questions: Let X be H-normal.

1) Does X have an H-polar decomposition?

2) Does X have an H-polar decomposition with commuting factors?



Normal matrices

Definition: X ∈ Cn×n is called H-normal if X [∗]X = XX [∗].

Problem: canonical forms for H-normal matrices are known for special
cases only:

• when H has at most one negative eigenvalue (Gohberg/Reichstein,1990);

• when H has at most two negative eigenvalues (Holtz/Strauss, 1995);

• when X is block-Toeplitz H-normal (Gohberg/Reichstein, 1991/93);

• when X satisfies X [∗] = p(X) for some polynomial p (M., 2006);



Polar decompositions of normal matrices

Answers to 1): (existence of H-pd’s)

• Bolshakov, van der Mee, Ran, Reichstein, Rodman, 1996:
invertible H-normals have H-pd’s;

• Bolshakov, van der Mee, Ran, Reichstein, Rodman, 1996:
H-normals have H-pd’s if H has at most one negative eigenvalue;

• Lins, Meade, M., Rodman, 2001: H-normals have H-pd’s if H has at
most two negative eigenvalues;



Polar decompositions of normal matrices

Theorem [M., Ran, Rodman, 2004] Let X be H-normal. Then X admits
an H-polar decomposition.

Proof:

• requires six pages;

• induction on dim(Ker X);

• basic idea: construct an H-selfadjoint square root A of X [∗]X satisfying
Ker X = Ker A from an H-polar decomposition of a smaller submatrix;



A criterion for the existence of polar decomps

Corollary [conjectured by Kintzel, 2002] X ∈ Cn×n admits an H-polar
decomposition X = UA if and only if XX [∗] and X [∗]X are H-unitarily
similar.

Proof:
”
⇒“: XX [∗] = UAAU−1 = UX [∗]XU−1, where U is H-unitary

”
⇐“: assume UXX [∗]U−1 = X [∗]X; then X̃ = UX is H-normal:

X̃X̃ [∗] = UXX [∗]U−1 = X [∗]X = X [∗]U [∗]UX = X̃ [∗]X̃.

X̃ has an H-polar decomposition X̃ = ÛÂ ⇒ X = U−1ÛÂ

Consequence: H-normal matrices are the prototype of matrices allowing
an H-polar decomposition.



Polar decompositions of normal matrices

Questions: Let X be H-normal.

1) Does X have an H-polar decomposition?

2) Does X have an H-polar decomposition with commuting factors?

Answers:

1) Yes! (And H-normal matrices are the prototype of matrices allowing an
H-polar decomposition.)

2) ?



The generalized Toeplitz decomposition

Generalized Toeplitz decomposition: X = AX + SX , where

AX =
1

2
(X + X [∗]) is H-selfadjoint, SX =

1

2
(X −X [∗]) is H-skew-adjoint.

X [∗] = A
[∗]
X + S

[∗]
X = AX − SX

XX [∗] = A2
X − AXSX + SXAX − S2

X

X [∗]X = A2
X + AXSX − SXAX − S2

X

Lemma: X is H-normal if and only if AXSX = SXAX .



The exponential map

H-unitary matrices Lie group

H-skew-adjoint matrices Lie algebra

Lie theory: the matrix exponential exp maps the Lie algebra into the Lie
group, i.e.,

S is H-skew-adjoint ⇒ exp(S) is H-unitary.

Moreover: A is H-selfadjoint ⇒ exp(A) is H-selfadjoint.



Polar decompositions with commuting factors

Theorem [Lins, Meade, M., Rodman, 2001]: Let X be an invertible H-
normal. Then X admits an H-polar decomposition with commuting factors.

Idea of proof:

• show: invertible H-normals X have H-normal logarithm Y = log X;

• generalized Toeplitz decomp.: Y = AY + SY ; AY and SY commute;

• X = exp(Y ) = exp(AY + SY ) = exp(AY ) exp(SY )

• exp(AY ) is H-selfadjoint, exp(SY ) is H-unitary and both matrices com-
mute.



What about the singular case?

Example: X =

[
0 0
0 i

]
, H =

[
0 1
1 0

]
, X [∗] =

[
−i 0
0 0

]
;

XX [∗] = X [∗]X = 0
!
= A2 with Ker X = Ker A

⇒ A =

[
0 a
0 0

]
, a ∈ R \ {0}

⇒ U =

[
0 u12

ia−1 u22

]
⇒ U [∗] =

[
u22 u12

−ia−1 0

]
UU [∗]=I⇒ U =

[
0 ia

ia−1 b

]
, b ∈ R.

Unfortunately: AU 6= UA for all choices of A and U .



What about the singular case?

Example: X =

[
0 0
0 i

]
, H =

[
0 1
1 0

]
, X [∗] =

[
−i 0
0 0

]
;

XX [∗] = X [∗]X = 0
!
= A2 with Ker X = Ker A

⇒ A =

[
0 a
0 0

]
, a ∈ R \ {0}

⇒ U =

[
0 u12

ia−1 u22

]
⇒ U [∗] =

[
u22 u12

−ia−1 0

]
UU [∗]=I⇒ U =

[
0 ia

ia−1 b

]
, b ∈ R.

Reason: X [∗] = AU−1 = U−1A but Ker X [∗] 6= Ker A = Ker X.



Polar decompositions with commuting factors

Theorem [M., Ran, Rodman, 2004]: The following statements are equiva-
lent:

i) X admits an H-polar decomposition with commuting factors;

ii) X is H-normal and Ker X = Ker X [∗];

iii) there is an H-unitary V such that X = V X [∗].

Idea of proof: i) ⇒ ii): let X = UA, i.e., X [∗] = AU−1:

XX [∗] = UAAU−1 = AU−1UA = X [∗]X ;

Ker X = Ker A = Ker X [∗] is clear;



Polar decompositions with commuting factors

Theorem [M., Ran, Rodman, 2004]: The following statements are equiva-
lent:

i) X admits an H-polar decomposition with commuting factors;

ii) X is H-normal and Ker X = Ker X [∗];

iii) there is an H-unitary V such that X = V X [∗].

Idea of proof: ii) ⇒ iii):

this is Witt’s theorem;



Polar decompositions with commuting factors

Theorem [M., Ran, Rodman, 2004]: The following statements are equiva-
lent:

i) X admits an H-polar decomposition with commuting factors;

ii) X is H-normal and Ker X = Ker X [∗];

iii) there is an H-unitary V such that X = V X [∗].

Idea of proof: iii) ⇒ i): X and V commute:

XV = V X [∗]V = V (V X [∗])[∗]V = V XV [∗]V = V X ;

construct H-unitary square root U of V that commutes with X;



Polar decompositions with commuting factors

Theorem [M., Ran, Rodman, 2004]: The following statements are equiva-
lent:

i) X admits an H-polar decomposition with commuting factors;

ii) X is H-normal and Ker X = Ker X [∗];

iii) there is an H-unitary V such that X = V X [∗].

Idea of proof: iii) ⇒ i):

choose X = UA with A := U−1X, then A is H-selfadjoint:

(U−1X)[∗] = X [∗]U = V −1XU = V −1UX = U−2UX = U−1X.
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Krein spaces

Convention: all operators considered in the following are bounded.

Let (H, 〈·, ·〉) be a Hilbert space and let H be an invertible selfadjoint
operator.

• indefinite inner product: [x, y] = 〈Hx, y〉, x, y ∈ H;

• (H, [·, ·]) is a Krein space;

• (H, [·, ·]) is a Pontryagin space if the H-invariant subspace corre-
sponding to negative part of the spectrum of H has dimension κ < ∞.



Polar decompositions in Krein spaces

• H-polar decomposition: for X : H → H:

X = UA where A is H-selfadjoint and U : Im A → Im X

is an injective H-isometry;

• H-unitary polar decomposition: if U above is H-unitary;

• as before: X has an H-polar decomposition iff X [∗]X has an H-
selfadjoint square root A s.t. Ker X = Ker A.



Extension of H-isometries

Main problem: extension of H-isometries to H-unitary operators.

Theorem [van der Mee, Ran, Rodman, 2002]: LetH be a Pontryagin space
and V1,V2 ⊆ H be closed subspaces, and let U0 : V1 → V2 a continuous
and injective H-isometry. If codimV1 =codimV2, then U0 can be extended
to an H-unitary operator U : H → H.

Remark: The theorem also holds for Krein spaces if V1 = V2.



Polar decompositions of normal operators

Theorem [M., Ran, Rodman, 2004]: Let X : H → H be H-normal s.t.

1) either X is invertible or 0 is an isolated point of the spectrum with finite
algebraic multiplicity;

2) σ(X) does not surround zero;

3) either Ker X = Ker X [∗] or H is a Pontryagin space.

Then X admits an H-unitary polar decomposition.

Proof: as in the finite dimensional case; this provides an H-polar decom-
position X = U0A with an H-isometry U0 : Im A → Im X;

then use
”
Ker X = Ker X [∗] ⇒ Im A = Im X“ for Krein spaces or

”
codim Im A = codim Im X“ for Pontryagin spaces.



Conclusions

• theory of existence of H-polar decomposions now complete;

• normal matrices are the prototypes of matrices having H-polar decom-
positions;

• main problem in infinite dimensions: extension of H-isometries;

• important question: how to compute H-polar decompositions numeri-
cally (Kintzel 2004, Higham/Mackey/Mackey/Tisseur 2004/05).


