Polar decompositions and indefinite inner products

Christian Mehl Institut für Mathematik Technische Universität Berlin

13th ILAS Conference

Amsterdam, July 18-21, 2006

Outline

- 1. Introduction: Polar decompositions and indefinite inner products
- 2. Applications of H-polar decompositions
- 3. Construction of H-polar decompositions
- 4. H-polar decompositions and H-normal matrices
- 5. H-polar decompositions and Krein spaces

*H***-structured matrices**

 $\begin{aligned} H-\text{adjoint of } X \text{ is the matrix } X^{[*]} \text{ satisfying} \\ [x, Xy] &= [X^{[*]}x, y] \quad \text{for all } x, y \in \mathbb{C}^n \\ \Leftrightarrow y^* X^* Hx &= y^* HX^{[*]}x \quad \text{for all } x, y \in \mathbb{C}^n \ \Leftrightarrow \ X^{[*]} &= H^{-1}X^* H. \end{aligned}$

A is H -selfadjoint	$A^{[*]} = A$	$A^*H = HA$
S is H -skew-adjoint	$S^{[*]} = -S$	$S^*H = -HS$
U is H -unitary	$U^{[*]} = U^{-1}$	$U^*HU = H$

H-selfadjoint matrices

Example:
$$H = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
, $A_1 = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}$, $\lambda \in \mathbb{R}$, $A_2 = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$.

- A_1 and A_2 are *H*-selfadjoint: $A_1^*H = HA_1$ and $A_2^*H = HA_2$;
- *H*-selfadjoint matrices need not be diagonalizable;
- the spectrum of *H*-selfadjoint matrices need not be real;
- **but**: the spectrum of *H*-selfadjoint matrices is symmetric with respect to the real axis;
- canonical forms for *H*-selfadjoint matrices are known;

H-unitary matrices

Example:
$$H = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
, $U_1 = \begin{bmatrix} 1 & i \\ 0 & 1 \end{bmatrix}$, $U_2 = \begin{bmatrix} a & 0 \\ 0 & a^{-1} \end{bmatrix}$, $a \neq 0$.

- U_1 and U_2 are H-unitary: $U_1^*HU_1 = H$ and $U_2^*HU_2 = H$;
- *H*-unitary matrices satisfy [Ux, Uy] = [x, y] for all x, y;
- the spectrum of *H*-unitary matrices is symmetric with respect to the unit circle;
- canonical forms for *H*-unitary matrices are known;

H-polar decompositions

polar decomposition of a matrix $X \in \mathbb{C}^{n \times n}$:

 $X = U \cdot A$, U is unitary, A is Hermitian, $A \ge 0$

H-polar decomposition of a matrix $X \in \mathbb{C}^{n \times n}$:

 $X = U \cdot A$, U is H-unitary, A is H-selfadjoint

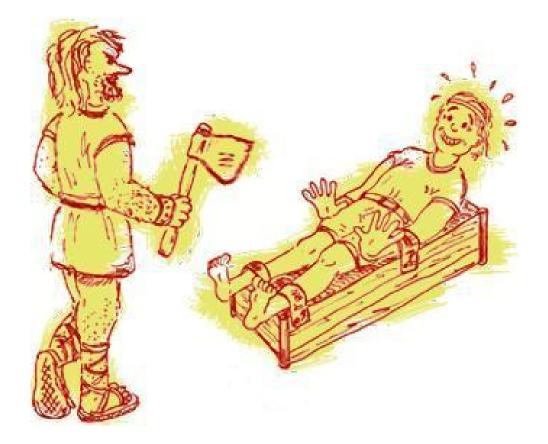
Note: there is no *extra* assumption on A (like $HA \ge 0$ or $\sigma(A) \subseteq \mathbb{C}_+$).

Applications: • *H*-Procrustes problems

- linear optics
- matrix sign function

Outline

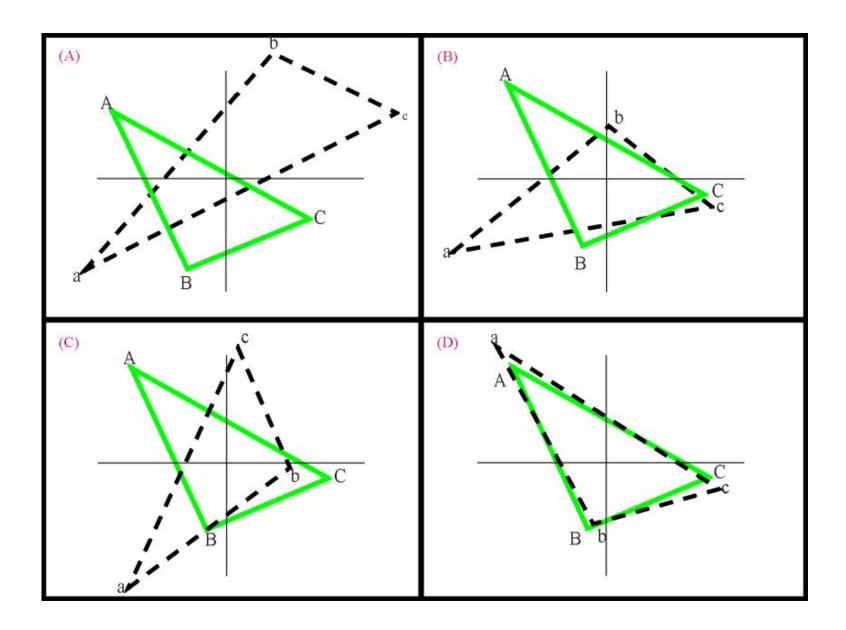
- 1. Introduction: Polar decompositions and indefinite inner products
- 2. Applications of H-polar decompositions
- 3. Construction of H-polar decompositions
- 4. H-polar decompositions and H-normal matrices
- 5. H-polar decompositions and Krein spaces



Procrustes = "the one who stretches" (thief in Greek Mythology)

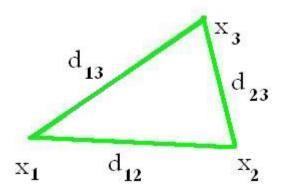
Procrustes Analysis: a method for comparing two sets of data:

- based on matching corresponding points (landmarks) from each of the two data sets;
- minimize the sum of squared deviations between landmarks;
- do this by translation, reflection, rotation, and scaling;



Specific application: MDS (multidimensional scaling) in psychology:

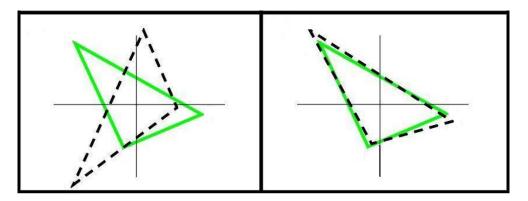
- test persons estimate the similarity or dissimilarity of N objects by pairwise comparison \rightsquigarrow **proximities** p_{kl} , k, l = 1, ..., N;
- proximities are transformed into **distances** $d_{kl} = f(p_{kl}) \ge 0$ (triangle inequality must be satisfied);
- points $x_k \in \mathbb{R}^n$ are constructed such that $||x_k x_l|| = d_{kl}$;



Specific application: MDS (multidimensional scaling) in psychology:

• comparison of two constellations $X = [x_1, \ldots, x_N]$ and $Y = [y_1, \ldots, y_N]$: solve an **orthogonal Procrustes problem** first:

find
$$U$$
 orthogonal such that $\displaystyle\sum_{k=1}^N \|Ux_k-y_k\|^2$ is minimized



Specific application: MDS (multidimensional scaling) in psychology:

• comparison of two constellations $X = [x_1, \ldots, x_N]$ and $Y = [y_1, \ldots, y_N]$: solve an **orthogonal Procrustes problem** first:

find
$$U$$
 orthogonal such that $\displaystyle\sum_{k=1}^N \|Ux_k-y_k\|^2$ is minimized

• Solution: if

$$Y^*X = UA$$

is a polar decomposition of Y^*X , then U does the job!

Specific application: MDS (multidimensional scaling) in psychology:

- test persons estimate the similarity or dissimilarity of N objects by pairwise comparison \rightsquigarrow proximities p_{kl} , k, l = 1, ..., N;
- Kintzel (2004) suggested: do not transform the proximities, but interpret them as pseudo-Euclidean distances;
- construct an indefinite inner product $[\cdot, \cdot]_H = (H \cdot, \cdot);$
- construct points $x_k \in \mathbb{R}^n$ such that $[x_k x_l, x_k x_l]_H = p_{kl}$;

Specific application: MDS (multidimensional scaling) in psychology:

• comparison of two constellations $X = [x_1, \ldots, x_N]$ and $Y = [y_1, \ldots, y_N]$: solve an *H*-orthogonal Procrustes problem first:

find
$$U$$
 H -unitary such that $\sum_{k=1}^{N} [Ux_k - y_k, Ux_k - y_k]$ is optimal

• Solution (Kintzel 2004): if

$$Y^*XH = UA, \quad HA \ge 0$$

is an H-polar decomposition of Y^*XH with an H-nonnegative H-selfadjoint factor A, then U does the job!

beams of light: vectors $I = \begin{bmatrix} i & q & u & v \end{bmatrix}^T$.i > 0intesityq/i, u/i, v/istate of polarizations $p = \sqrt{q^2 + u^2 + v^2}/i \in [0, 1]$ degree of polarization

 $I = \begin{bmatrix} i & q & u \end{bmatrix}^T$ must satisfy the inequality $i \ge \sqrt{q^2 + u^2 + v^2}$.

Let $[\cdot, \cdot]$ be the inner product induced by H = diag(1, -1, -1, -1).

$$I = \begin{bmatrix} i & q & u & v \end{bmatrix}^T$$
 satisfies the inequality $i \ge \sqrt{q^2 + u^2 + v^2}$ if and only if $[I, I] = i^2 - q^2 - v^2 - u^2 \ge 0$ and $i > 0$.

orthochronous Lorentz group: Matrices $U = (u_{ij}) \in \mathbb{R}^{4 \times 4}$ that are *H*-unitary and satisfy $u_{11} > 0$.

Clear: [Ux, Ux] = [x, x] for all $x \in \mathbb{R}^4$; also $(Ux)_1 > 0$ if $x_1 > 0$.

 $M \in \mathbb{R}^{4 \times 4} \text{ satisfies the Stokes criterion if for all } \begin{bmatrix} i_0 & q_0 & u_0 & v_0 \end{bmatrix}^T \text{ we}$ have $i_0 \ge \sqrt{q_0^2 + u_0^2 + v_0^2} \implies i \ge \sqrt{q^2 + u^2 + v^2},$ where $\begin{bmatrix} i & q & u & v \end{bmatrix}^T = M \begin{bmatrix} i_0 & q_0 & u_0 & v_0 \end{bmatrix}^T.$

Such matrices transform one beam of light into another.

Example: Matrices from the orthochronous Lorentz group satisfy Stokes criterion.

Criterion: Let U_1, U_2 from the orthochronous Lorentz group. $M \in \mathbb{R}^{4 \times 4}$ satisfies Stokes criterion $\Leftrightarrow U_1 M U_2$ satisfies Stokes criterion.

Test whether Stokes criterion is satisfied or not:

- compute H-polar decomposition M = UA with U from the orthochronous Lorentz group;
- check if *H*-selfadjoint factor *A* satisfies Stokes criterion. (This is easier than checking it for *M* directly!)

Applications: Matrix sign function

Matrix sign function: Let $Z \in \mathbb{R}^{n \times n}$ be such that $\sigma(Z) \cap i\mathbb{R} = \emptyset$. If

$$Z = S \begin{bmatrix} J_+ & 0 \\ 0 & J_- \end{bmatrix} S^{-1}, \quad \text{where}$$

- J_+ : Jordan blocks corresponding to the (say) k eigenvalues in the open right half plane;
- J_{-} : Jordan blocks corresponding to the n k eigenvalues in the open left half plane;

then

$$\operatorname{sign}(Z) := S \begin{bmatrix} I_k & 0\\ 0 & -I_{n-k} \end{bmatrix} S^{-1}.$$

Applications: Matrix sign function

Usage: computation of solutions of continuous-time algebraic Riccati equations

Theorem (Byers, 1984): $X \in \mathbb{C}^{n \times n}$ nonsingular, X = UA polar decomposition, then

$$\operatorname{sign}\left(\left[\begin{array}{cc} 0 & X \\ X^* & 0 \end{array}\right]\right) = \left[\begin{array}{cc} 0 & U \\ U^{-1} & 0 \end{array}\right].$$

Theorem (Higham, Mackey, Mackey, Tisseur, 2004): $X \in \mathbb{C}^{n \times n}$ nonsingular, X = UA an *H*-polar decomposition such that $\sigma(A) \subseteq \mathbb{C}^+$, then

$$\operatorname{sign}\left(\left[\begin{array}{cc} 0 & X\\ X^{[*]} & 0 \end{array}\right]\right) = \left[\begin{array}{cc} 0 & U\\ U^{-1} & 0 \end{array}\right].$$

Outline

- 1. Introduction: Polar decompositions and indefinite inner products
- 2. Applications of H-polar decompositions
- 3. Construction of H-polar decompositions
- 4. H-polar decompositions and H-normal matrices
- 5. H-polar decompositions and Krein spaces

How to construct H-polar decompositions

Observations for polar decompositions X = UA:

$$\bullet \; X^{[*]} = A^{[*]} U^{[*]} = A U^{-1}$$

$$\bullet \ X^{[*]}X = AU^{-1}UA = A^2$$

• Ker
$$X = \text{Ker } A$$
.

Construction of *H***-polar decompositions**:

i) compute *H*-selfadjoint square root *A* of $X^{[*]}X$ s.t. Ker X = Ker A;

ii) compute H-unitary U such that X = UA

An example

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad H = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \Rightarrow \quad X^{[*]} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

i) computation of H-selfadjoint factor A:

$$X^{[*]}X = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \quad \text{take, e.g., } A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

ii) computation of H-unitary factor U:

$$U = XA^{-1} = \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}$$

Note:
$$HA = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$
 is NOT positive semidefinite.

Another example

$$X = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}, \quad H = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \Rightarrow X^{[*]} = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}$$
$$X^{[*]}X = \begin{bmatrix} -1 & 2 \\ 0 & -1 \end{bmatrix} \stackrel{?}{=} A^2$$

- If A would be such an H-selfadjoint square root, then $\sigma(A) \subseteq \{-i, i\}$.
- The spectrum of *H*-selfadjoint matrices is symmetric w.r.t. real axis $\Rightarrow \sigma(A) = \{-i, i\}.$
- There is no *H*-selfadjoint square root for $X^{[*]}X$.

Construction of *H***-polar decompositions**:

i) compute *H*-selfadjoint square root *A* of $X^{[*]}X$ s.t. Ker X = Ker A;

ii) compute H-unitary U such that X = UA

Two questions:

- i) When does $X^{[*]}X$ have an *H*-selfadjoint square root?;
- ii) When does there exist an H-unitary polar factor U?

Question: i) When does $X^{[*]}X$ have an *H*-selfadjoint square root?

Theorem [Bolshakov, van der Mee, Ran, Reichstein, Rodman, 1996]: Let $X \in \mathbb{C}^{n \times n}$. Then $X^{[*]}X$ has an *H*-selfadjoint square root *A* satisfying Ker X = Ker A if and only if

- a) each Jordan block $\mathcal{J}_p(\lambda)$ associated with $\lambda < 0$ in the canonical form for $(X^{[*]}X, H)$ occurs an even number (say 2m) of times such that there are exactly m blocks with sign $\varepsilon = +1$;
- b) several conditions on eigenvalue $\lambda = 0$ are satisfied.

Note:
$$\lambda < 0$$
: e.g., $H = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$; $A(\varepsilon) = \begin{bmatrix} \lambda & \varepsilon \\ 0 & \lambda \end{bmatrix}$;

A(1) and A(-1) are NOT $H\text{-unitarily similar} \leadsto$ additional invariant $\varepsilon=\pm 1$

Question: i) When does $X^{[*]}X$ have an *H*-selfadjoint square root?

Theorem [Bolshakov, van der Mee, Ran, Reichstein, Rodman, 1996]: Let $X \in \mathbb{C}^{n \times n}$. Then $X^{[*]}X$ has an *H*-selfadjoint square root *A* satisfying Ker X = Ker A if and only if

- a) each Jordan block $\mathcal{J}_p(\lambda)$ associated with $\lambda < 0$ in the canonical form for $(X^{[*]}X, H)$ occurs an even number (say 2m) of times such that there are exactly m blocks with sign $\varepsilon = +1$;
- b) several conditions on eigenvalue $\lambda = 0$ are satisfied.

Note: $\lambda = 0$: one set of conditions comes from $X^{[*]}X = A^2$; a second set of conditions comes from Ker X = Ker A.

Question: ii) When does there exist an H-unitary polar factor U?

Theorem [Bolschakov, Reichstein, 1995]: Let $X, Y \in \mathbb{C}^{n \times n}$. Then the following are equivalent:

a) $X = U_0 Y$ for an injective *H*-isometry $U_0 : \operatorname{Im} Y \to \operatorname{Im} X$ (i.e. $[U_0 x, U_0 y] = [x, y]$ for all $x, y \in \operatorname{Im} Y$);

b) $X^{[*]}X = Y^{[*]}Y$ and Ker X = Ker Y

Idea of proof: define $U_0 : \operatorname{Im} Y \to \operatorname{Im} X$ by $U_0(Yv) = Xv$

Question: ii) When does there exist an H-unitary polar factor U?

Theorem [Witt]: $\mathcal{V}_1, \mathcal{V}_2 \subseteq \mathbb{C}^n$ subspaces of dimension $m, U_0 : \mathcal{V}_1 \to \mathcal{V}_2$ injective *H*-isometry, then there exists *H*-unitary *U* such that

$$U|_{\mathcal{V}_1} = U_0.$$

Corollary: X has an H-polar decomposition iff $X^{[*]}X$ has an H-selfadjoint square root A such that Ker X = Ker A.

Outline

- 1. Introduction: Polar decompositions and indefinite inner products
- 2. Applications of H-polar decompositions
- 3. Construction of H-polar decompositions
- 4. H-polar decompositions and H-normal matrices
- 5. H-polar decompositions and Krein spaces

Normal matrices

Definition: $X \in \mathbb{C}^{n \times n}$ is called *H*-normal if $X^{[*]}X = XX^{[*]}$.

Remark: H = I. Let X = UA be the polar decomposition of X. Then X is normal $\iff UA = AU$.

Questions: Let X be H-normal.

1) Does X have an H-polar decomposition?

2) Does X have an H-polar decomposition with commuting factors?

Normal matrices

Definition: $X \in \mathbb{C}^{n \times n}$ is called *H*-normal if $X^{[*]}X = XX^{[*]}$.

Problem: canonical forms for *H*-normal matrices are known for special cases only:

- when H has at most one negative eigenvalue (Gohberg/Reichstein, 1990);
- when H has at most two negative eigenvalues (Holtz/Strauss, 1995);
- when X is block-Toeplitz H-normal (Gohberg/Reichstein, 1991/93);
- when X satisfies $X^{[*]} = p(X)$ for some polynomial p (M., 2006);

Polar decompositions of normal matrices

Answers to 1): (existence of *H*-pd's)

- Bolshakov, van der Mee, Ran, Reichstein, Rodman, 1996: invertible *H*-normals have *H*-pd's;
- Bolshakov, van der Mee, Ran, Reichstein, Rodman, 1996: *H*-normals have *H*-pd's if *H* has at most one negative eigenvalue;
- Lins, Meade, M., Rodman, 2001: *H*-normals have *H*-pd's if *H* has at most two negative eigenvalues;

Polar decompositions of normal matrices

Theorem [M., Ran, Rodman, 2004] Let X be H-normal. Then X admits an H-polar decomposition.

Proof:

- requires six pages;
- induction on dim(Ker X);
- basic idea: construct an H-selfadjoint square root A of $X^{[*]}X$ satisfying Ker X = Ker A from an H-polar decomposition of a smaller submatrix;

A criterion for the existence of polar decomps

Corollary [conjectured by Kintzel, 2002] $X \in \mathbb{C}^{n \times n}$ admits an *H*-polar decomposition X = UA if and only if $XX^{[*]}$ and $X^{[*]}X$ are *H*-unitarily similar.

Proof: "="=":
$$XX^{[*]} = UAAU^{-1} = UX^{[*]}XU^{-1}$$
, where U is H -unitary
"=": assume $UXX^{[*]}U^{-1} = X^{[*]}X$; then $\tilde{X} = UX$ is H -normal:
 $\tilde{X}\tilde{X}^{[*]} = UXX^{[*]}U^{-1} = X^{[*]}X = X^{[*]}U^{[*]}UX = \tilde{X}^{[*]}\tilde{X}$.
 \tilde{X} has an H -polar decomposition $\tilde{X} = \hat{U}\hat{A} \Rightarrow X = U^{-1}\hat{U}\hat{A}$

Consequence: H-normal matrices are the prototype of matrices allowing an H-polar decomposition.

Polar decompositions of normal matrices

Questions: Let X be H-normal.

1) Does X have an H-polar decomposition?

2) Does X have an H-polar decomposition with commuting factors?

Answers:

1) Yes! (And H-normal matrices are the prototype of matrices allowing an H-polar decomposition.)

2)?

The generalized Toeplitz decomposition

Generalized Toeplitz decomposition: $X = A_X + S_X$, where $A_X = \frac{1}{2}(X + X^{[*]})$ is *H*-selfadjoint, $S_X = \frac{1}{2}(X - X^{[*]})$ is *H*-skew-adjoint.

$$X^{[*]} = A_X^{[*]} + S_X^{[*]} = A_X - S_X$$
$$XX^{[*]} = A_X^2 - A_X S_X + S_X A_X - S_X^2$$
$$X^{[*]} X = A_X^2 + A_X S_X - S_X A_X - S_X^2$$

Lemma: X is H-normal if and only if $A_X S_X = S_X A_X$.

The exponential map

H-unitary matrices	Lie group
H-skew-adjoint matrices	Lie algebra

Lie theory: the matrix exponential \exp maps the Lie algebra into the Lie group, i.e.,

S is H-skew-adjoint $\Rightarrow \exp(S)$ is H-unitary.

Moreover: A is H-selfadjoint $\Rightarrow \exp(A)$ is H-selfadjoint.

Theorem [Lins, Meade, M., Rodman, 2001]: Let X be an invertible H-normal. Then X admits an H-polar decomposition with commuting factors.

Idea of proof:

- show: invertible *H*-normals *X* have *H*-normal logarithm $Y = \log X$;
- generalized Toeplitz decomp.: $Y = A_Y + S_Y$; A_Y and S_Y commute;
- $X = \exp(Y) = \exp(A_Y + S_Y) = \exp(A_Y) \exp(S_Y)$
- $\exp(A_Y)$ is *H*-selfadjoint, $\exp(S_Y)$ is *H*-unitary and both matrices commute.

What about the singular case?

Example:
$$X = \begin{bmatrix} 0 & 0 \\ 0 & i \end{bmatrix}$$
, $H = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $X^{[*]} = \begin{bmatrix} -i & 0 \\ 0 & 0 \end{bmatrix}$;
 $XX^{[*]} = X^{[*]}X = 0 \stackrel{!}{=} A^2$ with Ker $X =$ Ker A
 $\Rightarrow A = \begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix}$, $a \in \mathbb{R} \setminus \{0\}$
 $\Rightarrow U = \begin{bmatrix} 0 & u_{12} \\ ia^{-1} & u_{22} \end{bmatrix} \Rightarrow U^{[*]} = \begin{bmatrix} \overline{u}_{22} & \overline{u}_{12} \\ -ia^{-1} & 0 \end{bmatrix}$
 $UU^{[*]} = I$ $U = \begin{bmatrix} 0 & ia \\ ia^{-1} & b \end{bmatrix}$, $b \in \mathbb{R}$.

Unfortunately: $AU \neq UA$ for all choices of A and U.

What about the singular case?

Example:
$$X = \begin{bmatrix} 0 & 0 \\ 0 & i \end{bmatrix}$$
, $H = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $X^{[*]} = \begin{bmatrix} -i & 0 \\ 0 & 0 \end{bmatrix}$;
 $XX^{[*]} = X^{[*]}X = 0 \stackrel{!}{=} A^2$ with Ker $X =$ Ker A
 $\Rightarrow A = \begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix}$, $a \in \mathbb{R} \setminus \{0\}$
 $\Rightarrow U = \begin{bmatrix} 0 & u_{12} \\ ia^{-1} & u_{22} \end{bmatrix} \Rightarrow U^{[*]} = \begin{bmatrix} \overline{u}_{22} & \overline{u}_{12} \\ -ia^{-1} & 0 \end{bmatrix}$
 $UU^{[*]} = I$ $U = \begin{bmatrix} 0 & ia \\ ia^{-1} & b \end{bmatrix}$, $b \in \mathbb{R}$.

Reason: $X^{[*]} = AU^{-1} = U^{-1}A$ but Ker $X^{[*]} \neq$ Ker A = Ker X.

Theorem [M., Ran, Rodman, 2004]: The following statements are equivalent:

- i) X admits an H-polar decomposition with commuting factors;
- ii) X is H-normal and Ker $X = \text{Ker } X^{[*]}$;
- iii) there is an H-unitary V such that $X = VX^{[*]}$.

Idea of proof: i) \Rightarrow ii): let X = UA, i.e., $X^{[*]} = AU^{-1}$:

$$XX^{[*]} = UAAU^{-1} = AU^{-1}UA = X^{[*]}X;$$

Ker $X = \text{Ker } A = \text{Ker } X^{[*]}$ is clear;

Theorem [M., Ran, Rodman, 2004]: The following statements are equivalent:

i) X admits an H-polar decomposition with commuting factors;

- ii) X is H-normal and Ker $X = \text{Ker } X^{[*]}$;
- iii) there is an *H*-unitary *V* such that $X = VX^{[*]}$.

Idea of proof: $ii) \Rightarrow iii$):

this is Witt's theorem;

Theorem [M., Ran, Rodman, 2004]: The following statements are equivalent:

- i) X admits an H-polar decomposition with commuting factors;
- ii) X is H-normal and Ker $X = \text{Ker } X^{[*]}$;
- iii) there is an H-unitary V such that $X = VX^{[*]}$.

Idea of proof: $iii) \Rightarrow i$: X and V commute:

$$XV = VX^{[*]}V = V(VX^{[*]})^{[*]}V = VXV^{[*]}V = VX;$$

construct H-unitary square root U of V that commutes with X;

Theorem [M., Ran, Rodman, 2004]: The following statements are equivalent:

- i) X admits an H-polar decomposition with commuting factors;
- ii) X is H-normal and Ker $X = \text{Ker } X^{[*]}$;
- iii) there is an H-unitary V such that $X = VX^{[*]}$.

Idea of proof: $iii) \Rightarrow i$:

choose X = UA with $A := U^{-1}X$, then A is H-selfadjoint:

$$(U^{-1}X)^{[*]} = X^{[*]}U = V^{-1}XU = V^{-1}UX = U^{-2}UX = U^{-1}X.$$

Outline

- 1. Introduction: Polar decompositions and indefinite inner products
- 2. Applications of H-polar decompositions
- 3. Construction of H-polar decompositions
- 4. H-polar decompositions and H-normal matrices
- 5. H-polar decompositions and Krein spaces

Krein spaces

Convention: all operators considered in the following are bounded.

Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a Hilbert space and let H be an invertible selfadjoint operator.

- indefinite inner product: $[x, y] = \langle Hx, y \rangle$, $x, y \in \mathcal{H}$;
- $(\mathcal{H}, [\cdot, \cdot])$ is a Krein space;
- $(\mathcal{H}, [\cdot, \cdot])$ is a **Pontryagin space** if the *H*-invariant subspace corresponding to negative part of the spectrum of *H* has dimension $\kappa < \infty$.

Polar decompositions in Krein spaces

• *H*-polar decomposition: for $X : \mathcal{H} \to \mathcal{H}$:

X = UA where A is H-selfadjoint and $U : \text{Im } A \to \text{Im } X$ is an injective H-isometry;

- *H*-unitary polar decomposition: if *U* above is *H*-unitary;
- as before: X has an H-polar decomposition iff $X^{[*]}X$ has an H-selfadjoint square root A s.t. Ker X = Ker A.

Extension of *H***-isometries**

Main problem: extension of H-isometries to H-unitary operators.

Theorem [van der Mee, Ran, Rodman, 2002]: Let \mathcal{H} be a Pontryagin space and $\mathcal{V}_1, \mathcal{V}_2 \subseteq \mathcal{H}$ be closed subspaces, and let $U_0 : \mathcal{V}_1 \to \mathcal{V}_2$ a continuous and injective H-isometry. If codim $\mathcal{V}_1 = \operatorname{codim} \mathcal{V}_2$, then U_0 can be extended to an H-unitary operator $U : \mathcal{H} \to \mathcal{H}$.

Remark: The theorem also holds for Krein spaces if $\mathcal{V}_1 = \mathcal{V}_2$.

Polar decompositions of normal operators

Theorem [M., Ran, Rodman, 2004]: Let $X : \mathcal{H} \to \mathcal{H}$ be *H*-normal s.t.

- 1) either X is invertible or 0 is an isolated point of the spectrum with finite algebraic multiplicity;
- 2) $\sigma(X)$ does not surround zero;
- 3) either Ker $X = \text{Ker } X^{[*]}$ or \mathcal{H} is a Pontryagin space.

Then X admits an H-unitary polar decomposition.

Proof: as in the finite dimensional case; this provides an *H*-polar decomposition $X = U_0 A$ with an *H*-isometry $U_0 : \text{Im } A \to \text{Im } X$;

then use "Ker $X = \text{Ker } X^{[*]} \Rightarrow \text{Im } A = \text{Im } X^{"}$ for Krein spaces or "codim Im $A = \text{codim Im } X^{"}$ for Pontryagin spaces.

Conclusions

- theory of existence of *H*-polar decomposions now complete;
- normal matrices are the prototypes of matrices having *H*-polar decompositions;
- main problem in infinite dimensions: extension of *H*-isometries;
- important question: how to compute *H*-polar decompositions numerically (Kintzel 2004, Higham/Mackey/Mackey/Tisseur 2004/05).