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H-structured matrices |

H-adjoint of X is the matrix X !*/ satisfying
z, Xy] = [X¥z,y]  forall z,y e C"

& Yy X'Hr=y'HXYz forallz,yeC" & X =H'X*H.

Ais H-selfadjoint | A=A | AAH=HA

S is H-skew-adjoint| S¥ = —-S | S*H = —HS

Uis H-unitary (UM =U"1' U'HU = H




H-selfadjoint matrices |

Example:H:[()l], Alzlg\i],)\ER, Agzlz O.].

e A, and A, are H-selfadjoint: ATH = HA; and A5H = H As;
e [{-selfadjoint matrices need not be diagonalizable;
e the spectrum of H-selfadjoint matrices need not be real;

e but: the spectrum of H-selfadjoint matrices is symmetric with respect
to the real axis:

e canonical forms for H-selfadjoint matrices are known;



H-unitary matrices |

01 L2 a 0
Example.H:LO], U1:[01], UQZ[O _1], CL%O

e Uy and U; are H-unitary: U{HU, = H and U;HU; = H;
e H-unitary matrices satisfy Uz, Uy| = |x,y] for all x,y;

e the spectrum of H-unitary matrices is symmetric with respect to the
unit circle;

e canonical forms for H-unitary matrices are known;



H-polar decompositions |

polar decomposition of a matrix X € C"*"™:

X =U-A, U isunitary, A is Hermitian, A > 0

H-polar decomposition of a matrix X € C**":

X =U-A, Uis H-unitary, A is H-selfadjoint

Note: there is no extra assumption on A (like HA > 0 or o(A) C C,).

Applications: e H-Procrustes problems
e linear optics

e matrix sign function
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Applications: H-Procrustes problems |

Procrustes = “the one who stretches” (thief in Greek Mythology)



Applications: H-Procrustes problems |

Procrustes Analysis: a method for comparing two sets of data:

e based on matching corresponding points (landmarks) from each of the
two data sets:

e minimize the sum of squared deviations between landmarks;

e do this by translation, reflection, rotation, and scaling;
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Applications: H-Procrustes problems |

Specific application: MDS (multidimensional scaling) in psychology:

e test persons estimate the similarity or dissimilarity of /V objects
by pairwise comparison ~» proximities py;, k, [ =1,..., N;

e proximities are transformed into distances dy; = f(py) > 0
(triangle inequality must be satisfied);

e points x;; € R" are constructed such that ||z, — ;|| = d;
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Applications: H-Procrustes problems |

Specific application: MDS (multidimensional scaling) in psychology:

e comparison of two constellations X = [z1,...,xzy]and Y = |y1,...,yn]:
solve an orthogonal Procrustes problem first:

N
find U orthogonal such that g Uz, — yi||* is minimized
k=1
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Applications: H-Procrustes problems |

Specific application: MDS (multidimensional scaling) in psychology:

e comparison of two constellations X = [z1,...,xzy]and Y = |y1,...,yn]:
solve an orthogonal Procrustes problem first:

N
find U orthogonal such that Z Uz, — yi||* is minimized
k=1
e Solution: if
Y*'X=UA

is a polar decomposition of Y* X, then U does the job!



Applications: H-Procrustes problems |

Specific application: MDS (multidimensional scaling) in psychology:

e test persons estimate the similarity or dissimilarity of /V objects
by pairwise comparison ~» proximities py;, k, [ =1,..., N;

e Kintzel (2004) suggested: do not transform the proximities, but interpret
them as pseudo-Euclidean distances;

e construct an indefinite inner product |-, |y = (H-, -);

e construct points x; € R" such that [z} — x;, v — x|y = pui;



Applications: H-Procrustes problems |

Specific application: MDS (multidimensional scaling) in psychology:

e comparison of two constellations X = [z1,...,xzy]and Y = |y1,...,yn]:
solve an H-orthogonal Procrustes problem first:

N
find U H-unitary such that Z[Ua:k — yr, Uz — yi is optimal
k=1

e Solution (Kintzel 2004): if
Y*XH=UA, HA>0

is an H-polar decomposition of Y*X H with an H-nonnegative H-
selfadjoint factor A, then U does the job!



Applications: Linear Optics |

beams of light: vectors I = | i ¢ u U]T.

1 >0 intesity

q/t, u/i, v/1 state of polarizations

p=+/¢+ur+v2/i €0,1] degree of polarization

I = [’L q u v }T must satisfy the inequality + > \/q2 + u? 4 v



Applications: Linear Optics |

Let |-, -] be the inner product induced by H = diag(1, —1,—1, —1).

I = [’L q u U}T satisfies the inequality 7 > \/q2+u2+212 if and only if
LI =#—q¢ —v*—u*>0 and i>0.

orthochronous Lorentz group: Matrices U = (u;;) € R** that are
H-unitary and satisfy uy; > 0.

Clear: [Uz,Ux] = [z, 2] for all z € RY; also (Uz); > 0 if 21 > 0.



Applications: Linear Optics |

o . . T
M € R¥4 satisfies the Stokes criterion if for all [zo qo Ug vo} we
have

iy > \/q8+u8+v(2) — P>+ ud

where [ ¢ u U]T:M[io do Uo UO}T

Such matrices transform one beam of light into another.

Example: Matrices from the orthochronous Lorentz group satisfy Stokes
criterion,



Applications: Linear Optics |

Criterion: Let Uy, U; from the orthochronous Lorentz group.

M € R*** satisfies Stokes criterion < U; MU, satisfies Stokes criterion.

Test whether Stokes criterion is satisfied or not:

e compute H-polar decomposition M = U A with U from the orthochro-
nous Lorentz group;

e check if H-selfadjoint factor A satisfies Stokes criterion.
(This is easier than checking it for M directly!)



Applications: Matrix sign function

Matrix sign function: Let Z € R"*" be such that o(Z) NiR = (. If

J. 0

Z:S[o J

] S~1 where

e J.: Jordan blocks corresponding to the (say) k eigenvalues in the open
right half plane;

e J_: Jordan blocks corresponding to the n — k eigenvalues in the open
left half plane;

then

sign(Z) .= S [gk _]O_k] St



Applications: Matrix sign function

Usage: computation of solutions of continuous-time algebraic Riccati equa-
tions

Theorem (Byers, 1984): X € C™*" nonsingular, X = U A polar decom-

position, then
i 0 X | 0 U
SN\l x o) " |utol

Theorem (Higham, Mackey, Mackey, Tisseur, 2004): X € C"*" nonsin-
gular, X = UA an H-polar decomposition such that o(A) C C", then

([ &3] (1]
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How to construct //-polar decompositions |

Observations for polar decompositions X = U A:
o X — AHUlH = AUy
o XX = AUTIUA = A2

e Ker X = Ker A.

Construction of H-polar decompositions:

i) compute H-selfadjoint square root A of XHX st. Ker X = Ker A;

ii) compute H-unitary U such that X =UA



An example |

o1 fo1 b [11
A (R R I IR )

i) computation of H-selfadjoint factor A:

1 2 11
XMX [O 1] take, e.g.,, A [O 1]

ii) computation of H-unitary factor U:

o Jo1
voxan = [01

Note: HA = [O !

| 1] is NOT positive semidefinite.



Another example |

e If A would be such an H-selfadjoint square root, then o(A) C {—i,}.

e The spectrum of H-selfadjoint matrices is symmetric w.r.t. real axis

= o(A) = {—i,i}.

e There is no H-selfadjoint square root for XX



When do H-polar decompositions exist? |

Construction of H-polar decompositions:
i) compute H-selfadjoint square root A of XHX st. Ker X = Ker A;

ii) compute H-unitary U such that X =UA

Two questions:
i) When does XX have an H-selfadjoint square root?;

ii) When does there exist an H-unitary polar factor U?



When do H-polar decompositions exist? |

Question: i) When does X*/X have an H-selfadjoint square root?

Theorem [Bolshakov, van der Mee, Ran, Reichstein, Rodman, 1996]: Let
X € €. Then X" X has an H-selfadjoint square root A satisfying
Ker X = Ker A if and only if

a) each Jordan block J,() associated with A < 0 in the canonical form for
(XX, H) occurs an even number (say 2m) of times such that there
are exactly m blocks with sign ¢ = +1;

b) several conditions on eigenvalue \ = 0 are satisfied.

01 A€
Note: A < 0:eg., H = [1 O],A(s)— [O )\],

A(1) and A(—1) are NOT H-unitarily similar ~» additional invariant ¢ = +1



When do H-polar decompositions exist? |

Question: i) When does X*/X have an H-selfadjoint square root?

Theorem [Bolshakov, van der Mee, Ran, Reichstein, Rodman, 1996]: Let
X € €. Then X" X has an H-selfadjoint square root A satisfying
Ker X = Ker A if and only if

a) each Jordan block J,() associated with A < 0 in the canonical form for
(XX, H) occurs an even number (say 2m) of times such that there
are exactly m blocks with sign ¢ = +1;

b) several conditions on eigenvalue \ = 0 are satisfied.

Note: )\ = 0: one set of conditions comes from X* X = A2: 3 second set
of conditions comes from Ker X = Ker A.



When do H-polar decompositions exist? |

Question: ii) When does there exist an H-unitary polar factor U?

Theorem [Bolschakov, Reichstein, 1995]: Let XY € C™*". Then the
following are equivalent:

a) X = UyY for an injective H-isometry Uy : Im Y — Im X
(i.e. [Upx, Ugy|] = |x,y] for all z,y € Im Y);

b) XX =YY and Ker X = Ker Y

Idea of proof: define Uy : Im Y — Im X by Uy(Yv) = Xv



When do H-polar decompositions exist? |

Question: ii) When does there exist an H-unitary polar factor U?

Theorem [Witt]: Vi, V, C C" subspaces of dimension m, Uy : Vi — V;
injective f{-isometry, then there exists H-unitary U such that

Uly, = Up.

Corollary: X has an H-polar decomposition iff X"/ X has an H-selfadjoint
square root A such that Ker X = Ker A.
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Normal matrices |

Definition: X € C"" is called //-normal if XX = X X,

Remark: H = I. Let X = U A be the polar decomposition of X. Then
X is normal < UA = AU.

Questions: Let X be H-normal.

1) Does X have an H-polar decomposition?

2) Does X have an H-polar decomposition with commuting factors?



Normal matrices |

Definition: X € C"" is called //-normal if XX = X X,

Problem: canonical forms for H-normal matrices are known for special
cases only:

e when H has at most one negative eigenvalue (Gohberg/Reichstein,1990);
e when H has at most two negative eigenvalues (Holtz/Strauss, 1995);
e when X is block-Toeplitz H-normal (Gohberg/Reichstein, 1991/93);

e when X satisfies X!*/ = p(X) for some polynomial p (M., 2006);



Polar decompositions of normal matrices |

Answers to 1): (existence of H-pd's)

e Bolshakov, van der Mee, Ran, Reichstein, Rodman, 1996:
invertible H-normals have H-pd’s;

e Bolshakov, van der Mee, Ran, Reichstein, Rodman, 1996:
H-normals have H-pd's if H has at most one negative eigenvalue;

e Lins, Meade, M., Rodman, 2001: H-normals have H-pd's if H has at

most two negative eigenvalues;



Polar decompositions of normal matrices |

Theorem [M., Ran, Rodman, 2004] Let X be H-normal. Then X admits

an H-polar decomposition.

Proof:

® requires six pages;
e induction on dim(Ker X);

e basic idea: construct an H-selfadjoint square root A of X" X satisfying
Ker X = Ker A from an H-polar decomposition of a smaller submatrix;



A criterion for the existence of polar decomps |

Corollary [conjectured by Kintzel, 2002] X € C"*" admits an H-polar
decomposition X = UA if and only if XX and XX are H-unitarily

similar.

Proof: , =" XXM = UAAU' = UX" XU, where U is H-unitary
=" assume UX XM = XHX: then X = UX is H-normal:
xxH=uxxty = xtx = xWyhux = XX,
X has an H-polar decomposition X = UA = X =UUA

Consequence: H-normal matrices are the prototype of matrices allowing
an H-polar decomposition.



Polar decompositions of normal matrices |

Questions: Let X be H-normal.

1) Does X have an H-polar decomposition?

2) Does X have an H-polar decomposition with commuting factors?

Answers:

1) Yes! (And H-normal matrices are the prototype of matrices allowing an
H-polar decomposition.)

2) ?



The generalized Toeplitz decomposition |

Generalized Toeplitz decomposition: X = Ax + Sx, where
1 1
Ax = §(X + Xy is H-selfadjoint, Sx = §(X — X)) is H-skew-adjoint.
Xt = Al s = Ay — 5
XXM = A2 — AvSx + SyAx — S%
XHX = A% + AxSx — SxAx — 5%

Lemma: X is H-normal if and only if AxSy = SxAy.



The exponential map |

H-unitary matrices Lie group

H-skew-adjoint matrices | Lie algebra

Lie theory: the matrix exponential exp maps the Lie algebra into the Lie
group, l.e.,

S is H-skew-adjoint = exp(S) is H-unitary.

Moreover: A is H-selfadjoint = exp(A) is H-selfadjoint.



Polar decompositions with commuting factors |

Theorem [Lins, Meade, M., Rodman, 2001]: Let X be an invertible H-

normal. Then X admits an H-polar decomposition with commuting factors.

Idea of proof:

e show: invertible /-normals X have H-normal logarithm Y = log X;
e generalized Toeplitz decomp.: Y = Ay + Sy; Ay and Sy commute;
o X =exp(Y) = exp(Ay + Sy) = exp(Ay) exp(Sy)

e exp(Ay) is H-selfadjoint, exp(Sy ) is H-unitary and both matrices com-
mute.



What about the singular case? |

00 01 —1 0
X = — [ — .
Example: X [Oi]’ H [10], X [O O]'
XXM = xF X — 0= A2 with Ker X = Ker A

= A= [0 O]’ a € R\ {0}

:>U:['O_1 um] N U[*]:[_Z?—l u(;z]

(] — )
USST [.01 ] beR.
1a b

Unfortunately: AU # U A for all choices of A and U.



What about the singular case? |

00 01 —1 0
. — [*] -
Example.X—[Oi], H [10], X _[O 0],

xxM = xMx =02 A2 with Ker X = Ker A

0 a
:>A—[OO], a e R\ {0}
:>U:[.O_1 u12] N U[*]:[ ﬂ.zz_1 ﬂ12]
107 U9 —ia 0
(] '
LI U:[.Oﬂa], heR
wa b

Reason: X"/ = AU = U714 but Ker X # Ker A = Ker X.



Polar decompositions with commuting factors |

Theorem [M., Ran, Rodman, 2004]: The following statements are equiva-
lent:

i) X admits an H-polar decomposition with commuting factors;

i) X is H-normal and Ker X = Ker X;
iii) there is an H-unitary V such that X = VX1,

Idea of proof: i) = ii): let X = UA, i.e., X! = AU

XX —UAAU Y = AU 'UA = XM X

)

Ker X = Ker A = Ker X" is clear:



Polar decompositions with commuting factors |

Theorem [M., Ran, Rodman, 2004]: The following statements are equiva-
lent:

i) X admits an H-polar decomposition with commuting factors;

i) X is H-normal and Ker X = Ker X;
iii) there is an H-unitary V such that X = VX1,

Idea of proof: 1) = iii):

this is Witt's theorem:



Polar decompositions with commuting factors |

Theorem [M., Ran, Rodman, 2004]: The following statements are equiva-
lent:

i) X admits an H-polar decomposition with commuting factors;
ii) X is H-normal and Ker X = Ker X
iii) there is an H-unitary V such that X = VX1,

Idea of proof: iii) = ¢): X and V commute:
XV =vxty =—vyxthly —vxviy = vx.

construct H-unitary square root U of V' that commutes with X;



Polar decompositions with commuting factors |

Theorem [M., Ran, Rodman, 2004]: The following statements are equiva-
lent:

i) X admits an H-polar decomposition with commuting factors;
ii) X is H-normal and Ker X = Ker X
iii) there is an H-unitary V such that X = VX1,

Idea of proof: iii) = i):
choose X = UA with A := U7X, then A is H-selfadjoint:
U X)W =XxHy =vIXu=vWUX =UUX =U'X.
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Krein spaces |

Convention: all operators considered in the following are bounded.

Let (H,(-,-)) be a Hilbert space and let H be an invertible selfadjoint
operator.

e indefinite inner product: [x,y] = (Hx,y), x,y € H;
e (H,[,]) is a Krein space;

e (H,[-,]) is a Pontryagin space if the H-invariant subspace corre-
sponding to negative part of the spectrum of H has dimension k < 0.



Polar decompositions in Krein spaces |

e H-polar decomposition: for X : H — 'H:
X =UA where Ais H-selfadjoint and U : Im A — Im X

Is an injective H-isometry;

e //-unitary polar decomposition: if U above is H-unitary;

e as before: X has an H-polar decomposition iff XX has an H-
selfadjoint square root A s.t. Ker X = Ker A.



Extension of /-isometries |

Main problem: extension of H-isometries to H-unitary operators.

Theorem [van der Mee, Ran, Rodman, 2002]: Let H be a Pontryagin space
and Vi, )V, C 'H be closed subspaces, and let U, : V; — V5 a continuous
and injective H-isometry. If codim V; =codim V%, then U, can be extended
to an H-unitary operator U : ' H — H.

Remark: The theorem also holds for Krein spaces if V; = V;.



Polar decompositions of normal operators |

Theorem [M., Ran, Rodman, 2004]: Let X : H — H be H-normal s.t.

1) either X is invertible or 0 is an isolated point of the spectrum with finite
algebraic multiplicity;

2) 0(X) does not surround zero;
3) either Ker X = Ker X! or H is a Pontryagin space.

Then X admits an H-unitary polar decomposition.

Proof: as in the finite dimensional case; this provides an H-polar decom-
position X = UyA with an H-isometry Uy : Im A — Im X;

then use , Ker X = Ker X* = Im A = Im X*“ for Krein spaces or
,codim Im A = codim Im X" for Pontryagin spaces.



Conclusions |

e theory of existence of H-polar decomposions now complete;

e normal matrices are the prototypes of matrices having H-polar decom-
positions;

e main problem in infinite dimensions: extension of H-isometries;

e important question: how to compute H-polar decompositions numeri-

cally (Kintzel 2004, Higham/Mackey/Mackey/Tisseur 2004/05).



